
Package ‘SimDesign’
August 17, 2024

Title Structure for Organizing Monte Carlo Simulation Designs

Version 2.17.1

Description Provides tools to safely and efficiently organize and execute
Monte Carlo simulation experiments in R.
The package controls the structure and back-end of Monte Carlo simulation experiments
by utilizing a generate-analyse-summarise workflow. The workflow safeguards against
common simulation coding issues, such as automatically re-simulating non-convergent results,
prevents inadvertently overwriting simulation files, catches error and warning messages
during execution, implicitly supports parallel processing with high-quality random number
generation, and provides tools for managing high-performance computing (HPC) array jobs
submitted to schedulers such as SLURM. For a pedagogical introduction to the package see
Sigal and Chalmers (2016) <doi:10.1080/10691898.2016.1246953>. For a more in-
depth overview of
the package and its design philosophy see Chalmers and Ad-
kins (2020) <doi:10.20982/tqmp.16.4.p248>.

VignetteBuilder knitr

Depends R (>= 3.5.0)

Imports methods, testthat, parallel, parallelly, snow, dplyr,
sessioninfo, beepr, pbapply (>= 1.3-0), RPushbullet, future,
future.apply, progressr, R.utils, stats

Suggests knitr, ggplot2, tidyr, purrr, shiny, copula, extraDistr,
renv, cli, job, future.batchtools, FrF2, rmarkdown

License GPL (>= 2)

ByteCompile yes

LazyData true

URL http://philchalmers.github.io/SimDesign/,

https://github.com/philchalmers/SimDesign/wiki

RoxygenNote 7.3.2

NeedsCompilation no

Author Phil Chalmers [aut, cre] (<https://orcid.org/0000-0001-5332-2810>),
Matthew Sigal [ctb],
Ogreden Oguzhan [ctb],
Mikko Ronkko [ctb]

1

https://doi.org/10.1080/10691898.2016.1246953
https://doi.org/10.20982/tqmp.16.4.p248
http://philchalmers.github.io/SimDesign/
https://github.com/philchalmers/SimDesign/wiki
https://orcid.org/0000-0001-5332-2810

2 Contents

Maintainer Phil Chalmers <rphilip.chalmers@gmail.com>

Repository CRAN

Date/Publication 2024-08-17 05:00:02 UTC

Contents
addMissing . 3
Analyse . 5
AnalyseIf . 7
Attach . 9
BF_sim . 11
BF_sim_alternative . 12
bias . 13
bootPredict . 15
Bradley1978 . 18
CC . 20
clusterSetRNGSubStream . 21
colVars . 21
createDesign . 22
ECR . 24
EDR . 27
expandDesign . 28
Generate . 29
GenerateIf . 31
genSeeds . 33
getArrayID . 35
IRMSE . 36
MAE . 38
manageMessages . 39
manageWarnings . 42
MSRSE . 47
nc . 48
PBA . 50
quiet . 53
RAB . 54
rbind.SimDesign . 55
RD . 57
RE . 58
rejectionSampling . 60
reSummarise . 63
rHeadrick . 66
rint . 68
rinvWishart . 69
rmgh . 70
RMSE . 71
rmvnorm . 73
rmvt . 74

addMissing 3

RobbinsMonro . 76
RSE . 78
rtruncate . 79
runArraySimulation . 81
runSimulation . 87
rValeMaurelli . 104
Serlin2000 . 106
SFA . 107
SimAnova . 111
SimCheck . 113
SimClean . 114
SimCollect . 115
SimDesign . 118
SimExtract . 119
SimFunctions . 121
SimResults . 123
SimShiny . 125
SimSolve . 127
Summarise . 136
timeFormater . 137

Index 139

addMissing Add missing values to a vector given a MCAR, MAR, or MNAR scheme

Description

Given an input vector, replace elements of this vector with missing values according to some
scheme. Default method replaces input values with a MCAR scheme (where on average 10% of
the values will be replaced with NAs). MAR and MNAR are supported by replacing the default FUN
argument.

Usage

addMissing(y, fun = function(y, rate = 0.1, ...) rep(rate, length(y)), ...)

Arguments

y an input vector that should contain missing data in the form of NA’s

fun a user defined function indicating the missing data mechanism for each element
in y. Function must return a vector of probability values with the length equal
to the length of y. Each value in the returned vector indicates the probability
that the respective element in y will be replaced with NA. Function must contain
the argument y, representing the input vector, however any number of additional
arguments can be included

... additional arguments to be passed to FUN

4 addMissing

Details

Given an input vector y, and other relevant variables inside (X) and outside (Z) the data-set, the
three types of missingness are:

MCAR Missing completely at random (MCAR). This is realized by randomly sampling the values
of the input vector (y) irrespective of the possible values in X and Z. Therefore missing values
are randomly sampled and do not depend on any data characteristics and are truly random

MAR Missing at random (MAR). This is realized when values in the dataset (X) predict the missing
data mechanism in y; conceptually this is equivalent to P (y = NA|X). This requires the user
to define a custom missing data function

MNAR Missing not at random (MNAR). This is similar to MAR except that the missing mecha-
nism comes from the value of y itself or from variables outside the working dataset; concep-
tually this is equivalent to P (y = NA|X,Z, y). This requires the user to define a custom
missing data function

Value

the input vector y with the sampled NA values (according to the FUN scheme)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Not run:

set.seed(1)
y <- rnorm(1000)

10% missing rate with default FUN
head(ymiss <- addMissing(y), 10)

50% missing with default FUN
head(ymiss <- addMissing(y, rate = .5), 10)

missing values only when female and low
X <- data.frame(group = sample(c('male', 'female'), 1000, replace=TRUE),

level = sample(c('high', 'low'), 1000, replace=TRUE))
head(X)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

Analyse 5

fun <- function(y, X, ...){
p <- rep(0, length(y))
p[X$group == 'female' & X$level == 'low'] <- .2
p

}

ymiss <- addMissing(y, X, fun=fun)
tail(cbind(ymiss, X), 10)

missingness as a function of elements in X (i.e., a type of MAR)
fun <- function(y, X){

missingness with a logistic regression approach
df <- data.frame(y, X)
mm <- model.matrix(y ~ group + level, df)
cfs <- c(-5, 2, 3) #intercept, group, and level coefs
z <- cfs %*% t(mm)
plogis(z)

}

ymiss <- addMissing(y, X, fun=fun)
tail(cbind(ymiss, X), 10)

missing values when y elements are large (i.e., a type of MNAR)
fun <- function(y) ifelse(abs(y) > 1, .4, 0)
ymiss <- addMissing(y, fun=fun)
tail(cbind(y, ymiss), 10)

End(Not run)

Analyse Compute estimates and statistics

Description

Compute all relevant test statistics, parameter estimates, detection rates, and so on. This is the com-
putational heavy lifting portion of the Monte Carlo simulation. Users may define a single Analysis
function to perform all the analyses in the same function environment, or may define a list of
named functions to runSimulation to allow for a more modularized approach to performing the
analyses in independent blocks (but that share the same generated data). Note that if a suitable
Generate function was not supplied then this function can be used to be generate and analyse the
Monte Carlo data (though in general this setup is not recommended for larger simulations).

Usage

Analyse(condition, dat, fixed_objects)

6 Analyse

Arguments

condition a single row from the design input (as a data.frame), indicating the simulation
conditions

dat the dat object returned from the Generate function (usually a data.frame,
matrix, vector, or list)

fixed_objects object passed down from runSimulation

Details

In some cases, it may be easier to change the output to a named list containing different parameter
configurations (e.g., when determining RMSE values for a large set of population parameters).

The use of try functions is generally not required in this function because Analyse is internally
wrapped in a try call. Therefore, if a function stops early then this will cause the function to halt
internally, the message which triggered the stop will be recorded, and Generate will be called
again to obtain a different dataset. That said, it may be useful for users to throw their own stop
commands if the data should be re-drawn for other reasons (e.g., an estimated model terminated
correctly but the maximum number of iterations were reached).

Value

returns a named numeric vector or data.frame with the values of interest (e.g., p-values, effects
sizes, etc), or a list containing values of interest (e.g., separate matrix and vector of parameter
estimates corresponding to elements in parameters). If a data.frame is returned with more than
1 row then these objects will be wrapped into suitable list objects

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

stop, AnalyseIf, manageWarnings

Examples

Not run:

analyse <- function(condition, dat, fixed_objects) {

require packages/define functions if needed, or better yet index with the :: operator
require(stats)
mygreatfunction <- function(x) print('Do some stuff')

#wrap computational statistics in try() statements to control estimation problems
welch <- t.test(DV ~ group, dat)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

AnalyseIf 7

ind <- stats::t.test(DV ~ group, dat, var.equal=TRUE)

In this function the p values for the t-tests are returned,
and make sure to name each element, for future reference
ret <- c(welch = welch$p.value,

independent = ind$p.value)

return(ret)
}

A more modularized example approach

analysis_welch <- function(condition, dat, fixed_objects) {
welch <- t.test(DV ~ group, dat)
ret <- c(p=welch$p.value)
ret

}

analysis_ind <- function(condition, dat, fixed_objects) {
ind <- t.test(DV ~ group, dat, var.equal=TRUE)
ret <- c(p=ind$p.value)
ret

}

pass functions as a named list
runSimulation(..., analyse=list(welch=analyse_welch, independent=analysis_ind))

End(Not run)

AnalyseIf Perform a test that indicates whether a given Analyse() function
should be executed

Description

This function is designed to prevent specific analysis function executions when the design condi-
tions are not met. Primarily useful when the analyse argument to runSimulation was input as a
named list object, however some of the analysis functions are not interesting/compatible with the
generated data and should therefore be skipped.

Usage

AnalyseIf(x, condition = NULL)

Arguments

x logical statement to evaluate. If the statement evaluates to TRUE then the remain-
der of the defined function will be evaluated

8 AnalyseIf

condition (optional) the current design condition. This does not need to be supplied if the
expression in x evaluates to valid logical (e.g., use Attach(condition) prior to
using AnalyseIf, or use with(condition, AnalyseIf(someLogicalTest)))

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

Analyse, runSimulation

Examples

Not run:

Design <- createDesign(N=c(10,20,30), var.equal = c(TRUE, FALSE))

Generate <- function(condition, fixed_objects) {
Attach(condition)
dat <- data.frame(DV = rnorm(N*2), IV = gl(2, N, labels=c('G1', 'G2')))
dat

}

always run this analysis for each row in Design
Analyse1 <- function(condition, dat, fixed_objects) {

mod <- t.test(DV ~ IV, data=dat)
mod$p.value

}

Only perform analysis when variances are equal and N = 20 or 30
Analyse2 <- function(condition, dat, fixed_objects) {

AnalyseIf(var.equal && N %in% c(20, 30), condition)
mod <- t.test(DV ~ IV, data=dat, var.equal=TRUE)
mod$p.value

}

Summarise <- function(condition, results, fixed_objects) {
ret <- EDR(results, alpha=.05)
ret

}

#---

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

Attach 9

append names 'Welch' and 'independent' to associated output
res <- runSimulation(design=Design, replications=100, generate=Generate,

analyse=list(Welch=Analyse1, independent=Analyse2),
summarise=Summarise)

res

leave results unnamed
res <- runSimulation(design=Design, replications=100, generate=Generate,

analyse=list(Analyse1, Analyse2),
summarise=Summarise)

End(Not run)

Attach Attach objects for easier reference

Description

The behaviour of this function is very similar to attach, however it is environment specific, and
therefore only remains defined in a given function rather than in the Global Environment. Hence,
this function is much safer to use than the attach, which incidentally should never be used in your
code. This is useful primarily as a convenience function when you prefer to call the variable names
in condition directly rather than indexing with condition$sample_size or with(condition,
sample_size), for example.

Usage

Attach(
...,
omit = NULL,
check = TRUE,
attach_listone = TRUE,
RStudio_flags = FALSE

)

Arguments

... a comma separated list of data.frame, tibble, list, or matrix objects con-
taining (column) elements that should be placed in the current working environ-
ment

omit an optional character vector containing the names of objects that should not be
attached to the current environment. For instance, if the objects named ’a’ and
’b’ should not be attached then use omit = c('a', 'b'). When NULL (default)
all objects are attached

10 Attach

check logical; check to see if the function will accidentally replace previously defined
variables with the same names as in condition? Default is TRUE, which will
avoid this error

attach_listone logical; if the element to be assign is a list of length one then assign the first
element of this list with the associated name. This generally avoids adding an
often unnecessary list 1 index, such as name <- list[[1L]]

RStudio_flags logical; print R script output comments that disable flagged missing variables in
RStudio? Requires the form Attach(Design, RStudio_flags=TRUE) or in an
interactive debugging session Attach(condition, RStudio_flags=TRUE)

Details

Note that if you are using RStudio with the "Warn if variable used has no definition in scope"
diagnostic flag then using Attach() will raise suspensions. To suppress such issues, you can either
disable such flags (the atomic solution) or evaluate the following output in the R console and place
the output in your working simulation file.

Attach(Design, RStudio_flags = TRUE)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation, Generate

Examples

Design <- createDesign(N1=c(10,20),
N2=c(10,20),
sd=c(1,2))

Design

does not use Attach()
Generate <- function(condition, fixed_objects) {

condition = single row of Design input (e.g., condition <- Design[1,])
N1 <- condition$N1
N2 <- condition$N2
sd <- condition$sd

group1 <- rnorm(N1)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

BF_sim 11

group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

similar to above, but using the Attach() function instead of indexing
Generate <- function(condition, fixed_objects) {

Attach(condition) # N1, N2, and sd are now 'attached' and visible

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

#####################
NOTE: if you're using RStudio with code diagnostics on then evaluate + add the
following output to your source file to manually support the flagged variables

Attach(Design, RStudio_flags=TRUE)

Below is the same example, however with false positive missing variables suppressed
when # !diagnostics ... is added added to the source file(s)

!diagnostics suppress=N1,N2,sd
Generate <- function(condition, fixed_objects) {

Attach(condition) # N1, N2, and sd are now 'attached' and visible

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

BF_sim Example simulation from Brown and Forsythe (1974)

Description

Example results from the Brown and Forsythe (1974) article on robust estimators for variance ratio
tests. Statistical tests are organized by columns and the unique design conditions are organized
by rows. See BF_sim_alternative for an alternative form of the same simulation. Code for this
simulation is available of the wiki (https://github.com/philchalmers/SimDesign/wiki).

https://github.com/philchalmers/SimDesign/wiki

12 BF_sim_alternative

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69(346), 364–367.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Not run:
data(BF_sim)
head(BF_sim)

#Type I errors
subset(BF_sim, var_ratio == 1)

End(Not run)

BF_sim_alternative (Alternative) Example simulation from Brown and Forsythe (1974)

Description

Example results from the Brown and Forsythe (1974) article on robust estimators for variance ratio
tests. Statistical tests and distributions are organized by columns and the unique design condi-
tions are organized by rows. See BF_sim for an alternative form of the same simulation where
distributions are also included in the rows. Code for this simulation is available on the wiki
(https://github.com/philchalmers/SimDesign/wiki).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69(346), 364–367.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
https://github.com/philchalmers/SimDesign/wiki
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

bias 13

Examples

Not run:
data(BF_sim_alternative)
head(BF_sim_alternative)

#' #Type I errors
subset(BF_sim_alternative, var_ratio == 1)

End(Not run)

bias Compute (relative/standardized) bias summary statistic

Description

Computes the (relative) bias of a sample estimate from the parameter value. Accepts estimate and
parameter values, as well as estimate values which are in deviation form. If relative bias is requested
the estimate and parameter inputs are both required.

Usage

bias(
estimate,
parameter = NULL,
type = "bias",
abs = FALSE,
percent = FALSE,
unname = FALSE

)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame,
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return

parameter a numeric scalar/vector indicating the fixed parameters. If a single value is
supplied and estimate is a matrix/data.frame then the value will be recycled
for each column; otherwise, each element will be associated with each respective
column in the estimate input. If NULL then it will be assumed that the estimate
input is in a deviation form (therefore mean(estimate)) will be returned)

type type of bias statistic to return. Default ('bias') computes the standard bias
(average difference between sample and population), 'relative' computes the
relative bias statistic (i.e., divide the bias by the value in parameter; note that
multiplying this by 100 gives the "percent bias" measure, or if Type I error rates

14 bias

(α) are supplied will result in the "percentage error"), 'abs_relative' com-
putes the relative bias but the absolute values of the parameters are used in the
denominator rather than the (potentially) signed input values, and 'standardized'
computes the standardized bias estimate (standard bias divided by the standard
deviation of the sample estimates)

abs logical; find the absolute bias between the parameters and estimates? This ef-
fectively just applies the abs transformation to the returned result. Default is
FALSE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall (relative/standardized) bias in the estimates

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

Examples

pop <- 2
samp <- rnorm(100, 2, sd = 0.5)
bias(samp, pop)
bias(samp, pop, type = 'relative')
bias(samp, pop, type = 'standardized')

dev <- samp - pop
bias(dev)

equivalent here
bias(mean(samp), pop)

matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(mat, parameter = 2)
bias(mat, parameter = 2, type = 'relative')

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

bootPredict 15

bias(mat, parameter = 2, type = 'standardized')

different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
bias(mat, parameter = c(2,3))

same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(df, parameter = c(2,2))

parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
bias(estimates, parameters)

relative difference dividing by the magnitude of parameters
bias(estimates, parameters, type = 'abs_relative')

relative bias as a percentage
bias(estimates, parameters, type = 'abs_relative', percent = TRUE)

percentage error (PE) statistic given alpha (Type I error) and EDR() result
edr <- EDR(results, alpha = .05)
edr <- c(.04, .05, .06, .08)
bias(matrix(edr, 1L), .05, type = 'relative', percent = TRUE)

bootPredict Compute prediction estimates for the replication size using bootstrap
MSE estimates

Description

This function computes bootstrap mean-square error estimates to approximate the sampling behav-
ior of the meta-statistics in SimDesign’s summarise functions. A single design condition is sup-
plied, and a simulation with max(Rstar) replications is performed whereby the generate-analyse
results are collected. After obtaining these replication values, the replications are further drawn
from (with replacement) using the differing sizes in Rstar to approximate the bootstrap MSE be-
havior given different replication sizes. Finally, given these bootstrap estimates linear regression
models are fitted using the predictor term one_sqrtR = 1 / sqrt(Rstar) to allow extrapolation to
replication sizes not observed in Rstar. For more information about the method and subsequent
bootstrap MSE plots, refer to Koehler, Brown, and Haneuse (2009).

Usage

bootPredict(
condition,
generate,

16 bootPredict

analyse,
summarise,
fixed_objects = NULL,
...,
Rstar = seq(100, 500, by = 100),
boot_draws = 1000

)

boot_predict(...)

Arguments

condition a data.frame consisting of one row from the original design input object used
within runSimulation

generate see runSimulation

analyse see runSimulation

summarise see runSimulation

fixed_objects see runSimulation

... additional arguments to be passed to runSimulation

Rstar a vector containing the size of the bootstrap subsets to obtain. Default investi-
gates the vector [100, 200, 300, 400, 500] to compute the respective MSE terms

boot_draws number of bootstrap replications to draw. Default is 1000

Value

returns a list of linear model objects (via lm) for each meta-statistics returned by the summarise()
function

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Koehler, E., Brown, E., & Haneuse, S. J.-P. A. (2009). On the Assessment of Monte Carlo Error in
Simulation-Based Statistical Analyses. The American Statistician, 63, 155-162.

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

bootPredict 17

Examples

set.seed(4321)
Design <- createDesign(sigma = c(1, 2))

#---

Generate <- function(condition, fixed_objects) {
dat <- rnorm(100, 0, condition$sigma)
dat

}

Analyse <- function(condition, dat, fixed_objects) {
CIs <- t.test(dat)$conf.int
names(CIs) <- c('lower', 'upper')
ret <- c(mean = mean(dat), CIs)
ret

}

Summarise <- function(condition, results, fixed_objects) {
ret <- c(mu_bias = bias(results[,"mean"], 0),

mu_coverage = ECR(results[,c("lower", "upper")], parameter = 0))
ret

}

Not run:
boot_predict supports only one condition at a time
out <- bootPredict(condition=Design[1L, , drop=FALSE],

generate=Generate, analyse=Analyse, summarise=Summarise)
out # list of fitted linear model(s)

extract first meta-statistic
mu_bias <- out$mu_bias

dat <- model.frame(mu_bias)
print(dat)

original R metric plot
R <- 1 / dat$one_sqrtR^2
plot(R, dat$MSE, type = 'b', ylab = 'MSE', main = "Replications by MSE")

plot(MSE ~ one_sqrtR, dat, main = "Bootstrap prediction plot", xlim = c(0, max(one_sqrtR)),
ylim = c(0, max(MSE)), ylab = 'MSE', xlab = expression(1/sqrt(R)))

beta <- coef(mu_bias)
abline(a = 0, b = beta, lty = 2, col='red')

what is the replication value when x-axis = .02? What's its associated expected MSE?
1 / .02^2 # number of replications
predict(mu_bias, data.frame(one_sqrtR = .02)) # y-axis value

approximately how many replications to obtain MSE = .001?
(beta / .001)^2

18 Bradley1978

End(Not run)

Bradley1978 Bradley’s (1978) empirical robustness interval

Description

Robustness interval criteria for empirical detection rate estimates and empirical coverage estimates
defined by Bradley (1978). See EDR and ECR to obtain such estimates.

Usage

Bradley1978(
rate,
alpha = 0.05,
type = "liberal",
CI = FALSE,
out.logical = FALSE,
out.labels = c("conservative", "robust", "liberal"),
unname = FALSE

)

Arguments

rate (optional) numeric vector containing the empirical detection rate(s) or empirical
confidence interval estimates. If supplied a character vector with elements de-
fined in out.labels or a logical vector will be returned indicating whether the
detection rate estimate is considered ’robust’.
When the input is an empirical coverage rate the argument CI must be set to
TRUE.
If this input is missing, the interval criteria will be printed to the console

alpha Type I error rate to evaluated (default is .05)

type character vector indicating the type of interval classification to use. Default is
’liberal’, however can be ’stringent’ to use Bradley’s more stringent robustness
criteria

CI logical; should this robust interval be constructed on empirical detection rates
(FALSE) or empirical coverage rates (TRUE)?

out.logical logical; should the output vector be TRUE/FALSE indicating whether the sup-
plied empirical detection rate/CI should be considered "robust"? Default is
FALSE, in which case the out.labels elements are used instead

out.labels character vector of length three indicating the classification labels according to
the desired robustness interval

unname logical; apply unname to the results to remove any variable names?

Bradley1978 19

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31,
144-152.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

EDR, ECR, Serlin2000

Examples

interval criteria used for empirical detection rates
Bradley1978()
Bradley1978(type = 'stringent')
Bradley1978(alpha = .01, type = 'stringent')

intervals applied to empirical detection rate estimates
edr <- c(test1 = .05, test2 = .027, test3 = .051, test4 = .076, test5 = .024)

Bradley1978(edr)
Bradley1978(edr, out.logical=TRUE) # is robust?

#####
interval criteria used for coverage estimates

Bradley1978(CI = TRUE)
Bradley1978(CI = TRUE, type = 'stringent')
Bradley1978(CI = TRUE, alpha = .01, type = 'stringent')

intervals applied to empirical coverage rate estimates
ecr <- c(test1 = .950, test2 = .973, test3 = .949, test4 = .924, test5 = .976)

Bradley1978(ecr, CI=TRUE)
Bradley1978(ecr, CI=TRUE, out.logical=TRUE) # is robust?

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

20 CC

CC Compute congruence coefficient

Description

Computes the congruence coefficient, also known as an "unadjusted" correlation or Tucker’s con-
gruence coefficient.

Usage

CC(x, y = NULL, unname = FALSE)

Arguments

x a vector or data.frame/matrix containing the variables to use. If a vector then
the input y is required, otherwise the congruence coefficient is computed for all
bivariate combinations

y (optional) the second vector input to use if x is a vector

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

cor

Examples

vec1 <- runif(1000)
vec2 <- runif(1000)

CC(vec1, vec2)
compare to cor()
cor(vec1, vec2)

column input
df <- data.frame(vec1, vec2, vec3 = runif(1000))
CC(df)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

clusterSetRNGSubStream 21

cor(df)

clusterSetRNGSubStream

Set RNG sub-stream for Pierre L’Ecuyer’s RngStreams

Description

Sets the sub-stream RNG state within for Pierre L’Ecuyer’s (1999) algorithm. Should be used
within distributed array jobs after suitable L’Ecuyer’s (1999) have been distributed to each array,
and each array is further defined to use multi-core processing. See clusterSetRNGStream for
further information.

Usage

clusterSetRNGSubStream(cl, seed)

Arguments

cl A cluster from the parallel or snow package, or (if NULL) the registered cluster
seed An integer vector of length 7 as given by .Random.seed when the L’Ecuyer-

CMR RNG is in use. SeeRNG for the valid values

Value

invisible NULL

colVars Form Column Standard Deviation and Variances

Description

Form column standard deviation and variances for numeric arrays (or data frames).

Usage

colVars(x, na.rm = FALSE, unname = FALSE)

colSDs(x, na.rm = FALSE, unname = FALSE)

Arguments

x an array of two dimensions containing numeric, complex, integer or logical val-
ues, or a numeric data frame

na.rm logical; remove missing values in each respective column?
unname logical; apply unname to the results to remove any variable names?

22 createDesign

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

See Also

colMeans

Examples

results <- matrix(rnorm(100), ncol=4)
colnames(results) <- paste0('stat', 1:4)

colVars(results)
colSDs(results)

results[1,1] <- NA
colSDs(results)
colSDs(results, na.rm=TRUE)
colSDs(results, na.rm=TRUE, unname=TRUE)

createDesign Create the simulation design object

Description

Create a partially or fully-crossed data object reflecting the unique simulation design conditions.
Each row of the returned object represents a unique simulation condition, and each column repre-
sents the named factor variables under study.

Usage

createDesign(
...,
subset,
fractional = NULL,
tibble = TRUE,
stringsAsFactors = FALSE

)

S3 method for class 'Design'
print(x, list2char = TRUE, pillar.sigfig = 5, ...)

Arguments

... comma separated list of named input objects representing the simulation factors
to completely cross. Note that these arguments are passed to expand.grid to
perform the complete crossings

createDesign 23

subset (optional) a logical vector indicating elements or rows to keep to create a par-
tially crossed simulation design

fractional a fractional design matrix returned from the FrF2 package. Note that the order
of the factor names/labels are associated with the respective ... inputs

tibble logical; return a tibble object instead of a data.frame? Default is TRUE
stringsAsFactors

logical; should character variable inputs be coerced to factors when building a
data.frame? Default is FALSE

x object returned by createDesign

list2char logical; for tibble object re-evaluate list elements as character vectors for better
printing of the levels? Note that this does not change the original classes of the
object, just how they are printed. Default is TRUE

pillar.sigfig number of significant digits to print. Default is 5

Value

a tibble or data.frame containing the simulation experiment conditions to be evaluated in runSimulation

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

expandDesign

Examples

Not run:

modified example from runSimulation()

Design <- createDesign(N = c(10, 20),
SD = c(1, 2))

Design

remove N=10, SD=2 row from initial definition
Design <- createDesign(N = c(10, 20),

SD = c(1, 2),
subset = !(N == 10 & SD == 2))

Design

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

24 ECR

example with list inputs
Design <- createDesign(N = c(10, 20),

SD = c(1, 2),
combo = list(c(0,0), c(0,0,1)))

Design # notice levels printed (not typical for tibble)
print(Design, list2char = FALSE) # standard tibble output

Design <- createDesign(N = c(10, 20),
SD = c(1, 2),
combo = list(c(0,0), c(0,0,1)),
combo2 = list(c(5,10,5), c(6,7)))

Design
print(Design, list2char = FALSE) # standard tibble output

##########

fractional factorial example

library(FrF2)
help(FrF2)

7 factors in 32 runs
fr <- FrF2(32,7)
dim(fr)
fr[1:6,]

Create working simulation design given -1/1 combinations
fDesign <- createDesign(sample_size=c(100,200),

mean_diff=c(.25, 1, 2),
variance.ratio=c(1,4, 8),
equal_size=c(TRUE, FALSE),
dists=c('norm', 'skew'),
same_dists=c(TRUE, FALSE),
symmetric=c(TRUE, FALSE),
remove same-normal combo
subset = !(symmetric & dists == 'norm'),
fractional=fr)

fDesign

End(Not run)

ECR Compute empirical coverage rates

Description

Computes the detection rate for determining empirical coverage rates given a set of estimated con-
fidence intervals. Note that using 1 - ECR(CIs, parameter) will provide the empirical detection

ECR 25

rate. Also supports computing the average width of the CIs, which may be useful when comparing
the efficiency of CI estimators.

Usage

ECR(
CIs,
parameter,
tails = FALSE,
CI_width = FALSE,
complement = FALSE,
names = NULL,
unname = FALSE

)

Arguments

CIs a numeric vector or matrix of confidence interval values for a given parame-
ter value, where the first element/column indicates the lower confidence interval
and the second element/column the upper confidence interval. If a vector of
length 2 is passed instead then the returned value will be either a 1 or 0 to indi-
cate whether the parameter value was or was not within the interval, respectively.
Otherwise, the input must be a matrix with an even number of columns

parameter a numeric scalar indicating the fixed parameter value. Alternative, a numeric
vector object with length equal to the number of rows as CIs (use to compare
sets of parameters at once)

tails logical; when TRUE returns a vector of length 2 to indicate the proportion of
times the parameter was lower or higher than the supplied interval, respectively.
This is mainly only useful when the coverage region is not expected to be sym-
metric, and therefore is generally not required. Note that 1 - sum(ECR(CIs,
parameter, tails=TRUE)) == ECR(CIs, parameter)

CI_width logical; rather than returning the overall coverage rate, return the average width
of the CIs instead? Useful when comparing the efficiency of different CI esti-
mators

complement logical; rather than computing the proportion of population parameters within
the CI, return the proportion outside the advertised CI (1 - ECR = alpha). In
the case where only one value is provided, which normally would return a 0 if
outside the CI or 1 if inside, the values will be switched (useful when using, for
example, CI tests of for the significance of parameters)

names an optional character vector used to name the returned object. Generally useful
when more than one CI estimate is investigated at once

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

26 ECR

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

EDR

Examples

CIs <- matrix(NA, 100, 2)
for(i in 1:100){

dat <- rnorm(100)
CIs[i,] <- t.test(dat)$conf.int

}

ECR(CIs, 0)
ECR(CIs, 0, tails = TRUE)
ECR(CIs, 0, complement = TRUE) # proportion outside interval

single vector input
CI <- c(-1, 1)
ECR(CI, 0)
ECR(CI, 0, complement = TRUE)
ECR(CI, 2)
ECR(CI, 2, complement = TRUE)
ECR(CI, 2, tails = TRUE)

parameters of the same size as CI
parameters <- 1:10
CIs <- cbind(parameters - runif(10), parameters + runif(10))
parameters <- parameters + rnorm(10)
ECR(CIs, parameters)

average width of CIs
ECR(CIs, parameters, CI_width=TRUE)

ECR() for multiple CI estimates in the same object
parameter <- 10
CIs <- data.frame(lowerCI_1=parameter - runif(10),

upperCI_1=parameter + runif(10),
lowerCI_2=parameter - 2*runif(10),
upperCI_2=parameter + 2*runif(10))

head(CIs)
ECR(CIs, parameter)
ECR(CIs, parameter, tails=TRUE)
ECR(CIs, parameter, CI_width=TRUE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

EDR 27

often a good idea to provide names for the output
ECR(CIs, parameter, names = c('this', 'that'))
ECR(CIs, parameter, CI_width=TRUE, names = c('this', 'that'))
ECR(CIs, parameter, tails=TRUE, names = c('this', 'that'))

EDR Compute the empirical detection/rejection rate for Type I errors and
Power

Description

Computes the detection/rejection rate for determining empirical Type I error and power rates using
information from p-values.

Usage

EDR(p, alpha = 0.05, unname = FALSE)

Arguments

p a numeric vector or matrix/data.frame of p-values from the desired statistical
estimator. If a matrix, each statistic must be organized by column, where the
number of rows is equal to the number of replications

alpha the detection threshold (typical values are .10, .05, and .01). Default is .05

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

ECR, Bradley1978

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

28 expandDesign

Examples

rates <- numeric(100)
for(i in 1:100){

dat <- rnorm(100)
rates[i] <- t.test(dat)$p.value

}

EDR(rates)
EDR(rates, alpha = .01)

multiple rates at once
rates <- cbind(runif(1000), runif(1000))
EDR(rates)

expandDesign Create the simulation design object

Description

Repeat each design row the specified number of times. This is primarily used for cluster comput-
ing where jobs are distributed with batches of replications and later aggregated into a complete
simulation object (see runArraySimulation and SimCollect).

Usage

expandDesign(Design, repeat_conditions)

Arguments

Design object created by createDesign which should have its rows repeated for opti-
mal HPC schedulers

repeat_conditions

integer vector used to repeat each design row the specified number of times. Can
either be a single integer, which repeats each row this many times, or an integer
vector equal to the number of total rows in the created object.
This argument is useful when distributing independent row conditions to cluster
computing environments, particularly with different replication information.
For example, if 1000 replications in total are the target but the condition is re-
peated over 4 rows then only 250 replications per row would be required across
the repeated conditions. See SimCollect for combining the simulation objects
once complete

Value

a tibble or data.frame containing the simulation experiment conditions to be evaluated in runSimulation

Generate 29

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

createDesign, SimCollect, runArraySimulation

Examples

Not run:

repeat each row 4 times (for cluster computing)
Design <- createDesign(N = c(10, 20),

SD.equal = c(TRUE, FALSE))
Design4 <- expandDesign(Design, 4)
Design4

repeat first two rows 2x and the rest 4 times (for cluster computing
where first two conditions are faster to execute)
Design <- createDesign(SD.equal = c(TRUE, FALSE),

N = c(10, 100, 1000))
Design24 <- expandDesign(Design, c(2,2,rep(4, 4)))
Design24

End(Not run)

Generate Generate data

Description

Generate data from a single row in the design input (see runSimulation). R contains numer-
ous approaches to generate data, some of which are contained in the base package, as well as in
SimDesign (e.g., rmgh, rValeMaurelli, rHeadrick). However the majority can be found in ex-
ternal packages. See CRAN’s list of possible distributions here: https://CRAN.R-project.org/
view=Distributions. Note that this function technically can be omitted if the data generation is
provided in the Analyse step, though in general this is not recommended.

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/view=Distributions

30 Generate

Usage

Generate(condition, fixed_objects)

Arguments

condition a single row from the design input (as a data.frame), indicating the simulation
conditions

fixed_objects object passed down from runSimulation

Details

The use of try functions is generally not required in this function because Generate is internally
wrapped in a try call. Therefore, if a function stops early then this will cause the function to halt
internally, the message which triggered the stop will be recorded, and Generate will be called
again to obtain a different dataset. That said, it may be useful for users to throw their own stop
commands if the data should be re-drawn for other reasons (e.g., an estimated model terminated
correctly but the maximum number of iterations were reached).

Value

returns a single object containing the data to be analyzed (usually a vector, matrix, or data.frame),
or list

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

addMissing, Attach, rmgh, rValeMaurelli, rHeadrick

Examples

Not run:

generate <- function(condition, fixed_objects) {
N1 <- condition$sample_sizes_group1
N2 <- condition$sample_sizes_group2
sd <- condition$standard_deviations

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
just a silly example of a simulated parameter
pars <- list(random_number = rnorm(1))

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

GenerateIf 31

list(dat=dat, parameters=pars)
}

similar to above, but using the Attach() function instead of indexing
generate <- function(condition, fixed_objects) {

Attach(condition)
N1 <- sample_sizes_group1
N2 <- sample_sizes_group2
sd <- standard_deviations

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

generate2 <- function(condition, fixed_objects) {
mu <- sample(c(-1,0,1), 1)
dat <- rnorm(100, mu)
dat #return simple vector (discard mu information)

}

generate3 <- function(condition, fixed_objects) {
mu <- sample(c(-1,0,1), 1)
dat <- data.frame(DV = rnorm(100, mu))
dat

}

End(Not run)

GenerateIf Perform a test that indicates whether a given Generate() function
should be executed

Description

This function is designed to prevent specific generate function executions when the design condi-
tions are not met. Primarily useful when the generate argument to runSimulation was input as
a named list object, however should only be applied for some specific design condition (otherwise,
the data generation moves to the next function in the list).

Usage

GenerateIf(x, condition = NULL)

32 GenerateIf

Arguments

x logical statement to evaluate. If the statement evaluates to TRUE then the remain-
der of the defined function will be evaluated

condition (optional) the current design condition. This does not need to be supplied if the
expression in x evaluates to valid logical (e.g., use Attach(condition) prior to
using AnalyseIf, or use with(condition, AnalyseIf(someLogicalTest)))

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

Analyse, runSimulation

Examples

Not run:

SimFunctions(nGenerate = 2)

Design <- createDesign(N=c(10,20,30), var.equal = c(TRUE, FALSE))

Generate.G1 <- function(condition, fixed_objects) {
GenerateIf(condition$var.equal == FALSE) # only run when unequal vars
Attach(condition)
dat <- data.frame(DV = c(rnorm(N), rnorm(N, sd=2)),

IV = gl(2, N, labels=c('G1', 'G2')))
dat

}

Generate.G2 <- function(condition, fixed_objects) {
Attach(condition)
dat <- data.frame(DV = rnorm(N*2), IV = gl(2, N, labels=c('G1', 'G2')))
dat

}

always run this analysis for each row in Design
Analyse <- function(condition, dat, fixed_objects) {

mod <- t.test(DV ~ IV, data=dat)
mod$p.value

}

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

genSeeds 33

Summarise <- function(condition, results, fixed_objects) {
ret <- EDR(results, alpha=.05)
ret

}

#---

append names 'Welch' and 'independent' to associated output
res <- runSimulation(design=Design, replications=1000,

generate=list(G1=Generate.G1, G2=Generate.G2),
analyse=Analyse,
summarise=Summarise)

res

End(Not run)

genSeeds Generate random seeds

Description

Generate seeds to be passed to runSimulation’s seed input. Values are sampled from 1 to 2147483647,
or are generated using L’Ecuyer-CMRG’s (2002) method (returning either a list if arrayID is omit-
ted, or the specific row value from this list if arrayID is included).

Usage

genSeeds(design = 1L, iseed = NULL, arrayID = NULL, old.seeds = NULL)

gen_seeds(...)

Arguments

design design matrix that requires a unique seed per condition, or a number indicating
the number of seeds to generate. Default generates one number

iseed the initial set.seed number used to generate a sequence of independent seeds
according to the L’Ecuyer-CMRG (2002) method. This is recommended when-
ever quality random number generation is required across similar (if not identi-
cal) simulation jobs (e.g., see runArraySimulation). If arrayID is not speci-
fied then this will return a list of the associated seed for the full design

arrayID (optional) single integer input corresponding to the specific row in the design
object when using the iseed input. This is used in functions such as runArraySimulation
to pull out the specific seed rather than manage a complete list, and is therefore
more memory efficient

34 genSeeds

old.seeds (optional) vector or matrix of last seeds used in previous simulations to avoid
repeating the same seed on a subsequent run. Note that this approach should
be used sparingly as seeds set more frequently are more likely to correlate, and
therefore provide less optimal random number behaviour (e.g., if performing a
simulation on two runs to achieve 5000 * 2 = 10,000 replications this is likely
reasonable, but for simulations with 100 * 2 = 200 replications this is more likely
to be sub-optimal). Length must be equal to the number of rows in design

... does nothing

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

Examples

generate 1 seed (default)
genSeeds()

generate 5 unique seeds
genSeeds(5)

generate from nrow(design)
design <- createDesign(factorA=c(1,2,3),

factorB=letters[1:3])
seeds <- genSeeds(design)
seeds

construct new seeds that are independent from original (use this sparingly)
newseeds <- genSeeds(design, old.seeds=seeds)
newseeds

can be done in batches too
newseeds2 <- genSeeds(design, old.seeds=cbind(seeds, newseeds))
cbind(seeds, newseeds, newseeds2) # all unique

############
generate seeds for runArraySimulation()
(iseed <- genSeeds()) # initial seed
seed_list <- genSeeds(design, iseed=iseed)
seed_list

expand number of unique seeds given iseed (e.g., in case more replications
are required at a later date)
seed_list_tmp <- genSeeds(nrow(design)*2, iseed=iseed)
str(seed_list_tmp) # first 9 seeds identical to seed_list

more usefully for HPC, extract only the seed associated with an arrayID
arraySeed.15 <- genSeeds(nrow(design)*2, iseed=iseed, arrayID=15)
arraySeed.15

getArrayID 35

getArrayID Get job array ID (e.g., from SLURM or other HPC array distributions)

Description

Get the array ID from an HPC array distribution job (e.g., from SLURM or from optional command
line arguments). The array ID is used to index the rows in the design object in runArraySimulation.
For instance, a SLURM array with 10 independent jobs might have the following shell instructions.

Usage

getArrayID(type = "slurm", trailingOnly = TRUE, ID.shift = 0L)

Arguments

type an integer indicating the element from the result of commandArgs to extract, or
a character specifying the the type of. Default is 'slurm'

trailingOnly logical value passed to commandArgs. Only used when type is an integer

ID.shift single integer value used to shift the array ID by a constant. Useful when there
are array range limitation that must be specified in the shell files (e.g., array can
only be 10000 but there are more rows in the design object). For example, if
the array ID should be 10000 through 12000, but the cluster computer enviro-
ment does not allow these indices, then including the arrange range as 1-2000 in
the shell file with shift=9999 would add this constant to the detected arrayID,
thereby indexing the remaining row elements in the design object

Details

#!/bin/bash -l

#SBATCH –time=00:01:00

#SBATCH –array=1-10

which names the associated jobs with the numbers 1 through 10. getArrayID() then extracts
this information per array, which is used as the runArraySimulation(design, ..., arrayID =
getArrayID()) to pass specific rows for the design object.

See Also

runArraySimulation

Examples

Not run:

get slurm array ID
arrayID <- getArrayID()

36 IRMSE

get ID based on first optional argument in shell specification
arrayID <- getArrayID(type = 1)

pass to
runArraySimulation(design,, arrayID = arrayID)

increase detected arrayID by constant 9999 (for array
specification limitations)

arrayID <- getArrayID(ID.shift=9999)

End(Not run)

IRMSE Compute the integrated root mean-square error

Description

Computes the average/cumulative deviation given two continuous functions and an optional func-
tion representing the probability density function. Only one-dimensional integration is supported.

Usage

IRMSE(
estimate,
parameter,
fn,
density = function(theta, ...) 1,
lower = -Inf,
upper = Inf,
...

)

Arguments

estimate a vector of parameter estimates

parameter a vector of population parameters

fn a continuous function where the first argument is to be integrated and the sec-
ond argument is a vector of parameters or parameter estimates. This function
represents a implied continuous function which uses the sample estimates or
population parameters

density (optional) a density function used to marginalize (i.e., average), where the first
argument is to be integrated, and must be of the form density(theta, ...) or
density(theta, param1, param2), where param1 is a placeholder name for
the hyper-parameters associated with the probability density function. If omitted
then the cumulative different between the respective functions will be computed
instead

IRMSE 37

lower lower bound to begin numerical integration from

upper upper bound to finish numerical integration to

... additional parameters to pass to fnest, fnparam, density, and integrate,

Details

The integrated root mean-square error (IRMSE) is of the form

IRMSE(θ) =

√∫
[f(θ, ψ̂)− f(θ, ψ)]2g(θ, ...)

where g(θ, ...) is the density function used to marginalize the continuous sample (f(θ, ψ̂)) and
population (f(θ, ψ)) functions.

Value

returns a single numeric term indicating the average/cumulative deviation given the supplied con-
tinuous functions

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

Examples

logistic regression function with one slope and intercept
fn <- function(theta, param) 1 / (1 + exp(-(param[1] + param[2] * theta)))

sample and population sets
est <- c(-0.4951, 1.1253)
pop <- c(-0.5, 1)

theta <- seq(-10,10,length.out=1000)
plot(theta, fn(theta, pop), type = 'l', col='red', ylim = c(0,1))
lines(theta, fn(theta, est), col='blue', lty=2)

cumulative result (i.e., standard integral)
IRMSE(est, pop, fn)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

38 MAE

integrated RMSE result by marginalizing over a N(0,1) distribution
den <- function(theta, mean, sd) dnorm(theta, mean=mean, sd=sd)

IRMSE(est, pop, fn, den, mean=0, sd=1)

this specification is equivalent to the above
den2 <- function(theta, ...) dnorm(theta, ...)

IRMSE(est, pop, fn, den2, mean=0, sd=1)

MAE Compute the mean absolute error

Description

Computes the average absolute deviation of a sample estimate from the parameter value. Accepts
estimate and parameter values, as well as estimate values which are in deviation form.

Usage

MAE(estimate, parameter = NULL, type = "MAE", percent = FALSE, unname = FALSE)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return

parameter a numeric scalar/vector or matrix indicating the fixed parameter values. If a
single value is supplied and estimate is a matrix/data.frame then the value
will be recycled for each column; otherwise, each element will be associated
with each respective column in the estimate input. If NULL, then it will be as-
sumed that the estimate input is in a deviation form (therefore mean(abs(estimate))
will be returned)

type type of deviation to compute. Can be 'MAE' (default) for the mean absolute er-
ror, 'NMSE' for the normalized MAE (MAE / (max(estimate) - min(estimate))),
or 'SMSE' for the standardized MAE (MAE / sd(estimate))

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall mean absolute error in the estimates

manageMessages 39

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

Examples

pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
MAE(samp, pop)

dev <- samp - pop
MAE(dev)
MAE(samp, pop, type = 'NMAE')
MAE(samp, pop, type = 'SMAE')

matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(mat, parameter = 2)

same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(df, parameter = c(2,2))

parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
MAE(estimates, parameters)

manageMessages Increase the intensity or suppress the output of an observed message

Description

Function provides more nuanced management of known message outputs messages that appear in
function calls outside the front-end users control (e.g., functions written in third-party packages).
Specifically, this function provides a less nuclear approach than quiet and friends, which sup-
presses all cat and messages raised, and instead allows for specific messages to be raised either

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

40 manageMessages

to warnings or, even more extremely, to errors. Note that for messages that are not suppressed the
order with which the output and message calls appear in the original function is not retained.

Usage

manageMessages(
expr,
allow = NULL,
message2warning = NULL,
message2error = NULL,
...

)

Arguments

expr expression to be evaluated (e.g., ret <- myfun(args)). Function should either
be used as a wrapper, such as manageMassages(ret <- myfun(args), ...) or
ret <- manageMassages(myfun(args), ...), or more readably as a pipe, ret
<- myfun(args) |> manageMassages(...)

allow (optional) a character vector indicating messages that should still appear, while
all other messages should remain suppressed. Each supplied message is matched
using a grepl expression, so partial matching is supported (though more spe-
cific messages are less likely to throw false positives). If NULL, all messages will
be suppressed unless they appear in message2error or message2warning

message2warning

(optional) Input can be a character vector containing messages that should
probably be considered warning messages for the current application instead.
Each supplied character vector element is matched using a grepl expression,
so partial matching is supported (though more specific messages are less likely
to throw false positives).

message2error (optional) Input can be a character vector containing known-to-be-severe mes-
sages that should be converted to errors for the current application. See message2warning
for details.

... additional arguments passed to grepl

Value

returns the original result of eval(expr), with warning messages either left the same, increased to
errors, or suppressed (depending on the input specifications)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

https://doi.org/10.20982/tqmp.16.4.p248

manageMessages 41

See Also

manageWarnings, quiet

Examples

Not run:

myfun <- function(x, warn=FALSE){
message('This function is rather chatty')
cat("It even prints in different output forms!\n")
message('And even at different ')
cat(" many times!\n")
cat("Too many messages can be annoying \n")
if(warn)

warning('It may even throw warnings ')
x

}

out <- myfun(1)
out

tell the function to shhhh
out <- quiet(myfun(1))
out

same default behaviour as quiet(), but potential for nuance
out2 <- manageMessages(myfun(1))
identical(out, out2)

allow some messages to still get printed
out2 <- manageMessages(myfun(1), allow = "many times!")
out2 <- manageMessages(myfun(1), allow = "This function is rather chatty")

note: . matches single character (regex)
out2 <- manageMessages(myfun(1), allow = c("many times.",

"This function is rather chatty"))

convert specific message to warning
out3 <- manageMessages(myfun(1), message2warning = "many times!")
identical(out, out3)

other warnings also get through
out3 <- manageMessages(myfun(1, warn=TRUE), message2warning = "times!")
identical(out, out3)

convert message to error
manageMessages(myfun(1), message2error = "m... times!")

multiple message intensity changes
manageMessages(myfun(1),

message2warning = "It even prints in different output forms",
message2error = "many times!")

42 manageWarnings

manageMessages(myfun(1),
allow = c("This function is rather chatty",

"Too many messages can be annoying"),
message2warning = "It even prints in different output forms",
message2error = "many times!")

End(Not run)

manageWarnings Manage specific warning messages

Description

Function provides more nuanced management of known warning messages that appear in function
calls outside the front-end users control (e.g., functions written in third-party packages). Specifi-
cally, this function provides a less nuclear approach than suppressWarnings, which suppresses all
warning messages rather than those which are known to be innocuous to the current application,
or when globally setting options(warn=2), which has the opposite effect of treating all warnings
messages as errors in the function executions. To avoid these two extreme behaviors, character
vectors can instead be supplied to this function to either leave the raised warnings as-is (default be-
haviour), raise only specific warning messages to errors, or specify specific warning messages that
can be generally be ignored (and therefore suppressed) while allowing new or yet to be discovered
warnings to still be raised.

Usage

manageWarnings(expr, warning2error = FALSE, suppress = NULL, ...)

Arguments

expr expression to be evaluated (e.g., ret <- myfun(args)). Function should either
be used as a wrapper, such as manageWarnings(ret <- myfun(args), ...) or
ret <- manageWarnings(myfun(args), ...), or more readably as a pipe, ret
<- myfun(args) |> manageWarnings(...)

warning2error logical or character vector to control the conversion of warnings to errors.
Setting this input to TRUE will treat all observed warning messages as errors
(same behavior as options(warn=2), though defined on a per expression basis
rather than globally), while setting to FALSE (default) will leave all warning
messages as-is, retaining the default behavior
Alternatively, and more useful for specificity reasons, input can be a character
vector containing known-to-be-severe warning messages that should be con-
verted to errors. Each supplied character vector element is matched using a
grepl expression, so partial matching is supported (though more specific mes-
sages are less likely to throw false positives).

manageWarnings 43

suppress a character vector indicating warning messages that are known to be innocu-
ous a priori and can therefore be suppressed. Each supplied warning message
is matched using a grepl expression, so partial matching is supported (though
more specific messages are less likely to throw false positives). If NULL, no
warning message will be suppressed

... additional arguments passed to grepl

Details

In general, global/nuclear behaviour of warning messages should be avoided as they are generally
bad practice. On one extreme, when suppressing all warning messages using suppressWarnings,
potentially important warning messages will become muffled, which can be problematic if the code
developer has not become aware of these (now muffled) warnings. Moreover, this can become a
long-term sustainability issue when third-party functions that the developer’s code depends upon
throw new warnings in the future as the code developer will be less likely to become aware of these
newly implemented warnings.

On the other extreme, where all warning messages are turned into errors using options(warn=2),
innocuous warning messages can and will be (unwantingly) raised to an error. This negatively
affects the logical workflow of the developer’s functions, where more error messages must now be
manually managed (e.g., via tryCatch), including the known to be innocuous warning messages as
these will now considered as errors.

To avoid these extremes, front-end users should first make note of the warning messages that have
been raised in their prior executions, and organized these messages into vectors of ignorable warn-
ings (least severe), known/unknown warnings that should remain as warnings (even if not known
by the code developer yet), and explicit warnings that ought to be considered errors for the current
application (most severe). Once collected, these can be passed to the respective warning2error
argument to increase the intensity of a specific warning raised, or to the suppress argument to sup-
press only the messages that have been deemed ignorable a priori (and therefore allowing all other
warning messages to be raised).

Value

returns the original result of eval(expr), with warning messages either left the same, increased to
errors, or suppressed (depending on the input specifications)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

See Also

manageMessages, quiet

https://doi.org/10.20982/tqmp.16.4.p248

44 manageWarnings

Examples

Not run:

fun <- function(warn1=FALSE, warn2=FALSE, warn3=FALSE,
warn_trailing = FALSE, error=FALSE){

if(warn1) warning('Message one')
if(warn2) warning('Message two')
if(warn3) warning('Message three')
if(warn_trailing) warning(sprintf('Message with lots of random trailings: %s',

paste0(sample(letters, sample(1:20, 1)), collapse=',')))
if(error) stop('terminate function call')
return('Returned from fun()')

}

normal run (no warnings or errors)
out <- fun()
out

these are all the same
manageWarnings(out <- fun())
out <- manageWarnings(fun())
out <- fun() |> manageWarnings()

errors treated normally
fun(error=TRUE)
fun(error=TRUE) |> manageWarnings()

all warnings/returns treated normally by default
ret1 <- fun(warn1=TRUE)
ret2 <- fun(warn1=TRUE) |> manageWarnings()
identical(ret1, ret2)

all warnings converted to errors (similar to options(warn=2), but local)
fun(warn1=TRUE) |> manageWarnings(warning2error=TRUE)
fun(warn2=TRUE) |> manageWarnings(warning2error=TRUE)

Specific warnings treated as errors (others stay as warnings)
Here, treat first warning message as error but not the second or third
ret <- fun(warn1=TRUE) # warning
ret <- fun(warn1=TRUE) |> manageWarnings("Message one") # now error
ret <- fun(warn2=TRUE) |> manageWarnings("Message one") # still a warning

multiple warnings raised but not converted as they do not match criteria
fun(warn2=TRUE, warn3=TRUE)
fun(warn2=TRUE, warn3=TRUE) |> manageWarnings("Message one")

Explicitly convert multiple warning messages, allowing others through.
This is generally the best use of the function's specificity
fun(warn1=TRUE, warn2=TRUE)
fun(warn1=TRUE) |> # error given either message

manageWarnings(c("Message one", "Message two"))
fun(warn2=TRUE) |>

manageWarnings 45

manageWarnings(c("Message one", "Message two"))

last warning gets through (left as valid warning)
ret <- fun(warn3=TRUE) |>

manageWarnings(c("Message one", "Message two"))
ret

suppress warnings that have only partial matching
fun(warn_trailing=TRUE)
fun(warn_trailing=TRUE)
fun(warn_trailing=TRUE)

partial match, therefore suppressed
fun(warn_trailing=TRUE) |>

manageWarnings(suppress="Message with lots of random trailings: ")

multiple suppress strings
fun(warn_trailing=TRUE) |>

manageWarnings(suppress=c("Message with lots of random trailings: ",
"Suppress this too"))

could also use .* to catch all remaining characters (finer regex control)
fun(warn_trailing=TRUE) |>

manageWarnings(suppress="Message with lots of random trailings: .*")

###########
Combine with quiet() and suppress argument to suppress innocuous messages

fun <- function(warn1=FALSE, warn2=FALSE, warn3=FALSE, error=FALSE){
message('This function is rather chatty')
cat("It even prints in different output forms!\n")
if(warn1) warning('Message one')
if(warn2) warning('Message two')
if(warn3) warning('Message three')
if(error) stop('terminate function call')
return('Returned from fun()')

}

normal run (no warnings or errors, but messages)
out <- fun()
out <- quiet(fun()) # using "indoor voice"

suppress all print messages and warnings (not recommended)
fun(warn2=TRUE) |> quiet()
fun(warn2=TRUE) |> quiet() |> suppressWarnings()

convert all warning to errors, and keep suppressing messages via quiet()
fun(warn2=TRUE) |> quiet() |> manageWarnings(warning2error=TRUE)

define tolerable warning messages (only warn1 deemed ignorable)
ret <- fun(warn1=TRUE) |> quiet() |>

manageWarnings(suppress = 'Message one')

46 manageWarnings

all other warnings raised to an error except ignorable ones
fun(warn1=TRUE, warn2=TRUE) |> quiet() |>

manageWarnings(warning2error=TRUE, suppress = 'Message one')

only warn2 raised to an error explicitly (warn3 remains as warning)
ret <- fun(warn1=TRUE, warn3=TRUE) |> quiet() |>

manageWarnings(warning2error = 'Message two',
suppress = 'Message one')

fun(warn1=TRUE, warn2 = TRUE, warn3=TRUE) |> quiet() |>
manageWarnings(warning2error = 'Message two',

suppress = 'Message one')

###########################
Practical example, converting warning into error for model that
failed to converged normally

library(lavaan)

The industrialization and Political Democracy Example
Bollen (1989), page 332
model <- '

latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

'

throws a warning
fit <- sem(model, data = PoliticalDemocracy, control=list(iter.max=60))

for a simulation study, often better to treat this as an error
fit <- sem(model, data = PoliticalDemocracy, control=list(iter.max=60)) |>

manageWarnings(warning2error = "the optimizer warns that a solution has NOT been found!")

End(Not run)

MSRSE 47

MSRSE Compute the relative performance behavior of collections of standard
errors

Description

The mean-square relative standard error (MSRSE) compares standard error estimates to the standard
deviation of the respective parameter estimates. Values close to 1 indicate that the behavior of the
standard errors closely matched the sampling variability of the parameter estimates.

Usage

MSRSE(SE, SD, percent = FALSE, unname = FALSE)

Arguments

SE a numeric scalar/vector indicating the average standard errors across the repli-
cations, or a matrix of collected standard error estimates themselves to be used
to compute the average standard errors. Each column/element in this input cor-
responds to the column/element in SD

SD a numeric scalar/vector indicating the standard deviation across the replications,
or a matrix of collected parameter estimates themselves to be used to compute
the standard deviations. Each column/element in this input corresponds to the
column/element in SE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Details

Mean-square relative standard error (MSRSE) is expressed as

MSRSE =
E(SE(ψ)2)

SD(ψ)2
=

1/R ∗
∑R

r=1 SE(ψr)
2

SD(ψ)2

where SE(ψr) represents the estimate of the standard error at the rth simulation replication, and
SD(ψ) represents the standard deviation estimate of the parameters across all R replications. Note
that SD(ψ)2 is used, which corresponds to the variance of ψ.

Value

returns a vector of ratios indicating the relative performance of the standard error estimates to
the observed parameter standard deviation. Values less than 1 indicate that the standard errors
were larger than the standard deviation of the parameters (hence, the SEs are interpreted as more
conservative), while values greater than 1 were smaller than the standard deviation of the parameters
(i.e., more liberal SEs)

48 nc

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Generate <- function(condition, fixed_objects) {
X <- rep(0:1, each = 50)
y <- 10 + 5 * X + rnorm(100, 0, .2)
data.frame(y, X)

}

Analyse <- function(condition, dat, fixed_objects) {
mod <- lm(y ~ X, dat)
so <- summary(mod)
ret <- c(SE = so$coefficients[,"Std. Error"],

est = so$coefficients[,"Estimate"])
ret

}

Summarise <- function(condition, results, fixed_objects) {
MSRSE(SE = results[,1:2], SD = results[,3:4])

}

results <- runSimulation(replications=500, generate=Generate,
analyse=Analyse, summarise=Summarise)

results

nc Auto-named Concatenation of Vector or List

Description

This is a wrapper to the function c, however names the respective elements according to their input
object name. For this reason, nesting nc() calls is not recommended (joining independent nc()
calls via c() is however reasonable).

Usage

nc(..., use.names = FALSE, error.on.duplicate = TRUE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

nc 49

Arguments

... objects to be concatenated

use.names logical indicating if names should be preserved (unlike c, default is FALSE)
error.on.duplicate

logical; if the same object name appears in the returning object should an error
be thrown? Default is TRUE

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

A <- 1
B <- 2
C <- 3

names(C) <- 'LetterC'

compare the following
c(A, B, C) # unnamed

nc(A, B, C) # named
nc(this=A, B, C) # respects override named (same as c())
nc(this=A, B, C, use.names = TRUE) # preserve original name

Not run:
throws errors if names not unique
nc(this=A, this=B, C)
nc(LetterC=A, B, C, use.names=TRUE)

End(Not run)

poor input choice names
nc(t.test(c(1:2))$p.value, t.test(c(3:4))$p.value)

better to explicitly provide name
nc(T1 = t.test(c(1:2))$p.value,

T2 = t.test(c(3:4))$p.value)

vector of unnamed inputs
A <- c(5,4,3,2,1)
B <- c(100, 200)

nc(A, B, C) # A's and B's numbered uniquely
c(A, B, C) # compare

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

50 PBA

nc(beta=A, B, C) # replacement of object name

retain names attributes (but append object name, when appropriate)
names(A) <- letters[1:5]
nc(A, B, C)
nc(beta=A, B, C)
nc(A, B, C, use.names=TRUE)

mix and match if some named elements work while others do not
c(nc(A, B, use.names=TRUE), nc(C))

Not run:
error, 'b' appears twice
names(B) <- c('b', 'b2')
nc(A, B, C, use.names=TRUE)

End(Not run)

List input
A <- list(1)
B <- list(2:3)
C <- list('C')

names(C) <- 'LetterC'

compare the following
c(A, B, C) # unnamed

nc(A, B, C) # named
nc(this=A, B, C) # respects override named (same as c() and list())
nc(this=A, B, C, use.names = TRUE) # preserve original name

PBA Probabilistic Bisection Algorithm

Description

The function PBA searches a specified interval for a root (i.e., zero) of the function f(x) with
respect to its first argument. However, this function differs from deterministic cousins such as
uniroot in that f may contain stochastic error components, and instead provides a Bayesian interval
where the root is likely to lie. Note that it is assumed that E[f(x)] is non-decreasing in x and that
the root is between the search interval (evaluated approximately when check.interval=TRUE). See
Waeber, Frazier, and Henderson (2013) for details.

Usage

PBA(
f,

PBA 51

interval,
...,
p = 0.6,
integer = FALSE,
tol = if (integer) 0.01 else 1e-04,
maxiter = 300L,
miniter = 100L,
wait.time = NULL,
f.prior = NULL,
resolution = 10000L,
check.interval = TRUE,
check.interval.only = FALSE,
verbose = TRUE

)

S3 method for class 'PBA'
print(x, ...)

S3 method for class 'PBA'
plot(x, type = "posterior", main = "Probabilistic Bisection Posterior", ...)

Arguments

f noisy function for which the root is sought

interval a vector containing the end-points of the interval to be searched for the root

... additional named arguments to be passed to f

p assumed constant for probability of correct responses (must be > 0.5)

integer logical; should the values of the root be considered integer or numeric? The
former uses a discreet grid to track the updates, while the latter currently creates
a grid with resolution points

tol tolerance criteria for convergence based on average of the f(x) evaluations

maxiter the maximum number of iterations (default 300)

miniter minimum number of iterations (default 100)

wait.time (optional) instead of terminating after specific estimate criteria are satisfied (e.g.,
tol), terminate after a specific wait time. Input is specified either as a numeric
vector in seconds or as a character vector to be formatted by timeFormater.
Note that users should increase the number of maxiter as well so that termina-
tion can occur if either the maximum iterations are satisfied or the specified wait
time has elapsed (whichever occurs first)

f.prior density function indicating the likely location of the prior (e.g., if root is within
[0,1] then dunif works, otherwise custom functions will be required)

resolution constant indicating the number of equally spaced grid points to track when
integer = FALSE.

check.interval logical; should an initial check be made to determine whether f(interval[1L])
and f(interval[2L]) have opposite signs? Default is TRUE

52 PBA

check.interval.only

logical; return only TRUE or FALSE to test whether there is a likely root given
interval? Setting this to TRUE can be useful when you are unsure about the
root location interval and may want to use a higher replication input from
SimSolve

verbose logical; should the iterations and estimate be printed to the console?

x an object of class PBA

type type of plot to draw for PBA object. Can be either ’posterior’ or ’history’ to plot
the PBA posterior distribution or the mediation iteration history

main plot title

References

Horstein, M. (1963). Sequential transmission using noiseless feedback. IEEE Trans. Inform. The-
ory, 9(3):136-143.

Waeber, R., Frazier, P. I. & Henderson, S. G. (2013). Bisection Search with Noisy Responses. SIAM
Journal on Control and Optimization, Society for Industrial & Applied Mathematics (SIAM), 51,
2261-2279.

See Also

uniroot, RobbinsMonro

Examples

find x that solves f(x) - b = 0 for the following
f.root <- function(x, b = .6) 1 / (1 + exp(-x)) - b
f.root(.3)

xs <- seq(-3,3, length.out=1000)
plot(xs, f.root(xs), type = 'l', ylab = "f(x)", xlab='x', las=1)
abline(h=0, col='red')

retuni <- uniroot(f.root, c(0,1))
retuni
abline(v=retuni$root, col='blue', lty=2)

PBA without noisy root
retpba <- PBA(f.root, c(0,1))
retpba
retpba$root
plot(retpba)
plot(retpba, type = 'history')

Same problem, however root function is now noisy. Hence, need to solve
fhat(x) - b + e = 0, where E(e) = 0
f.root_noisy <- function(x) 1 / (1 + exp(-x)) - .6 + rnorm(1, sd=.02)
sapply(rep(.3, 10), f.root_noisy)

uniroot "converges" unreliably

quiet 53

set.seed(123)
uniroot(f.root_noisy, c(0,1))$root
uniroot(f.root_noisy, c(0,1))$root
uniroot(f.root_noisy, c(0,1))$root

probabilistic bisection provides better convergence
retpba.noise <- PBA(f.root_noisy, c(0,1))
retpba.noise
plot(retpba.noise)
plot(retpba.noise, type = 'history')

Not run:
ignore termination criteria and instead run for 30 seconds or 30000 iterations
retpba.noise_30sec <- PBA(f.root_noisy, c(0,1), wait.time = "0:30", maxiter=30000)
retpba.noise_30sec

End(Not run)

quiet Suppress verbose function messages

Description

This function is used to suppress information printed from external functions that make internal use
of link{message} and cat, which provide information in interactive R sessions. For simulations,
the session is not interactive, and therefore this type of output should be suppressed. For similar
behaviour for suppressing warning messages, see link{manageWarnings}.

Usage

quiet(..., cat = TRUE, keep = FALSE, attr.name = "quiet.messages")

Arguments

... the functional expression to be evaluated
cat logical; also capture calls from cat? If FALSE only message will be suppressed
keep logical; return a character vector of the messages/concatenate and print strings

as an attribute to the resulting object from expr(...)?
attr.name attribute name to use when keep = TRUE

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

54 RAB

See Also

manageWarnings

Examples

myfun <- function(x, warn=FALSE){
message('This function is rather chatty')
cat("It even prints in different output forms!\n")
message('And even at different....')
cat("...times!\n")
if(warn)

warning('It may even throw warnings!')
x

}

out <- myfun(1)
out

tell the function to shhhh
out <- quiet(myfun(1))
out

which messages are suppressed? Extract stored attribute
out <- quiet(myfun(1), keep = TRUE)
attr(out, 'quiet.messages')

Warning messages still get through (see manageWarnings(suppress)
for better alternative than using suppressWarnings())
out2 <- myfun(2, warn=TRUE) |> quiet() # warning gets through
out2

suppress warning message explicitly, allowing others to be raised if present
myfun(2, warn=TRUE) |> quiet() |>

manageWarnings(suppress='It may even throw warnings!')

RAB Compute the relative absolute bias of multiple estimators

Description

Computes the relative absolute bias given the bias estimates for multiple estimators.

Usage

RAB(x, percent = FALSE, unname = FALSE)

rbind.SimDesign 55

Arguments

x a numeric vector of bias estimates (see bias), where the first element will be
used as the reference

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a vector of absolute bias ratios indicating the relative bias effects compared to the first
estimator. Values less than 1 indicate better bias estimates than the first estimator, while values
greater than 1 indicate worse bias than the first estimator

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

pop <- 1
samp1 <- rnorm(5000, 1)
bias1 <- bias(samp1, pop)
samp2 <- rnorm(5000, 1)
bias2 <- bias(samp2, pop)

RAB(c(bias1, bias2))
RAB(c(bias1, bias2), percent = TRUE) # as a percentage

rbind.SimDesign Combine two separate SimDesign objects by row

Description

This function combines two Monte Carlo simulations executed by SimDesign’s runSimulation
function which, for all intents and purposes, could have been executed in a single run. This situa-
tion arises when a simulation has been completed, however the Design object was later modified to
include more levels in the defined simulation factors. Rather than re-executing the previously com-
pleted simulation combinations, only the new combinations need to be evaluated into a different
object and then rbind together to create the complete object combinations.

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

56 rbind.SimDesign

Usage

S3 method for class 'SimDesign'
rbind(...)

Arguments

... two or more SimDesign objects that should be combined by rows

Value

same object that is returned by runSimulation

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Not run:

modified example from runSimulation()

Design <- createDesign(N = c(10, 20),
SD = c(1, 2))

Generate <- function(condition, fixed_objects) {
dat <- with(condition, rnorm(N, 10, sd=SD))
dat

}

Analyse <- function(condition, dat, fixed_objects) {
ret <- mean(dat) # mean of the sample data vector
ret

}

Summarise <- function(condition, results, fixed_objects) {
ret <- c(mu=mean(results), SE=sd(results)) # mean and SD summary of the sample means
ret

}

Final1 <- runSimulation(design=Design, replications=1000,
generate=Generate, analyse=Analyse, summarise=Summarise)

Final1

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

RD 57

###
later decide that N = 30 should have also been investigated. Rather than
running the following object
newDesign <- createDesign(N = c(10, 20, 30),

SD = c(1, 2))

... only the new subset levels are executed to save time
subDesign <- subset(newDesign, N == 30)
subDesign

Final2 <- runSimulation(design=subDesign, replications=1000,
generate=Generate, analyse=Analyse, summarise=Summarise)

Final2

glue results together by row into one object as though the complete 'Design'
object were run all at once
Final <- rbind(Final1, Final2)
Final

summary(Final)

End(Not run)

RD Compute the relative difference

Description

Computes the relative difference statistic of the form (est - pop)/ pop, which is equivalent to the
form est/pop - 1. If matrices are supplied then an equivalent matrix variant will be used of the
form (est - pop) * solve(pop). Values closer to 0 indicate better relative parameter recovery.
Note that for single variable inputs this is equivalent to bias(..., type = 'relative').

Usage

RD(est, pop, as.vector = TRUE, unname = FALSE)

Arguments

est a numeric vector, matrix/data.frame, or list containing the parameter esti-
mates

pop a numeric vector or matrix containing the true parameter values. Must be of
comparable dimension to est

as.vector logical; always wrap the result in a as.vector function before returning?

unname logical; apply unname to the results to remove any variable names?

58 RE

Value

returns a vector or matrix depending on the inputs and whether as.vector was used

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

vector
pop <- seq(1, 100, length.out=9)
est1 <- pop + rnorm(9, 0, .2)
(rds <- RD(est1, pop))
summary(rds)

matrix
pop <- matrix(c(1:8, 10), 3, 3)
est2 <- pop + rnorm(9, 0, .2)
RD(est2, pop, as.vector = FALSE)
(rds <- RD(est2, pop))
summary(rds)

RE Compute the relative efficiency of multiple estimators

Description

Computes the relative efficiency given the RMSE (default) or MSE values for multiple estimators.

Usage

RE(x, MSE = FALSE, percent = FALSE, unname = FALSE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

RE 59

Arguments

x a numeric vector of root mean square error values (see RMSE), where the first
element will be used as the reference. Otherwise, the object could contain MSE
values if the flag MSE = TRUE is also included

MSE logical; are the input value mean squared errors instead of root mean square
errors?

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a vector of variance ratios indicating the relative efficiency compared to the first estimator.
Values less than 1 indicate better efficiency than the first estimator, while values greater than 1
indicate worse efficiency than the first estimator

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

pop <- 1
samp1 <- rnorm(100, 1, sd = 0.5)
RMSE1 <- RMSE(samp1, pop)
samp2 <- rnorm(100, 1, sd = 1)
RMSE2 <- RMSE(samp2, pop)

RE(c(RMSE1, RMSE2))
RE(c(RMSE1, RMSE2), percent = TRUE) # as a percentage

using MSE instead
mse <- c(RMSE1, RMSE2)^2
RE(mse, MSE = TRUE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

60 rejectionSampling

rejectionSampling Rejection sampling (i.e., accept-reject method)

Description

This function supports the rejection sampling (i.e., accept-reject) approach to drawing values from
seemingly difficult (probability) density functions by sampling values from more manageable proxy
distributions.

Usage

rejectionSampling(
n,
df,
dg,
rg,
M,
method = "optimize",
interval = NULL,
logfuns = FALSE,
maxM = 1e+05,
parstart = rg(1L),
ESRS_Mstart = 1.0001

)

Arguments

n number of samples to draw

df the desired (potentially un-normed) density function to draw independent sam-
ples from. Must be in the form of a function with a single input corresponding
to the values sampled from rg. Function is assumed to be vectorized (if not, see
Vectorize)

dg the proxy (potentially un-normed) density function to draw samples from in lieu
of drawing samples from df. The support for this density function should be
the same as df (i.e., when df(x) > 0 then dg(x) > 0). Must be in the form of
a function with a single input corresponding to the values sampled from rg.
Function is assumed to be vectorized (if not, see Vectorize)

rg the proxy random number generation function, associated with dg, used to draw
proposal samples from. Must be in the form of a function with a single input
corresponding to the number of values to draw, while the output can either be a
vector or a matrix (if a matrix, each independent observation must be stored in
a unique row). Function is assumed to be vectorized (if not, see Vectorize)

M the upper-bound of the ratio of probability density functions to help minimize
the number of discarded draws and define the corresponding rescaled proposal
envelope. When missing, M is computed internally by finding a reasonable max-
imum of log(df(x)) - log(dg(x)), and this value is returned to the console.

rejectionSampling 61

When both df and dg are true probability density functions (i.e., integrate to 1)
the acceptance probability is equal to 1/M

method when M is missing, the optimization of M is done either by finding the mode
of the log-density values ("optimize") or by using the "Empirical Supremum
Rejection Sampling" method ("ESRS")

interval when M is missing, for univariate density function draws, the interval to search
within via optimize. If not specified, a sample of 5000 values from the rg
function definition will be collected, and the min/max will be obtained via this
random sample

logfuns logical; have the df and dg function been written so as to return log-densities
instead of the original densities? The FALSE default assumes the original densi-
ties are returned (use TRUE when higher accuracy is required when generating
each density definition)

maxM logical; if when optimizing M the value is greater than this cut-off then stop;
ampler would likelihood be too efficient, or optimization is failing

parstart starting value vector for optimization of M in multidimensional distributions

ESRS_Mstart starting M value for the ESRS algorithm

Details

The accept-reject algorithm is a flexible approach to obtaining i.i.d.’s from a difficult to sample from
(probability) density function where either the transformation method fails or inverse transform
method is difficult to manage. The algorithm does so by sampling from a more "well-behaved"
proxy distribution (with identical support, up to some proportionality constant M that reshapes the
proposal density to envelope the target density), and accepts the draws if they are likely within
the target density. Hence, the closer the shape of dg(x) is to the desired df(x), the more likely the
draws are to be accepted; otherwise, many iterations of the accept-reject algorithm may be required,
which decreases the computational efficiency.

Value

returns a vector or matrix of draws (corresponding to the output class from rg) from the desired df

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Caffo, B. S., Booth, J. G., and Davison, A. C. (2002). Empirical supremum rejection sampling.
Biometrika, 89, 745–754.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

62 rejectionSampling

Examples

Not run:

Generate X ~ beta(a,b), where a and b are a = 2.7 and b = 6.3,
and the support is Y ~ Unif(0,1)
dfn <- function(x) dbeta(x, shape1 = 2.7, shape2 = 6.3)
dgn <- function(x) dunif(x, min = 0, max = 1)
rgn <- function(n) runif(n, min = 0, max = 1)

when df and dg both integrate to 1, acceptance probability = 1/M
M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn)
M
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M)
hist(dat, 100)
hist(rbeta(10000, 2.7, 6.3), 100) # compare

obtain empirical estimate of M via ESRS method
M <- rejectionSampling(1000, df=dfn, dg=dgn, rg=rgn, method='ESRS')
M

generate using better support function (here, Y ~ beta(2,6)),
and use log setup in initial calls (more numerically accurate)
dfn <- function(x) dbeta(x, shape1 = 2.7, shape2 = 6.3, log = TRUE)
dgn <- function(x) dbeta(x, shape1 = 2, shape2 = 6, log = TRUE)
rgn <- function(n) rbeta(n, shape1 = 2, shape2 = 6)
M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn, logfuns=TRUE) # better M
M

Alternative estimation of M
M <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, logfuns=TRUE,
method='ESRS')
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M, logfuns=TRUE)
hist(dat, 100)

#--
sample from wonky (and non-normalized) density function, like below
dfn <- function(x){

ret <- numeric(length(x))
ret[x <= .5] <- dnorm(x[x <= .5])
ret[x > .5] <- dnorm(x[x > .5]) + dchisq(x[x > .5], df = 2)
ret

}
y <- seq(-5,5, length.out = 1000)
plot(y, dfn(y), type = 'l', main = "Function to sample from")

choose dg/rg functions that have support within the range [-inf, inf]
rgn <- function(n) rnorm(n, sd=4)
dgn <- function(x) dnorm(x, sd=4)

example M height from above graphic
(M selected using ESRS to help stochastically avoid local mins)
M <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, method='ESRS')

reSummarise 63

M
lines(y, dgn(y)*M, lty = 2)
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M)
hist(dat, 100, prob=TRUE)

true density (normalized)
C <- integrate(dfn, -Inf, Inf)$value
ndfn <- function(x) dfn(x) / C
curve(ndfn, col='red', lwd=2, add=TRUE)

#---
multivariate distribution
dfn <- function(x) sum(log(c(dnorm(x[1]) + dchisq(x[1], df = 5),

dnorm(x[2], -1, 2))))
rgn <- function(n) c(rnorm(n, sd=3), rnorm(n, sd=3))
dgn <- function(x) sum(log(c(dnorm(x[1], sd=3), dnorm(x[1], sd=3))))

M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn, logfuns=TRUE)
dat <- rejectionSampling(5000, df=dfn, dg=dgn, rg=rgn, M=4.6, logfuns=TRUE)
hist(dat[,1], 30)
hist(dat[,2], 30)
plot(dat)

End(Not run)

reSummarise Run a summarise step for results that have been saved to the hard drive

Description

When runSimulation() uses the option save_results = TRUE the R replication results from the
Generate-Analyse functions are stored to the hard drive. As such, additional summarise components
may be required at a later time, whereby the respective .rds files must be read back into R to be
summarised. This function performs the reading of these files, application of a provided summarise
function, and final collection of the respective results.

Usage

reSummarise(
summarise,
dir = NULL,
files = NULL,
results = NULL,
Design = NULL,
fixed_objects = NULL,

64 reSummarise

boot_method = "none",
boot_draws = 1000L,
CI = 0.95,
prefix = "results-row"

)

Arguments

summarise a summarise function to apply to the read-in files. See runSimulation for de-
tails

dir directory pointing to the .rds files to be read-in that were saved from runSimulation(...,
save_results=TRUE). If NULL, it is assumed the current working directory con-
tains the .rds files

files (optional) names of files to read-in. If NULL all files located within dir will be
used

results (optional) the results of runSimulation when no summarise function was pro-
vided. Can be either a tibble or matrix (indicating that exactly one design
condition was evaluated), or a list of matrix/tibble objects indicating that
multiple conditions were performed with no summarise evaluation.
Alternatively, if store_results = TRUE in the runSimulation() execution then
the final SimDesign object may be passed, where the generate-analyse informa-
tion will be extracted from the object instead

Design (optional) if results input used, and design condition information important
in the summarise step, then the original design object from runSimulation
should be included

fixed_objects (optional) see runSimulation for details

boot_method method for performing non-parametric bootstrap confidence intervals for the re-
spective meta-statistics computed by the Summarise function. See runSimulation
for details

boot_draws number of non-parametric bootstrap draws to sample for the summarise func-
tion after the generate-analyse replications are collected. Default is 1000

CI bootstrap confidence interval level (default is 95%)

prefix character indicating prefix used for stored files

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

reSummarise 65

Examples

Design <- createDesign(N = c(10, 20, 30))

Generate <- function(condition, fixed_objects) {
dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat

}

Analyse <- function(condition, dat, fixed_objects) {
ret <- c(mean=mean(dat), median=median(dat)) # mean/median of sample data
ret

}

Summarise <- function(condition, results, fixed_objects){
colMeans(results)

}

Not run:
run the simulation
runSimulation(design=Design, replications=50,

generate=Generate, analyse=Analyse,
summarise=Summarise, save_results=TRUE,
save_details = list(save_results_dirname='simresults'))

res <- reSummarise(Summarise, dir = 'simresults/')
res

Summarise2 <- function(condition, results, fixed_objects){
ret <- c(mean_ests=colMeans(results), SE=colSDs(results))
ret

}

res2 <- reSummarise(Summarise2, dir = 'simresults/')
res2

SimClean(dir='simresults/')

End(Not run)

###
Similar, but with results stored within the final object

res <- runSimulation(design=Design, replications=50, store_results = TRUE,
generate=Generate, analyse=Analyse, summarise=Summarise)

res

same summarise but with bootstrapping
res2 <- reSummarise(Summarise, results = res, boot_method = 'basic')
res2

66 rHeadrick

rHeadrick Generate non-normal data with Headrick’s (2002) method

Description

Generate multivariate non-normal distributions using the fifth-order polynomial method described
by Headrick (2002).

Usage

rHeadrick(
n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
skew = rep(0, nrow(sigma)),
kurt = rep(0, nrow(sigma)),
gam3 = NaN,
gam4 = NaN,
return_coefs = FALSE,
coefs = NULL,
control = list(trace = FALSE, max.ntry = 15, obj.tol = 1e-10, n.valid.sol = 1)

)

Arguments

n number of samples to draw

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

skew a vector of k elements for the skewness of the variables

kurt a vector of k elements for the kurtosis of the variables

gam3 (optional) explicitly supply the gamma 3 value? Default computes this internally

gam4 (optional) explicitly supply the gamma 4 value? Default computes this internally

return_coefs logical; return the estimated coefficients only? See below regarding why this is
useful.

coefs (optional) supply previously estimated coefficients? This is useful when there
must be multiple data sets drawn and will avoid repetitive computations. Must
be the object returned after passing return_coefs = TRUE

control a list of control parameters when locating the polynomial coefficients

Details

This function is primarily a wrapper for the code written by Oscar L. Olvera Astivia (last edited Feb
26, 2015) with some modifications (e.g., better starting values for the Newton optimizer, passing
previously saved coefs, etc).

rHeadrick 67

Author(s)

Oscar L. Olvera Astivia and Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Headrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate and multi-
variate nonnormal distributions. Computational Statistics & Data Analysis, 40, 685-711.

Olvera Astivia, O. L., & Zumbo, B. D. (2015). A Cautionary Note on the Use of the Vale and
Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes. Educational
and Psychological Measurement, 75, 541-567.

Examples

Not run:
set.seed(1)

N <- 200
mean <- c(rep(0,4))
Sigma <- matrix(.49, 4, 4)
diag(Sigma) <- 1
skewness <- c(rep(1,4))
kurtosis <- c(rep(2,4))

nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis)
cor(nonnormal)
psych::describe(nonnormal)

#-----------
compute the coefficients, then supply them back to the function to avoid
extra computations

cfs <- rHeadrick(N, mean, Sigma, skewness, kurtosis, return_coefs = TRUE)
cfs

compare
system.time(nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis))
system.time(nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis,

coefs=cfs))

End(Not run)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

68 rint

rint Generate integer values within specified range

Description

Efficiently generate positive and negative integer values with (default) or without replacement. This
function is mainly a wrapper to the sample.int function (which itself is much more efficient integer
sampler than the more general sample), however is intended to work with both positive and negative
integer ranges since sample.int only returns positive integer values that must begin at 1L.

Usage

rint(n, min, max, replace = TRUE, prob = NULL)

Arguments

n number of samples to draw

min lower limit of the distribution. Must be finite

max upper limit of the distribution. Must be finite

replace should sampling be with replacement?

prob a vector of probability weights for obtaining the elements of the vector being
sampled

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

set.seed(1)

sample 1000 integer values within 20 to 100
x <- rint(1000, min = 20, max = 100)
summary(x)

sample 1000 integer values within 100 to 10 billion
x <- rint(1000, min = 100, max = 1e8)
summary(x)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

rinvWishart 69

compare speed to sample()
system.time(x <- rint(1000, min = 100, max = 1e8))
system.time(x2 <- sample(100:1e8, 1000, replace = TRUE))

sample 1000 integer values within -20 to 20
x <- rint(1000, min = -20, max = 20)
summary(x)

rinvWishart Generate data with the inverse Wishart distribution

Description

Function generates data in the form of symmetric matrices from the inverse Wishart distribution
given a covariance matrix and degrees of freedom.

Usage

rinvWishart(n = 1, df, sigma)

Arguments

n number of matrix observations to generate. By default n = 1, which returns a
single symmetric matrix. If n > 1 then a list of n symmetric matrices are returned
instead

df degrees of freedom

sigma positive definite covariance matrix

Value

a numeric matrix with columns equal to ncol(sigma) when n = 1, or a list of n matrices with the
same properties

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

70 rmgh

Examples

random inverse Wishart matrix given variances [3,6], covariance 2, and df=15
sigma <- matrix(c(3,2,2,6), 2, 2)
x <- rinvWishart(sigma = sigma, df = 15)
x

list of matrices
x <- rinvWishart(20, sigma = sigma, df = 15)
x

rmgh Generate data with the multivariate g-and-h distribution

Description

Generate non-normal distributions using the multivariate g-and-h distribution. Can be used to gen-
erate several different classes of univariate and multivariate distributions.

Usage

rmgh(n, g, h, mean = rep(0, length(g)), sigma = diag(length(mean)))

Arguments

n number of samples to draw

g the g parameter(s) which control the skew of a distribution in terms of both
direction and magnitude

h the h parameter(s) which control the tail weight or elongation of a distribution
and is positively related with kurtosis

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

RMSE 71

Examples

set.seed(1)

univariate
norm <- rmgh(10000,1e-5,0)
hist(norm)

skew <- rmgh(10000,1/2,0)
hist(skew)

neg_skew_platykurtic <- rmgh(10000,-1,-1/2)
hist(neg_skew_platykurtic)

multivariate
sigma <- matrix(c(2,1,1,4), 2)
mean <- c(-1, 1)
twovar <- rmgh(10000, c(-1/2, 1/2), c(0,0),

mean=mean, sigma=sigma)
hist(twovar[,1])
hist(twovar[,2])
plot(twovar)

RMSE Compute the (normalized) root mean square error

Description

Computes the average deviation (root mean square error; also known as the root mean square de-
viation) of a sample estimate from the parameter value. Accepts estimate and parameter values, as
well as estimate values which are in deviation form.

Usage

RMSE(
estimate,
parameter = NULL,
type = "RMSE",
MSE = FALSE,
percent = FALSE,
unname = FALSE

)

RMSD(
estimate,
parameter = NULL,
type = "RMSE",
MSE = FALSE,

72 RMSE

percent = FALSE,
unname = FALSE

)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame,
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return

parameter a numeric scalar/vector indicating the fixed parameter values. If a single value
is supplied and estimate is a matrix/data.frame then the value will be re-
cycled for each column; otherwise, each element will be associated with each
respective column in the estimate input. If NULL then it will be assumed that
the estimate input is in a deviation form (therefore sqrt(mean(estimate^2))
will be returned)

type type of deviation to compute. Can be 'RMSE' (default) for the root mean square-
error, 'NRMSE' for the normalized RMSE (RMSE / (max(estimate) - min(estimate))),
'SRMSE' for the standardized RMSE (RMSE / sd(estimate)), 'CV' for the coef-
ficient of variation, or 'RMSLE' for the root mean-square log-error

MSE logical; return the mean square error equivalent of the results instead of the root
mean-square error (in other words, the result is squared)? Default is FALSE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall average deviation in the estimates

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

bias

MAE

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

rmvnorm 73

Examples

pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
RMSE(samp, pop)

dev <- samp - pop
RMSE(dev)

RMSE(samp, pop, type = 'NRMSE')
RMSE(dev, type = 'NRMSE')
RMSE(dev, pop, type = 'SRMSE')
RMSE(samp, pop, type = 'CV')
RMSE(samp, pop, type = 'RMSLE')

percentage reported
RMSE(samp, pop, type = 'NRMSE')
RMSE(samp, pop, type = 'NRMSE', percent = TRUE)

matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(mat, parameter = 2)
RMSE(mat, parameter = c(2, 3))

different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
RMSE(mat, parameter = c(2,3))

same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(df, parameter = c(2,2))

parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
RMSE(estimates, parameters)

rmvnorm Generate data with the multivariate normal (i.e., Gaussian) distribu-
tion

Description

Function generates data from the multivariate normal distribution given some mean vector and/or
covariance matrix.

Usage

rmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)))

74 rmvt

Arguments

n number of observations to generate

mean mean vector, default is rep(0, length = ncol(sigma))

sigma positive definite covariance matrix, default is diag(length(mean))

Value

a numeric matrix with columns equal to length(mean)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

random normal values with mean [5, 10] and variances [3,6], and covariance 2
sigma <- matrix(c(3,2,2,6), 2, 2)
mu <- c(5,10)
x <- rmvnorm(1000, mean = mu, sigma = sigma)
head(x)
summary(x)
plot(x[,1], x[,2])

rmvt Generate data with the multivariate t distribution

Description

Function generates data from the multivariate t distribution given a covariance matrix, non-centrality
parameter (or mode), and degrees of freedom.

Usage

rmvt(n, sigma, df, delta = rep(0, nrow(sigma)), Kshirsagar = FALSE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

rmvt 75

Arguments

n number of observations to generate

sigma positive definite covariance matrix

df degrees of freedom. df = 0 and df = Inf corresponds to the multivariate normal
distribution

delta the vector of non-centrality parameters of length n which specifies the either the
modes (default) or non-centrality parameters

Kshirsagar logical; triggers whether to generate data with non-centrality parameters or to
adjust the simulated data to the mode of the distribution. The default uses the
mode

Value

a numeric matrix with columns equal to ncol(sigma)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

random t values given variances [3,6], covariance 2, and df = 15
sigma <- matrix(c(3,2,2,6), 2, 2)
x <- rmvt(1000, sigma = sigma, df = 15)
head(x)
summary(x)
plot(x[,1], x[,2])

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

76 RobbinsMonro

RobbinsMonro Robbins-Monro (1951) stochastic root-finding algorithm

Description

Function performs stochastic root solving for the provided f(x) using the Robbins-Monro (1951)
algorithm. Differs from deterministic cousins such as uniroot in that f may contain stochastic error
components, where the root is obtained through the running average method provided by noise filter
(see also PBA). Assumes that E[f(x)] is non-decreasing in x.

Usage

RobbinsMonro(
f,
p,
...,
Polyak_Juditsky = FALSE,
maxiter = 500L,
miniter = 100L,
k = 3L,
tol = 1e-05,
verbose = TRUE,
fn.a = function(iter, a = 1, b = 1/2, c = 0, ...) a/(iter + c)^b

)

S3 method for class 'RM'
print(x, ...)

S3 method for class 'RM'
plot(x, par = 1, main = NULL, Polyak_Juditsky = FALSE, ...)

Arguments

f noisy function for which the root is sought

p vector of starting values to be passed as f(p, ...)

... additional named arguments to be passed to f

Polyak_Juditsky

logical; apply the Polyak and Juditsky (1992) running-average method? Re-
turns the final running average estimate using the Robbins-Monro updates (also
applies to plot). Note that this should only be used when the step-sizes are
sufficiently large so that the Robbins-Monro have the ability to stochastically
explore around the root (not just approach it from one side, which occurs when
using small steps)

maxiter the maximum number of iterations (default 500)

miniter minimum number of iterations (default 100)

RobbinsMonro 77

k number of consecutive tol criteria required before terminating

tol tolerance criteria for convergence on the changes in the updated p elements.
Must be achieved on k (default 3) successive occasions

verbose logical; should the iterations and estimate be printed to the console?

fn.a function to create the a coefficient in the Robbins-Monro noise filter. Requires
the first argument is the current iteration (iter), provide one or more arguments,
and (optionally) the Sequence function is of the form recommended by
Spall (2000).
Note that if a different function is provided it must satisfy the property that∑∞

i=1 ai = ∞ and
∑∞

i=1 a
2
i <∞

x an object of class RM

par which parameter in the original vector p to include in the plot

main plot title

References

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of Stochastic Approximation by Averaging.
SIAM Journal on Control and Optimization, 30(4):838.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann.Math.Statistics,
22:400-407.

Spall, J.C. (2000). Adaptive stochastic approximation by the simultaneous perturbation method.
IEEE Trans. Autom. Control 45, 1839-1853.

See Also

uniroot, PBA

Examples

find x that solves f(x) - b = 0 for the following
f.root <- function(x, b = .6) 1 / (1 + exp(-x)) - b
f.root(.3)

xs <- seq(-3,3, length.out=1000)
plot(xs, f.root(xs), type = 'l', ylab = "f(x)", xlab='x')
abline(h=0, col='red')

retuni <- uniroot(f.root, c(0,1))
retuni
abline(v=retuni$root, col='blue', lty=2)

Robbins-Monro without noisy root, start with p=.9
retrm <- RobbinsMonro(f.root, .9)
retrm
plot(retrm)

Same problem, however root function is now noisy. Hence, need to solve
fhat(x) - b + e = 0, where E(e) = 0

78 RSE

f.root_noisy <- function(x) 1 / (1 + exp(-x)) - .6 + rnorm(1, sd=.02)
sapply(rep(.3, 10), f.root_noisy)

uniroot "converges" unreliably
set.seed(123)
uniroot(f.root_noisy, c(0,1))$root
uniroot(f.root_noisy, c(0,1))$root
uniroot(f.root_noisy, c(0,1))$root

Robbins-Monro provides better convergence
retrm.noise <- RobbinsMonro(f.root_noisy, .9)
retrm.noise
plot(retrm.noise)

different power (b) for fn.a()
retrm.b2 <- RobbinsMonro(f.root_noisy, .9, b = .01)
retrm.b2
plot(retrm.b2)

use Polyak-Juditsky averaging (b should be closer to 0 to work well)
retrm.PJ <- RobbinsMonro(f.root_noisy, .9, b = .01,

Polyak_Juditsky = TRUE)
retrm.PJ # final Polyak_Juditsky estimate
plot(retrm.PJ) # Robbins-Monro history
plot(retrm.PJ, Polyak_Juditsky = TRUE) # Polyak_Juditsky history

RSE Compute the relative standard error ratio

Description

Computes the relative standard error ratio given the set of estimated standard errors (SE) and the
deviation across the R simulation replications (SD). The ratio is formed by finding the expectation of
the SE terms, and compares this expectation to the general variability of their respective parameter
estimates across the R replications (ratio should equal 1). This is used to roughly evaluate whether
the SEs being advertised by a given estimation method matches the sampling variability of the
respective estimates across samples.

Usage

RSE(SE, ests, unname = FALSE)

Arguments

SE a numeric matrix of SE estimates across the replications (extracted from the
results object in the Summarise step). Alternatively, can be a vector containing
the mean of the SE estimates across the R simulation replications

rtruncate 79

ests a numeric matrix object containing the parameter estimates under investigation
found within the Summarise function. This input is used to compute the standard
deviation/variance estimates for each column to evaluate how well the expected
SE matches the standard deviation

unname logical; apply unname to the results to remove any variable names?

Value

returns vector of variance ratios, (RSV = SE^2/SD^2)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

R <- 10000
par_ests <- cbind(rnorm(R), rnorm(R, sd=1/10),

rnorm(R, sd=1/15))
colnames(par_ests) <- paste0("par", 1:3)
(SDs <- colSDs(par_ests))

SEs <- cbind(1 + rnorm(R, sd=.01),
1/10 + + rnorm(R, sd=.01),
1/15 + rnorm(R, sd=.01))

(E_SEs <- colMeans(SEs))
RSE(SEs, par_ests)

equivalent to the form
colMeans(SEs) / SDs

rtruncate Generate a random set of values within a truncated range

Description

Function generates data given a supplied random number generating function that are constructed
to fall within a particular range. Sampled values outside this range are discarded and re-sampled
until the desired criteria has been met.

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

80 rtruncate

Usage

rtruncate(n, rfun, range, ..., redraws = 100L)

Arguments

n number of observations to generate. This should be the first argument passed to
rfun

rfun a function to generate random values. Function can return a numeric/integer
vector or matrix, and additional arguments requred for this function are passed
through the argument ...

range a numeric vector of length two, where the first element indicates the lower bound
and the second the upper bound. When values are generated outside these two
bounds then data are redrawn until the bounded criteria is met. When the output
of rfun is a matrix then this input can be specified as a matrix with two rows,
where each the first row corresponds to the lower bound and the second row the
upper bound for each generated column in the output

... additional arguments to be passed to rfun

redraws the maximum number of redraws to take before terminating the iterative se-
quence. This is in place as a safety in case the range is too small given the
random number generator, causing too many consecutive rejections. Default is
100

Details

In simulations it is often useful to draw numbers from truncated distributions rather than across
the full theoretical range. For instance, sampling parameters within the range [-4,4] from a normal
distribution. The rtruncate function has been designed to accept any sampling function, where the
first argument is the number of values to sample, and will draw values iteratively until the number
of values within the specified bound are obtained. In situations where it is unlikely for the bounds
to be located (e.g., sampling from a standard normal distribution where all values are within [-10,-
6]) then the sampling scheme will throw an error if too many re-sampling executions are required
(default will stop if more that 100 calls to rfun are required).

Value

either a numeric vector or matrix, where all values are within the desired range

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

runArraySimulation 81

See Also

runSimulation

Examples

n = 1000 truncated normal vector between [-2,3]
vec <- rtruncate(1000, rnorm, c(-2,3))
summary(vec)

truncated correlated multivariate normal between [-1,4]
mat <- rtruncate(1000, rmvnorm, c(-1,4),

sigma = matrix(c(2,1,1,1),2))
summary(mat)

truncated correlated multivariate normal between [-1,4] for the
first column and [0,3] for the second column
mat <- rtruncate(1000, rmvnorm, cbind(c(-1,4), c(0,3)),

sigma = matrix(c(2,1,1,1),2))
summary(mat)

truncated chi-square with df = 4 between [2,6]
vec <- rtruncate(1000, rchisq, c(2,6), df = 4)
summary(vec)

runArraySimulation Run a Monte Carlo simulation using array job submissions per condi-
tion

Description

This function has the same purpose as runSimulation, however rather than evaluating each row
in a design object (potentially with parallel computing architecture) this function evaluates the
simulation per independent row condition. This is mainly useful when distributing the jobs to HPC
clusters where a job array number is available (e.g., via SLURM), where the simulation results must
be saved to independent files as they complete. Use of expandDesign is useful for distributing
replications to different jobs, while genSeeds is required to ensure high-quality random number
generation across the array submissions. See the associated vignette for a brief tutorial of this
setup.

Usage

runArraySimulation(
design,
...,
replications,
iseed,
filename,

82 runArraySimulation

dirname = NULL,
arrayID = getArrayID(),
array2row = function(arrayID) arrayID,
addArrayInfo = TRUE,
parallel = FALSE,
cl = NULL,
ncores = parallelly::availableCores(omit = 1L),
save_details = list(),
control = list()

)

Arguments

design design object containing simulation conditions on a per row basis. This func-
tion is design to submit each row as in independent job on a HPC cluster. See
runSimulation for further details

... additional arguments to be passed to runSimulation

replications number of independent replications to perform per condition (i.e., each row in
design). See runSimulation for further details

iseed initial seed to be passed to genSeeds’s argument of the same name, along with
the supplied arrayID

filename file name to save simulation files to (does not need to specify extension). How-
ever, the array ID will be appended to each filename. For example, if filename
= 'mysim' then files stored will be 'mysim-1.rds', 'mysim-2.rds', and so on
for each row ID in design

dirname directory to save the files associated with filename to. If omitted the files will
be stored in the same working directory where the script was submitted

arrayID array identifier from the scheduler. Must be a number between 1 and nrow(design).
If not specified then getArrayID will be called automatically, which assumes
the environmental variables are available according the SLURM scheduler

array2row user defined function with the single argument arrayID. Used to convert the de-
tected arrayID into a suitable row index in the design object input. By default
each arrayID is associated with its respective row in design.
For example, if each arrayID should evaluate 10 rows in the design object then
the function function(arrayID){1:10 + 10 * (arrayID-1)} can be passed to
array2row

addArrayInfo logical; should the array ID and original design row number be added to the
SimResults(...) output?

parallel logical; use parallel computations via the a "SOCK" cluster? Only useful when
the instruction shell file requires more than 1 core (number of cores detected
via ncores). For this application the random seeds further distributed using
nextRNGSubStream

cl cluster definition. If omitted a "SOCK" cluster will be defined

ncores number of cores to use when parallel=TRUE. Note that the default uses 1 minus
the number of available cores, therefore this will only be useful when ncores >
2 as defined in the shell instruction file

runArraySimulation 83

save_details optional list of extra file saving details. See runSimulation

control control list passed to runSimulation. In addition to the original control ele-
ments two additional arguments have been added: max_time and max_RAM, both
of which as specified as character vectors with one element.
max_time specifies the maximum time allowed for a single simulation condition
to execute (default does not set any time limits), and is formatted according
to the specification in timeFormater. This is primarily useful when the HPC
cluster will time out after some known elapsed time. In general, this input should
be set to somewhere around 80-90 before the cluster is terminated can be saved.
Default applies no time limit
Similarly, max_RAM controls the (approximate) maximum size that the simula-
tion storage objects can grow before RAM becomes an issue. This can be spec-
ified either in terms of megabytes (MB), gigabytes (GB), or terabytes (TB). For
example, max_RAM = "4GB" indicates that if the simulation storage objects are
larger than 4GB then the workflow will terminate early, returning only the suc-
cessful results up to this point). Useful for larger HPC cluster jobs with RAM
constraints that could terminate abruptly. As a rule of thumb this should be set
to around 90 available. Default applies no memory limit

Details

Due to the nature of how the replication are split it is important that the L’Ecuyer-CMRG (2002)
method of random seeds is used across all array ID submissions (cf. runSimulation’s parallel
approach, which uses this method to distribute random seeds within each isolated condition rather
than between all conditions). As such, this function requires the seeds to be generated using
genSeeds with the iseed and arrayID inputs to ensure that each job is analyzing a high-quality set
of random numbers via L’Ecuyer-CMRG’s (2002) method, incremented using nextRNGStream.

Additionally, for timed simulations on HPC clusters it is also recommended to pass a control =
list(max_time) value to avoid discarding conditions that require more than the specified time
in the shell script. The max_time value should be less than the maximum time allocated on the
HPC cluster (e.g., approximately 90 depends on how long each replication takes). Simulations with
missing replication information should submit a new set of jobs at a later time to collect the missing
replication information.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

See Also

runSimulation, expandDesign, genSeeds, SimCheck, SimCollect, getArrayID

https://doi.org/10.20982/tqmp.16.4.p248

84 runArraySimulation

Examples

library(SimDesign)

Design <- createDesign(N = c(10, 20, 30))

Generate <- function(condition, fixed_objects) {
dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat

}

Analyse <- function(condition, dat, fixed_objects) {
ret <- c(mean=mean(dat), median=median(dat)) # mean/median of sample data
ret

}

Summarise <- function(condition, results, fixed_objects){
colMeans(results)

}

Not run:

define initial seed (do this only once to keep it constant!)
iseed <- genSeeds()
iseed <- 554184288

On cluster submission, the active array ID is obtained via getArrayID(),
and therefore should be used in real SLURM submissions
arrayID <- getArrayID(type = 'slurm')

However, the following example arrayID is set to
the first row only for testing purposes
arrayID <- 1L

run the simulation (results not caught on job submission, only files saved)
res <- runArraySimulation(design=Design, replications=50,

generate=Generate, analyse=Analyse,
summarise=Summarise, arrayID=arrayID,
iseed=iseed, filename='mysim') # saved as 'mysim-1.rds'

res
SimResults(res) # condition and replication count stored

same, but evaluated with multiple cores
res <- runArraySimulation(design=Design, replications=50,

generate=Generate, analyse=Analyse,
summarise=Summarise, arrayID=arrayID,
parallel=TRUE, ncores=3,
iseed=iseed, filename='myparsim')

res
SimResults(res) # condition and replication count stored

dir()
SimClean(c('mysim-1.rds', 'myparsim-1.rds'))

runArraySimulation 85

########################
Same submission job as above, however split the replications over multiple
evaluations and combine when complete
Design5 <- expandDesign(Design, 5)
Design5

iseed <- genSeeds()
iseed <- 554184288

arrayID <- getArrayID(type = 'slurm')
arrayID <- 14L

run the simulation (replications reduced per row, but same in total)
runArraySimulation(design=Design5, replications=10,

generate=Generate, analyse=Analyse,
summarise=Summarise, iseed=iseed,
filename='mylongsim', arrayID=arrayID)

res <- readRDS('mylongsim-14.rds')
res
SimResults(res) # condition and replication count stored

SimClean('mylongsim-14.rds')

###
Emulate the arrayID distribution, storing all results in a 'sim/' folder
(if 'sim/' does not exist in runArraySimulation() it will be
created automatically)
dir.create('sim/')

Emulate distribution to nrow(Design5) = 15 independent job arrays
(just used for presentation purposes on local computer)
sapply(1:nrow(Design5), \(arrayID)

runArraySimulation(design=Design5, replications=10,
generate=Generate, analyse=Analyse,
summarise=Summarise, iseed=iseed, arrayID=arrayID,
filename='condition', dirname='sim', # files: "sim/condition-#.rds"
control = list(max_time="04:00:00", max_RAM="4GB"))) |> invisible()

If necessary, conditions above will manually terminate before
4 hours and 4GB of RAM are used, returning any
successfully completed results before the HPC session times
out (provided .slurm script specified more than 4 hours)

list saved files
dir('sim/')

check that all files saved (warnings will be raised if missing files)
SimCheck('sim/') |> isTRUE()

condition14 <- readRDS('sim/condition-14.rds')

86 runArraySimulation

condition14
SimResults(condition14)

aggregate simulation results into single file
final <- SimCollect('sim/')
final

clean simulation directory
SimClean(dirs='sim/')

############
same as above, however passing different amounts of information depending
on the array ID
array2row <- function(arrayID){

switch(arrayID,
"1"=1:8,
"2"=9:14,
"3"=15)

}

arrayID 1 does row 1 though 8, arrayID 2 does 9 to 14
array2row(1)
array2row(2)
array2row(3) # arrayID 3 does 15 only

emulate remote array distribution with only 3 arrays
sapply(1:3, \(arrayID)

runArraySimulation(design=Design5, replications=10,
generate=Generate, analyse=Analyse,
summarise=Summarise, iseed=iseed, arrayID=arrayID,
filename='condition', dirname='sim', array2row=array2row)) |> invisible()

list saved files
dir('sim/')

note that all row conditions are still stored separately, though note that
arrayID is now 2 instead
condition14 <- readRDS('sim/condition-14.rds')
condition14
SimResults(condition14)

aggregate simulation results into single file
final <- SimCollect('sim/')
final

clean simulation directory
SimClean(dirs='sim/')

End(Not run)

runSimulation 87

runSimulation Run a Monte Carlo simulation given conditions and simulation func-
tions

Description

This function runs a Monte Carlo simulation study given a set of predefined simulation functions,
design conditions, and number of replications. Results can be saved as temporary files in case
of interruptions and may be restored by re-running runSimulation, provided that the respective
temp file can be found in the working directory. runSimulation supports parallel and cluster
computing (with the parallel and future packages; see also runArraySimulation for submitting
array jobs to HPC clusters), global and local debugging, error handling (including fail-safe stopping
when functions fail too often, even across nodes), provides bootstrap estimates of the sampling
variability (optional), and automatic tracking of error and warning messages with their associated
.Random.seed states. For convenience, all functions available in the R work-space are exported
across all nodes so that they are more easily accessible (however, other R objects are not, and
therefore must be passed to the fixed_objects input to become available across nodes).

Usage

runSimulation(
design,
replications,
generate,
analyse,
summarise,
fixed_objects = NULL,
packages = NULL,
filename = NULL,
debug = "none",
load_seed = NULL,
save = any(replications > 2),
store_results = TRUE,
save_results = FALSE,
parallel = FALSE,
ncores = parallelly::availableCores(omit = 1L),
cl = NULL,
notification = "none",
beep = FALSE,
sound = 1,
CI = 0.95,
seed = NULL,
boot_method = "none",
boot_draws = 1000L,
max_errors = 50L,
resume = TRUE,
save_details = list(),

88 runSimulation

control = list(),
progress = TRUE,
verbose = TRUE

)

S3 method for class 'SimDesign'
summary(object, ...)

S3 method for class 'SimDesign'
print(x, list2char = TRUE, ...)

Arguments

design a tibble or data.frame object containing the Monte Carlo simulation con-
ditions to be studied, where each row represents a unique condition and each
column a factor to be varied. See createDesign for the standard approach to
create this simulation design object

replications number of independent replications to perform per condition (i.e., each row in
design). Can be a single number, which will be used for each design condition,
or an integer vector with length equal to nrow(design). All inputs must be
greater than 0, though setting to less than 3 (for initial testing purpose) will
disable the save and control$stop_on_fatal flags

generate user-defined data and parameter generating function (or named list of functions).
See Generate for details. Note that this argument may be omitted by the user
if they wish to generate the data with the analyse step, but for real-world sim-
ulations this is generally not recommended. If multiple generate functions are
provided as a list then the list of generate functions are executed in order until
the first valid generate function is executed, where the subsequent generation
functions are then ignored (see GenerateIf to only apply data generation for
specific conditions).

analyse user-defined analysis function (or named list of functions) that acts on the data
generated from Generate (or, if generate was omitted, can be used to generate
and analyses the simulated data). See Analyse for details

summarise optional (but strongly recommended) user-defined summary function from Summarise
to be used to compute meta-statistical summary information after all the repli-
cations have completed within each design condition. Return of this func-
tion, in order of increasing complexity, should be: a named numeric vector or
data.frame with one row, a matrix or data.frame with more than one row,
and, failing these more atomic types, a named list. For summary objects that
are not easily appended to the original design object use SimExtract with the
option what = 'summarise'.
Note that unlike the Generate and Analyse steps, the Summarise portion is not
as important to perfectly organize as the results can be summarised later on
by using the built-in reSummarise function (provided either store_results =
TRUE or save_results = TRUE were included).
Omitting this function will return a tibble with the Design and associated re-
sults information for all nrow(Design) * repliations evaluations if the re-
sults from each Analyse() call was a one-dimensional vector. For more general

runSimulation 89

objects returned by Analyse() (such as lists), a list containing the results re-
turned form Analyse. This is generally only recommended for didactic purposes
because the results will leave out a large amount of information (e.g., try-errors,
warning messages, saving files, etc), can witness memory related issues if the
Analyse function returns larger objects, and generally is not as flexible inter-
nally. However, it may be useful when replications are expensive and ANOVA-
based decompositions involving the within-condition replication information are
of interest, though of course this can be circumvented by using store_results
= TRUE or save_results = TRUE with or without a supplied summarise defini-
tion.

fixed_objects (optional) an object (usually a named list) containing additional user-defined
objects that should remain fixed across conditions. This is useful when includ-
ing large vectors/matrices of population parameters, fixed data information that
should be used across all conditions and replications (e.g., including a common
design matrix for linear regression models), or simply control constant global
elements (e.g., a constant for sample size)

packages a character vector of external packages to be used during the simulation (e.g.,
c('MASS', 'extraDistr', 'simsem')). Use this input when running code
in parallel to use non-standard functions from additional packages, otherwise
the functions must be made available by using explicit library or require
calls within the provided simulation functions. Alternatively, functions can
be called explicitly without attaching the package with the :: operator (e.g.,
extraDistr::rgumbel())

filename (optional) the name of the .rds file to save the final simulation results to. If the
extension .rds is not included in the file name (e.g. "mysimulation" versus
"mysimulation.rds") then the .rds extension will be automatically added to
the file name to ensure the file extension is correct.
Note that if the same file name already exists in the working directly at the
time of saving then a new file will be generated instead and a warning will be
thrown. This helps to avoid accidentally overwriting existing files. Default is
NULL, indicating no file will be saved by default

debug a string indicating where to initiate a browser() call for editing and debugging,
and pairs particularly well with the load_seed argument for precise debugging.
General options are 'none' (default; no debugging), 'error', which starts the
debugger when any error in the code is detected in one of three generate-analyse-
summarise functions, and 'all', which debugs all the user defined functions
regardless of whether an error was thrown or not. Specific options include:
'generate' to debug the data simulation function, 'analyse' to debug the
computational function, and 'summarise' to debug the aggregation function.
If the Analyse argument is supplied as a named list of functions then it is also
possible to debug the specific function of interest by passing the name of the re-
spective function in the list. For instance, if analyse = list(A1=Analyse.A1,
A2=Analyse.A2) then passing debug = 'A1' will debug only the first function
in this list, and all remaining analysis functions will be ignored.
For debugging specific rows in the Design input (e.g., when a number of ini-
tial rows successfully complete but the kth row fails) the row number can be
appended to the standard debug input using a '-' separator. For instance, de-

90 runSimulation

bugging whenever an error is raised in the second row of Design can be declared
via debug = 'error-2'.
Finally, users may place browser calls within the respective functions for de-
bugging at specific lines, which is useful when debugging based on conditional
evaluations (e.g., if(this == 'problem') browser()). Note that parallel com-
putation flags will automatically be disabled when a browser() is detected or
when a debugging argument other than 'none' is supplied

load_seed used to replicate an exact simulation state, which is primarily useful for debug-
ging purposes. Input can be a character object indicating which file to load from
when the .Random.seeds have be saved (after a call with save_seeds = TRUE),
or an integer vector indicating the actual .Random.seed values (e.g., extracted
after using store_seeds). E.g., load_seed = 'design-row-2/seed-1' will
load the first seed in the second row of the design input, or explicitly passing
the elements from .Random.seed (see SimExtract to extract the seeds associ-
ated explicitly with errors during the simulation, where each column represents
a unique seed). If the input is a character vector then it is important NOT to
modify the design input object, otherwise the path may not point to the correct
saved location, while if the input is an integer vector (or single column tbl ob-
ject) then it WILL be important to modify the design input in order to load this
exact seed for the corresponding design row. Default is NULL

save logical; save the temporary simulation state to the hard-drive? This is useful
for simulations which require an extended amount of time, though for shorter
simulations can be disabled to slightly improve computational efficiency. When
TRUE, which is the default when evaluating replications > 2, a temp file will
be created in the working directory which allows the simulation state to be saved
and recovered (in case of power outages, crashes, etc). As well, triggering
this flag will save any fatal .Random.seed states when conditions unexpect-
edly crash (where each seed is stored row-wise in an external .rds file), which
provides a much easier mechanism to debug issues (see load_seed for details).
Upon completion, this temp file will be removed.
To recover your simulation at the last known location (having patched the issues
in the previous execution code) simply re-run the code you used to initially
define the simulation and the external file will automatically be detected and
read-in. Default is TRUE when replications > 10 and FALSE otherwise

store_results logical; store the complete tables of simulation results in the returned object?
This is TRUE default, though if RAM anticipated to be an issue see save_results
instead. Note that if the Design object is omitted from the call to runSimulation(),
or the number of rows in Design is exactly 1, then this argument is automatically
set to TRUE as RAM storage is no longer an issue.
To extract these results pass the returned object to either SimResults or SimExtract
with what = 'results', which will return a named list of all the simulation re-
sults for each condition if nrow(Design) > 1; otherwise, if nrow(Design) == 1
or Design was missing the results object will be stored as-is

save_results logical; save the results returned from Analyse to external .rds files located
in the defined save_results_dirname directory/folder? Use this if you would
like to keep track of the individual parameters returned from the analysis func-
tion. Each saved object will contain a list of three elements containing the con-

runSimulation 91

dition (row from design), results (as a list or matrix), and try-errors. See
SimResults for an example of how to read these .rds files back into R after the
simulation is complete. Default is FALSE.
WARNING: saving results to your hard-drive can fill up space very quickly
for larger simulations. Be sure to test this option using a smaller number of
replications before the full Monte Carlo simulation is performed. See also
reSummarise for applying summarise functions from saved simulation results

parallel logical; use parallel processing from the parallel package over each unique
condition? This distributes the independent replications across the defined
nodes, and is repeated for each row condition in the design input.
Alternatively, if the future package approach is desired then passing parallel
= 'future' to runSimulation() will use the defined plan for execution. This
allows for greater flexibility when specifying the general computing plan (e.g.,
plan(multisession)) for parallel computing on the same machine, plan(future.batchtools::batchtools_torque)
or plan(future.batchtools::batchtools_slurm) for common MPI/Slurm
schedulers, etc). However, it is the responsibility of the user to use plan(sequential)
to reset the computing plan when the jobs are completed

ncores number of cores to be used in parallel execution (ignored if using the future
package approach). Default uses all available minus 1

cl cluster object defined by makeCluster used to run code in parallel (ignored
if using the future package approach). If NULL and parallel = TRUE, a local
cluster object will be defined which selects the maximum number cores available
and will be stopped when the simulation is complete. Note that supplying a cl
object will automatically set the parallel argument to TRUE. Define and supply
this cluster object yourself whenever you have multiple nodes and can link them
together manually
If the future package has been attached prior to executing runSimulation()
then the associated plan() will be followed instead

notification an optional character vector input that can be used to send Pushbullet notifica-
tions from a configured computer. This reports information such as the total
execution time, the condition completed, and error/warning messages recorded.
This arguments assumes that users have already A) registered for a Pushbullet
account, B) installed the application on their mobile device and computer, and
C) created an associated JSON file of the form ~/.rpushbullet.json using
RPushbullet::pbSetup()).
To utilize the RPushbullet in SimDesign first call library(RPushbullet be-
fore running runSimulation() to read-in the default JSON file. Next, pass
one of the following supported options: 'none' (default; send no notifica-
tion), 'condition' to send a notification after each condition has completed,
or 'complete' to send a notification only when the simulation has finished.

beep logical; call the beepr package when the simulation is completed?

sound sound argument passed to beepr::beep()

CI bootstrap confidence interval level (default is 95%)

seed a vector or list of integers to be used for reproducibility. The length of the
vector must be equal the number of rows in design. If the input is a vector

92 runSimulation

then set.seed or clusterSetRNGStream for each condition will be called, re-
spectively. If a list is provided then these numbers must have been generated
from gen_seeds with the argument CMRG.seed used to specify the initial. The
list approach ensures random number generation independence across condi-
tions and replications, while the vector input ensures independence within the
replications per conditions but not necessarily across conditions. Default ran-
domly generates seeds within the range 1 to 2147483647 for each condition via
link{gen_seeds}

boot_method method for performing non-parametric bootstrap confidence intervals for the re-
spective meta-statistics computed by the Summarise function. Can be 'basic'
for the empirical bootstrap CI, 'percentile' for percentile CIs, 'norm' for
normal approximations CIs, or 'studentized' for Studentized CIs (should
only be used for simulations with lower replications due to its computational in-
tensity). Alternatively, CIs can be constructed using the argument 'CLT', which
computes the intervals according to the large-sample standard error approxima-
tion SD(results)/

√
R. Default is 'none', which performs no CI computations

boot_draws number of non-parametric bootstrap draws to sample for the summarise func-
tion after the generate-analyse replications are collected. Default is 1000

max_errors the simulation will terminate when more than this number of consecutive errors
are thrown in any given condition, causing the simulation to continue to the next
unique design condition. This is included to avoid getting stuck in infinite re-
draws, and to indicate that something fatally problematic is going wrong in the
generate-analyse phases. Default is 50

resume logical; if a temporary SimDesign file is detected should the simulation resume
from this location? Keeping this TRUE is generally recommended, however this
should be disabled if using runSimulation within runSimulation to avoid
reading improper save states. Alternatively, if an integer is supplied then the sim-
ulation will continue at the associated row location in design (e.g., resume=10).
This is useful to overwrite a previously evaluate element in the temporary files
that was detected to contain fatal errors that require re-evaluation without dis-
carding the originally valid rows in the simulation

save_details a list pertaining to information regarding how and where files should be saved
when the save or save_results flags are triggered.

safe logical; trigger whether safe-saving should be performed. When TRUE
files will never be overwritten accidentally, and where appropriate the pro-
gram will either stop or generate new files with unique names. Default is
TRUE

compname name of the computer running the simulation. Normally this doesn’t
need to be modified, but in the event that a manual node breaks down while
running a simulation the results from the temp files may be resumed on an-
other computer by changing the name of the node to match the broken com-
puter. Default is the result of evaluating unname(Sys.info()['nodename'])

out_rootdir root directory to save all files to. Default uses the current working
directory

save_results_dirname a string indicating the name of the folder to save result
objects to when save_results = TRUE. If a directory/folder does not exist

runSimulation 93

in the current working directory then a unique one will be created automat-
ically. Default is 'SimDesign-results_' with the associated compname
appended if no filename is defined, otherwise the filename is used to re-
place ’SimDesign’ in the string

save_results_filename a string indicating the name file to store, where the
Design row ID will be appended to ensure uniqueness across rows. Spec-
ifying this input will disable any checking for the uniqueness of the file
folder, thereby allowing independent runSimulation calls to write to the
same save_results_dirname. Useful when the files should all be stored
in the same working directory, however the rows of Design are evaluated
in isolation (e.g., for HPC structures that allow asynchronous file storage).
WARNING: the uniqueness of the file names are not checked using this
approach, therefore please ensure that each generated name will be unique
a priori, such as naming the file based on the supplied row condition infor-
mation

save_seeds_dirname a string indicating the name of the folder to save .Random.seed
objects to when save_seeds = TRUE. If a directory/folder does not exist in
the current working directory then one will be created automatically. De-
fault is 'SimDesign-seeds_' with the associated compname appended if no
filename is defined, otherwise the filename is used to replace ’SimDesign’
in the string

tmpfilename string indicating the temporary file name to save provisional in-
formation to. If not specified the following will be used: paste0('SIMDESIGN-TEMPFILE_',
compname, '.rds')

control a list for extra information flags for controlling less commonly used features.
These include

stop_on_fatal logical (default is FALSE); should the simulation be terminated
immediately when the maximum number of consecutive errors (max_errors)
is reached? If FALSE, the simulation will continue as though errors did not
occur, however a column FATAL_TERMINATION will be included in the re-
sulting object indicating the final error message observed, and NA place-
holders will be placed in all other row-elements. Default is FALSE, though
is automatically set to TRUE when replications < 3 for the purpose of
debugging

warnings_as_errors logical (default is FALSE); treat warning messages as er-
ror messages during the simulation? Default is FALSE, therefore warnings
are only collected and not used to restart the data generation step, and the
seeds associated with the warning message conditions are not stored within
the final simulation object.
Note that this argument is generally intended for debugging/early planning
stages when designing a simulation experiment. If specific warnings are
known to be problematic and should be treated as errors then please use
manageWarnings instead

save_seeds logical; save the .Random.seed states prior to performing each
replication into plain text files located in the defined save_seeds_dirname
directory/folder? Use this if you would like to keep track of every simula-
tion state within each replication and design condition. This can be used to

94 runSimulation

completely replicate any cell in the simulation if need be. As well, see the
load_seed input to load a given .Random.seed to exactly replicate the gen-
erated data and analysis state (mostly useful for debugging). When TRUE,
temporary files will also be saved to the working directory (in the same way
as when save = TRUE). Default is FALSE
Note, however, that this option is not typically necessary or recommended
since the .Random.seed states for simulation replications that throw errors
during the execution are automatically stored within the final simulation ob-
ject, and can be extracted and investigated using SimExtract. Hence, this
option is only of interest when all of the replications must be reproducible
(which occurs very rarely), otherwise the defaults to runSimulation should
be sufficient

store_Random.seeds logical; store the complete .Random.seed states for each
simulation replicate? Default is FALSE as this can take up a great deal of
unnecessary RAM (see related save_seeds), however this may be useful
when used with runArraySimulation. To extract use SimExtract(...,
what = 'stored_Random.seeds')

store_warning_seeds logical (default is FALSE); in addition to storing the
.Random.seed states whenever error messages are raised, also store the
.Random.seed states when warnings are raised? This is disabled by de-
fault since warnings are generally less problematic than errors, and because
many more warnings messages may be raised throughout the simulation
(potentially causing RAM related issues when constructing the final sim-
ulation object as any given simulation replicate could generate numerous
warnings, and storing the seeds states could add up quickly).
Set this to TRUE when replicating warning messages is important, however
be aware that too many warnings messages raised during the simulation
implementation could cause RAM related issues.

include_replication_index or include_reps logical (default is FALSE); should
a REPLICATION element be added to the condition object when per-
forming the simulation to track which specific replication experiment is
being evaluated? This is useful when, for instance, attempting to run exter-
nal software programs (e.g., Mplus) that require saving temporary data sets
to the hard-drive (see the Wiki for examples)

try_all_analyse logical; when analyse is a list, should every generated data
set be analyzed by each function definition in the analyse list? Default is
TRUE.
Note that this TRUE default can be computationally demanding when some
analysis functions require more computational resources than others, and
the data should be discarded early as an invalid candidate (e.g., estimat-
ing a model via maximum-likelihood in on analyze component, while es-
timating a model using MCMC estimation on another). Hence, the main
benefit of using FALSE instead is that the data set may be rejected earlier,
where easier/faster to estimate analyse definitions should be placed ear-
lier in the list as the functions are evaluated in sequence (e.g., Analyse =
list(MLE=MLE_definition, MCMC=MCMC_definition))

allow_na logical (default is FALSE); should NAs be allowed in the analyse step
as a valid result from the simulation analysis?

runSimulation 95

allow_nan logical (default is FALSE); should NaNs be allowed in the analyse
step as a valid result from the simulation analysis?

type default type of cluster to create for the cl object if not supplied. For Win-
dows OS this defaults to "PSOCK", otherwise "SOCK" is selected (suitable
for Linux and Mac OSX). This is ignored if the user specifies their own cl
object

print_RAM logical (default is TRUE); print the amount of RAM used throughout
the simulation? Set to FALSE if unnecessary or if the call to gc is unneces-
sarily time consuming

max_time Similar to runArraySimulation, specifies the (approximate) maxi-
mum time that the simulation is allowed to be executed. However, unlike
the implementation in runArraySimulation is evaluated on a per condi-
tion basis, where max_time is only evaluated after every row in the design
object has been completed (hence, is notably more approximate as it has
the potential to overshoot by a wider margin). Default sets no time limit.
See timeFormater for the input specifications.

max_RAM Similar to runArraySimulation, specifies the (approximate) maxi-
mum RAM that the simulation is allowed to occupy. However, unlike the
implementation in runArraySimulation is evaluated on a per condition
basis, where max_RAM is only evaluated after every row in the design ob-
ject has been completed (hence, is notably more approximate as it has the
potential to overshoot by a wider margin). Default sets no RAM limit. See
runArraySimulation for the input specifications.

progress logical; display a progress bar (using the pbapply package) for each simulation
condition? This is useful when simulations conditions take a long time to run
(see also the notifications argument). Default is TRUE

verbose logical; print messages to the R console? Default is TRUE

object SimDesign object returned from runSimulation

... additional arguments

x SimDesign object returned from runSimulation

list2char logical; for tibble object re-evaluate list elements as character vectors for better
printing of the levels? Note that this does not change the original classes of the
object, just how they are printed. Default is TRUE

Details

For an in-depth tutorial of the package please refer to Chalmers and Adkins (2020; doi:10.20982/
tqmp.16.4.p248). For an earlier didactic presentation of the package refer to Sigal and Chalmers
(2016; doi:10.1080/10691898.2016.1246953). Finally, see the associated wiki on Github (https:
//github.com/philchalmers/SimDesign/wiki) for tutorial material, examples, and applications
of SimDesign to real-world simulation experiments, as well as the various vignette files associated
with the package.

The strategy for organizing the Monte Carlo simulation work-flow is to

1) Define a suitable Design object (a tibble or data.frame) containing fixed conditional informa-
tion about the Monte Carlo simulations. Each row or this design object pertains to a unique

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
https://github.com/philchalmers/SimDesign/wiki
https://github.com/philchalmers/SimDesign/wiki

96 runSimulation

set of simulation to study, while each column the simulation factor under investigation (e.g.,
sample size, distribution types, etc). This is often expedited by using the createDesign func-
tion, and if necessary the argument subset can be used to remove redundant or non-applicable
rows

2) Define the three step functions to generate the data (Generate; see also https://CRAN.R-project.
org/view=Distributions for a list of distributions in R), analyse the generated data by com-
puting the respective parameter estimates, detection rates, etc (Analyse), and finally sum-
marise the results across the total number of replications (Summarise).

3) Pass the design object and three defined R functions to runSimulation, and declare the number
of replications to perform with the replications input. This function will return a suitable
tibble object with the complete simulation results and execution details

4) Analyze the output from runSimulation, possibly using ANOVA techniques (SimAnova) and
generating suitable plots and tables

Expressing the above more succinctly, the functions to be called have the following form, with the
exact functional arguments listed:

Design <- createDesign(...)

Generate <- function(condition, fixed_objects) {...}

Analyse <- function(condition, dat, fixed_objects) {...}

Summarise <- function(condition, results, fixed_objects) {...}

res <- runSimulation(design=Design, replications, generate=Generate, analyse=Analyse, summarise=Summarise)

The condition object above represents a single row from the design object, indicating a unique
Monte Carlo simulation condition. The condition object also contains two additional elements
to help track the simulation’s state: an ID variable, indicating the respective row number in the
design object, and a REPLICATION element indicating the replication iteration number (an integer
value between 1 and replication). This setup allows users to easily locate the rth replication (e.g.,
REPLICATION == 500) within the jth row in the simulation design (e.g., ID == 2). The REPLICATION
input is also useful when temporarily saving files to the hard-drive when calling external command
line utilities (see examples on the wiki).

For a template-based version of the work-flow, which is often useful when initially defining a sim-
ulation, use the SimFunctions function. This function will write a template simulation to one/two
files so that modifying the required functions and objects can begin immediately. This means that
users can focus on their Monte Carlo simulation details right away rather than worrying about the
repetitive administrative code-work required to organize the simulation’s execution flow.

Finally, examples, presentation files, and tutorials can be found on the package wiki located at
https://github.com/philchalmers/SimDesign/wiki.

Value

a tibble from the dplyr package (also of class 'SimDesign') with the original design conditions
in the left-most columns, simulation results in the middle columns, and additional information in
the right-most columns (see below).

The right-most column information for each condition are: REPLICATIONS to indicate the number
of Monte Carlo replications, SIM_TIME to indicate how long (in seconds) it took to complete all

https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/view=Distributions
https://github.com/philchalmers/SimDesign/wiki

runSimulation 97

the Monte Carlo replications for each respective design condition, RAM_USED amount of RAM that
was in use at the time of completing each simulation condition, COMPLETED to indicate the date in
which the given simulation condition completed, SEED for the integer values in the seed argument
(if applicable; not relevant when L’Ecuyer-CMRG method used), and, if applicable, ERRORS and
WARNINGS which contain counts for the number of error or warning messages that were caught (if
no errors/warnings were observed these columns will be omitted). Note that to extract the specific
error and warnings messages see SimExtract. Finally, if boot_method was a valid input other than
’none’ then the final right-most columns will contain the labels BOOT_ followed by the name of the
associated meta-statistic defined in summarise() and and bootstrapped confidence interval location
for the meta-statistics.

Saving data, results, seeds, and the simulation state

To conserve RAM, temporary objects (such as data generated across conditions and replications)
are discarded; however, these can be saved to the hard-disk by passing the appropriate flags. For
longer simulations it is recommended to use the save_results flag to write the analysis results to
the hard-drive.

The use of the store_seeds or the save_seeds options can be evoked to save R’s .Random.seed
state to allow for complete reproducibility of each replication within each condition. These indi-
vidual .Random.seed terms can then be read in with the load_seed input to reproduce the exact
simulation state at any given replication. Most often though, saving the complete list of seeds is
unnecessary as problematic seeds are automatically stored in the final simulation object to allow
for easier replicability of potentially problematic errors (which incidentally can be extracted using
SimExtract(res, 'error_seeds') and passed to the load_seed argument). Finally, providing
a vector of seeds is also possible to ensure that each simulation condition is macro reproducible
under the single/multi-core method selected.

Finally, when the Monte Carlo simulation is complete it is recommended to write the results to a
hard-drive for safe keeping, particularly with the filename argument provided (for reasons that
are more obvious in the parallel computation descriptions below). Using the filename argument
supplied is safer than using, for instance, saveRDS directly because files will never accidentally
be overwritten, and instead a new file name will be created when a conflict arises; this type of
implementation safety is prevalent in many locations in the package to help avoid unrecoverable
(yet surprisingly common) mistakes during the process of designing and executing Monte Carlo
simulations.

Resuming temporary results

In the event of a computer crash, power outage, etc, if save = TRUE was used (the default) then the
original code used to execute runSimulation() need only be re-run to resume the simulation. The
saved temp file will be read into the function automatically, and the simulation will continue one the
condition where it left off before the simulation state was terminated. If users wish to remove this
temporary simulation state entirely so as to start anew then simply pass SimClean(temp = TRUE) in
the R console to remove any previously saved temporary objects.

A note on parallel computing

When running simulations in parallel (either with parallel = TRUE or when using the future ap-
proach with a plan() other than sequential) R objects defined in the global environment will gener-
ally not be visible across nodes. Hence, you may see errors such as Error: object 'something'

98 runSimulation

not found if you try to use an object that is defined in the work space but is not passed to runSimulation.
To avoid this type or error, simply pass additional objects to the fixed_objects input (usually it’s
convenient to supply a named list of these objects). Fortunately, however, custom functions defined
in the global environment are exported across nodes automatically. This makes it convenient when
writing code because custom functions will always be available across nodes if they are visible in
the R work space. As well, note the packages input to declare packages which must be loaded via
library() in order to make specific non-standard R functions available across nodes.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

SimFunctions, createDesign, Generate, Analyse, Summarise, SimExtract, reSummarise, SimClean,
SimAnova, SimResults, SimCollect, Attach, AnalyseIf, SimShiny, manageWarnings, runArraySimulation

Examples

#---
Example 1: Sampling distribution of mean

This example demonstrate some of the simpler uses of SimDesign,
particularly for classroom settings. The only factor varied in this simulation
is sample size.

skeleton functions to be saved and edited
SimFunctions()

Step 1 --- Define your conditions under study and create design data.frame

Design <- createDesign(N = c(10, 20, 30))

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 2 --- Define generate, analyse, and summarise functions

help(Generate)
Generate <- function(condition, fixed_objects) {

dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat

}

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

runSimulation 99

help(Analyse)
Analyse <- function(condition, dat, fixed_objects) {

ret <- c(mean=mean(dat)) # mean of the sample data vector
ret

}

help(Summarise)
Summarise <- function(condition, results, fixed_objects) {

mean and SD summary of the sample means
ret <- c(mu=mean(results$mean), SE=sd(results$mean))
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 3 --- Collect results by looping over the rows in design

run the simulation in testing mode (replications = 2)
Final <- runSimulation(design=Design, replications=2,

generate=Generate, analyse=Analyse, summarise=Summarise)
Final
SimResults(Final)

reproduce exact simulation
Final_rep <- runSimulation(design=Design, replications=2, seed=Final$SEED,

generate=Generate, analyse=Analyse, summarise=Summarise)
Final_rep
SimResults(Final_rep)

Not run:
run with more standard number of replications
Final <- runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse, summarise=Summarise)
Final
SimResults(Final)

#~~~~~~~~~~~~~~~~~~~~~~~~
Extras
compare SEs estimates to the true SEs from the formula sigma/sqrt(N)
5 / sqrt(Design$N)

To store the results from the analyse function either
a) omit a definition of summarise() to return all results,
b) use store_results = TRUE (default) to store results internally and later
extract with SimResults(), or
c) pass save_results = TRUE to runSimulation() and read the results in with SimResults()
#
Note that method c) should be adopted for larger simulations, particularly
if RAM storage could be an issue and error/warning message information is important.

a) approach
res <- runSimulation(design=Design, replications=100,

generate=Generate, analyse=Analyse)

100 runSimulation

res

b) approach (store_results = TRUE by default)
res <- runSimulation(design=Design, replications=100,

generate=Generate, analyse=Analyse, summarise=Summarise)
res
SimResults(res)

c) approach
Final <- runSimulation(design=Design, replications=100, save_results=TRUE,

generate=Generate, analyse=Analyse, summarise=Summarise)

read-in all conditions (can be memory heavy)
res <- SimResults(Final)
res
head(res[[1]]$results)

just first condition
res <- SimResults(Final, which=1)
head(res$results)
dplyr::tibble(res$condition, res$results)

obtain empirical bootstrapped CIs during an initial run
the simulation was completed (necessarily requires save_results = TRUE)
res <- runSimulation(design=Design, replications=1000, boot_method = 'basic',

generate=Generate, analyse=Analyse, summarise=Summarise)
res

alternative bootstrapped CIs that uses saved results via reSummarise().
Default directory save to:
dirname <- paste0('SimDesign-results_', unname(Sys.info()['nodename']), "/")
res <- reSummarise(summarise=Summarise, dir=dirname, boot_method = 'basic')
res

remove the saved results from the hard-drive if you no longer want them
SimClean(results = TRUE)

End(Not run)

#---
Example 2: t-test and Welch test when varying sample size, group sizes, and SDs

skeleton functions to be saved and edited
SimFunctions()

Not run:
in real-world simulations it's often better/easier to save
these functions directly to your hard-drive with
SimFunctions('my-simulation')

runSimulation 101

End(Not run)

Step 1 --- Define your conditions under study and create design data.frame

Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))

Design

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 2 --- Define generate, analyse, and summarise functions

Generate <- function(condition, fixed_objects) {
N <- condition$sample_size # could use Attach() to make objects available
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){

N2 <- N / (1/grs + 1)
N1 <- N - N2

} else {
N1 <- N / (grs + 1)
N2 <- N - N1

}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects) {
welch <- t.test(DV ~ group, dat)$p.value
independent <- t.test(DV ~ group, dat, var.equal=TRUE)$p.value

In this function the p values for the t-tests are returned,
and make sure to name each element, for future reference
ret <- nc(welch, independent)
ret

}

Summarise <- function(condition, results, fixed_objects) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 3 --- Collect results by looping over the rows in design

first, test to see if it works
res <- runSimulation(design=Design, replications=2,

generate=Generate, analyse=Analyse, summarise=Summarise)
res

102 runSimulation

Not run:
complete run with 1000 replications per condition
res <- runSimulation(design=Design, replications=1000, parallel=TRUE,

generate=Generate, analyse=Analyse, summarise=Summarise)
res
View(res)

save final results to a file upon completion, and play a beep when done
runSimulation(design=Design, replications=1000, parallel=TRUE, filename = 'mysim',

generate=Generate, analyse=Analyse, summarise=Summarise, beep=TRUE)

same as above, but send a notification via Pushbullet upon completion
library(RPushbullet) # read-in default JSON file
runSimulation(design=Design, replications=1000, parallel=TRUE, filename = 'mysim',

generate=Generate, analyse=Analyse, summarise=Summarise,
notification = 'complete')

Submit as RStudio job (requires job package and active RStudio session)
job::job({

res <- runSimulation(design=Design, replications=100,
generate=Generate, analyse=Analyse, summarise=Summarise)

}, title='t-test simulation')
res # object res returned to console when completed

Debug the generate function. See ?browser for help on debugging
Type help to see available commands (e.g., n, c, where, ...),
ls() to see what has been defined, and type Q to quit the debugger
runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse, summarise=Summarise,
parallel=TRUE, debug='generate')

Alternatively, place a browser() within the desired function line to
jump to a specific location
Summarise <- function(condition, results, fixed_objects) {

#find results of interest here (e.g., alpha < .1, .05, .01)
browser()
ret <- EDR(results[,nms], alpha = .05)
ret

}

The following debugs the analyse function for the
second row of the Design input
runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse, summarise=Summarise,
parallel=TRUE, debug='analyse-2')

####################################
EXTRA: To run the simulation on a user-define cluster, use the following setup (not run)
Network linked via ssh (two way ssh key-paired connection must be
possible between master and slave nodes)
##

runSimulation 103

Define IP addresses, including primary IP
primary <- '192.168.2.20'
IPs <- list(

list(host=primary, user='phil', ncore=8),
list(host='192.168.2.17', user='phil', ncore=8)

)
spec <- lapply(IPs, function(IP)

rep(list(list(host=IP$host, user=IP$user)), IP$ncore))
spec <- unlist(spec, recursive=FALSE)

cl <- parallel::makeCluster(type='PSOCK', master=primary, spec=spec)
res <- runSimulation(design=Design, replications=1000, parallel = TRUE,

generate=Generate, analyse=Analyse, summarise=Summarise, cl=cl)

Using parallel='future' to allow the future framework to be used instead
library(future) # future structure to be used internally
plan(multisession) # specify different plan (default is sequential)

res <- runSimulation(design=Design, replications=100, parallel='future',
generate=Generate, analyse=Analyse, summarise=Summarise)

head(res)

The progressr package is used for progress reporting with futures. To redefine
use progressr::handlers() (see below)
library(progressr)
with_progress(res <- runSimulation(design=Design, replications=100, parallel='future',

generate=Generate, analyse=Analyse, summarise=Summarise))
head(res)

re-define progressr's bar (below requires cli)
handlers(handler_pbcol(

adjust = 1.0,
complete = function(s) cli::bg_red(cli::col_black(s)),
incomplete = function(s) cli::bg_cyan(cli::col_black(s))

))

with_progress(res <- runSimulation(design=Design, replications=100, parallel='future',
generate=Generate, analyse=Analyse, summarise=Summarise))

reset future computing plan when complete (good practice)
plan(sequential)

####################################

Post-analysis: Analyze the results via functions like lm() or SimAnova(), and create
tables(dplyr) or plots (ggplot2) to help visualize the results.
This is where you get to be a data analyst!

library(dplyr)
res %>% summarise(mean(welch), mean(independent))
res %>% group_by(standard_deviation_ratio, group_size_ratio) %>%

summarise(mean(welch), mean(independent))

104 rValeMaurelli

quick ANOVA analysis method with all two-way interactions
SimAnova(~ (sample_size + group_size_ratio + standard_deviation_ratio)^2, res,

rates = TRUE)

or more specific ANOVAs
SimAnova(independent ~ (group_size_ratio + standard_deviation_ratio)^2,

res, rates = TRUE)

make some plots
library(ggplot2)
library(tidyr)
dd <- res %>%

select(group_size_ratio, standard_deviation_ratio, welch, independent) %>%
pivot_longer(cols=c('welch', 'independent'), names_to = 'stats')

dd

ggplot(dd, aes(factor(group_size_ratio), value)) + geom_boxplot() +
geom_abline(intercept=0.05, slope=0, col = 'red') +
geom_abline(intercept=0.075, slope=0, col = 'red', linetype='dotted') +
geom_abline(intercept=0.025, slope=0, col = 'red', linetype='dotted') +
facet_wrap(~stats)

ggplot(dd, aes(factor(group_size_ratio), value, fill = factor(standard_deviation_ratio))) +
geom_boxplot() + geom_abline(intercept=0.05, slope=0, col = 'red') +
geom_abline(intercept=0.075, slope=0, col = 'red', linetype='dotted') +
geom_abline(intercept=0.025, slope=0, col = 'red', linetype='dotted') +
facet_grid(stats~standard_deviation_ratio) +
theme(legend.position = 'none')

End(Not run)

rValeMaurelli Generate non-normal data with Vale & Maurelli’s (1983) method

Description

Generate multivariate non-normal distributions using the third-order polynomial method described
by Vale & Maurelli (1983). If only a single variable is generated then this function is equivalent to
the method described by Fleishman (1978).

Usage

rValeMaurelli(
n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
skew = rep(0, nrow(sigma)),

rValeMaurelli 105

kurt = rep(0, nrow(sigma))
)

Arguments

n number of samples to draw

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

skew a vector of k elements for the skewness of the variables

kurt a vector of k elements for the kurtosis of the variables

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43,
521-532.

Vale, C. & Maurelli, V. (1983). Simulating multivariate nonnormal distributions. Psychometrika,
48(3), 465-471.

Examples

set.seed(1)

univariate with skew
nonnormal <- rValeMaurelli(10000, mean=10, sigma=5, skew=1, kurt=3)
psych::describe(nonnormal)

multivariate with skew and kurtosis
n <- 10000
r12 <- .4
r13 <- .9
r23 <- .1
cor <- matrix(c(1,r12,r13,r12,1,r23,r13,r23,1),3,3)
sk <- c(1.5,1.5,0.5)
ku <- c(3.75,3.5,0.5)

nonnormal <- rValeMaurelli(n, sigma=cor, skew=sk, kurt=ku)
cor(nonnormal)
psych::describe(nonnormal)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

106 Serlin2000

Serlin2000 Empirical detection robustness method suggested by Serlin (2000)

Description

Hypothesis test to determine whether an observed empirical detection rate, coupled with a given
robustness interval, statistically differs from the population value. Uses the methods described
by Serlin (2000) as well to generate critical values (similar to confidence intervals, but define a
fixed window of robustness). Critical values may be computed without performing the simulation
experiment (hence, can be obtained a priori).

Usage

Serlin2000(p, alpha, delta, R, CI = 0.95)

Arguments

p (optional) a vector containing the empirical detection rate(s) to be tested. Omit-
ting this input will compute only the CV1 and CV2 values, while including this
input will perform a one-sided hypothesis test for robustness

alpha Type I error rate (e.g., often set to .05)

delta (optional) symmetric robustness interval around alpha (e.g., a value of .01 when
alpha = .05 would test the robustness window .04-.06)

R number of replications used in the simulation

CI confidence interval for alpha as a proportion. Default of 0.95 indicates a 95%
interval

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Serlin, R. C. (2000). Testing for Robustness in Monte Carlo Studies. Psychological Methods, 5,
230-240.

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

SFA 107

Examples

Cochran's criteria at alpha = .05 (i.e., 0.5 +- .01), assuming N = 2000
Serlin2000(p = .051, alpha = .05, delta = .01, R = 2000)

Bradley's liberal criteria given p = .06 and .076, assuming N = 1000
Serlin2000(p = .060, alpha = .05, delta = .025, R = 1000)
Serlin2000(p = .076, alpha = .05, delta = .025, R = 1000)

multiple p-values
Serlin2000(p = c(.05, .06, .07), alpha = .05, delta = .025, R = 1000)

CV values computed before simulation performed
Serlin2000(alpha = .05, R = 2500)

SFA Surrogate Function Approximation via the Generalized Linear Model

Description

Given a simulation that was executed with runSimulation, potentially with the argument store_results
= TRUE to store the unsummarised analysis results, fit a surrogate function approximation (SFA)
model to the results and (optionally) perform a root-solving step to solve a target quantity. See
Schoemann et al. (2014) for details.

Usage

SFA(
results,
formula,
family = "binomial",
b = NULL,
design = NULL,
CI = 0.95,
interval = NULL,
...

)

S3 method for class 'SFA'
print(x, ...)

Arguments

results data returned from runSimulation. This can be the original results object or
the extracted results stored when using store_results = TRUE included to store
the analysis results.

formula formula to specify for the regression model

108 SFA

family character vector indicating the family of GLMs to use (see family)

b (optional) Target quantity to use for root solving given the fitted surrogate func-
tion (e.g., find sample size associated with SFA implied power of .80)

design (optional) data.frame object containing all the information relevant for the sur-
rogate model (passed to newdata in predict) with an NA value in the variable
to be solved

CI advertised confidence interval of SFA prediction around solved target

interval interval to be passed to uniroot if not specified then the lowest and highest
values from results for the respective variable will be used

... additional arguments to pass to glm

x an object of class SFA

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Schoemann, A. M., Miller, P., Pornprasertmanit, S., and Wu, W. (2014). Using Monte Carlo simu-
lations to determine power and sample size for planned missing designs. International Journal of
Behavioral Development, SAGE Publications, 38, 471-479.

See Also

runSimulation, SimSolve

Examples

Not run:

create long Design object to fit surrogate over
Design <- createDesign(N = 100:500,

d = .2)
Design

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 2 --- Define generate, analyse, and summarise functions

Generate <- function(condition, fixed_objects) {
Attach(condition)
group1 <- rnorm(N)
group2 <- rnorm(N, mean=d)
dat <- data.frame(group = gl(2, N, labels=c('G1', 'G2')),

DV = c(group1, group2))
dat

}

https://doi.org/10.20982/tqmp.16.4.p248

SFA 109

Analyse <- function(condition, dat, fixed_objects) {
p <- c(p = t.test(DV ~ group, dat, var.equal=TRUE)$p.value)
p

}

Summarise <- function(condition, results, fixed_objects) {
ret <- EDR(results, alpha = .05)
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 3 --- Estimate power over N

Use small number of replications given range of sample sizes
note that due to the lower replications disabling the
RAM printing will help reduce overhead

sim <- runSimulation(design=Design, replications=10,
generate=Generate, analyse=Analyse,
summarise=Summarise, store_results=TRUE, save=FALSE,
progress=FALSE, control=list(print_RAM=FALSE))

sim

total of 4010 replication
sum(sim$REPLICATIONS)

use the unsummarised results for the SFA, and include p.values < alpha
sim_results <- SimResults(sim)
sim_results <- within(sim_results, sig <- p < .05)
sim_results

fitted model
sfa <- SFA(sim_results, formula = sig ~ N)
sfa
summary(sfa)

plot the observed and SFA expected values
plot(p ~ N, sim, las=1, pch=16, main='Rejection rates with R=10')
pred <- predict(sfa, type = 'response')
lines(sim_results$N, pred, col='red', lty=2)

fitted model + root-solved solution given f(.) = b,
where b = target power of .8
design <- data.frame(N=NA, d=.2)
sfa.root <- SFA(sim_results, formula = sig ~ N,

b=.8, design=design)
sfa.root

true root
pwr::pwr.t.test(power=.8, d=.2)

110 SFA

################
example with smaller range but higher precision
Design <- createDesign(N = 375:425,

d = .2)
Design

sim2 <- runSimulation(design=Design, replications=100,
generate=Generate, analyse=Analyse,
summarise=Summarise, store_results=TRUE, save=FALSE,
progress=FALSE, control=list(print_RAM=FALSE))

sim2
sum(sim2$REPLICATIONS) # more replications in total

use the unsummarised results for the SFA, and include p.values < alpha
sim_results <- SimResults(sim2)
sim_results <- within(sim_results, sig <- p < .05)
sim_results

fitted model
sfa <- SFA(sim_results, formula = sig ~ N)
sfa
summary(sfa)

plot the observed and SFA expected values
plot(p ~ N, sim2, las=1, pch=16, main='Rejection rates with R=100')
pred <- predict(sfa, type = 'response')
lines(sim_results$N, pred, col='red', lty=2)

fitted model + root-solved solution given f(.) = b,
where b = target power of .8
design <- data.frame(N=NA, d=.2)
sfa.root <- SFA(sim_results, formula = sig ~ N,

b=.8, design=design, interval=c(100, 500))
sfa.root

true root
pwr::pwr.t.test(power=.8, d=.2)

###################
vary multiple parameters (e.g., sample size + effect size) to fit
multi-parameter surrogate

Design <- createDesign(N = seq(from=10, to=500, by=10),
d = seq(from=.1, to=.5, by=.1))

Design

sim3 <- runSimulation(design=Design, replications=50,
generate=Generate, analyse=Analyse,
summarise=Summarise, store_results=TRUE, save=FALSE,
progress=FALSE, control=list(print_RAM=FALSE))

sim3
sum(sim3$REPLICATIONS)

SimAnova 111

use the unsummarised results for the SFA, and include p.values < alpha
sim_results <- SimResults(sim3)
sim_results <- within(sim_results, sig <- p < .05)
sim_results

additive effects (logit(sig) ~ N + d)
sfa0 <- SFA(sim_results, formula = sig ~ N+d)
sfa0

multiplicative effects (logit(sig) ~ N + d + N:d)
sfa <- SFA(sim_results, formula = sig ~ N*d)
sfa

multiplicative better fit (sample size interacts with effect size)
anova(sfa0, sfa, test = "LRT")
summary(sfa)

plot the observed and SFA expected values
library(ggplot2)
sim3$pred <- predict(sfa, type = 'response', newdata=sim3)
ggplot(sim3, aes(N, p, color = factor(d))) +

geom_point() + geom_line(aes(y=pred)) +
facet_wrap(~factor(d))

fitted model + root-solved solution given f(.) = b,
where b = target power of .8
design <- data.frame(N=NA, d=.2)
sfa.root <- SFA(sim_results, formula = sig ~ N * d,

b=.8, design=design, interval=c(100, 500))
sfa.root

true root
pwr::pwr.t.test(power=.8, d=.2)

root prediction where d *not* used in original data
design <- data.frame(N=NA, d=.25)
sfa.root <- SFA(sim_results, formula = sig ~ N * d,

b=.8, design=design, interval=c(100, 500))
sfa.root

true root
pwr::pwr.t.test(power=.8, d=.25)

End(Not run)

SimAnova Function for decomposing the simulation into ANOVA-based effect
sizes

112 SimAnova

Description

Given the results from a simulation with runSimulation form an ANOVA table (without p-values)
with effect sizes based on the eta-squared statistic. These results provide approximate indications
of observable simulation effects, therefore these ANOVA-based results are generally useful as ex-
ploratory rather than inferential tools.

Usage

SimAnova(formula, dat, subset = NULL, rates = TRUE)

Arguments

formula an R formula generally of a form suitable for lm or aov. However, if the de-
pendent variable (left size of the equation) is omitted then all the dependent
variables in the simulation will be used and the result will return a list of analy-
ses

dat an object returned from runSimulation of class 'SimDesign'
subset an optional argument to be passed to subset with the same name. Used to subset

the results object while preserving the associated attributes
rates logical; does the dependent variable consist of rates (e.g., returned from ECR or

EDR)? Default is TRUE, which will use the logit of the DV to help stabilize the
proportion-based summary statistics when computing the parameters and effect
sizes

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

data(BF_sim)

all results (not usually good to mix Power and Type I results together)
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim)

only use anova for Type I error conditions
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim, subset = var_ratio == 1)

run all DVs at once using the same formula
SimAnova(~ groups_equal * distribution, BF_sim, subset = var_ratio == 1)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

SimCheck 113

SimCheck Check for missing files in array simulations

Description

Given the saved files from a runArraySimulation remote evaluation check whether all .rds files
have been saved. If missing the missing row condition numbers will be returned.

Usage

SimCheck(dir = NULL, files = NULL, min = 1L, max = NULL)

Arguments

dir character vector input indicating the directory containing the .rds files (see
files)

files vector of file names referring to the saved simulation files. E.g. c('mysim-1.rds',
'mysim-2.rds', ...)

min minimum number after the '-' deliminator. Default is 1

max maximum number after the '-' deliminator. If not specified is extracted from
the attributes in the first file

Value

returns an invisible TRUE if all the files are present and FALSE otherwise

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

See Also

runArraySimulation, SimCollect

Examples

Not run:

if files are in mysimfiles/ directory
SimCheck('mysimfiles')

specifying files explicility

https://doi.org/10.20982/tqmp.16.4.p248

114 SimClean

setwd('mysimfiles/')
SimCheck(files=dir())

End(Not run)

SimClean Removes/cleans files and folders that have been saved

Description

This function is mainly used in pilot studies where results and datasets have been temporarily saved
by runSimulation but should be removed before beginning the full Monte Carlo simulation (e.g.,
remove files and folders which contained bugs/biased results).

Usage

SimClean(
...,
dirs = NULL,
temp = TRUE,
results = FALSE,
seeds = FALSE,
save_details = list()

)

Arguments

... one or more character objects indicating which files to remove. Used to re-
move .rds files which were saved with saveRDS or when using the save and
filename inputs to runSimulation

dirs a character vector indicating which directories to remove

temp logical; remove the temporary file saved when passing save = TRUE?

results logical; remove the .rds results files saved when passing save_results = TRUE?

seeds logical; remove the seed files saved when passing save_seeds = TRUE?

save_details a list pertaining to information about how and where files were saved (see the
corresponding list in runSimulation)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

SimCollect 115

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

Not run:

remove file called 'results.rds'
SimClean('results.rds')

remove default temp file
SimClean()

remove customized saved-results directory called 'mydir'
SimClean(results = TRUE, save_details = list(save_results_dirname = 'mydir'))

End(Not run)

SimCollect Collapse separate simulation files into a single result

Description

This function collects and aggregates the results from SimDesign’s runSimulation into a single
objects suitable for post-analyses, or combines all the saved results directories and combines them
into one. This is useful when results are run piece-wise on one node (e.g., 500 replications in one
batch, 500 again at a later date, though be careful about the set.seed use as the random numbers
will tend to correlate the more it is used) or run independently across different nodes/computing
cores (e.g., see runArraySimulation.

Usage

SimCollect(
dir = NULL,
files = NULL,
filename = NULL,
select = NULL,
check.only = FALSE,
target.reps = NULL,

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

116 SimCollect

warning_details = FALSE,
error_details = TRUE

)

aggregate_simulations(...)

Arguments

dir a character vector pointing to the directory name containing the .rds files.
All .rds files in this directory will be used after first checking their status with
SimCheck. For greater specificity use the files argument

files a character vector containing the names of the simulation’s final .rds files.
filename (optional) name of .rds file to save aggregate simulation file to. If not specified

then the results will only be returned in the R console.
select a character vector indicating columns to variables to select from the SimExtract(what='results')

information. This is mainly useful when RAM is an issue given simulations
with many stored estimates. Default includes the results objects in their entirety,
though to omit all internally stored simulation results pass the character 'NONE'

check.only logical; for larger simulations file sets, such as those generated by runArraySimulation,
return the design conditions that do no satisfy the target.reps and throw warn-
ing if files are unexpectedly missing

target.reps (optional) number of replications to check against to evaluate whether the sim-
ulation files returned the desired number of replications. If missing, the highest
detected value from the collected set of replication information will be used

warning_details

logical; include the aggregate of the warnings to be extracted via SimExtract?
error_details logical; include the aggregate of the errors to be extracted via SimExtract?
... not used

Value

returns a data.frame/tibble with the (weighted) average/aggregate of the simulation results

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation, runArraySimulation, SimCheck

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

SimCollect 117

Examples

Not run:

setwd('my_working_directory')

run simulations to save the .rds files (or move them to the working directory)
seeds1 <- genSeeds(design)
seeds2 <- genSeeds(design, old.seeds=seeds1)
ret1 <- runSimulation(design, ..., seed=seeds1, filename='file1')
ret2 <- runSimulation(design, ..., seed=seeds2, filename='file2')

saves to the hard-drive and stores in workspace
final <- SimCollect(files = c('file1.rds', 'file2.rds'))
final

If filename not included, can be extracted from results
files <- c(SimExtract(ret1, 'filename'), SimExtract(ret2, 'filename'))
final <- SimCollect(files = files)

###
Example where each row condition is repeated, evaluated independently,
and later collapsed into a single analysis object

Each condition repeated four times (hence, replications
should be set to desired.reps/4)
Design <- createDesign(mu = c(0,5),

N = c(30, 60))
Design

assume the N=60 takes longer, and should be spread out across more arrays
Design_long <- expandDesign(Design, c(2,2,4,4))
Design_long

replications <- c(rep(50, 4), rep(25,8))
data.frame(Design_long, replications)

#---

Generate <- function(condition, fixed_objects) {
dat <- with(condition, rnorm(N, mean=mu))
dat

}

Analyse <- function(condition, dat, fixed_objects) {
ret <- c(mean=mean(dat), SD=sd(dat))
ret

}

Summarise <- function(condition, results, fixed_objects) {
ret <- colMeans(results)
ret

118 SimDesign

}

#---

create directory to store all final simulation files
dir.create('sim_files/')

iseed <- genSeeds()

distribute jobs independently
sapply(1:nrow(Design_long), \(i) {

runArraySimulation(design=Design_long, replications=replications,
generate=Generate, analyse=Analyse, summarise=Summarise,
arrayID=i, dirname='sim_files/', filename='job', iseed=iseed)

}) |> invisible()

check that all replications satisfy target
SimCollect('sim_files/', check.only = TRUE)

this would have been returned were the target.rep supposed to be 1000
SimCollect('sim_files/', check.only = TRUE, target.reps=1000)

aggregate into single object
sim <- SimCollect('sim_files/')
sim

SimClean(dir='sim_files/')

End(Not run)

SimDesign Structure for Organizing Monte Carlo Simulation Designs

Description

Structure for Organizing Monte Carlo Simulation Designs

Details

Provides tools to help organize Monte Carlo simulations in R. The package controls the struc-
ture and back-end of Monte Carlo simulations by utilizing a general generate-analyse-summarise
strategy. The functions provided control common simulation issues such as re-simulating non-
convergent results, support parallel back-end computations with proper random number generation
within each simulation condition, save and restore temporary files, aggregate results across inde-
pendent nodes, and provide native support for debugging. The primary function for organizing the
simulations is runSimulation, while for array jobs submitting to HPC clusters (e.g., SLURM) see
runArraySimulation and the associated package vignettes.

For an in-depth tutorial of the package please refer to Chalmers and Adkins (2020; doi:10.20982/
tqmp.16.4.p248). For an earlier didactic presentation of the package users can refer to Sigal and

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.20982/tqmp.16.4.p248

SimExtract 119

Chalmers (2016; doi:10.1080/10691898.2016.1246953). Finally, see the associated wiki on Github
(https://github.com/philchalmers/SimDesign/wiki) for other tutorial material, examples,
and applications of SimDesign to real-world simulations.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

SimExtract Function to extract extra information from SimDesign objects

Description

Function used to extract any error or warnings messages, the seeds associated with any error or
warning messages, and any analysis results that were stored in the final simulation object.

Usage

SimExtract(object, what, fuzzy = TRUE, append = TRUE)

Arguments

object object returned from runSimulation

what character indicating what information to extract. Possible inputs include 'errors'
to return a tibble object containing counts of any error messages, 'warnings'
to return a data.frame object containing counts of any warning messages,
'seeds' for the specified random number generation seeds, 'Random.seeds'
for the complete list of .Random.seed states across replications (only stored
when runSimulation(..., control = list(store_Random.seeds=TRUE))),
'error_seeds' and 'warning_seeds' to extract the associated .Random.seed
values associated with the ERROR/WARNING messages, 'results' to extract
the simulation results if the option store_results was passed to runSimulation,
'filename' and 'save_results_dirname' for extracting the saved file/directory
name information (if used), and 'summarise' if the Summarise definition re-
turned a named list rather than a named numeric vector.
Note that 'warning_seeds' are not stored automatically in simulations and re-
quire passing store_warning_seeds = TRUE to runSimulation.

https://doi.org/10.1080/10691898.2016.1246953
https://github.com/philchalmers/SimDesign/wiki
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

120 SimExtract

fuzzy logical; use fuzzy string matching to reduce effectively identical messages? For
example, when attempting to invert a matrix the error message "System is com-
putationally singular: reciprocal condition number = 1.92747e-17" and "Sys-
tem is computationally singular: reciprocal condition number = 2.15321e-16"
are effectively the same, and likely should be reported in the same columns of
the extracted output

append logical; append the design conditions when extracting error/warning messages?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Not run:

Generate <- function(condition, fixed_objects) {
int <- sample(1:10, 1)
if(int > 5) warning('GENERATE WARNING: int greater than 5')
if(int == 1) stop('GENERATE ERROR: integer is 1')
rnorm(5)

}

Analyse <- function(condition, dat, fixed_objects) {
int <- sample(1:10, 1)
if(int > 5) warning('ANALYSE WARNING: int greater than 5')
if(int == 1) stop('ANALYSE ERROR: int is 1')
c(ret = 1)

}

Summarise <- function(condition, results, fixed_objects) {
mean(results)

}

res <- runSimulation(replications = 100, seed=1234, verbose=FALSE,
generate=Generate, analyse=Analyse, summarise=Summarise)

res

SimExtract(res, what = 'errors')
SimExtract(res, what = 'warnings')
seeds <- SimExtract(res, what = 'error_seeds')
seeds[,1:3]

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

SimFunctions 121

replicate a specific error for debugging (type Q to exit debugger)
res <- runSimulation(replications = 100, load_seed=seeds[,1], debug='analyse',

generate=Generate, analyse=Analyse, summarise=Summarise)

End(Not run)

SimFunctions Template-based generation of the Generate-Analyse-Summarise func-
tions

Description

This function prints template versions of the required Design and Generate-Analyse-Summarise
functions for SimDesign to run simulations. Templated output comes complete with the correct
inputs, class of outputs, and optional comments to help with the initial definitions. Use this at the
start of your Monte Carlo simulation study. Following the definition of the SimDesign template file
please refer to detailed the information in runSimulation for how to edit this template to make a
working simulation study.

Usage

SimFunctions(
filename = NULL,
dir = getwd(),
save_structure = "single",
extra_file = FALSE,
nAnalyses = 1,
nGenerate = 1,
summarise = TRUE,
comments = FALSE,
openFiles = TRUE,
spin_header = TRUE,
SimSolve = FALSE

)

Arguments

filename a character vector indicating whether the output should be saved to two respec-
tive files containing the simulation design and the functional components, re-
spectively. Using this option is generally the recommended approach when be-
ginning to write a Monte Carlo simulation

dir the directory to write the files to. Default is the working directory

122 SimFunctions

save_structure character indicating the number of files to break the simulation code into when
filename is included (default is ’single’ for one file). When save_structure =
'double' the output is saved to two separate files containing the functions and
design definitions, and when save_structure = 'all' the generate, analyse,
summarise, and execution code area all saved into separate files. The purpose for
this structure is because multiple structured files often makes organization and
debugging slightly easier larger Monte Carlo simulations, though in principle all
files could be stored into a single R script

extra_file logical; should and extra file be saved containing user-defined functions or ob-
jects? Default is FALSE

nAnalyses number of analysis functions to create (default is 1). Increasing the value of
this argument when independent analysis are being performed allows function
definitions to be better partitioned and potentially more modular

nGenerate number of generate functions to create (default is 1). Increase the value of this
argument when when the data generation functions are very different and should
be isolated from each other (otherwise, if there is much in common between the
generate steps, the default of 1 should be preferred). Otherwise, if nGenerate
== 0 then no generate function will be provided and instead this data-generation
step can be defined in the analysis function(s) (only recommended for smaller
simulations)

summarise include summarise function? Default is TRUE
comments logical; include helpful comments? Default is FALSE
openFiles logical; after files have been generated, open them in your text editor (e.g., if

Rstudio is running the scripts will open in a new tab)?
spin_header logical; include a basic knitr::spin header to allow the simulation to be knit-

ted? Default is TRUE. For those less familiar with spin documents see https://bookdown.org/yihui/rmarkdown-cookbook/spin.html
for further details

SimSolve logical; should the template be generated that is intended for a SimSolve imple-
mentation? Default is FALSE

Details

The recommended approach to organizing Monte Carlo simulation files is to first save the tem-
plate generated by this function to the hard-drive by passing a suitable filename argument (which,
if users are interacting with R via the RStudio IDE, will also open the template file after it has
been saved). For larger simulations, two separate files could also be used (achieved by changing
out.files), and may be easier for debugging/sourcing the simulation code; however, this is a
matter of preference and does not change any functionality in the package.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

https://doi.org/10.20982/tqmp.16.4.p248

SimResults 123

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

SimFunctions()
SimFunctions(comments = TRUE) #with helpful comments

Not run:

write output files to a single file with comments
SimFunctions('mysim', comments = TRUE)

Multiple analysis functions for optional partitioning
SimFunctions(nAnalyses = 2)
SimFunctions(nAnalyses = 3)

Multiple analysis + generate functions
SimFunctions(nAnalyses = 2, nGenerate=2)

save multiple files for the purpose of designing larger simulations
(also include extra_file for user-defined objects/functions)
SimFunctions('myBigSim', save_structure = 'all',

nAnalyses = 3, nGenerate=2, extra_file = TRUE)

End(Not run)

SimResults Function to read in saved simulation results

Description

If runSimulation was passed the flag save_results = TRUE then the row results corresponding to
the design object will be stored to a suitable sub-directory as individual .rds files. While users
could use readRDS directly to read these files in themselves, this convenience function will read the
desired rows in automatically given the returned object from the simulation. Can be used to read in
1 or more .rds files at once (if more than 1 file is read in then the result will be stored in a list).

Usage

SimResults(obj, which, prefix = "results-row", wd = getwd())

https://doi.org/10.1080/10691898.2016.1246953

124 SimResults

Arguments

obj object returned from runSimulation where save_results = TRUE or store_results
was used. If the former then the remaining function arguments can be useful for
reading in specific files

which a numeric vector indicating which rows should be read in. If missing, all rows
will be read in

prefix character indicating prefix used for stored files

wd working directory; default is found with getwd.

Value

the returned result is either a nested list (when length(which) > 1) or a single list (when length(which)
== 1) containing the simulation results. Each read-in result refers to a list of 4 elements:

condition the associate row (ID) and conditions from the respective design object

results the object with returned from the analyse function, potentially simplified into a matrix
or data.frame

errors a table containing the message and number of errors that caused the generate-analyse steps
to be rerun. These should be inspected carefully as they could indicate validity issues with the
simulation that should be noted

warnings a table containing the message and number of non-fatal warnings which arose from the
analyse step. These should be inspected carefully as they could indicate validity issues with
the simulation that should be noted

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Not run:

store results (default behaviour)
sim <- runSimulation(..., store_results = TRUE)
SimResults(sim)

store results to drive if RAM issues are present
obj <- runSimulation(..., save_results = TRUE)

row 1 results

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

SimShiny 125

row1 <- SimResults(obj, 1)

rows 1:5, stored in a named list
rows_1to5 <- SimResults(obj, 1:5)

all results
rows_all <- SimResults(obj)

End(Not run)

SimShiny Generate a basic Monte Carlo simulation GUI template

Description

This function generates suitable stand-alone code from the shiny package to create simple web-
interfaces for performing single condition Monte Carlo simulations. The template generated is
relatively minimalistic, but allows the user to quickly and easily edit the saved files to customize
the associated shiny elements as they see fit.

Usage

SimShiny(filename = NULL, dir = getwd(), design, ...)

Arguments

filename an optional name of a text file to save the server and UI components (e.g.,
’mysimGUI.R’). If omitted, the code will be printed to the R console instead

dir the directory to write the files to. Default is the working directory

design design object from runSimulation

... arguments to be passed to runSimulation. Note that the design object is not
used directly, and instead provides options to be selected in the GUI

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

126 SimShiny

See Also

runSimulation

Examples

Not run:

Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))

Generate <- function(condition, fixed_objects) {
N <- condition$sample_size
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){

N2 <- N / (1/grs + 1)
N1 <- N - N2

} else {
N1 <- N / (grs + 1)
N2 <- N - N1

}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects) {
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)

In this function the p values for the t-tests are returned,
and make sure to name each element, for future reference
ret <- c(welch = welch$p.value, independent = ind$p.value)
ret

}

Summarise <- function(condition, results, fixed_objects) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret

}

test that it works
Final <- runSimulation(design=Design, replications=5,
generate=Generate, analyse=Analyse, summarise=Summarise)

print code to console
SimShiny(design=Design, generate=Generate, analyse=Analyse,

summarise=Summarise, verbose=FALSE)

SimSolve 127

save shiny code to file
SimShiny('app.R', design=Design, generate=Generate, analyse=Analyse,

summarise=Summarise, verbose=FALSE)

run the application
shiny::runApp()
shiny::runApp(launch.browser = TRUE) # in web-browser

End(Not run)

SimSolve One Dimensional Root (Zero) Finding in Simulation Experiments

Description

This function provides a stochastic root-finding approach to solving specific quantities in simulation
experiments (e.g., solving for a specific sample size to meet a target power rate) using the Probablis-
tic Bisection Algorithm with Bolstering and Interpolations (ProBABLI; Chalmers, accepted). The
structure follows the steps outlined in runSimulation, however portions of the design input are
taken as variables to be estimated rather than fixed, and the constant b is required in order to solve
the root equation f(x) - b = 0. Stochastic root search is terminated based on the successive behav-
ior of the x estimates. For even greater advertised accuracy with ProBABLI, termination criteria
can be based on the width of the advertised predicting interval (via predCI.tol) or by specifying
how long the investigator is willing to wait for the final estimates (via wait.time, where longer
wait times lead to progressively better accuracy in the final estimates).

Usage

SimSolve(
design,
interval,
b,
generate,
analyse,
summarise,
replications = list(burnin.iter = 15L, burnin.reps = 100L, max.reps = 500L,
min.total.reps = 9000L, increase.by = 10L),

integer = TRUE,
formula = y ~ poly(x, 2),
family = "binomial",
parallel = FALSE,
cl = NULL,
save = TRUE,
resume = TRUE,
method = "ProBABLI",
wait.time = NULL,
ncores = parallelly::availableCores(omit = 1L),

128 SimSolve

type = ifelse(.Platform$OS.type == "windows", "PSOCK", "FORK"),
maxiter = 100L,
check.interval = TRUE,
verbose = TRUE,
control = list(),
predCI = 0.95,
predCI.tol = NULL,
...

)

S3 method for class 'SimSolve'
summary(object, tab.only = FALSE, reps.cutoff = 300, ...)

S3 method for class 'SimSolve'
plot(x, y, ...)

Arguments

design a tibble or data.frame object containing the Monte Carlo simulation con-
ditions to be studied, where each row represents a unique condition and each
column a factor to be varied (see also createDesign). However, exactly one
column of this object must be specified with NA placeholders to indicate that the
missing value should be solved via the stochastic optimizer

interval a vector of length two, or matrix with nrow(design) and two columns, contain-
ing the end-points of the interval to be searched. If a vector then the interval will
be used for all rows in the supplied design object

b a single constant used to solve the root equation f(x) - b = 0

generate generate function. See runSimulation

analyse analysis function. See runSimulation

summarise summary function that returns a single number corresponding to a function eval-
uation f(x) in the equation f(x) = b to be solved as a root f(x) - b = 0. Unlike
in the standard runSimulation() definitions this input is required. For further
information on this function specification, see runSimulation

replications a named list or vector indicating the number of replication to use for each de-
sign condition per PBA iteration. By default the input is a list with the argu-
ments burnin.iter = 15L, specifying the number of burn-in iterations to used,
burnin.reps = 100L to indicate how many replications to use in each burn-in
iteration, max.reps = 500L to prevent the replications from increasing higher
than this number, min.total.reps = 9000L to avoid termination when very
few replications have been explored (lower bound of the replication budget),
and increase.by = 10L to indicate how many replications to increase after the
burn-in stage. Unless otherwise specified these defaults will be used, but can be
overwritten by explicit definition (e.g., replications = list(increase.by =
25L))
Vector inputs can specify the exact replications for each iterations. As a general
rule, early iterations should be relatively low for initial searches to avoid unnec-
essary computations for locating the approximate root, though the number of

SimSolve 129

replications should gradually increase to reduce the sampling variability as the
PBA approaches the root.

integer logical; should the values of the root be considered integer or numeric? If TRUE
then bolstered directional decisions will be made in the pba function based on
the collected sampling history throughout the search

formula regression formula to use when interpolate = TRUE. Default fits an orthogonal
polynomial of degree 2

family family argument passed to glm. By default the 'binomial' family is used, as
this function defaults to power analysis setups where isolated results passed to
summarise will return 0/1s, however other families should be used had summarise
returned something else (e.g., if solving for a particular standard error then a
'gaussian' family would be more appropriate).
Note that if individual results from the analyse steps should not be used (i.e.,
only the aggregate from summarise is meaningful) then set control = list(summarise.reg_data
= TRUE) to override the default behavior, thereby using only the aggregate infor-
mation and weights

parallel for parallel computing for slower simulation experiments (see runSimulation
for details)

cl see runSimulation

save logical; store temporary file in case of crashes. If detected in the working di-
rectory will automatically be loaded to resume (see runSimulation for similar
behaviour)

resume logical; if a temporary SimDesign file is detected should the simulation resume
from this location? Keeping this TRUE is generally recommended, however this
should be disabled if using SimSolve within runSimulation to avoid reading
improper save states

method optimizer method to use. Default is the stochastic root-finder 'ProBABLI',
but can also be the deterministic options 'Brent' (which uses the function
uniroot) or 'bisection' (for the classical bisection method). If using deter-
ministic root-finders then replications must either equal a single constant to
reflect the number of replication to use per deterministic iteration or be a vector
of length maxiter to indicate the replications to use per iteration

wait.time (optional) argument passed to PBA to indicate the time to wait (specified in min-
utes) per row in the Design object rather than using pre-determined termination
criteria based on the estimates. For example, if three three conditions were de-
fined in Design, and wait.time="5", then the total search time till terminate
after 15 minutes regardless of independently specified termination criteria in
control. Note that maxiter is still used alongside wait.time, therefore this
should be increased as well (e.g., to maxiter = 1000)

ncores see runSimulation

type type of cluster object to define. If type used in plot then can be 'density' to
plot the density of the iteration history after the burn-in stage, 'iterations' for
a bubble plot with inverse replication weights. If not specified then the default
PBA plots are provided (see PBA)

maxiter the maximum number of iterations (default 100)

130 SimSolve

check.interval logical; should an initial check be made to determine whether f(interval[1L])
and f(interval[2L]) have opposite signs? If FALSE, the specified interval
is assumed to contain a root, where f(interval[1]) < 0 and f(interval[2]
> 0. Default is TRUE

verbose logical; print information to the console?

control a list of the algorithm control parameters. If not specified, the defaults de-
scribed below are used.

tol tolerance criteria for early termination (.1 for integer = TRUE searches;
.00025 for non-integer searches

rel.tol relative tolerance criteria for early termination (default .0001)
k.success number of consecutive tolerance success given rel.tol and tol

criteria. Consecutive failures add -1 to the counter (default is 3)
bolster logical; should the PBA evaluations use bolstering based on previous

evaluations? Default is TRUE, though only applicable when integer = TRUE

interpolate.R number of replications to collect prior to performing the in-
terpolation step (default is 3000 after accounting for data exclusion from
burnin.iter). Setting this to 0 will disable any interpolation computa-
tions

include_reps logical; include a column in the condition elements to indicate
how many replications are currently being evaluated? Mainly useful when
further precision tuning within each ProBABLI iteration is desirable (e.g.,
for bootstrapping). Default is FALSE

summarise.reg_data logical; should the aggregate results from Summarise
(along with its associated weights) be used for the interpolation steps, or
the raw data from the Analyse step? Set this to TRUE when the individual
results from Analyse give less meaningful information

predCI advertised confidence interval probability for final model-based prediction of
target b given the root input estimate. Returned as an element in the summary()
list output

predCI.tol (optional) rather than relying on the changes between successive estimates (de-
fault), if the predicting CI is consistently within this supplied tolerance input
range then terminate. This provides termination behaviour based on the pre-
dicted precision of the root solutions rather than their stability history, and there-
fore can be used to obtain estimates with a particular level of advertised accu-
racy. For example, when solving for a sample size value (N) if the solution
associated with b = .80 requires that the advertised 95 is consistently between
[.795, .805] then predCI.tol = .01 to indicate this tolerance range

... additional arguments to be pasted to PBA

object object of class 'SimSolve'

tab.only logical; print only the (reduce) table of estimates?

reps.cutoff integer indicating the rows to omit from output if the number of replications do
no reach this value

x object of class 'SimSolve'

y design row to plot. If omitted defaults to 1

SimSolve 131

Details

Root finding is performed using a progressively bolstered version of the probabilistic bisection al-
gorithm (PBA) to find the associated root given the noisy simulation objective function evaluations.
Information is collected throughout the search to make more accurate predictions about the associ-
ated root via interpolation. If interpolations fail, then the last iteration of the PBA search is returned
as the best guess.

Value

the filled-in design object containing the associated lower and upper interval estimates from the
stochastic optimization

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P. (in press). Solving Variables with Monte Carlo Simulation Experiments: A Stochas-
tic Root-Solving Approach. Psychological Methods. DOI: 10.1037/met0000689

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

See Also

SFA

Examples

Not run:

##########################
A Priori Power Analysis
##########################

GOAL: Find specific sample size in each group for independent t-test
corresponding to a power rate of .8
#
For ease of the setup, assume the groups are the same size, and the mean
difference corresponds to Cohen's d values of .2, .5, and .8
This example can be solved numerically using the pwr package (see below),
though the following simulation setup is far more general and can be
used for any generate-analyse combination of interest

SimFunctions(SimSolve=TRUE)

Step 1 --- Define your conditions under study and create design data.frame.
However, use NA placeholder for sample size as it must be solved,
and add desired power rate to object

https://doi.org/10.20982/tqmp.16.4.p248

132 SimSolve

Design <- createDesign(N = NA,
d = c(.2, .5, .8),
sig.level = .05)

Design # solve for NA's

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 2 --- Define generate, analyse, and summarise functions

Generate <- function(condition, fixed_objects) {
Attach(condition)
group1 <- rnorm(N)
group2 <- rnorm(N, mean=d)
dat <- data.frame(group = gl(2, N, labels=c('G1', 'G2')),

DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects) {
p <- t.test(DV ~ group, dat, var.equal=TRUE)$p.value
p

}

Summarise <- function(condition, results, fixed_objects) {
Must return a single number corresponding to f(x) in the
root equation f(x) = b

ret <- c(power = EDR(results, alpha = condition$sig.level))
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 3 --- Optimize N over the rows in design

(For debugging) may want to see if simulation code works as intended first
for some given set of inputs
runSimulation(design=createDesign(N=100, d=.8, sig.level=.05),
replications=10, generate=Generate, analyse=Analyse,
summarise=Summarise)

Initial search between N = [10,500] for each row using the default
integer solver (integer = TRUE). In this example, b = target power

solved <- SimSolve(design=Design, b=.8, interval=c(10, 500),
generate=Generate, analyse=Analyse,
summarise=Summarise)

solved
summary(solved)
plot(solved, 1)
plot(solved, 2)
plot(solved, 3)

also can plot median history and estimate precision
plot(solved, 1, type = 'history')

SimSolve 133

plot(solved, 1, type = 'density')
plot(solved, 1, type = 'iterations')

verify with true power from pwr package
library(pwr)
pwr.t.test(d=.2, power = .8) # sig.level/alpha = .05 by default
pwr.t.test(d=.5, power = .8)
pwr.t.test(d=.8, power = .8)

use estimated N results to see how close power was
N <- solved$N
pwr.t.test(d=.2, n=N[1])
pwr.t.test(d=.5, n=N[2])
pwr.t.test(d=.8, n=N[3])

with rounding
N <- ceiling(solved$N)
pwr.t.test(d=.2, n=N[1])
pwr.t.test(d=.5, n=N[2])
pwr.t.test(d=.8, n=N[3])

failing analytic formula, confirm results with more precise
simulation via runSimulation()
(not required, if accuracy is important then ProBABLI should be run longer)
csolved <- solved
csolved$N <- ceiling(solved$N)
confirm <- runSimulation(design=csolved, replications=10000, parallel=TRUE,
generate=Generate, analyse=Analyse,
summarise=Summarise)
confirm

Similarly, terminate if the prediction interval is consistently predicted
to be between [.795, .805]. Note that maxiter increased as well
solved_predCI <- SimSolve(design=Design, b=.8, interval=c(10, 500),

generate=Generate, analyse=Analyse, summarise=Summarise,
maxiter=200, predCI.tol=.01)

solved_predCI
summary(solved_predCI) # note that predCI.b are all within [.795, .805]

N <- solved_predCI$N
pwr.t.test(d=.2, n=N[1])
pwr.t.test(d=.5, n=N[2])
pwr.t.test(d=.8, n=N[3])

Alternatively, and often more realistically, wait.time can be used
to specify how long the user is willing to wait for a final estimate.
Solutions involving more iterations will be more accurate,
and therefore it is recommended to run the ProBABLI root-solver as long
the analyst can tolerate if the most accurate estimates are desired.
Below executes the simulation for 5 minutes for each condition up
to a maximum of 1000 iterations, terminating based on whichever occurs first

solved_5min <- SimSolve(design=Design, b=.8, interval=c(10, 500),

134 SimSolve

generate=Generate, analyse=Analyse, summarise=Summarise,
wait.time="5", maxiter=1000)

solved_5min
summary(solved_5min)

use estimated N results to see how close power was
N <- solved_5min$N
pwr.t.test(d=.2, n=N[1])
pwr.t.test(d=.5, n=N[2])
pwr.t.test(d=.8, n=N[3])

#--

#######################
Sensitivity Analysis
#######################

GOAL: solve effect size d given sample size and power inputs (inputs
for root no longer required to be an integer)

Generate-Analyse-Summarise functions identical to above, however
Design input includes NA for d element
Design <- createDesign(N = c(100, 50, 25),

d = NA,
sig.level = .05)

Design # solve for NA's

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 2 --- Define generate, analyse, and summarise functions (same as above)

#~~~~~~~~~~~~~~~~~~~~~~~~
Step 3 --- Optimize d over the rows in design
search between d = [.1, 2] for each row

In this example, b = target power
note that integer = FALSE to allow smooth updates of d
solved <- SimSolve(design=Design, b = .8, interval=c(.1, 2),

generate=Generate, analyse=Analyse,
summarise=Summarise, integer=FALSE)

solved
summary(solved)
plot(solved, 1)
plot(solved, 2)
plot(solved, 3)

plot median history and estimate precision
plot(solved, 1, type = 'history')
plot(solved, 1, type = 'density')
plot(solved, 1, type = 'iterations')

verify with true power from pwr package
library(pwr)

SimSolve 135

pwr.t.test(n=100, power = .8)
pwr.t.test(n=50, power = .8)
pwr.t.test(n=25, power = .8)

use estimated d results to see how close power was
pwr.t.test(n=100, d = solved$d[1])
pwr.t.test(n=50, d = solved$d[2])
pwr.t.test(n=25, d = solved$d[3])

failing analytic formula, confirm results with more precise
simulation via runSimulation() (not required; if accuracy is important
PROBABLI should just be run longer)
confirm <- runSimulation(design=solved, replications=10000, parallel=TRUE,
generate=Generate, analyse=Analyse,
summarise=Summarise)
confirm

#--

#####################
Criterion Analysis
#####################

GOAL: solve Type I error rate (alpha) given sample size, effect size, and
power inputs (inputs for root no longer required to be an integer). Only useful
when Type I error is less important than achieving the desired 1-beta (power)

Design <- createDesign(N = 50,
d = c(.2, .5, .8),
sig.level = NA)

Design # solve for NA's

all other function definitions same as above

search for alpha within [.0001, .8]
solved <- SimSolve(design=Design, b = .8, interval=c(.0001, .8),

generate=Generate, analyse=Analyse,
summarise=Summarise, integer=FALSE)

solved
summary(solved)
plot(solved, 1)
plot(solved, 2)
plot(solved, 3)

plot median history and estimate precision
plot(solved, 1, type = 'history')
plot(solved, 1, type = 'density')
plot(solved, 1, type = 'iterations')

verify with true power from pwr package
library(pwr)
pwr.t.test(n=50, power = .8, d = .2, sig.level=NULL)

136 Summarise

pwr.t.test(n=50, power = .8, d = .5, sig.level=NULL)
pwr.t.test(n=50, power = .8, d = .8, sig.level=NULL)

use estimated alpha results to see how close power was
pwr.t.test(n=50, d = .2, sig.level=solved$sig.level[1])
pwr.t.test(n=50, d = .5, sig.level=solved$sig.level[2])
pwr.t.test(n=50, d = .8, sig.level=solved$sig.level[3])

failing analytic formula, confirm results with more precise
simulation via runSimulation() (not required; if accuracy is important
PROBABLI should just be run longer)
confirm <- runSimulation(design=solved, replications=10000, parallel=TRUE,
generate=Generate, analyse=Analyse,
summarise=Summarise)
confirm

End(Not run)

Summarise Summarise simulated data using various population comparison
statistics

Description

This collapses the simulation results within each condition to composite estimates such as RMSE,
bias, Type I error rates, coverage rates, etc. See the See Also section below for useful functions to
be used within Summarise.

Usage

Summarise(condition, results, fixed_objects)

Arguments

condition a single row from the design input from runSimulation (as a data.frame),
indicating the simulation conditions

results a tibble data frame (if Analyse returned a named numeric vector of any length)
or a list (if Analyse returned a list or multi-rowed data.frame) containing
the analysis results from Analyse, where each cell is stored in a unique row/list
element

fixed_objects object passed down from runSimulation

Value

for best results should return a named numeric vector or data.frame with the desired meta-
simulation results. Named list objects can also be returned, however the subsequent results must
be extracted via SimExtract

timeFormater 137

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

bias, RMSE, RE, EDR, ECR, MAE, SimExtract

Examples

Not run:

summarise <- function(condition, results, fixed_objects) {

#find results of interest here (alpha < .1, .05, .01)
lessthan.05 <- EDR(results, alpha = .05)

return the results that will be appended to the design input
ret <- c(lessthan.05=lessthan.05)
ret

}

End(Not run)

timeFormater Format time string to suitable numeric output

Description

Format time input string into suitable numeric output metric (e.g., seconds). Input follows the
SBATCH utility specifications. Accepted time formats include "minutes", "minutes:seconds",
"hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

Usage

timeFormater(time, output = "sec")

Arguments

time a character string to be formatted. If a numeric vector is supplied then this will
be interpreted as seconds.

output type of numeric output to convert time into. Currently supported are 'sec' for
seconds (default), 'min' for minutes, 'hour', and 'day'

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953

138 timeFormater

Details

For example, max_time = "60" indicates a maximum time of 60 minutes, max_time = "03:00:00"
a maximum time of 3 hours, max_time = "4-12" a maximum of 4 days and 12 hours, and max_time
= "2-02:30:00" a maximum of 2 days, 2 hours and 30 minutes.

Examples

Test cases (outputs in seconds)
timeFormater("4-12") # day-hours
timeFormater("4-12:15") # day-hours:minutes
timeFormater("4-12:15:30") # day-hours:minutes:seconds

timeFormater("30") # minutes
timeFormater("30:30") # minutes:seconds
timeFormater("4:30:30") # hours:minutes:seconds

output in hours
timeFormater("4-12", output = 'hour')
timeFormater("4-12:15", output = 'hour')
timeFormater("4-12:15:30", output = 'hour')

timeFormater("30", output = 'hour')
timeFormater("30:30", output = 'hour')
timeFormater("4:30:30", output = 'hour')

Index

∗ data
BF_sim, 11
BF_sim_alternative, 12

∗ package
SimDesign, 118

abs, 14
add_missing (addMissing), 3
addMissing, 3, 30
aggregate_simulations (SimCollect), 115
Analyse, 5, 8, 29, 32, 88–90, 96, 98, 136
AnalyseIf, 6, 7, 98
aov, 112
as.vector, 57
Attach, 9, 30, 98
attach, 9

BF_sim, 11, 12
BF_sim_alternative, 11, 12
bias, 13, 55, 72, 137
boot_predict (bootPredict), 15
bootPredict, 15
Bradley1978, 18, 27
browser, 90

c, 48, 49
cat, 53
CC, 20
clusterSetRNGStream, 21, 92
clusterSetRNGSubStream, 21
colMeans, 22
colSDs (colVars), 21
colVars, 21
commandArgs, 35
cor, 20
createDesign, 22, 23, 28, 29, 88, 96, 98, 128

dunif, 51

ECR, 18, 19, 24, 27, 112, 137
EDR, 18, 19, 26, 27, 112, 137

ERR (EDR), 27
expand.grid, 22
expandDesign, 23, 28, 81, 83

family, 108
future, 87, 91, 97

gc, 95
gen_seeds, 92
gen_seeds (genSeeds), 33
Generate, 5, 6, 10, 29, 88, 96, 98
GenerateIf, 31, 88
genSeeds, 33, 81–83
getArrayID, 35, 82, 83
getwd, 124
glm, 108, 129
grepl, 40, 42, 43

integrate, 37
IRMSE, 36

library, 89
lm, 16, 112

MAE, 38, 137
makeCluster, 91
manageMessages, 39, 43
manageWarnings, 6, 41, 42, 54, 93, 98
message, 53
MSRSE, 47

nc, 48
nextRNGStream, 83
nextRNGSubStream, 82

optimize, 61

parallel, 87
PBA, 50, 76, 77, 129–131
plan, 91
plot.PBA (PBA), 50

139

140 INDEX

plot.RM (RobbinsMonro), 76
plot.SimSolve (SimSolve), 127
predict, 108
print.Design (createDesign), 22
print.PBA (PBA), 50
print.RM (RobbinsMonro), 76
print.SFA (SFA), 107
print.SimDesign (runSimulation), 87

quiet, 39, 41, 43, 53

RAB, 54
rbind.SimDesign, 55
RD, 57
RE, 58, 137
readRDS, 123
rejectionSampling, 60
require, 89
reSummarise, 63, 88, 91, 98
rHeadrick, 29, 30, 66
rint, 68
rinvWishart, 69
rmgh, 29, 30, 70
RMSD (RMSE), 71
RMSE, 14, 37, 59, 71, 137
rmvnorm, 73
rmvt, 74
RNG, 21
RobbinsMonro, 52, 76
RSE, 78
rtruncate, 79
runArraySimulation, 28, 29, 33, 35, 81, 87,

94, 95, 98, 113, 115, 116, 118
runSimulation, 5–8, 10, 16, 23, 28–32, 55,

56, 64, 69, 74, 75, 81–83, 87, 95,
107, 108, 112, 114–116, 118, 119,
121, 123–129, 136

rValeMaurelli, 29, 30, 104

sample, 68
sample.int, 68
saveRDS, 97, 114
Serlin2000, 19, 106
set.seed, 92, 115
SFA, 107, 131
SimAnova, 96, 98, 111
SimCheck, 83, 113, 116
SimClean, 98, 114
SimCollect, 28, 29, 83, 98, 113, 115

SimDesign, 118
SimDesign-package (SimDesign), 118
SimExtract, 88, 90, 94, 97, 98, 116, 119, 136,

137
SimFunctions, 96, 98, 121
SimResults, 90, 91, 98, 123
SimShiny, 98, 125
SimSolve, 52, 108, 122, 127
stop, 6, 30
subset, 112
Summarise, 79, 88, 96, 98, 119, 136
summary.SimDesign (runSimulation), 87
summary.SimSolve (SimSolve), 127
suppressWarnings, 42, 43

timeFormater, 51, 83, 95, 137
try, 6, 30
tryCatch, 43

uniroot, 50, 52, 76, 77, 108, 129
unname, 14, 18, 20, 21, 25, 27, 38, 47, 55, 57,

59, 72, 79

Vectorize, 60

	addMissing
	Analyse
	AnalyseIf
	Attach
	BF_sim
	BF_sim_alternative
	bias
	bootPredict
	Bradley1978
	CC
	clusterSetRNGSubStream
	colVars
	createDesign
	ECR
	EDR
	expandDesign
	Generate
	GenerateIf
	genSeeds
	getArrayID
	IRMSE
	MAE
	manageMessages
	manageWarnings
	MSRSE
	nc
	PBA
	quiet
	RAB
	rbind.SimDesign
	RD
	RE
	rejectionSampling
	reSummarise
	rHeadrick
	rint
	rinvWishart
	rmgh
	RMSE
	rmvnorm
	rmvt
	RobbinsMonro
	RSE
	rtruncate
	runArraySimulation
	runSimulation
	rValeMaurelli
	Serlin2000
	SFA
	SimAnova
	SimCheck
	SimClean
	SimCollect
	SimDesign
	SimExtract
	SimFunctions
	SimResults
	SimShiny
	SimSolve
	Summarise
	timeFormater
	Index

