
Back to Basics: Classic STL

Bob Steagall
CppCon 2021

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Overview

• Rationale

• History and design overview

• Iterators

• Containers

• Algorithms

2

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Goals and References

• Goals
• Understand overall STL design
• Understand iterators

• Recommended references
• The Standard C++ Library, Second Edition

Nicolai M. Josuttis – Addison-Wesley 2012

• Effective STL
Scott Meyers – O'Reilly 2001

• Programming: Principles and Practice Using C++, Second Edition
Bjarne Stroustrup – Addison-Wesley 2014

• cppreference.com

3

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

What is "Classic STL?"

4

Language Support

Concepts

Diagnostics

General Utilities

Containers

Iterators

AlgorithmsStrings

Ranges

Numerics

Time

LocalizationInput/Output

Regular Expressions

Atomic Operations

Thread Support

The C++20 Standard Library

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

What is "Classic STL?"

• The short answer – containers + iterators + algorithms + some utilities

5

Language Support

Concepts

Diagnostics

Original Utilities

Containers

Iterators

AlgorithmsStrings

Ranges

Numerics

Time

LocalizationInput/Output

Regular Expressions

Atomic Operations

Thread Support

The C++20 Standard Library

New General Utilities

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Rationale

6

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Rationale

• We have some business problem to solve

• We begin with input data

• We read that data and perform computations

• We generate and write some desired output

7

Input

Computation

Output

Read

Write

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Rationale

• Data is almost always collections of elements
• A virtually infinite number of data element types

• Each collection of elements has some representation
• A large number of possible representations

• There are many kinds of processing (algorithms)
• A very large number of algorithms

• In any given problem space, the choices are fewer
• Call them NT , NR , and NA
• Traditionally, a combinatorial explosion of code – NT * NR * NA

• We'd like a smaller number – NT + NR + NA – this is the goal of the STL
8

Input

Computation

Output

Read

Write

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

History and Overview of the STL

9

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

A Brief STL History

• 1979, Alexander Stepanov begins exploring generic programming (GP)

• 1988, Stepanov and David Musser publish Generic Programming

10

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Generic Programming

Generic programming centers around the idea of abstracting from concrete,
efficient algorithms to obtain generic algorithms that can be combined
with different data representations to produce a wide variety of useful
software.

— David Musser, Alexander Stepanov
Generic Programming (1988)
[emphasis mine]

11

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Generic Programming

Following Stepanov, we can define generic programming without
mentioning language features: Lift algorithms and data structures from
concrete examples to their most general and abstract form.

— Bjarne Stroustrup
Evolving a language in and for the
real world: C++ 1991-2006 (2007)
[emphasis mine]

12

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

A Brief STL History
• 1979, Alexander Stepanov begins exploring generic programming (GP)

• 1988, Stepanov and David Musser publish Generic Programming

• 1992, Meng Lee joins Stepanov at HP Research Labs, where his team is experimenting with
C and C++

• 1993, Stepanov presents the main ideas at the November WG21 meeting

• 1994, Stepanov and Lee create proposal for WG21 that was accepted later that year

• 1994-1998, much additional work; adding the original associative containers

• 1998, first ISO C++ Standard published

• 2011, C++11 is published, and with some new containers

13

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Original Design Principles
• Comprehensive

• Take all the best from APL, Lisp, Dylan, C library, USL Standard Components…
• Provide structure and fill the gaps

• Extensible
• Orthogonality of the component space
• Semantically based interoperability guarantees

• Efficient
• No penalty for generality
• Complexity guarantees at the interface level

• Natural
• C/C++ machine model and programming paradigm
• Support for built-in data types

14

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Original Design Principles
• Comprehensive

• Take all the best from APL, Lisp, Dylan, C library, USL Standard Components…
• Provide structure and fill the gaps

• Extensible
• Orthogonality of the component space
• Semantically based interoperability guarantees

• Efficient
• No penalty for generality
• Complexity guarantees at the interface level

• Natural
• C/C++ machine model and programming paradigm
• Support for built-in data types

15

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Complexity and the Big-O Notation

• Complexity refers to the runtime cost of an algorithm

• Big-O notation expresses the relative complexity of an algorithm

16

Type Notation Runtime Cost
Constant O(1) Independent of number of elements

Logarithmic O(log(n)) Increases logarithmically with the number of elements

Linear O(n) Increases linearly with the number of elements

N-log-N O(n*log(n)) Increases as a product of linear and logarithmic complexities

Quadratic O(n2) Increases as the square of the number of elements

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Key Principles

• Containers store collections of elements

• Algorithms perform operations upon collections of elements

• Containers and algorithms are entirely independent

• Iterators provide a common unit of information exchange between
containers and algorithms

17

Container
{e0, e1, e2, …}

Iterator Algorithm

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Key Principles

• Containers store collections of elements

• Algorithms perform operations upon collections of elements

• Containers and algorithms are entirely independent

• Iterators provide a common unit of information exchange between
containers and algorithms

18

Container
{e0, e1, e2, …}

Iterator Algorithm

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Complexity and Interfaces

• STL makes complexity guarantees by specifying interfaces and requirements

• Containers provide support for
• Adding / removing elements
• Accessing (reading / updating) elements via associated iterators
• A container's iterators understand (and abstract) that container's internal structure

• Iterators
• Provide access to container elements through well-defined interfaces with strict guarantees

• Algorithms
• Employ the well-defined interfaces provided by iterators
• Have complexity based on the algorithm itself and the guarantees made by the iterators

19

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Containers Overview

• Containers hold a collection of elements
• STL containers are implemented using a variety of basic data structures
• Each STL container represents a sequence of elements

• Containers have an internal structure and ordering
• We can observe this ordering
• Sometimes we can control the ordering

• Containers own the elements they hold
• Ownership means element lifetime management
• Containers construct and destroy their member elements

20

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Containers Overview

• Sequence containers
• vector
• deque
• list
• array (C++11)
• forward_list (C++11)

• Associative containers
• map
• set
• multimap
• multiset

21

• Unordered associative containers
• unordered_map (C++11)
• unordered_set (C++11)
• unordered_multimap (C++11)
• unordered_multiset (C++11)

• Container adaptors
• queue
• stack
• priority_queue

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterators Overview

• Iterators typically provide a way of observing a container's elements and
ordering

• Some containers provide more than one way to observe elements

• Iterators may provide a way of modifying a container's elements

• An iterator's interface specifies
• The complexity of observing and traversing a collection's elements
• The manner in which elements are observed
• Whether an element can be read from or written to

• Iterators never own the elements to which they refer

22

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterators Overview

• Classic STL has five iterator categories
• Output
• Input
• Forward
• Bidirectional
• Random-access

• Arranged in a hierarchy of requirements
• Not public inheritance

23

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms Overview

• The algorithms process ranges of elements of a collection
• Require at least one explicitly-specified iterator pair

• Algorithm categories
• Non-modifying algorithms
• Modifying algorithms
• Removing algorithms
• Mutating algorithms
• Sorting algorithms
• Sorted range algorithms
• Numeric algorithms

24

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterators

25

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Regarding Iterators

• Where do the five iterator categories come from?

• What interface does each category provide?

• What is their time complexity?

• How are they related to containers?

• How are they used by the algorithms?

• Let's try a generic programming exercise and
develop iterators from scratch

26

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Referring to Elements in Arrays

• Consider pointers to 2 elements in an array of N objects
• What can you do with them?

27

arr

Action Operation

Access element *p

Access member of element p->mem

Compare for equality of postion p == q, p != q

Move forward by 1 ++p, p++

Move backward by 1 --p, p--

Make a copy (assign) q = p

Access arbitrary element p[n]

Move forward by arbitrary n p += n, q = p + n

Move backward by arbitrary n p -= n, q = p - n

Compare for relative position p < q, p <= q, p > q, p >= q

Find distance between two elements d = q - p

p q

e0 e1 … ep ep+1 … eq eq+1 … eN-1eq-1ep-1

O(1) - constant time!

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Referring to Elements in Doubly-Linked Lists

• Consider pointers to 2 nodes in a simple doubly-linked list

28

lst

• What can you do with them? qp

next

ef

null
next

eq

prev
next

...
prev

null

el

prev
next

ep

prev
next

...
prev

next

...
prev

Action Operation

Access element *p

Access member of element p->mem

Compare for equality of position p == q, p != q

Move forward by 1 p = p->next

Move backward by 1 p = p->prev

Make a copy (assign) q = p

O(1) - constant time

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Referring to Elements in Singly-Linked Lists

• Consider pointers to 2 nodes in a simple singly-linked list and

29

lst

• What can you do with them?
qp

next
ef

next
eq

next
...

null
el

next
ep

next
...

next
...

Action Operation

Access element *p

Access member of element p->mem

Compare for equality of position p == q, p != q

Move forward by 1 p = p->next

Make a copy (assign) q = p

O(1) - constant time

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Multi-Pass and Single-Pass Iteration

• Arrays, doubly-linked and singly-linked lists all support multi-pass iteration
• Pointers to elements can be dereferenced more than once, with the same result each time
• The sequence can be iterated over (traversed) more than once

• What about sequences that can be traversed only once?
• Some sequences support only single-pass iteration
• An element can only be read from, or written to, a given position one time
• The act of reading or writing irrevocably changes position
• Reading from / writing to file streams, sockets, raw devices, etc.

30

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Reading Elements (Bytes) From a FILE Stream

31

Action Operation

Read element and advance b = fgetc(p)

Compare for end-of-file equality b == EOF, feof(p)

Make a copy (assign) q = p
O(1) - constant time

• Consider a pointer to a FILE stream opened for input

• What can you do with it?

bn-1 bn-2 bn-4 bn-5 bn-6 … … … ……bn-3bn

FILE* p = fopen(name, "rb")

p

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Writing Elements (Bytes) To a FILE Stream

• Consider a pointer to a FILE stream opened for output

32

• What can you do with it?

Action Operation

Write element and advance fputc(b, p)

Make a copy (assign) q = p O(1) - constant time

bn-1 bn-2 bn-4 bn-5 bn-6 … … … ……bn-3bn

FILE* p = fopen(name, "wb")

p

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Categories

• Arranged in a hierarchy of requirements
• Not public inheritance
• Arrow to X means: "satisfies at least the requirements of X"
• Dotted arrow means: "optional"

• Iterators that satisfy the requirements of output iterators are
called mutable iterators

33

Category Operation
Output Write forward, single-pass
Input Read forward, single-pass
Forward Access forward, multi-pass
Bidirectional Access forward and backward, multi-pass
Random Access Access arbitrary position, multi-pass

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Ranges

• Let's think about sequences in terms of positions
• By fiat, a sequence of N elements has N+1 positions
• The first N positions contain elements and are dereferenceable
• Assume the last position contains nothing and is therefore non-dereferenceable
• You can point/refer to the last position, but you cannot read from it or write to it

34

e0 e1 …e2 eN-1

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Ranges

• In the STL, iteration over sequences is based on the idea of iterator ranges

• An iterator range is represented by a pair of iterators -- [first, last)
• This pair represents a half-open interval over the sequence of elements
• first refers to the first element included in the sequence
• last refers to the non-dereferenceable, "one-past-the-end" (PTE) position excluded from

the sequence

35

e0 e1 …e2 eN-1

first last

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Ranges

• Q: Why use ranges described by half-open intervals?

• A: It makes testing for loop termination very simple
• Loops only need to test for iterator equality
• Indexing not required
• Location in memory is irrelevant

36

iterator f = get_position_of_first_element_in_sequence();
iterator l = get_one_past_end_position_in_sequence();

//- Works for all iterator types except OutputIterator
//
for (; f != l; ++f)
{

some_function(*f);
}

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Ranges

• Q: How can they work?

• A: It depends on the container / sequence
• Containers that store elements contiguously in memory rely on ability to get a pointer to

the "next-position-after"

37

Foo f;
Foo* fb = &f;
Foo* fe = pfb + 1;

Foo a[10];
Foo* ab = &a[0];
Foo* ae = ab + 10;

f

fb fe

f

a0 a1 a2 a4 a5 a6 a8 a9a7a3a[10]

ab ae

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Ranges

• Q: How can they work?

• A: It depends on the container / sequence
• Node-based containers can use sentinel nodes

38

e
b

next

ef

prev
next

eq

prev
next

...
prev

next
prev

next

ep

prev
next

...
prev

next

...
prev

sentinel

next
ef

next
eq

next
...

nextnext
ep

next
...

next
...

eb sentinel

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Output Iterators – Write Forward, Single-Pass

• The only valid use of the expression *p is on the left side of an
assignment statement

• Comparison operators are not required – no end of sequence
is assumed

• Output iterators model an "infinite sink"

• const_iterator types provided by STL containers cannot
be output iterators – const_iterators permit only reading

39

Expression Action/Result

Iter q(p) Copy construction

q = p Copy assignment

*p Write to position one time

++p Step forward, return new position

p++ Step forward, return old position

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Input Iterators – Read Forward, Single-Pass

• p == q does not imply ++p == ++q

• The comparison operators are provided to check whether an
input iterator is equal to the past-the-end iterator

• All iterators that read values must provide at least the
capabilities of input iterators; usually, they provide more

40

Expression Action/Result

Iter q(p) Copy construction

q = p Copy assignment

*p Read access to element one time

p->mem Read access member of element one time

++p Move forward by 1, return new position

p++ Move forward by 1, possibly return old position

p == q Return true if two iterators are equal

p != q Return true if two iterators are different

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Forward Iterators – Access Forward, Multi-Pass

• Additional capabilities and guarantees
• p and q refer to the same position IFF p == q
• p == q implies ++p == ++q
• Accessing an element (e.g., *p) does not change the iterator's position

41

Output Input

Forward

Bidirectional

Random-access

Expression Action/Result

Iter q(p) Copy construction

q = p Copy assignment

*p Access element

p->mem Access member of element

++p Move forward by 1, return new position

p++ Move forward by 1, return old position

p == q Return true if two iterators refer to the same position

p != q Return true if two iterators refer to different positions

Iter p Default constructor, create singular value

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Bidirectional Iterators – Access Forward/Backward, Multi-Pass

• Additional capabilities and guarantees
• p == q implies --p == --q
• --(++p) == p

42

Expression Action/Result

Iter q(p) Copy construction

q = p Copy assignment

*p Access element

p->mem Access member of element

++p Move forward by 1, return new position

p++ Move forward by 1, return old position

p == q Return true if two iterators refer to the same position

p != q Return true if two iterators refer to different positions

Iter p Default constructor, create singular value

--p Move backward by 1, return new position

p-- Move backward by 1, return old position

Output Input

Forward

Bidirectional

Random-access

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Random-Access Iterators – Arbitrary Access, Multi-Pass

43

Expression Action/Result

Iter q(p) Copy construction

q = p Copy assignment

*p Access element

p->mem Access member of element

++p Move forward by 1, return new position

p++ Move forward by 1, return old position

p == q Return true if two iterators refer to the same position

p != q Return true if two iterators refer to different positions

Iter p Default constructor, create singular value

--p Move backward by 1, return new position

p-- Move backward by 1, return old position

Output Input

Forward

Bidirectional

Random-access
• Additional capabilities and guarantees

• Emulate pointers
• Provide operators for iterator arithmetic, analogous to pointer arithmetic
• Provide relational operators to compare position

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Random-Access Iterators – Arbitrary Access, Multi-Pass

44

Expression Action/Result

p[n] Access element at nth position

p += n Move forward by n elements (backward if n < 0)

p -= n Move backward by n elements (forward if n < 0)

p + n, n + p Return iterator pointing n elements forward (backward if n < 0)

p – n Return iterator pointing n elements backward (forward if n < 0)

p – q Return the distance between positions

p < q True if p is before q in the sequence

p <= q True if p is not after q in the sequence

p > q True if p is after q in the sequence

p >= q True if p is not before q in the sequence

Output Input

Forward

Bidirectional

Random-access
• Additional capabilities and guarantees

• Emulate pointers
• Provide operators for iterator arithmetic, analogous to pointer arithmetic
• Provide relational operators to compare position

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Iterator Adaptors

• Reverse iterators
• template<class Iter> reverse_iterator;
• Iterates backward from the end of a sequence to the beginning
• Models a bidirectional iterator when Iter is bidirectional
• Models a random-access iterator when Iter is random-access

• Insert iterators (inserters)
• template<class Container> back_insert_iterator;
• template<class Container> front_insert_iterator;
• template<class Container> insert_iterator;
• Models an output iterator that inserts elements at the back / front / interior of a container

45

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Containers

46

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Containers Overview

• Sequence containers
• Represent ordered collections where an element's position is independent of its value
• Usually implemented using arrays or linked lists
• vector, deque, list, array*, forward_list*

• Associative containers
• Represent sorted collections where an element's position depends only on its value
• Usually implemented using binary search trees
• map, set, multimap, multiset

• Unordered associative containers*
• Represent unsorted collections where an element's position is irrelevant
• Implemented using hash tables
• unordered_map, unordered_set, unordered_multimap, unordered_multiset

47

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Common Container Interface

• Every STL container provides a common set of nested type aliases

48

template< ... >
class container
{

...

using value_type = ...
using reference = ...
using const_reference = ...

using iterator = ...
using const_iterator = ...
using size_type = ...
using difference_type = ...
...

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Common Container Interface

• Every STL container provides a common set of functions

49

template< ... >
class container
{

...

iterator begin();
iterator end();

const_iterator begin() const;
const_iterator end() const;

const_iterator cbegin() const;
const_iterator cend() const;
...

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Common Bidirectional Container Interface

• Bidirectional containers provide additional aliases and functions

50

template< ... >
class bidirectional_container
{

...

using reverse_iterator = ...
using const_reverse_iterator = ...

reverse_iterator rbegin();
reverse_iterator rend();

const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;

const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
...

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Sequence Container: Vector

template<class T, class Allocator = allocator<T>>
class vector;

• Features
• Supports amortized constant time insert and erase operations at its end
• Supports linear time insert and erase operations in its middle
• Provides const and mutable random-access iterators
• Provides const and mutable element indexing
• Supports changing element values
• Uses contiguous storage for all element types except bool

51

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Sequence Container: Deque

template<class T, class Allocator = allocator<T>>
class deque;

• Features
• Supports amortized constant time insert and erase operations at both ends
• Supports linear time insert and erase operations in its middle
• Provides const and mutable random-access iterators
• Provides const and mutable element indexing
• Supports changing element values

52

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Sequence Container: Array

template<class T, size_t N>
class array;

• Features
• Manages a fixed-sized sequence of objects in an internal C-style array
• Provides const and mutable random-access iterators
• Provides const and mutable element indexing
• Supports changing element values
• Uses contiguous storage for all element types

53

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Sequence Container: List

template<class T, class Allocator = allocator<T>>
class list;

• Features
• Supports constant time insert and erase operations anywhere in the sequence
• Provides const and mutable bidirectional iterators
• Supports changing element values
• Provides member functions for splicing, sorting, and merging
• Usually implemented as a doubly-linked list

54

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Sequence Container: Forward List

template<class T, class Allocator=allocator<T>>
class forward_list;

• Features
• Supports constant time insert and erase operations anywhere in the sequence
• Provides const and mutable forward iterators
• Supports changing element values
• Provides member functions for splicing
• Usually implemented as a singly-linked list

55

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Associative Containers: Set

template<class Key,
class Compare = less<Key>,
class Allocator = allocator<Key>>

class set;

• Features
• Supports logarithmic time element lookup
• Elements of type Key are sorted according to Compare
• Element values are unique
• Provides const bidirectional iterators
• Usually implemented as a binary search tree

56

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Associative Container: Multiset

template<class Key,
class Compare = less<Key>,
class Allocator = allocator<Key>>

class multiset;

• Features
• Supports logarithmic time element lookup
• Elements of type Key are sorted according to Compare
• Element values are not unique
• Provides const bidirectional iterators
• Usually implemented as a binary search tree

57

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Associative Container: Map
template<class Key, class Val,

class Compare = less<Key>,
class Allocator = allocator<pair<const Key, Val>>>

class map;

• Features
• Supports logarithmic time lookup of a type Val based on a type Key
• Elements of type pair<const Key, Val> are sorted according

to Compare
• Key values are unique
• Provides const and mutable bidirectional iterators

• Mutable iterators permit the Val member of pair<const Key, Val>
to be modified

• Usually implemented as a binary search tree
• Can be used as an associative array

58

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Associative Container: Multimap
template<class Key, class Val,

class Compare=less<Key>,
class Allocator = allocator<pair<const Key, Val>>>

class multimap;

• Features
• Supports logarithmic time lookup of a type Val based a type Key
• Elements of type pair<const Key, Val> are sorted according

to Compare
• Key values are not unique
• Provides const and mutable bidirectional iterators

• Mutable iterators permit the Val member of pair<const Key, Val>
to be modified

• Usually implemented as a binary search tree
• Can be used as a dictionary

59

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Unordered Associative Container: Unordered Set

template<class Key,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<Key>>

class unordered_set;

• Features
• Supports amortized constant time element lookup
• Elements of type Key are stored internally in an order determined by Hash
• Element values are unique
• Provides const forward iterators
• Implemented as a hash table – Hash helps determine ordering, Pred tests Key equivalence

60

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Unordered Associative Container: Unordered Multiset

template<class Key,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<Key>>

class unordered_multiset;

• Features
• Supports amortized constant time element lookup
• Elements of type Key are stored internally in an order determined by Hash
• Element values are not unique
• Provides const forward iterators
• Implemented as a hash table – Hash helps determine ordering, Pred tests Key equivalence

61

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Unordered Associative Container: Unordered Map

template<class Key, class Val,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, Val>>>

class unordered_map;

• Features
• Supports amortized constant time lookup of a type Val

based on a type Key
• Elements are of type pair<const Key, Val>
• Key values are unique
• Provides const and mutable forward iterators
• Implemented as a hash table – Hash helps determine ordering, Pred tests Key equivalence
• Can be used as an associative array

62

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Unordered Associative Container: Unordered Multimap

template<class Key, class Val,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, Val>>>

class unordered_multimap;

• Features
• Supports amortized constant time lookup of a type Val

based on a type Key
• Elements are of type pair<const Key, Val>
• Key values are not unique
• Provides const and mutable forward iterators
• Implemented as a hash table – Hash helps determine ordering, Pred tests Key equivalence
• Can be used as a dictionary

63

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Container Adaptor: Stack

template<class T, class Container = deque<T>>
class stack;

• Features
• Wrapper type that implements a classic LIFO stack
• Amortized constant time push() and pop() operations
• Constant time access to next element with top()
• Works with vector, deque, list, and forward_list

• Requirements from Container
• Amortized constant time push_back() and pop_back() member functions
• Constant time back() member function

64

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Container Adaptor: Queue

template<class T, class Container = deque<T>>
class queue;

• Features
• Wrapper type that implements a classic FIFO queue
• Amortized constant time push() and pop() operations
• Constant time access to next element with front() and last element with back()
• Works with vector, deque, list, and forward_list

• Requirements from Container
• Amortized constant time push_back() and pop_front() member functions
• Constant time front() and back() member functions

65

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Container Adaptor: Priority Queue

template<class T, class Container = deque<T>>
class priority_queue;

• Features
• Wrapper type that implements a classic priority queue (AKA heap)
• Logarithmic time push() and pop() operations
• Constant time access to next element with top()

• Requirements from Container
• Amortized constant time push_back() and pop_back() member functions
• Constant time front() member function
• Random-access iterators (works with vector and deque)

66

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms

67

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms

• There's large number of algorithms provided by STL (well over 100)
• Multiple versions of almost all
• Parallel implementations of some

• Algorithm categories
• Non-modifying algorithms
• Modifying algorithms
• Removing algorithms
• Mutating algorithms
• Sorting algorithms
• Sorted range algorithms
• Numeric algorithms

68

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms - Declaration of sort

• sort
• Action: Sorts the elements in the range [first, last) in non-descending order; the

order of equivalent elements is not guaranteed to be preserved; Elements are
compared using the given binary comparison function comp

• Complexity: O(N·log(N)), where N = std::distance(first, last) comparisons

69

template<class RandomIter, class Compare>
void
sort(RandomIter first, RandomIter last, Compare comp);

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms - Declaration of lower_bound

• lower_bound
• Action: Returns an iterator pointing to the first element in the range [first, last)

that is not less than (i.e., greater than or equal to) value, or last if no such element is
found

• Complexity: the number of comparisons performed is logarithmic in the distance
between first and last (at most log2(last - first) + O(1) comparisons)

For non-random-access iterators, the number of iterator increments is linear

70

template<class ForwardIter, class T>
ForwardIt
lower_bound(ForwardIter first, ForwardIter last, const T& value);

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Algorithms – A Sample remove_copy_if

• remove_copy_if
• Action: copies elements from the range [first, last), to another range beginning

at dest, omitting the elements which satisfy specific criteria; source and destination
ranges cannot overlap; returns an iterator to the element past the last element copied

• Complexity: exactly std::distance(first, last) applications of the predicate.

71

template<class InputIter, class OutputIter, class UnaryPredicate>
OutputIt
remove_copy_if(InputIter first, InputIter last, OutputIter dest, UnaryPredicate pred)
{

for (; first != last; ++first)
{

if (!pred(*first))
{

*dest++ = *first;
}

}
return dest;

}

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Summary

72

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Summary: Key Principles

• Containers store collections of elements

• Algorithms perform operations upon collections of elements

• Containers and algorithms are entirely independent

• Iterators provide a common unit of information exchange between
containers and algorithms

• STL makes complexity guarantees by specifying interfaces and requirements

73

Container
{e0, e1, e2, …}

Iterator Algorithm

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Summary: On the Brilliance of the STL

• Four important positive qualities
• Speed
• Efficiency
• Extensibility
• Elegance

• The STL separates data structures from algorithms, and ties them together
with iterators

• It is remarkable can be done with only 5 iterator categories

• The underlying ideas have become embedded into our way of thinking

74

CppCon 2021 – Back to Basics: Classic STL Copyright © 2021 Bob Steagall

Thank You for Attending!

75

Talk: github.com/BobSteagall/CppCon2021

Blog: bobsteagall.com

	Back to Basics: Classic STL���
	Overview
	Goals and References
	What is "Classic STL?"
	What is "Classic STL?"
	Slide Number 6
	Rationale
	Rationale
	Slide Number 9
	A Brief STL History
	Generic Programming
	Generic Programming
	A Brief STL History
	Original Design Principles
	Original Design Principles
	Complexity and the Big-O Notation
	Key Principles
	Key Principles
	Complexity and Interfaces
	Containers Overview
	Containers Overview
	Iterators Overview
	Iterators Overview
	Algorithms Overview
	Slide Number 25
	Regarding Iterators	
	Referring to Elements in Arrays
	Referring to Elements in Doubly-Linked Lists
	Referring to Elements in Singly-Linked Lists
	Multi-Pass and Single-Pass Iteration
	Reading Elements (Bytes) From a FILE Stream
	Writing Elements (Bytes) To a FILE Stream
	Iterator Categories
	Iterator Ranges
	Iterator Ranges
	Iterator Ranges
	Iterator Ranges
	Iterator Ranges
	Output Iterators – Write Forward, Single-Pass
	Input Iterators – Read Forward, Single-Pass
	Forward Iterators – Access Forward, Multi-Pass
	Bidirectional Iterators – Access Forward/Backward, Multi-Pass
	Random-Access Iterators – Arbitrary Access, Multi-Pass
	Random-Access Iterators – Arbitrary Access, Multi-Pass
	Iterator Adaptors
	Slide Number 46
	Containers Overview
	Common Container Interface
	Common Container Interface
	Common Bidirectional Container Interface
	Sequence Container: Vector
	Sequence Container: Deque
	Sequence Container: Array
	Sequence Container: List
	Sequence Container: Forward List
	Associative Containers: Set
	Associative Container: Multiset
	Associative Container: Map
	Associative Container: Multimap
	Unordered Associative Container: Unordered Set
	Unordered Associative Container: Unordered Multiset
	Unordered Associative Container: Unordered Map
	Unordered Associative Container: Unordered Multimap
	Container Adaptor: Stack
	Container Adaptor: Queue
	Container Adaptor: Priority Queue
	Slide Number 67
	Algorithms
	Algorithms - Declaration of sort
	Algorithms - Declaration of lower_bound
	Algorithms – A Sample remove_copy_if
	Slide Number 72
	Summary: Key Principles
	Summary: On the Brilliance of the STL
	Slide Number 75

