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1.F(x1,...,%) = F(x2,...,Xx41)
N = the nonnegative integers.

THEOREM 1.Let F:N® —={1,...,r}. There exists x; < ... < Xy
such that F(xy,...,%Xx) = F(Xs, « .., Xx1) «

This is an immediate conse-quence of a more general
combinatorial theorem called Ramsey’s theorem, but it is much
simpler to state. We call this adjacent Ramsey theory.

There are inherent finite estimates here.

THEOREM 1.2. For all k,r there exists t such that the
following holds. Let F:N* — {1,...,r}. There exists x; <
< Xys1 = t such that F(x3,...,%Xx) = F(Xo, o v, Xps1) «

QUESTION: What is the least such t = Adj(k,r)?
THEOREM 1.3. Adj(k,1) = 1. Adj(k,2) = 2k+1.

THEOREM 1.4. Let k = 5. Adj(k,3) is greater than an
exponential stack of k-2 1.5's topped off with k-1. E.qg.,
Adj (6,3) > 10'7%, Adj(7,3) > 107~10'72.

THEOREM 1.5. Adj(k,r) is at most an exponential stack of k-1
2'"s topped off with a rea-sonable function of k and r.

Laziness prevented me from being more precise than this. The
related literature - upper bounds for higher Ramsey numbers -
is virtually all asymptotic, so I can’t just quote it.

Our adjacent Ramsey theory from the 80’s is lurking in the
background in

“Shift graphs and lower bounds on Ramsey numbers ry(l;r),”
Duffus, Lefmann, Rodl, Discrete Mathematics 137 (1995), 177-
187.



2. THE ACKERMAN HIERARCHY

There is a good notation for really big numbers - up to a
point. We use a streamlined version of the Ackerman
hierarchy. Let f:2" — 7" be strictly increasing. We define
the critical function f’:2" — 2% of f by: f’ (n) = the result
of applying £ n times at 1.

For n 2 1, the n-th function of the Ackerman hierarchy is the
result of applying the ’ operator n-1 times starting at the
doubling function.

Thus f; is doubling, f, is exponentiation, f; is iterated
exponentiation; i.e., f3(n) = E*(n) = an exponential stack of

n 2's. £, is confusing.

We can equivalently present this by the recursion equations

fi(n) = 2n, f31(1) = £5(1), fy41(ntl) = £4(fx+1(n)), where k,n 2
1. We define A(k,n) = f,(n).
Note that A(k,1) = 2, A(k,2) = 4. For k = 3, A(k,3) > A(k-

2,k-2), and as a function of k, eventually strictly dominates
each f,, n = 1.

A(3,5) = 2°°°3% Ar(4,3) = 65,536. A(4,4) = E*(65,536). And
A(4,5) is E* (E*(65,536)).

It seems safe to assert, e.g., that A(5,5) is incomprehen-
sibly large. We propose this number as a sort of benchmark.

3. BOLZANO WEIERSTRASS

We start with the usual statement of BW.

THEOREM 3.1. Let x[1],x[2],... be an infinite sequence from
the closed unit interval [0,1]. There exists k; < k; <
such that the subsequence x[k;],x[k;], ... converges.

We can obviously move towards estimations like this:
THEOREM 3.2. Let x[1],x[2],... be an infinite sequence from
the closed unit interval [0,1]. There exists k; < k, <

such that |x[kis]-x[k:i]| < 1/i%, 1 = 1.

But now we shake things up:



THEOREM 3.3. Let x[1],x[2],... be an infinite sequence from
the closed unit interval [0,1]. There exists k; < k; <
such that |x[kijsi]-x[k;]| < 1/ki;%, 1 = 2.

Still true since we can first find a convergent subsequence,
and then make a recursive construction. But note added
combinatorial sophistication.

THEOREM 3.4. Let x[1],x[2],... be an infinite sequence from
the closed unit interval [0,1], and n = 1. There exists k; <
< k, < ?(n) such that |x[ki;;]-x[ki]| < 1/k;1%, 2 =1 = n.

This is proved by compactness of the Hilbert cube.

Now Set ?(n) to be the least integer such that for all
x[1],x[2],... € [0,1], there exists k; < ... < k, < ?2(n) such
that |x[kisi]l-x[kil] < 1/ki1%, 2 = 1 = n-1.

THEOREM 3.5. ?(11) > E*(64). I.e., ?2(11) is greater than an
exponential stack of 64 2’'s. ?(n) > A(n-8,64) for n = 10.
Specifically, ?2(13) > A(5,64). Also, ?(n) > A(n+c,n+c).

4. WALKS IN LATTICE POINTS

Let k 2 1. A walk in N* is a finite or infinite sequence
X1,%X,, ... € N such that the Euclidean distance between
successive terms is exactly 1.

A self avoiding walk in N* is a walk in N* in which no term
repeats.

FEach successive term must be obtained from the preceding term
by leaving all but one coordinate fixed, and moving that one
coordinate up or down by 1.

Let x,y € N*. We say that x points outward to y iff for all 1
=i=sk, x5 = vy;.

Here is a well known result more general than walks.

THEOREM 4.1. For all k = 1, every infinite sequence from N®
has an infinite subsequence in which each term points outward
to the next term.

THEOREM 4.2. Let x € N*. In every sufficiently long finite
self avoiding walk in N* start-ing at x, some term points



outward to a later term which is at least twice the (lattice
or Euclidean) distance from the origin.

Note that the obvious infinite form of 4.2 is an immediate
consequence of 4.1. Then apply compactness or a finitely
branching tree argument.

Now let W(x) be the least n such that:

*in every self avoiding walk in N* of length n starting at x,
some term points outward to a later term which is at least
twice the (lattice or Euclid-ean) distance from the origin*

THEOREM 4.3. W(2,2,2) = 21°2: 9380l "por n > 2, W(n,n,n) =
E*(n-1,192,938,011). wW(1,1,1,1) = E*(102,938,011).
W(2,2,2,2)=z E*E*(102,938,011). There exist constants c,d > 0
such that for all k,n 2 1, A(k,n+c) < W(n,...,n) =< A(k,n+d),
where there are k n’s. Also, W(1,1,1,1,1,1) >> A(5,5).

5. SPECIFIC FINITE TREES

We define some specific finite ordered trees T. An ordered
tree is a triple (V,=,<’') where (V,=) is a finite poset with
a least element (root), in which the set of predeces-sors
under = of each vertex is linearly ordered by =, and where
for each vertex, <’ is a strict linear ordering on its
immediate successors (child-ren). We think of <’ as giving a
left to right sense to the set of children of any vertex.

This defines a notion of left to right among all vertices in
the tree. I.e., x is to the left of y iff x,y are incom-
parable (under =), and if you take the paths from x,y down to
the root, then just before these paths meet, the first path’s
vertex is to the left of the second path’s vertex.

We now define x =* y iff either x is to the left of y or x =
V.

It can be shown that =* is a linear ordering on all verti-
ces, and agrees with depth first search. We let d(v) be the
position of v in =* count-ing from 1. Thus d(root) = 1.

The height of a vertex v is the number of edges in the
longest path from the root to v. Thus the height of the root
is 0. The height of T is the largest of all of the heights of
its vertices.



For k = 0, define T[k] to be the tree of height k in
which every vertex v of height = k-1 has exactly d(v)
children.

THEOREM 5.1 For all k = 0 there is exactly one such ordered
tree T[k] up to isomorphism.

THEOREM 5.2. |T[0]| =1, |T[1]| =2, |T[2]]| = 4, |T[3]| = 14,
IT[4]] > 2%, |T[5]| = E*(27°2795). |T[k]| grows like the
Ackerman function.

6. ALGEBRAIC SUPERSETS

Let k = 1 and F be a field. An algebraic subset of F* is a
subset of F* which is the set of simultaneous zeros of a
finite set of polynomials in the polynomial ring F[xy,...,Xy].

The (presentation) degree of an algebraic set A C FF is
the least d such that A is the set of simultaneous zeros of a
finite set of polynomials in F[X;,...,Xx] whose degrees are
each at most d.

THEOREM 6.1. Let F be a field and k = 1. Every strictly
decreasing sequence of alge-braic subsets of F* is finite.

Proof: Use the Hilbert basis theorem. QED

Let A C F*. For d = 0 we say that A is d-inexact iff every
algebraic superset of A of degree d contains an algebraic
superset of A of degree < d.

THEOREM 6.2. Every subset of F* is d-inexact for some d = 0.
THEOREM 6.3. For each k = 1 there exists r = 0 such that the
following holds. For all fields F, every subset of F* is P-

inexact for some 0 = p = r.

What can we say about the least possible value of r = r(k) as
a function of k? Here is a crude estimate.

THEOREM 6.4. For all k = 7,
Dy s (k-6) = r(k) = Ay (2k).

7. DIVISIBILITY IN FINITE SETS OF POSITIVE INTEGERS

Let k = 0. We say that A is special above k iff A is a set of
positive integers where every element x > k of A divides the



product of all elements y < x of A and does not divide any
element y > x. An empty product is taken to be 1.

E.g., {1,2,3,4} is special above 4 but not special above 3.
{1,2,4,8} is special above 4 but not special above 3.
{1,2,3,6,12} is special above 6 but not special above 5.

THEOREM 7.1. For all k = 1, there are finitely many A which
are special above k. All of them are finite.

We write # (k) for the largest cardinality of any set that is
special above k.

#(0) =1, #(1) =1, #(2) = 2, #(3) =5, #(4) = 8, #(5) = 37,
26,948, #(7) > 27272760, #(11) > E*(1000) = A3(1000),
#(13) > A,(5000) .

=
()
I

THOEREM 7.2. Let k = 7. Then A(t-1,t-1) = #(k) = A(k, k),
where t is the number of primes = k.

8. BLOCKS IN SEQUENCES FROM {1,...,k}

These block subsequence theorems will push us well beyond the
Ackerman rate of growth.

THEOREM 8.1. Let k = 1. There is a longest finite sequence
Xi,...,%, from {1,...,k} such that for no 1 < j = n/2 is
Xiy, ..., Xy; @ subsequence of Xj,...,Xy;5.

For k = 1, let n(k) be the length of this longest finite
sequence.

Paul Sally runs a program for gifted high school students at
the University of Chicago.

He asked them to find n(l), n(2), n(3). They all got n(l) =
3. One got n(2) = 11. Nobody reported much on n(3).

I then started to ask several mathematicians to give an
estimate on n(3), some of them very famous. I got guesses
like this:

60, 100, 150, 200, 300.

They were not in combinator-ics. Recently I asked Lovasz,
telling him about these five guesses. He guessed 20,000.



THEOREM 8.2. n(3) > A(7,184).

Lovasz wins, as his guess is closer to A(7,184) than the
other guesses.

Recall the discussion about A(5,5) being incomprehensibly
large. With the help of computer investigations (with R.
Dougherty), I got:

THEOREM 8.3. n(3) > A(7198, 158386).

A good upper bound for n(3) is work in progress. Crude re-
sult: A(n,n) where n = A(5,5).

Note that this crude upper bound is a short composite of the
Ackerman function with small constants.

The number n(4) is a whole 'nother kettle of fish. Define
A(k) = A(k, k).

THEOREM 8.4. n(4) > AA...A(l), where there are A(187196) A’s.

THEOREM 8.5. The function n(k) eventually dominates every
multirecursive function, but is eventually dominated by their
natural diagonalization up to a constant factor in the
argument. It eventually domin-ates every provably recursive
function of 2 quantifier arithmetic, but is a provably
recursive function of 3 quan-tifier arithmetic. The state-
ment “for all k, n(k) exists" is provable in 3 quantifier
arithmetic but not in 2 quan-tifier arithmetic.

9. REGRESSIVE FUNCTIONS

We now move to yet higher rates of growth which can only be
measured by means of the ordinal &; and the formal system PA
= Peano Arithmetic.

Let F:N* — N'. We say that F is regressive iff for all x €
N*, every coordinate of F(x) is = every coordinate of x.

THEOREM 9.1. Let k,r,p 2 1 and F:N° — N° be regressive. There
is a p element set S C N such that |F[S*]| = k*(p).



Using a finitely branching tree argument or “compactness”
argument, we obtain the following uniformity:

THEOREM 9.2. For all k,r,p there exists t such that the
following holds. Let F:N* — N® be regressive. There is a p
element set S C [0,t] such that |F[S*| = k*(p).

What does the least t look like a function of k,r,p?

THEOREM 9.3. In Theorem 9.2, the least t, as a function of
k,p,r, appears at level &, in the standard transfinite
hierarchy of functions. At k,k,k, it eventually dominates
every <&, recursive function. If we replace N by [0,t] then
we obtain a finite sentence that is not provable in Peano
Arithmetic but provable just beyond it.

10. SOLVABILITY OF INEQUALI-TIES IN NUMERICAL FUNCTIONS

We stay at the rate of growth measured by means of the
ordinal &; and the formal system PA = Peano Arithmetic.

For x,y € N', we write x = y for (Vi) (1l = 1 = k) (x; = Vy;).

THEOREM 10.1. For all k,r = 1 and F:N* — N*, there exists x;
< .. < Xyy41 such that F(xq1,..,%Xx) < F(Xo,.y Xys1) -

The obvious uniformity that we seek is false. We need the
concept of limited function.

We say that F:N° — N* is limited iff for all x € N,

max (F(x)) = max(x).

THEOREM 10.2. For all k,r = 1 there exists t such that the
following holds. Let F:N® — N* be limited. There exists x; <
< Xyy41 = € such that F(x1,...,%x¢x) = F(Xoy ..y Xys1) -

THEOREM 10.3. In Theorem 10.2, the least t, as a function of
k,r, appears at level &, in the standard transfinite
hierarchy of functions. At k,k, it eventually dominates every
<&, recursive function. If we replace N by [0,t] then we
obtain a finite statement that is not provable in PA but
provable just beyond it.

Theorem 10.2 degenerates into a triviality if r = 1.

But we can sharpen the theorem to obtain the conclusion

F(Xlr---rxk) = F(X2I---1Xk+l) = ... = F(Xml---lxkﬂn—l)-



Everything above holds for this sharpening. We can even set r
= 1 and m = 3 and obtain the same results. We get inde-
pendence from PA even for the one dimensional inequality

F(Xlr---rxk) = F(XZI---IXk+l) = F(X3I---1Xm+k+2)-

In this connection, there is a general theory of sets of
inequalities. We don’t have time to go into this here.

11. EMBEDDINGS OF FINITE TREES
Here we make a huge jump in the rates of growth involved.

We will consider finite trees, which are finite partial
orderings with a minimum ele-ment (root), where the prede-
cessors of every vertex are linearly ordered. The valence of
a vertex is the number of its immediate successors
(children) . The valence of T is the largest of the valences
of its vertices. The set of vertices of T is denoted by V(T).

Note that for finite trees T = (V(T),=), and vertices x,y €
V(T), x inf y exists.

Let T; and T, be finite trees. An inf preserving embedding
from T; into T, is a one-one map h:V(T;) — V(T,) such that for
all x,y € V(T1), h(x inf y) = h(x) inf h{(y).

Recall the classic theorem of J.B. Kruskal:

THEOREM 11.1. Let T;,T,,... be an infinite sequence of finite
trees. There exists 1 < j such that T; is inf preserving
embeddable into Tjy.

Best proof: Nash-Williams, “On well-quasi ordering finite
trees,” Proc. Cambridge Phil. Soc., 59 (1963), 833-835.

Let T[=<i] be the subtree con-sisting of all vertices with at
most 1 strict predecessors. Let T[i] be the set of vertices
with exactly i strict predecessors.

THEOREM 11.2. Let k =2 1 and T be a finite tree of valence = k
whose height hgt (T) is suf-ficiently large. There exists 1 =
i < 3 = hgt(T) and an inf preserving embedding from T[<i]
into T[=j] mapping T[i] into T[J].
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For k = 1, let TR(k) be the least number of vertices that T
must have in Theorem 11.2. TR grows so fast that the best way
to describe it’s growth is in terms of formal systems and
proof theoretic ordinals.

There is a fairly well accep-ted formal system for predica-
tive mathematics, where one is forbidden to define sets of
integers by predicates that refer to all sets of integers.

This corresponds to positions advocated by Poincare and Weyl.
The accepted formalism corresponds to the proof theoretic
ordinal IY.

THEOREM 11.3. TR eventually dominates every provably
recursive function of predicative mathematics. TR does not
occur in the usual transfinite hierarchies of functions up
through I'y. It occurs at level 06(Q",0).

What about, say, TR(9)? We have investigated such ques-tions
for the original finite forms of Kruskal's theorem before we
discovered Theorem 11.2. We expect corresponding results for
TR (9) .

Specifically, we expect that any proof within predicative
mathematics of the existence of TR(9) will have incompre-
hensibly many symbols; e.g., more than A(5,5) symbols.

12. PLANE GEOMETRY
This is at the same rates of growth as in section 11.

A circle is taken to be the circumference of a nondegener-ate
circle in the Euclidean plane.

THEOREM 12.1. For all k = 1 there exists n = 1 such that the
following holds. Let C;,C,,...,C, be pairwise disjoint
circles. There exists k =i < J = n/2 and a homeomorphism of
the plane mapping C; U ... U Cy; into Cy U ... U Cys.

THEOREM 12.2. Theorem 12.1 is at the &; and Peano Arithmetic
level.

A p-circle is the union of p circles. (Some of the p circles
may intersect or even be identical).
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THEOREM 12.3. For all k = 1 there exists n = 1 such that the
following holds. Let C;,C,,...,C, be pairwise disjoint k-
circles. There exists 1 =i < J = n/2 and a homeomorphism of
the plane mapping C; U ... U Cy; into Cy U ... U Cys.

THEOREM 12.4. Theorem 12.3 is at the high level of the
previous section that goes be-yond predicative mathematics.

13. TRANSCENDENTAL INTEGERS.

I call an integer n transcendental if and only if the
following holds. Let M be a Turing machine. Assume that M can
be proved to halt at input 0 within ZFC using at most 2'°°°
symbols. Then M halts in = n steps.

Transcendental integers should fall out very naturally and
explicitly in Boolean relation theory. Stay tuned.



