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Abstract

Graph matching (GM), which aims at finding the optimal cor-
respondence between nodes of two given graphs, is a longstand-
ing problem due to its nonconvex objective function and binary
constraints. It arises in many applications, ranging from rec-
ognizing actions to identifying functional orthologs of proteins.
We provide a unifying view for two typical graph matching
formulations: the Koopmans-Beckmann’s QAP (quadratic as-
signment problem) and the Lawler’s QAP. Furthermore, we de-
velop the entropy-regularized Frank-Wolfe (EnFW) algorithm

for optimizing QAPs, which is extremely fast in practice.

A real-world example

Figure 1: Landmarks matching in computer vision. The graphs are constructed
by using Delaunay triangulation. Green lines: correctly matched; Red lines:
incorrectly matched.

Two QAPs for graph matching

(i) Koopmans-Beckmann’s QAP: Maximizing the Frobenius inner
product maximization between two adjacency matrices A; and A, after
permutation, 1.e.,

ImMax <A1X, XA2>F (1)
st. X eP={X {0, 1}""X1=1,X"1=1}.
(ii) Lawler’s QAP: Maximizing the similarity between the node at-

tributes of two graphs and the similarity between the edge attributes of
two graphs,i.e.,

max (K%, X))y + vec(X)! Kvee(X) s.t. X € P, (2)

where K% € R™" is the node affinity matrix, K is an n° X n’ matrix,

deﬁned such that K, jp = kE(qw,qab) if ¢« #£ 7, a # b, e%j
e2, € &, otherwise, K, »=0.
(iii) Note that the set of permutation matrix, P, is usually relaxed as the

set of double stochastic matrix, D = {X € R X 1=1X"1=1}

c &1, and

U+ 2
« U x = € R where [P * B|;; =
W OX, XOWeH™ where [@@X]ijé

i|||g

H—operations for Hilbert arrays

Let H be any Hilbert space, coupled with the inner product (-, -)4 taking values
in R. W is said to be an n x n Hilbert array it W,;; € ‘H, V2,5 = 1,2,...,n. we

make the following addition, transpose, and multiplication rules (H-operations).

Let . &2 € H"*" and let X € R"", then we have
c H"" where [\Il + E]zy £ \Ifz‘j + E@‘j cH.
27/-321 Xk]\Ijzk c H and

X oW, =31 XyP,, € H.

Yy X PYOX

Figure 2: Visualization of the operation ¥ © X

' H”X” H™" — R such that (¥, E)p, =

= e H™". Then (-, ), is an inner

Facts: Define the function (-, -)p,
tf(\I’T x B) = Zj:1<\II’L]7 ‘—‘Z]>7-la VW,

product on H"*".

Kernelized graph matching

Assumption: We assume that the edge affinity function k% : R xR — R
is a kernel. That is, there exist both an RKHS, H, and an (implicit) feature
map, 1 : R — H, such that k%(q*, ¢%) = (W (@), ¥(G))n, Vq', ¢° € R
For any graph Gg={A,V,P,& Q}, we can construct an array, \If c H" "

if (Ui, Uj) cé&

. ,where Oy is the zero vector in H.
otherwise

Equivalent formulation of Lawler’s QAP

Let ¥ and ¥ be the corresponding Hilbert arrays of G, and Gy, respec-
tively. Then the Lawler’s QAP can be written as

min J,,(X) = —(KY, X)p — (¥ o X, X © ¥¥);
convex and concave relaxations:

1
Joox(X) = =(K¥, X)p+ o[ €V 0 X — X © ¥,

s.t. X € P.

H

JcaV(X) —
Path-following strategy:
min J,(X) = (1 — a)Juex(X ) + aJe( X ), a =0: Aa : 1.

{
(KN, X)p — §|\\If<1> OX+X oY} .
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Kernelized Graph Matching (Cont.)

Approximate explicit feature maps: For the kernel &* : R x R —
R, we may find an explicit feature map v : R — R” . such that

Vq.q eRY, (U(q),0(q) = k(q. @) ~ K (@, q).  (3)
For example, if k% (H1 q) = exp(—||@* — ¢*||?), then ¢ is the Fourier
random feature map ¥(q) = \/g[cos(wl q+b1),...,cos(whHq + bpﬂ
w; ~ N (O,fy I) and b; ~ U|0,1]. We obtain a new graph representation
. @2( i) €RPif (v,v;) € E
W,i=1=5 D
0 c R

Similarly, the Lawler’s QAP can be written as

min J,,(X) = —(KY, X)p — (¥V o X, X 0 U¥);

where

. where 0 is the zero vector in RY.

otherwise

Entropy-reglﬂa;ized Frank-Wolfe algdrithm.

Motivation: Hungarian vs Sinkhorn
Hungarian algorithm for min (VJ,(X),Y)r st.Y € D,

Y
Sinkhorn algorithm for min (VJo(X), Y)p+ AH(Y) st.Y €D.
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Figure 3: Comparison between the run-times of Hungarian and Sinkhorn.

Entropy-regularized Frank-Wolfe algorithm (Cont.)

In this work, instead of minimizing J,(X), we consider the following entropy-
regularized QAP,

min FX)=JJ(X)+ M H(X) st. X €D,

The observation is that if A is set to be small enough, the solution of the
above problem will approximate that of minimizing J,(X') as much as possible.
With the entropy-regularized Frank-Wolfe algorithm, in each outer iteration,
we need to solve the following nonlinear problem

min (VJ,(X), Y)p+ NH(Y) st.Y €D, (4)
which can be extremely efficiently solved by the Sinkhorn algorithm.

Experimental results

(1). For the synthetic graph dataset

PM —e—RRWM —#—FGM —9p—KerGM;;

——IPFP —=—SMAC

o
oo
T

o
T
o
T

>

T
o o
~

Accuracy
o (@)
Accuracy

~
| T
O 1 1 1 1 I

0 10 20 30 40 50 0 0.04 0.08 0.12 0.16 0.2
outliers noise

1} >—p

o
oo
T

o o
o

IS
T

Accuracy

o
N

o

U | 1 1 1 1 1 1 I 1 1 1
0.3 04 0.5 06 07 08 09 1 50 100 200 500 1000 2000
density # nodes

Figure 4: Matching results on synthetic graph dataset.

(2). For the protein-protein interaction (PPT) network dataset
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Figure 5: Matching results on the S.cerevisiae (yeast) PPl network.



