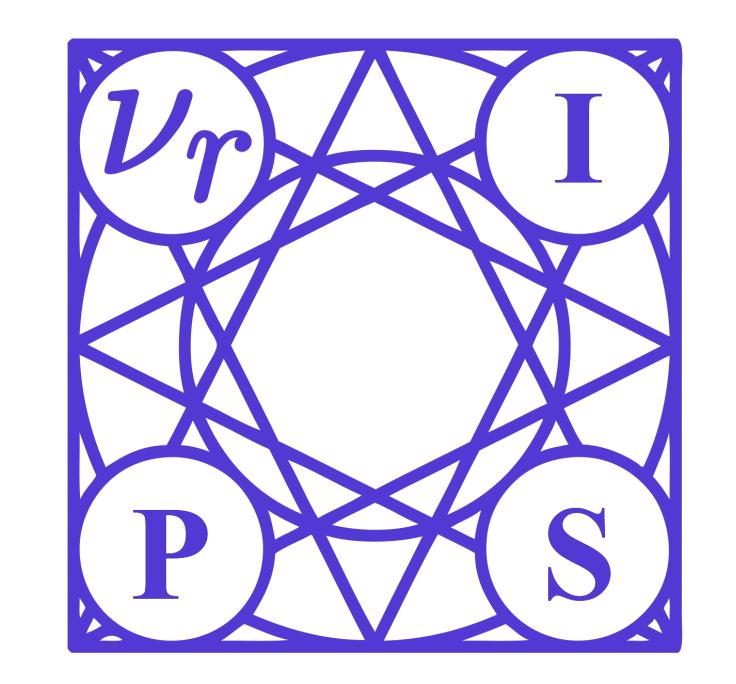


KerGM: Kernelized Graph Matching

Zhen Zhang¹, Yijian Xiang¹, Lingfei Wu², Bing Xue¹, Arye Nehorai¹

Washington University in St. Louis, ²IBM Research



Abstract

Graph matching (GM), which aims at finding the optimal correspondence between nodes of two given graphs, is a longstanding problem due to its nonconvex objective function and binary constraints. It arises in many applications, ranging from recognizing actions to identifying functional orthologs of proteins. We provide a unifying view for two typical graph matching formulations: the Koopmans-Beckmann's QAP (quadratic assignment problem) and the Lawler's QAP. Furthermore, we develop the entropy-regularized Frank-Wolfe (EnFW) algorithm for optimizing QAPs, which is extremely fast in practice.

A real-world example

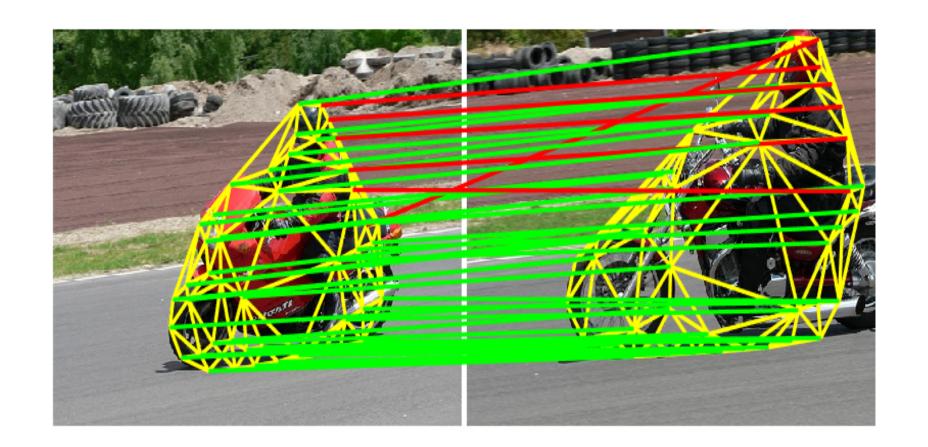


Figure 1: Landmarks matching in computer vision. The graphs are constructed by using Delaunay triangulation. Green lines: correctly matched; Red lines: incorrectly matched.

Two QAPs for graph matching

(i) **Koopmans-Beckmann's QAP**: Maximizing the Frobenius inner product maximization between two adjacency matrices A_1 and A_2 after permutation, i.e.,

$$\max \langle \mathbf{A}_1 \mathbf{X}, \mathbf{X} \mathbf{A}_2 \rangle_{\mathrm{F}}$$
s.t. $\mathbf{X} \in \mathcal{P} = \{ \mathbf{X} \in \{0, 1\}^{n \times n} | \mathbf{X} \vec{\mathbf{1}} = \vec{\mathbf{1}}, \mathbf{X}^T \vec{\mathbf{1}} = \vec{\mathbf{1}} \}.$ (1)

(ii) **Lawler's QAP**: Maximizing the similarity between the node attributes of two graphs and the similarity between the edge attributes of two graphs,i.e.,

$$\max \langle \boldsymbol{K}^N, \boldsymbol{X} \rangle_{\mathrm{F}} + \mathrm{vec}(\boldsymbol{X})^T \boldsymbol{K} \mathrm{vec}(\boldsymbol{X}) \quad \text{s.t. } \boldsymbol{X} \in \mathcal{P}, \tag{2}$$

where $\mathbf{K}^N \in \mathbb{R}^{n \times n}$ is the node affinity matrix, \mathbf{K} is an $n^2 \times n^2$ matrix, defined such that $\mathbf{K}_{ia,jb} = k^E(\mathbf{\vec{q}}_{ij}^1, \mathbf{\vec{q}}_{ab}^2)$ if $i \neq j$, $a \neq b$, $e_{ij}^1 \in \mathcal{E}_1$, and $e_{ab}^2 \in \mathcal{E}_2$, otherwise, $\mathbf{K}_{ia,jb} = 0$.

(iii) Note that the set of permutation matrix, \mathcal{P} , is usually relaxed as the set of double stochastic matrix, $\mathcal{D} = \{ \mathbf{X} \in \mathbb{R}^{n \times n}_+ | \mathbf{X}\vec{\mathbf{1}} = \vec{\mathbf{1}}, \mathbf{X}^T\vec{\mathbf{1}} = \vec{\mathbf{1}} \}$

\mathcal{H} -operations for Hilbert arrays

Let \mathcal{H} be any Hilbert space, coupled with the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ taking values in \mathbb{R} . Ψ is said to be an $n \times n$ Hilbert array if $\Psi_{ij} \in \mathcal{H}$, $\forall i, j = 1, 2, ..., n$. we make the following addition, transpose, and multiplication rules (\mathcal{H} -operations). Let $\Psi, \Xi \in \mathcal{H}^{n \times n}$, and let $X \in \mathbb{R}^{n \times n}$, then we have

- $\Psi + \Xi$, $\Psi^T \in \mathcal{H}^{n \times n}$, where $[\Psi + \Xi]_{ij} \triangleq \Psi_{ij} + \Xi_{ij} \in \mathcal{H}$.
- $\Psi * \Xi \in \mathbb{R}^{n \times n}$, where $[\Psi * \Xi]_{ij} \triangleq \sum_{k=1}^{n} \langle \Psi_{ik}, \Xi_{kj} \rangle_{\mathcal{H}} \in \mathbb{R}$.
- $\Psi \odot X$, $X \odot \Psi \in \mathcal{H}^{n \times n}$, where $[\Psi \odot X]_{ij} \triangleq \sum_{k=1}^{n} X_{kj} \Psi_{ik} \in \mathcal{H}$ and $[X \odot \Psi]_{ij} \triangleq \sum_{k=1}^{n} X_{ik} \Psi_{kj} \in \mathcal{H}$.

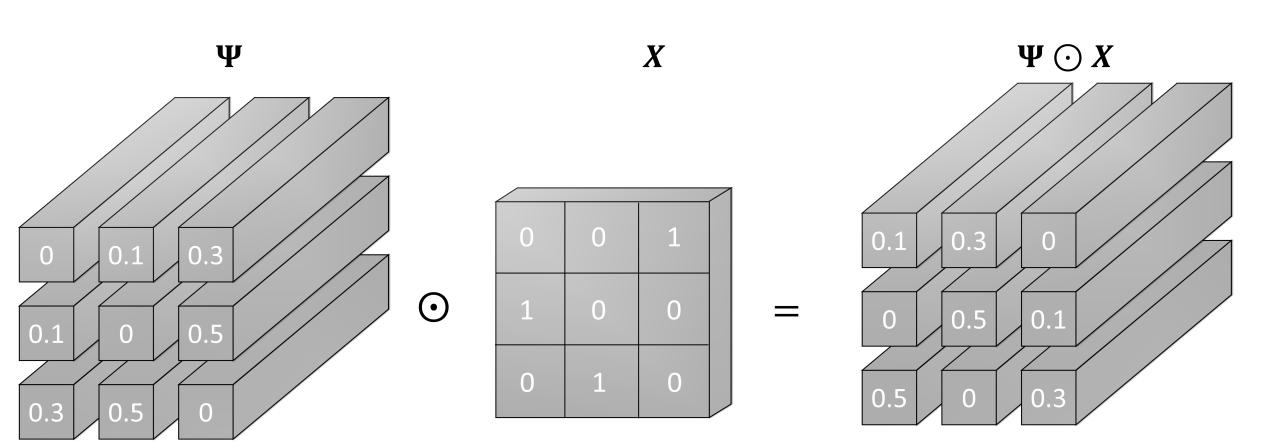


Figure 2: Visualization of the operation $\Psi \odot X$.

Facts: Define the function $\langle \cdot, \cdot \rangle_{\mathcal{F}_{\mathcal{H}}} : \mathcal{H}^{n \times n} \times \mathcal{H}^{n \times n} \to \mathbb{R}$ such that $\langle \Psi, \Xi \rangle_{\mathcal{F}_{\mathcal{H}}} \triangleq \operatorname{tr}(\Psi^T * \Xi) = \sum_{i,j=1}^n \langle \Psi_{ij}, \Xi_{ij} \rangle_{\mathcal{H}}, \ \forall \Psi, \ \Xi \in \mathcal{H}^{n \times n}$. Then $\langle \cdot, \cdot \rangle_{\mathcal{F}_{\mathcal{H}}}$ is an inner product on $\mathcal{H}^{n \times n}$.

Kernelized graph matching

Assumption: We assume that the edge affinity function $k^E : \mathbb{R}^{d_E} \times \mathbb{R}^{d_E} \to \mathbb{R}$ is a kernel. That is, there exist both an RKHS, \mathcal{H} , and an (implicit) feature map, $\psi : \mathbb{R}^{d_E} \to \mathcal{H}$, such that $k^E(\vec{q}^1, \vec{q}^2) = \langle \psi(\vec{q}^1), \psi(\vec{q}^2) \rangle_{\mathcal{H}}, \forall \vec{q}^1, \vec{q}^2 \in \mathbb{R}^{d_E}$. For any graph $\mathcal{G} = \{A, \mathcal{V}, P, \mathcal{E}, Q\}$, we can construct an array, $\Psi \in \mathcal{H}^{n \times n}$:

$$\Psi_{ij} = \begin{cases} \psi(\vec{q}_{ij}) \in \mathcal{H}, & \text{if } (v_i, v_j) \in \mathcal{E} \\ 0_{\mathcal{H}} \in \mathcal{H}, & \text{otherwise} \end{cases}, \text{ where } 0_{\mathcal{H}} \text{ is the zero vector in } \mathcal{H}.$$

Equivalent formulation of Lawler's QAP

Let $\Psi^{(1)}$ and $\Psi^{(2)}$ be the corresponding Hilbert arrays of \mathcal{G}_1 and \mathcal{G}_2 , respectively. Then the Lawler's QAP can be written as

min
$$J_{\rm gm}(\boldsymbol{X}) = -\langle \boldsymbol{K}^N, \boldsymbol{X} \rangle_{\rm F} - \langle \boldsymbol{\Psi}^{(1)} \odot \boldsymbol{X}, \boldsymbol{X} \odot \boldsymbol{\Psi}^{(2)} \rangle_{\rm F_{\mathcal{H}}}$$
 s.t. $\boldsymbol{X} \in \mathcal{P}$. convex and concave relaxations:

$$J_{ ext{vex}}(\boldsymbol{X}) = -\langle \boldsymbol{K}^N, \boldsymbol{X} \rangle_{ ext{F}} + \frac{1}{2} \| \boldsymbol{\Psi}^{(1)} \odot \boldsymbol{X} - \boldsymbol{X} \odot \boldsymbol{\Psi}^{(2)} \|_{ ext{F}_{\mathcal{H}}}^2$$
 $J_{ ext{cav}}(\boldsymbol{X}) = -\langle \boldsymbol{K}^N, \boldsymbol{X} \rangle_{ ext{F}} - \frac{1}{2} \| \boldsymbol{\Psi}^{(1)} \odot \boldsymbol{X} + \boldsymbol{X} \odot \boldsymbol{\Psi}^{(2)} \|_{ ext{F}_{\mathcal{H}}}^2.$

Path-following strategy:

$$\min J_{\alpha}(\boldsymbol{X}) = (1 - \alpha)J_{\text{vex}}(\boldsymbol{X}) + \alpha J_{\text{cav}}(\boldsymbol{X}), \alpha = 0 : \Delta\alpha : 1.$$

Kernelized Graph Matching (Cont.)

Approximate explicit feature maps: For the kernel $k^E : \mathbb{R}^{d_E} \times \mathbb{R}^{d_E} \to \mathbb{R}$, we may find an explicit feature map $\hat{\psi} : \mathbb{R}^{d_E} \to \mathbb{R}^D$, such that

$$\forall \vec{q}^1, \vec{q}^2 \in \mathbb{R}^{d_E}, \ \langle \hat{\psi}(\vec{q}^1), \hat{\psi}(\vec{q}^2) \rangle = \hat{k}^E(\vec{q}^1, \vec{q}^2) \approx k^E(\vec{q}^1, \vec{q}^2). \tag{3}$$
For example, if $k^E(\vec{q}^1, \vec{q}^2) = \exp(-\gamma ||\vec{q}^1 - \vec{q}^2||_2^2)$, then $\hat{\psi}$ is the Fourier random feature map $\hat{\psi}(\vec{q}) = \sqrt{\frac{2}{D}} \left[\cos(\omega_1^T \vec{q} + b_1), ..., \cos(\omega_D^T \vec{q} + b_D) \right]^T$, where $\omega_i \sim N(\vec{0}, \gamma^2 I)$ and $b_i \sim U[0, 1]$. We obtain a new graph representation $\hat{\Psi} \in (\mathbb{R}^D)^{n \times n}$:

$$\hat{\boldsymbol{\Psi}}_{ij} = \begin{cases} \hat{\psi}(\vec{\boldsymbol{q}}_{ij}) \in \mathbb{R}^D, & \text{if } (v_i, v_j) \in \mathcal{E} \\ \vec{\boldsymbol{0}} & \in \mathbb{R}^D, & \text{otherwise} \end{cases}, \text{ where } \vec{\boldsymbol{0}} \text{ is the zero vector in } \mathbb{R}^D.$$

Similarly, the **Lawler's QAP** can be written as

$$\min \ J_{\text{gm}}(\boldsymbol{X}) = -\langle \boldsymbol{K}^N, \boldsymbol{X} \rangle_{\text{F}} - \langle \hat{\boldsymbol{\Psi}}^{(1)} \odot \boldsymbol{X}, \boldsymbol{X} \odot \hat{\boldsymbol{\Psi}}^{(2)} \rangle_{\text{F}_{\mathcal{H}}} \quad \text{s.t. } \boldsymbol{X} \in \mathcal{P}.$$

Gradient Computation

$$\nabla J_{\alpha}(\boldsymbol{X}) = (1 - 2\alpha) \left[(\hat{\boldsymbol{\Psi}}^{(1)} * \hat{\boldsymbol{\Psi}}^{(1)}) \boldsymbol{X} + \boldsymbol{X} (\hat{\boldsymbol{\Psi}}^{(2)} * \hat{\boldsymbol{\Psi}}^{(2)}) \right]$$
$$- 2(\hat{\boldsymbol{\Psi}}^{(1)} \odot \boldsymbol{X}) * \hat{\boldsymbol{\Psi}}^{(2)} - \boldsymbol{K}^{N},$$

where

$$(\hat{\mathbf{\Psi}}^{(1)} * \hat{\mathbf{\Psi}}^{(1)}) \mathbf{X} = \sum_{i=1}^{D} \hat{\mathbf{\Psi}}^{(1)}(:,:,i) \hat{\mathbf{\Psi}}^{(1)}(:,:,i) \mathbf{X},$$

$$\mathbf{X}(\hat{\mathbf{\Psi}}^{(2)} * \hat{\mathbf{\Psi}}^{(2)}) = \sum_{i=1}^{D} \mathbf{X} \hat{\mathbf{\Psi}}^{(2)}(:,:,i) \hat{\mathbf{\Psi}}^{(2)}(:,:,i),$$
and
$$(\hat{\mathbf{\Psi}}^{(1)} \odot \mathbf{X}) * \hat{\mathbf{\Psi}}^{(2)} = \sum_{i=1}^{D} \hat{\mathbf{\Psi}}^{(1)}(:,:,i) \mathbf{X} \hat{\mathbf{\Psi}}^{(2)}(:,:,i).$$

Entropy-regularized Frank-Wolfe algorithm.

Motivation: Hungarian vs Sinkhorn

Hungarian algorithm for $\min_{\boldsymbol{Y}} \langle \nabla J_{\alpha}(\boldsymbol{X}), \boldsymbol{Y} \rangle_{F}$ s.t. $\boldsymbol{Y} \in \mathcal{D}$, Sinkhorn algorithm for $\min_{\boldsymbol{Y}} \langle \nabla J_{\alpha}(\boldsymbol{X}), \boldsymbol{Y} \rangle_{F} + \lambda H(\boldsymbol{Y})$ s.t. $\boldsymbol{Y} \in \mathcal{D}$.

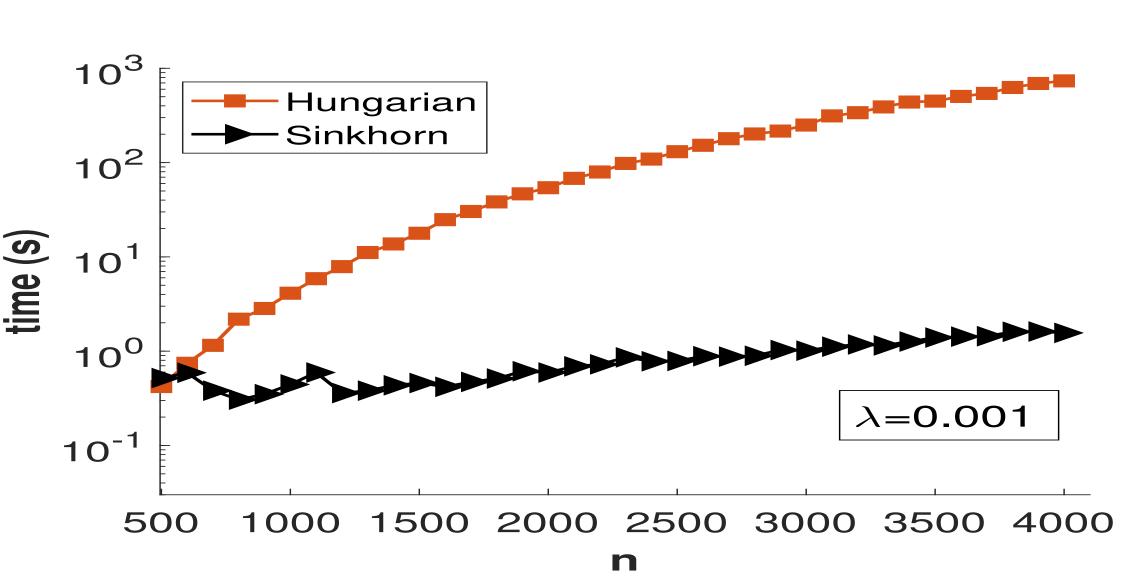


Figure 3: Comparison between the run-times of Hungarian and Sinkhorn.

Entropy-regularized Frank-Wolfe algorithm (Cont.)

In this work, instead of minimizing $J_{\alpha}(\mathbf{X})$, we consider the following entropy-regularized QAP,

$$\min_{\mathbf{X}} F_{\alpha}(\mathbf{X}) = J_{\alpha}(\mathbf{X}) + \lambda H(\mathbf{X}) \quad \text{s.t. } \mathbf{X} \in \mathcal{D},$$

The observation is that if λ is set to be small enough, the solution of the above problem will approximate that of minimizing $J_{\alpha}(\mathbf{X})$ as much as possible. With the entropy-regularized Frank-Wolfe algorithm, in each outer iteration, we need to solve the following nonlinear problem

$$\min \langle \nabla J_{\alpha}(\boldsymbol{X}), \boldsymbol{Y} \rangle_{\mathrm{F}} + \lambda H(\boldsymbol{Y}) \quad \text{s.t. } \boldsymbol{Y} \in \mathcal{D}_{n},$$
 (4)

which can be extremely efficiently solved by the Sinkhorn algorithm.

Experimental results

(1). For the synthetic graph dataset

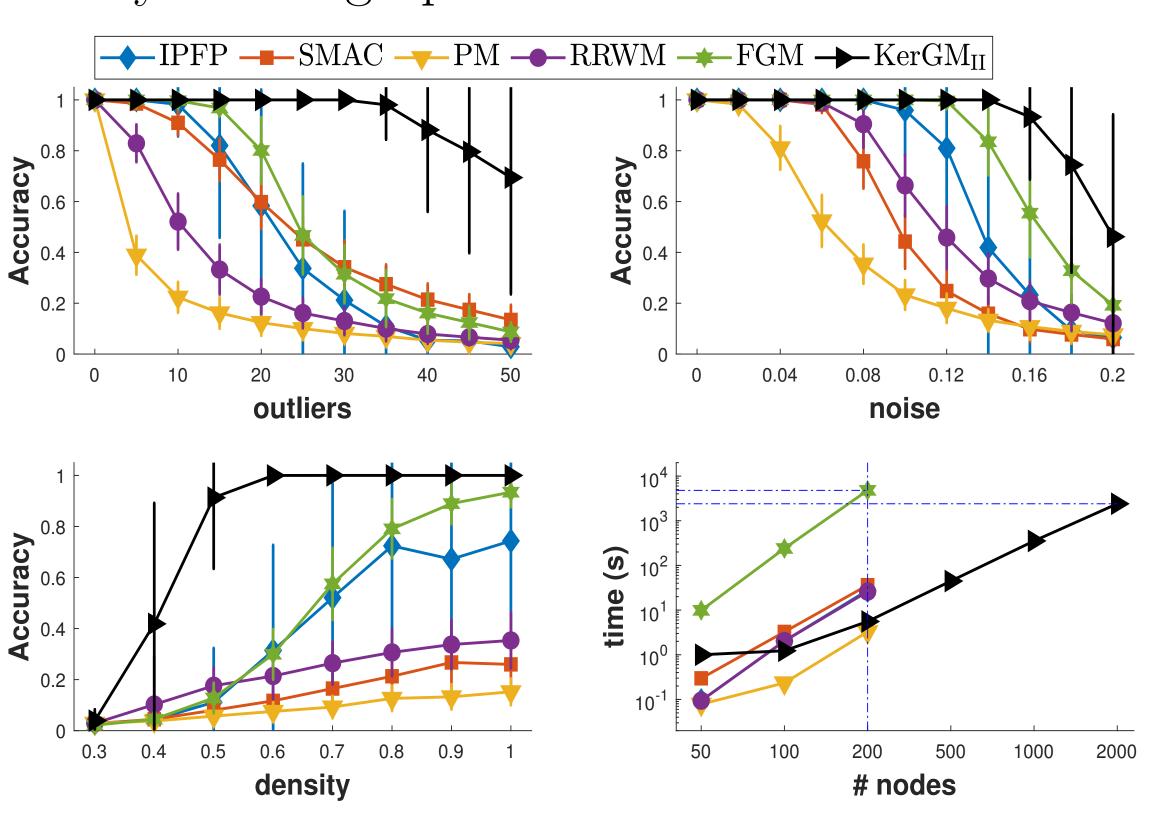


Figure 4: Matching results on synthetic graph dataset.

(2). For the protein-protein interaction (PPI) network dataset

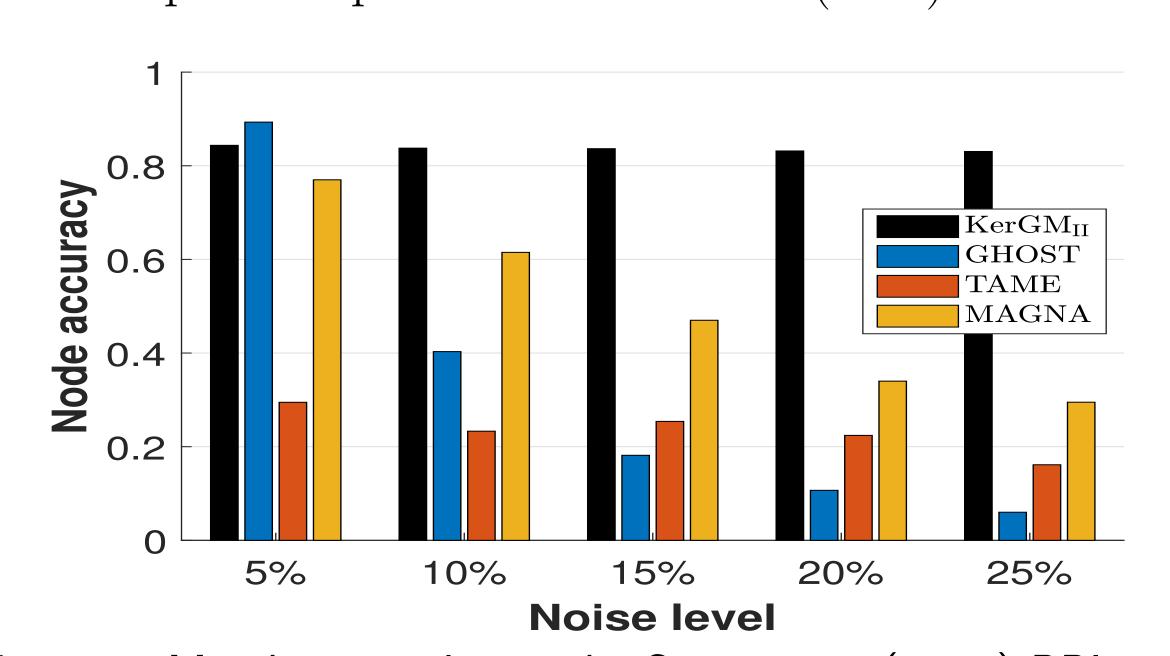


Figure 5: Matching results on the S.cerevisiae (yeast) PPI network.