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Abstract

This document details the methodology of the Los Alamos National Laboratory COVID-19

forecasting model, COFFEE (COVID-19 Forecasts using Fast Evaluations and Estimation).!

COFFEE Methodology

COFFEE is a probabilistic model that forecasts daily reported cases and deaths of COVID-

19. COFFEE is fit to geographic regions independently, facilitating parallelization for fast

computations.

Notation

t indexes time, where ¢ is the number of days from a reference starting date (index)

T is the day of the last observation (index)

K is the forecast window size, in days (index)

Ye,t is the number of reported cases of COVID-19 on day t as reported on the COVID-19
Dashboard by the Centers for Systems Science Engineering (CSSE) at Johns Hopkins
University (JHU) (observable)

Ye,t = 23:1 Ye,; 1s the cumulative number of reported cases of COVID-19 through day
t as reported by CSSE at JHU (observable)

Ya,+ is the number of reported deaths of COVID-19 on day t as reported by CSSE at
JHU (observable)

I Approved for unlimited release and assigned number LA-UR-20-28630
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® gt = Z;Zl Yd,; is the cumulative number of reported deaths of COVID-19 through day
t as reported by CSSE at JHU (observable)

e §.: is the underlying number of reported cases on day ¢ (unobservable)

° Scyt = 22:1 dc,j is the underlying number of cumulative reported cases through day ¢
(unobservable)

e Jg.¢ is the underlying number of reported deaths on day ¢ (unobservable)

. Sd’t = Z;-:l 04,5 is the underlying number of cumulative reported deaths through day ¢
(unobservable)

® 05,0 is the underlying number of susceptible individuals at the start of the pandemic
(unobservable)

® 051 =0s,0— (.S'C,t is the underlying number of susceptible individuals on day ¢ (unobserv-
able)

We use the convention that bolded quantities are vectors and unbolded quantities are

scalars. For concreteness, y.: is a scalar while yc 1.t = (Ye,1,Ye,2, - - -, yc,t)' is a t x 1 vector.

Cases Model

Let

Ye,t

ety a0~ NB <5c,t, 5“) (1)
o

where NB(a,b) is a Negative-Binomial model with mean parameter a > 0 and size parameter

b > 0 where

E(yc,t|6c,t7 a) - 6c,t (2)

Var(ye,t|0c,t, @) = dc,t(1 4 ). (3)

Figure 1 shows the daily reported cases for New Mexico, the United States (US), and
France. All three regions have gone through rising and declining periods of cases with various
levels of noise in the reported cases.

In what follows, we outline the steps COFFEE takes to produce forecasts of reported

cases.

Step 1: Identify and Adjust Outliers

COFFEE automatically identifies and adjusts outliers. It runs five different outlier detection
algorithms on the reported data, taking into account possible day-of-week (DOW) effects. A
datum is declared an outlier if three or more of the five detection algorithms identify that
datum as an outlier. The outliers are not removed, but rather adjusted to ensure all values
are non-negative. Figure 2 shows the result of this process on daily cases for New Mexico, the

US, and France. All subsequent modeling steps are conducted with outlier adjusted data.
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Figure 1: The daily reported cases of COVID-19 for New Mexico, the US, and France.
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Figure 2: The reported daily cases of COVID-19 (top) and the outlier adjusted daily cases (bot-

tom). (Top) Magenta points were identified as outliers. (Bottom) Magenta points are the adjusted

outliers.

Step 2: Compute the Empirical Growth Rate, &;

The model for the underlying number of reported daily cases, d.¢, is a dynamic susceptible-

infectious (SI) model, where

5s,t - 5s,t—1 - 6c,t

5c,t - Se,t—l + 5c,t7
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and

Os,t—

N S (6)

6c,t = Kt
s,0

The quantity 5c,t_1 is the cumulative number of underlying cases on day t — 1, 556’5% is the
proportion of the population still susceptible at time ¢t — 1, and x; is the growth rate on day

t.

6s,t71
95,0

s

~
~

When

1 (when most of the susceptible population is still susceptible), we can

rearrange Equations 4, 5, and 6 to identify a crude estimator of x;:

(25

Ry | Yot
Estimates for x; are shown in Figure 3. It is clear that & is dynamic and changes over time.

- 7
Ye,t—1 ( )
This is what makes forecasting COVID-19 so challenging; parameters of epidemiologically-
motivated models are dynamic and forecasting with them requires anticipating how these dy-
namic parameters will change in the future, not just tracking where they have been in the past.

In what follows, we describe how we forecast &:.
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Figure 3: Ry starting in May for New Mexico, the US, and France.
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Step 3: Compute i; = logit(k:)

After the initial portion of the outbreak, 4; is almost always between 0 and 1. COFFEE logit
transforms k¢, where logit(p) = log(p/(1 — p)) for p € (0,1). For all days with no reported
cases, kx = 0, an incompatible value with the logit transform. Thus, we compute k; =

logit(#¢) as follows:
logit(#+¢) if ke >1.and Ay <1 —7¢
ki = 1 logit(r.) if Aoy < 7e (8)
logit(l —7.) if ke >1—7e,

where 7. = 0.95 * min({&:|&: > 0}), ensuring that if &, > Ry, then &f > &;,. The logit

transformed & are shown in Figure 4.
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Figure 4: The quantities A} starting in May for New Mexico, the US, and France.

Step 4: Split Data into Training and Testing Sets

Let T be the last observed day. We only consider the last 42 days of data when fitting a
model for £} and split those days into training and testing data. Days T — 41 through T — 14
constitute the training data, while 7" — 13 through T constitutes the testing data. We will
denote the last day of the training data by T%*® = T — 14. The splits are shown for New

Mexico, the US, and France in Figure 5.

s~trend

Step 5: Compute A;

We fit a weighted regression to the training data, where we downweight influential points that
could have an outsized influence on the regression using the inverse of Cook’s distance. The

regression has a linear trend over time and a DOW effect:

ki = Bo + Bit + B1(t = Monday) + Bs1(t = Tuesday) + ... + B7I(t = Saturday).  (9)
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Figure 5: The quantities &} for New Mexico, the US, and France. Circles are training data, left

of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical

line.
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Variable selection is performed, potentially resulting in a subset of the model parameters in

Equation 9. We refer to the fits and predictions from this linear model as 4" where

A = By + Bit + Bal(t = Monday) + Bs1(t = Tuesday) + . .. 4 B71(t = Saturday)  (10)

where, if a variable was removed during the variable selection phase, then the corresponding

B is set equal to 0. Figure 6 shows &{"? for the training and testing windows.
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Figure 6: The quantities &} for New Mexico, the US, and France. Circles are training data, left

of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical

line. Solid line represents the fits (train) and predictions (test) of #{"*"? based on the regression.
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r.constant

Step 6: Compute A§

There is a &: trajectory corresponding to a constant new number of cases day over day. Let

Ttraiu
_ 1
Ye,irain = 7 E Ye,t (11)
t=Ttrain_g

be the average number of daily reported cases over the last week of the training window.

Then
Gup — i B
l%gonstant _ loglt (yc,Ttrain |:( s,0 ; yOc,tfl ) yg,t—1:| )
s,

= 0.55N, where N is the population of the forecasted region and 0.55

(12)

where we set Js,0
is a nominal attack rate for COVID-19. Figure 7 shows A§°"'a"t for ¢ = T%*" 4 k and
kel,2,...,14.
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Figure 7: The quantities #; for New Mexico, the US, and France. Circles are training data, left of
the vertical dashed line, while testing data are the triangles to the right of the dashed vertical line.
Solid line represents the values of £§°"$%#1 the trajectory corresponding to a constant number of

new reported cases, equal to y perain.

Step 7: Compute a Joint Probability Distribution over Tuning Parameters

The form of the forecasting model for #f°reeast jg

‘%iorecast (77,(’-)7 ¢) _ At(‘b) [wtmin(n*, ‘%zrend) + (1 _ wt)l%gonstant-&-DOW] (13)

for t = T 4 L and k € 1,2,...,14. The objective is to produce forecasts for #;. The way
COFFEE does this is be creating a blended combination of 4" and &SPt +POW where

~constant+DOW ~constant
Ky =Ky +

Bo1(t = Monday) + f31(t = Tuesday) + ... + B71(t = Saturday), (14)

which is 45°"5**2* with the DOW effects estimated in Equation 10 added.
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There are three tuning parameters in Equation 13, each playing a role in controlling the

form of ’%gorecast

The first tuning parameter 7 puts a cap on how large #'™"? can get. A forecast can blow
up if A" is growing in an unmitigated fashion. The parameter 7 is a safeguard against this
unmitigated growth. We set

1" = median({R7wrain _g, Rptrain sy « - « y Ropteain 1)1 (15)

for n € [0,1].

The second tuning parameter is w. The basic form of the forecasting model is to transition
from a forecast that relies on the current trend "™ to a forecast that relies on ggoRstart+DOW,

If &t is trending up, this transition keeps the forecasts from blowing up. If #*" is trending

down, this transition keeps the forecasts from flat-lining at 0 new cases. The assumption
behind this modeling choice is that, as cases are going up, people will take action to curb
the growth of the pandemic, either through independent choices of personal responsibility or
governmental policies. As cases are going down, however, we assume policies will be relaxed
or people will become more comfortable engaging in activities that will increase transmission

pathways. The tuning parameter w > 1 determines how quickly the forecast transitions from

girend ¢4 RfO“Stant"'DOW. The closer w is to 0, the quicker the transition occurs.
2
1- (’y) ifk<w+1
Wrptrain 4 g = (16)
0 otherwise

where k is a positive integer. Figure 8 shows weight trajectories w; for various choices of

w. When wptain g, = 1, all weight is on girends when Wrtrain = 0, all weight is on

~constant+DOW
Ry .

The third tuning parameter is ¢. The trajectory A; is defined as

¢—1
)\T(:rain+k =1 + kT, (17)

a linear trend starting at 1 when £ = 0. The tuning parameter ¢ > 0 determines whether
Aptrain, trends up (¢ > 1) or down (¢ < 1). Examples of Aptrain,, are shown in Figure 9.

sforecast

For a combination of 7, w, and ¢, we compute &; (n,w, ¢) and compute the inverse-

distance between the inverse-logit of 4°7°°®* (5, w, #) and & over the test period:

Ttrain+14 2\ —1
dl(n,w,as)—( > [logit1(ﬁz€°fe°a“(n,w,¢>>)—m]> : (18)

t:Ttrain+1
Finally we compute a joint probability distribution over 7, w, and ¢ as the normalized
inverse-distance. The probability distributions for New Mexico, the US, and France are shown

in Figure 10.



92

93

o4

95

96

97

1.00 1
w
0.754
— 1
— 5
£ 0.504 — 10
— 15
— 20
0.25 — 25
0.004
1 2 3 4 5 6 7 8 9 10 11 12 13 14
k
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Figure 9: The trajectories Aptrain yj, for different values of ¢. For ¢ less than 1, Apirainyy tilts the

/%gonStanHDOW up. When ¢ is greater than 1, Apeainy, tilts it

down.

Step 8: Produce the Reported Cases Forecast

The final step is to simulate reported cases. The purpose of the previous steps was to get a

joint probability distribution over the tuning parameters that can be used to sample from.
If more than 14 of the last 28 days had zero reported cases, we take independent and

identically distributed (iid) samples of future reported cases from the empirical distribution

of outlier adjusted reported cases over the last 28 days. If no cases were reported over the
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Figure 10: (Top) 4; for the training period (circles) and testing period (triangles). Lines in the

testing period are #{°T°°8s*. Each line corresponds to a combination of 7, w, and ¢. The color of the
line is proportional to d~!

kforecast and £F in the test set. (Bottom) The normalized inverse-distance values for w (x-axis), ¢

(y-axis), and n (panels). Darker tiles correspond to larger inverse-distances.

last 28 days, we sample future reported cases as iid Bernoulli draws with success probability

equal to 1/29. If 14 or more of the last 28 days observed at least 1 reported case, we simulate

RSt for k € 1,2, ..., K by doing the following:

1.

® N o W

Do Step 5, treating the training data as days T to T — 27, resulting in a fitted linear

model in the form of Equation 9. Use this to compute #FS5.

~constant+DOW
+k

Do Step 6 to compute A7 , replacing T%#" with T in Equations 11 and 12.

Draw a vector of (w, ¢,n) from the joint distribution computed in Step 7.

~forecast

Compute A% following Equation 13.

Compute logit ™" (A51502").

Draw an attack rate p ~ Uniform(0.4,0.7) and set 62’3“'&“ =pN.

IN . f t .

Set §c,T = Y, and §s,T = 50558 — Ye, T
For k =1,2,..., K, compute

£ t 1 af N I ¢

orecas orecas s — orecas
(a‘) 66 ,T+k IOglt ( T+Ek ) 5fo(r)ecast 5C,T+k—1

s,

forecast “forecast forecast
(b) 5 =4t b1 Ok

forecast forecast forecast
( ) 6 - 63 JT+k—1 6c,T+k:

£ t
forecast | forecast 2 forecast 5;%—?—?}: A . . .

Draw y. [0 745", & ~ NB| 0.075%", ==~ | where & is the maximum likelihood
estimate.

10

(n,w, ¢) with darker lines corresponding to better agreement between
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Figure 11 shows the forecasts for New Mexico, the US, and France.
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Figure 11: The median (black line) and 50% and 80% prediction intervals (ribbons) for New

Apr Jul Oct

Mexico, the US, and France for daily reported cases.
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Deaths Model

Figure 12 shows the daily deaths for New Mexico, the US, and France.
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Figure 12: Daily reported deaths for New Mexico, the US, and France.
The COFFEE deaths model is
(19)

118

119
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123
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126

5d,t = ’th(éc,ltt7 l/)

where ~; is the case fatality ratio and f(dc,1.¢,v) is a moving average of dc 1.+ with window

size equal to v:

1
f(dce,v) = >

The deaths model proceeds with the following steps.

Step 1: Identify and Adjust Outliers

(20)

COFFEE uses the same outlier identification and adjustment routine as with cases, resulting

in outlier adjusted deaths which are used for all subsequent forecasting steps. The outlier

adjusted deaths are shown in Figure 13.

Step 2: Compute the Case Fatality Ratio, 4;

We estimate 7, by rearranging Equation 19 and replacing 04, with yq and 8¢ 1.+ with ye 1.

fort < T

= yd,t/f(yal:ta V)'

Figure 14 displays 4; for v € 7,14, 21, 28, 35.

12

(21)
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Figure 13: The originally reported daily deaths of COVID-19 (top) and the outlier adjusted daily
deaths (bottom). (Top) Purple points were identified as outliers. (Bottom) Purple points are the

adjusted outliers.
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Figure 14: The values %; for New Mexico, the US, and France (rows) for different moving average

window sizes of v (columns).

127 Step 3: Compute 5; = logit(y:)
128 COFFEE logit transforms 4, setting all values of 4; < 74 equal to 7¢q and all values of
129 ¢ > 1 — 74 equal to 1 — 74 where 74 = 0.95 * min({4:¢|% > 0}). The logit transformed 4, are

13



130 shown in Figure 15.
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Figure 15: The values of 4; for New Mexico, the US, and France (rows) for different values of v

(columns).
131 Step 4: Split Data into Training and Testing Sets
132 Split 47 in a training and testing data set, same as with the cases model.
133 Step 5: Compute 4¢rend
134 Fit a regression model with a linear date term and a DOW effect to 4;, analogous to Equation
135 9. Variable selection is then performed. The fitted regression and predictions (4:7°"?) are
136 shown in Figure 16.
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Figure 16: The quantities 4; for New Mexico, the US, and France. Circles are training data, left
of the vertical dashed line, while testing data are the triangles to the right of the dashed vertical
line. Solid line represents the fits (train) and predictions (test) of 4f**"d based on the regression.
The US and France have a DOW effect, while New Mexico had the DOW effect removed in the

variable selection phase.

137 Step 6: Compute a Joint Probability Distribution over Tuning Parameters

The form of the forecasting model for 4forecast jg

elower lf ’?grend < alower
~ for
'Yto ecast (l/, elowcra oupper) — eupper if ;ygrend > eupper (22)
Aprend  otherwise
138 for t = TP 4 Lk and k € 1,2,...,14. The parameters fiower and Oupper act as a floor and
130 a ceiling to 4@t keeping it from getting too large or too small. We evaluate 4forecast
140 on a grid over v, Biower, Bupper and compute the joint distribution as proportional to the
141 inverse-distance between logit™! (57"} and 4, similar to Equation 18. The estimated
142 joint probability distribution over tuning parameters is shown in Figure 17.
13 Step 7: Produce the Reported Deaths Forecast
144 The final step is to simulate reported deaths. The purpose of the previous steps was to get a
145 joint probability distribution over the tuning parameters that can be used to sample from.
146 If more than 14 of the last 28 days had zero reported deaths, we take iid samples of future
147 reported deaths from the empirical distribution of outlier adjusted reported deaths over the

15
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Figure 17: Joint probability distributions over tuning parameters v (columns), Gypper; and Giower

for New Mexico, the US, and France (rows).

last

28 days. If no deaths were reported over the last 28 days, we sample future reported

deaths as iid Bernoulli draws with success probability equal to 1/29. If 14 or more of the last

28 days observed at least 1 reported death, we simulate @{ng““ for k € 1,2, ..., K by doing
the following;:
1. Fit the regression outlined in Step 5 to days T to T'— 27. Use this to compute ‘ytTri',‘cd.
2. Draw a vector of (v, Giower, Qupper) from the joint distribution computed in Step 6.
3. Compute 515" following Equation 22.
4. Compute logitfl(’yg?f,fa“).
5. For k=1,2,..., K, compute

yé?ﬁ?f}ft = logitfl('Aygf’j_e,fa“)f(éi?ffas't,1/), where 62‘?{“&“ = yer if k—v < 0 and

f t f t s
glopecast = ylorecast if >,

(a)

Figure 18 shows the daily deaths forecasts for New Mexico, the US, and France.
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Daily Deaths Forecasts

Figure 18: The median (black line) and 50% and 80% prediction intervals (ribbons) for New

New Mexico
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Mexico, the US, and France for daily reported deaths.
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