
STAT3004/STAT7304 Project 2 Due 29/5/2020

This project deals with Epidemic Models in Continuous time. Some of the problems are related
to content presented in [EM-3] (Chapter 3 of, “Epidemic Modelling: an introduction” by Daryl
Daley and Joe Gani). We only use parts of sections 3.1 and 3.3 from [EM-3]. Please hand in
a single PDF file for your solutions to the questions. The file may involve a combination of
scanned hand written results, typed text/formulas, and computer output (and code). In any
case, it must have questions answered in order and cannot exceed 8MB in size. Make sure to
have your name and student ID on the PDF file, even if you hand in via e-mail.

Throughout this project, time t is continuous and starts at t = 0. We deal with a non-lethal epi-
demic over a population of N individuals (think of N as being around 100, 1000 or perhaps 5000
as is suitable for a small population on an island). In the population, St is the number of indi-
viduals that are “susceptible” to the disease but not infected at time t. Further, It is the number
of infected individuals with the disease. Finally, Rt are the number of individuals that are re-
moved from being either susceptible or infected and are assumed to be immune from the disease.

In general, we consider three basic non-negative parameters rSI , rIS , and rSR. Where the first
dictates the constant for the rate of infection (moving from S to I). The second dictates the con-
stant for the rate of recovery without gaining immunity (moving from I to S). The third dictates
the constant of the rate of removal, also known as recovery with immunity (moving from S to R).

We will with the following models (which we denote via Model 1 – Model 4):

1. SI - this is known as the simple epidemic appearing in [EM-3, Section 3.1]. Here rSI > 0,
but rIS = 0 and rSR = 0. In this model Rt ≡ 0.

2. SIS. Here rSI > 0, rIS > 0, but rSR = 0. In this model Rt ≡ 0.

3. SIR - this is known as the general epidemic appearing in [EM-3, Section 3.3]. Here rSI > 0,
rIS = 0, and rIR > 0.

4. SI(SR). Here all constants are strictly positive. After infection an individual is either
removed or again susceptible.

These models are described via several Markov chains that you specify in problem 1. In general
they are governed by the following transition types:

• S → I: This occurs at rate rSIct(St, It, Rt)StIt + a. At its base, this is the “law of mass
action” where the product of St and It drives infections. However, in addition, the value
ct(St, It, Rt) is a state-dependent time-varying coefficient where if not specified is taken
as ct ≡ 1 and otherwise indicates the level of “contact” between individuals. It can be
controlled via social distancing or similar measures and is hence dependent on state and
time. Also the parameter a, when not 0, dictates external arrival of infection that is not
influenced by the state.

• I → S: This occurs at rate rISIt. Here, recovery without immunity is at a constant rate
for each individual.

• I → R: This occurs at rate rIRIt. Here recovery with immunity is at a constant rate for
each individual.

• R → S: This occurs at rate bRt. Here the parameter b denotes an external rate of
immunity loss.

Consider the parameters a, b, and ct(·, ·, ·) as model extensions and initially assume that they
are 0, 0 and ≡ 1 respectively.
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Questions/Tasks, with weighting out of 100 in “( )”:

1. Assume N = 3 and describe CTMCs for each of the models by specifying the meaning of
the state and the generator matrix. For models 1 and 2, let the Markov chain be {Xt}
with state space {0, 1, 2, 3}. For models 3 and 4, let the Markov chain be {(Xt, Yt)} with a
more complicated state space. Throughout this problem assume ct ≡ 1, a = 0, and b = 0.

(a) For Model 1, let Xt represent St. What is It in terms of Xt? What is the generator
matrix? (5)

(b) Repeat for Model 2. (5)

(c) For Model 3, let Xt represent St and Yt represent It. What is Rt in terms of Xt and
Yt? What is your choice of state space? Specify the generator matrix. (5)

(d) Repeat for Model 4. (5)

2. Consider pg 58 where it is stated, “Equation (3.1.4) shows that the mean time Etj until
St is reduced to j − 1 can be approximated by the inverse of the logistic rate”. Use our
notation rSI instead of β. Continue to assume that a = 0 and ct ≡ 1 until stated otherwise.

(a) Present the expression for this approximation. (5)

(b) Use Monte Carlo simulations to obtain error estimates on this approximation for
different values of rSI and N . (5)

(c) Take now rSI = 0.02/N , N = 1, 000, I0 = 1 and assume that ct is regulated as follows:
Whenever the number of infected passes a multiple of 100, ct is dropped from 1 to
0.1 (to enforce social distancing). Then 20 time units later, the value returns to 1.
Plot multiple (e.g. 5 or 10) traces of It under such a regime. (5)

3. Consider the forward Kolmogorov equations presented in pg 59 where an explicit solution
is for N = 5 (our notation), I0 = 1, and rSI = 1 appears in equation (3.1.11) of pg 60.

(a) Use numerical evaluation of a matrix exponential to verify (3.1.11) over a sensible
grid of t. (5)

(b) Use Monte Carlo for such an evaluation. (3)

(c) Repeat the derivation in [EM-3] yielding (3.1.11). (2)

4. Consider now Model 2 (SIS). Assume ct ≡ 1 and initially assume a = 0.

(a) Assume N = 10, I0 = 5, and rIS = 2. Use Monte Carlo or other means to determine
the lowest value for rSI such that P(τ0 > 15) > 0.9, where τ0 = inf{t > 0 : It = 0}
is the duration of the infection. (5)

(b) Assume now a > 0 and explain why the model is an irreducible birth-death CTMC
by specifying the birth and death rates. (5)

(c) Continuing from (b), find the neatest expressions possible for the stationary distribu-
tion and present the stationary distribution numerically for the parameters N = 10,
rSI = 2 and rIS = 0.5. Do this for a values of a of your choice. (3)

(d) Continuing from (c), determine limt→∞ E[It] for these parameters. (2)
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5. Read pgs. 66-67 introducing “The general stochastic epidemic” (SIR) dealing with Model 3.

(a) Consider Kolmogorov’s forward equations in (3.3.3). Write these equations using our
notation of Model 3. (5)

(b) Consider a system with N = 100 (our notation), I0 = 5, rSI = 2/N , rIR = 1/N ,
a = 0, b = 0. Use a numerical solution of the forward equations to determine the EIt
for t = 5, 10, 20, 50. (10)

(c) Try to verify the above using Monte Carlo Simulations. (5)

(d) Consider Pn which is the distribution of number of initial susceptibles ultimately
infected. Attempt to find a Monte Carlo estimate of Pn for these parameters as well
as for its mean. (5)

(e) Assume now that you are in Model 4, also with b > 0 and ct independent of time.
This is an irreducible Markov chain with finite state space and hence has a unique sta-
tionary distribution. Still, discuss possible problems with determining this stationary
distribution and applying it in practice. (5)

6. Social distancing: Modify the problem above (5b, 5c and 5d) with social distancing rules
enforced via ct(St, It, Rt). Search for a simple time-independent (but state dependent) rule
that you design which will cut the mean of Pn (your 5b) by roughly half. Try to estimate
what effect your rule has on the mean duration of the epidemic. (15)
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