Lecture9 Notes. 07/ 13
Multiple-lens systems

If we have one lens behind another, we can simipbt the image formed by the first
lens as an object for the second lens. For exarspigpose we have two convergent
lenses, with focal lengtis andf,, separated by a distanice The object is located at a
distancep; in front of the first lens. We want to locate theage and find the
magnification.

This is a typical ray diagram, to show our distanaed sign conventions:
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For this particular diagram, all the quantities positive. If one of the lenses was
divergent, its focal length would be negative;newr both of the images was on the
same side as its corresponding object, the valgdmfthat image would be negative.

Let us calculatep, for givenp,, L, f; andf,. The equations for the two lenses are
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We can simply use the first equation to calcutptend plug into the second. For
example, suppose that the object isrb@way, the lenses are I20apart, the first lens
has a focal length of 8 and the second lens has a focal length o€t00Then, our
equation will give us
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This means that the final image will be virtualdamill be 82 centimeters in front of the
second lens (in the direction of the object). Tikianlike the ray diagram above, where
the final image is real and behind the second lens.



We can calculate the magnification of this two-lenatraption. Since the magnification
of the first lens idvi1 = -h,/ h, whereh is the height of the object aihgis the height of
the first image, an2 = -h, / hy, since the first image is now the object & the
height of the second imagd;M. = h,/ h =M is the total magnification from the object
to the final image (the sign cancels because aeseguof two inverted real images give
an upright real image, so the magnification foeal rmage is positive.) Since
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For our example, this gives
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The final image is therefore inverted, and 2.7 srfa@ger than the original.

Example: We might ask how the magnification depends on tsiaxicel ; perhaps our
apparatus is adjustable, and we want find a lethgthgives a certain magnification.

M, = -q. / p. does not depend on the distah¢®utM, does. We have
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The overall magnification is thus equal to
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What should we make the length of our apparatug ifvant a magnification of, say, -5?
Solve this equation fdr:
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So if we separated the lenses byddand left the object @bn from the front lens, the
magnification would now be -5.



Suppose we have an object at infinity, and we lmok using lenses of focal lengths
andf, separated by a distance Where does the image form?

The first lens will form an image at the focal posince parallel rays coming from the
far-away object will cross at the focal distandéwus,q, = f;. For the second image,
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The location of the second image for a far-away@uaan be treated as an effective
focal point of the entire two-lens image. Thus,

1 1 1

f F L-h
If the separation between the lenses is very stoafipared to the focal length of the
first lens (for example, if we put two lenses tdgpet front to back), we can neglégt
and obtain the following expression:
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The two lenses thus function together as a simgls, lwith a combined focal length.

Note that this equation is only valid if the lenses held very close together; otherwise
the more general equation above should be used.

We define thgoower of alens as the reciprocal of its focal lengtR.= 1/f. The units

of lens power are just?, but these units are traditionally referred taliapters when
used in this context, just like Hertz are secdrnidghe context of frequency. As we can
see, lens power is additive when two lenses arelpsé together:
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Example: Consider a system with a convergent léns,40 cm, followed by a
divergent lensf, = -60cm, at a distance of 106m. An object is placed 10én in front
of the convergent lens. What kind of image is fedmand where?

First we'll draw the ray diagram. Note that theaflopoints of the lenses coincide.
Intermediate image  Final image




Thus we expect a small, inverted virtual image teddairly close to the second lens.
Our lens equations give us
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The image is thus a bit to the left of the secamd |(by about 1/3 of its focal length), is
upside-down and smaller than the object.

Potential problemswith ray diagrams for multiple-lens systems

When trying to handle multiple-lens systems, someldiesome special cases can occur.
The first case we'll consider is when the objegipeas to be at the focal point of the
first lens. In this case, the first lens doesur'trf an image; the rays coming out of it are
parallel. However, the second lens can focus thasalel rays, thus forming a final
image. However, we don't have an intermediate etagise as an object for the second
lens.

This case can be resolved with a ray diagram. iShasray diagram for an object at the
focal point of the first lens:

Since the rays coming out of the first lens aralbar there is no intermediate image for
the second lens to use as an object. What weaamoavever, is add another parallel
ray A that will go through the center of the secondlens
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We know thath must be parallel t8 (and any other rays starting from the tip of the
object arrow) because the object is at the focaitp@dlso, sinceA andB, together with
all other rays from the tip of the arrow, are plaahfter passing through the second
lens, they will all cross at that lens's focal poifio determine the magnification, mark
off the following two triangles and use the factttkthey are similar:

The blue triangles give us/ f, = z/ L - f;, while the red triangles give us
h,/f,=z/(L-f,). Dividing the second equation by the first gives
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Note the minus sign, since the final image turnstodbe upside-down.

Another problem to consider is, what happens wherfitst lens forms its image behind
the second lens? It is not clear that we canhiserhage as the second lens's object,
since it is no longer in front of the lens, whdre tens can receive light from it. For
example, consider an objectc®in front of a lens with a focal length ofeld. The
image will form at a distance of 1 / (1/40-1/50260cm behind this lens. What if the
second lens, with a focal length ofcaq is placed just 10fn behind the lens, a full
meter in front of where the image will form? Agaaray diagram will clarify the
situation. First, draw it as if the second lerdnttiexist:
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The problem is, our rays don't go into the secend in any way that would make it
easy to predict their behavior. However, we cavags add more rays. We know that
any rays emanating from the tip of the object willtowards the image point in the
lower-right corner, so we add a ray that doeslalso goes through the center of the
second lens, and another ray that goes througiothépoint of the second lens. We
know how to properly continue these rays:
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We have found our image. We could do geometrigiatgoint and determine the
location and magnification of the image, but letrysto just mindlessly use the lens
equations for the first and second lens, withoutrying whether the second lens has an
Image to use as an object:

The first equation gives wug = 200cm. The second equation is
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Turns out this is the right result. The imagelighgly smaller than the object, inverted
and slightly within the second lens' focal distan&®, this case, unlike the case with the
object at the focal point, is not really a problenterms of applying the lens equations.
It is only a problem when one has to draw the nagmm, and this problem is solved
through introduction of additional rays.



Intro to wave optics: the double-dit experiment

When we are dealing with light interacting with @ts of size comparable to the
wavelength, we must take into account the waveraaitilight. One of the simplest
examples of wave optics is the interference oftlighm two small slits in a screen.

Suppose we have two slits, illuminated by a cohtdrght source such as a laser (so that
the waves emerge from the two slits with the sahase). If the slits are smaller than or
comparable to the wavelength, each will act asiat gource. In the diagram below, red
lines indicate wave crests (maxima) and red lindgate troughs (minima).
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In some directions (labeled “constructive”), thests overlap with the crests and the
troughs overlap with the troughs. The wave amgégifrom the two point sources add
in these directions, and if we place a screen wtnerdabels are, there will be a bright
spot on the screen (calledrange). In other directions (labeled “destructive”)etbrests
overlap with the troughs, and the waves tend te&asut. On our screen, we would see
dark spots along these directions. This is calleduble-slit interference pattern.

Consider the geometry of the double-slit apparafissthe light travels from each slit to
a point on the screen, the path lengths from tleestits are different by a distandé :

Double-slit apparatus Screen




Let & be the angle from between the line from the cerftéhe slit apparatus to the
center of the screen and the line to the pointerstreen. Then, it is easy to show that
the angle subtended By is alsod. Therefore, AL = d sind. We get constructive
interference if the path lengths are different bydtiple of the wavelength, and
destructive interference if the path lengths affedint by half a wavelength:
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Thus we see the alternating pattern of spots aftcoctive and destructive interference
on the screen, as expected. The central poirti@adreen has a spot where the path
lengths are equal, so it is a bright spot; thekflag spots are where the path length
difference isA / 2, which are dark, followed by bright spots agaia, e

Example: Red light with a wavelength of 6%n goes through double slits with a
separation of inm. The interference pattern is projected on a sct€@emeters away.
What is the distance between the first bright sppat the second one? What if blue
light, with a wavelength of 450m, is used instead?

The first spot occurs &= 0. The second spot is@sin 8= A, or sind=A/d,
@= 6.5 x 10 radians. The separation on the scre@gsvhereR is the distance to the
screen, so the separatioryis 6.5 x 10°m= 6.5mm.

For blue light, we gef= 4.5 x 10 radians ang = 4.5mm. Light with shorter
wavelengths leads to narrower interference patterns

Example: A screen is 2 meters away from the double-stite®. The double slits are
separated by a distance ofrfih. A 1cm section of screen contains 12 alternatimgit
fringes. What is the wavelength of light?

Since one centimeter contains 12 fringeshanges by 12 over the course of a
centimeter. One centimeter correspond8+00.0Im/ 2m = 0.005 radians. Thus,
d sin (0.005)x 0.00% = 124, or A = 0.005 x (1.5 x 1@m) / 12 = 6.25 x 10m = 625nm.



