
1 Heisenberg Representation

What we have been dealing with so far is called the Schrödinger representation. In
this representation, operators are constants and all the time dependence is carried by the
states. We have

|Ψ(t) >= U(t)|Ψ(0) >

where

U(t) = exp(− i

h̄
Ht)

A matrix element of an operator is then

< Ψ(t)|O|Ψ(t) >

where O is an operator constructed out of position and momentum operators. To contrast
the Schrödinger representation with the Heisenberg representation (to be introduced
shortly) we will put a subscript on operators in the Schrödinger representation, so we
have XS, PS, and OS. We may then write our matrix element as

< Ψ(t)|OS|Ψ(t) >=< Ψ(0)|U †(t)OSU(t)|Ψ(0) >

The Heisenberg representation uses time dependent operators and constant in time states.
We define the Heisenberg operator by

OH(t) = U †(t)OSU(t)

The two representations are clearly completely equivalent, and it is a matter of conve-
nience which one is used in a given problem.

Once we have defined Heisenberg operators, we may study their equations of motion
and compare to the corresponding classical equations of motion. We will carry through
the discussion for a d = 1 system where the x coordinate ranges −∞ to +∞. We start
with the classical discussion. There is a Lagrangian

L =
m

2
(
dx

dt
)2 − V (x),

with generalized momentum

p =
∂L

∂ẋ

where ẋ = dx/dt. From the Lagrangian we construct a classical Hamiltonian,

Hc = pẋ− L =
p2

2m
+ V (x)

From the classical Hamiltonian, we get classical equations of motion,

ẋ =
∂Hc

∂p
=

p

m
ṗ = −∂Hc

∂x
= −∂V

∂x



Quantizing the system involves introducing operators XS, and PS, which satisfy

[XS, PS] = ih̄.

The quantum Hamiltonian is

H =
PSPS

2m
+ V (XS),

and the Heisenberg operators

XH(t) = exp(
i

h̄
Ht)XS exp(−

i

h̄
Ht),

and

PH(t) = exp(
i

h̄
Ht)PS exp(−

i

h̄
Ht).

The quantum or Heisenberg equations of motion are

d

dt
XH(t) =

i

h̄
[H,XH(t)]

and
d

dt
PH(t) =

i

h̄
[H,PH(t)].

Note that H being constant is the same in Heisenberg and Schrödinger representations,

H =
PSPS

2m
+ V (XS) =

PHPH

2m
+ V (XH)

Now consider the Heisenberg equation for XH . We have

d

dt
XH(t) =

i

h̄
[H,XH(t)] =

i

h̄
U †(t)[H,XS]U(t)

Now

[H,XS] = [
PSPS

2m
+ V (XS), XS] = [

PSPS

2m
,XS] + [V (XS), XS]

Since every operator commutes with itself,

[V (XS), XS] = 0,

and we are left with

[
PSPS

2m
,XS] =

1

2m
(PSPSXS −XSPSPS) =

h̄

i

PS

m
,

where we used [XS, PS] = ih̄. Putting the pieces together, we have

d

dt
XH(t) =

i

h̄
U †(t)

h̄

i

PS

m
U(t) =

PH(t)

m
(1)



which is the same as the classical result for dx/dt.
Now let us get the Heisenberg equation of motion for PH . We have

d

dt
PH(t) =

i

h̄
[H,PH(t)] =

i

h̄
U †[V (XS), PS]U,

where we used the fact that PS commutes with itself. To get [V (XS), PS], we first take
a matrix element and write

< x|[V (XS), PS]|Ψ >=< x|(V (XS)PS − PSV (XS))|Ψ >

= V (x)
h̄

i
∂x < x|Ψ > − h̄

i
(∂xV (x) < x|Ψ >)

= − h̄

i
(∂xV (x)) < x|Ψ >= − h̄

i
< x|∂V (XS)

∂XS

|Ψ >

So we have

< x|[H,PS]|Ψ >= − h̄

i
< x|∂V (XS)

∂XS

|Ψ >

Since < x| and |Ψ > were arbitrary, we can write the operator equation

[H,PS] = −∂V (XS)

∂XS

Returning to the equation for dPH/dt, we now have

d

dt
PH(t) = −U †(t)

∂V (XS)

∂XS

U(t) = −∂V (XH)

∂XH

, (2)

which again is the quantum version of the classical equation for dp/dt. It is generally true
in a quantum system that the Heisenberg equations of motion for operators agree with the
corresponding classical equations. An important example is Maxwell’s equations. These
remain true quantum mechanically, with the fields and vector potential now quantum
(field) operators.

Application to Harmonic Oscillator In this section, we will look at the Heisenberg
equations for a harmonic oscillator. The notation in this section will be O(t) for a
Heisenberg operator, and just O for a Schrödinger operator. In terms of the notation of
the previous section we have OS = O, and OH(t) = O(t). Of course we have O(0) = O.
The Hamiltonian for the oscillator is

H =
PP

2m
+

mω2
0X

2

2
, (3)

where ω0 is the natural frequency of the oscillator. The equations of motions for the
Heisenberg operators are as follows,

dX(t)

dt
=

P (t)

m
,

dP (t)

dt
= −mω2

0X(t)



As always, the Heisenberg equations for operators are the same as the classical equations
of motion. Taking a second time derivative, we have

d2X(t)

dt2
=

1

m

dP (t)

dt
= −ω2

0X(t)

This is a differential equation for X(t). We can certainly solve it as a linear combination
of sinω0t and cosω0t. We can write

X(t) = A cosω0t+B sinω0t,

where A,B are operators which are independent of t. At t = 0, we must have X(0) = X,
so we get that

A = X.

Also from Eq.(3), we have
dX(t)

dt
|t=0 =

P

m
= ω0B,

so

B =
P

mω0

.

We finally have

X(t) = X cosω0t+
P

mω0

sinω0t. (4)

Similar steps lead to
P (t) = P cosω0t = mω0X sinω0t. (5)

Matrix Elements and Energy Levels The expressions for X(t), P (t) look so
much like their classical counterparts, it might seem unlikely that they contain informa-
tion about energy levels and matrix elements. As will be seen, they in fact contain a
large amount of such information. Suppose the Hamiltonian has an eigenstate |n > with
energy En and another eigenstate |n′ > with energy En′ . Let us write out the matrix
element of X(t). We have

< n′|X(t)|n >=< n′| exp( iHt

h̄
)X exp(

−iHt

h̄
)|n >= exp(

i(En′ − En)t)

h̄
< n′|X|n > .

(6)
This is the matrix element of the left hand side of Eq.(4). Using exponential forms for
sin and cos we have for the matrix element of the right hand side,

1

2

(
eiω0t(< n′|X|n > −i < n′| P

mω0

|n >) + e−iω0t(< n′|X|n > +i < n′| P

mω0

|n >)
)
. (7)

Eqs.(6) and (7) must match in detail. Let us start with the case En′ > En. Then com-
paring time dependent factors on both sides, the coefficient of exp(−iω0t) must vanish,
since there is no term of that form in Eq.(6). This gives

< n′|X|n > +i < n′| P

mω0

|n >= 0. (8)



Now matching the coefficient of exp(iω0t, we also must have

exp(
i(En′ − En)t)

h̄
) = exp(iω0t)

This result implies that if < n′|X|n > ̸= 0, then

En′ = En + h̄ω0.

Let us assume such a state exists. Now apply the same argument to the matrix element

< n′′|X(t)|n′ > .

We find again, if En′′ > En′ that

En′′ = En′ + h̄ω0,

provided only that < n′′|X|n′ > ̸= 0. Using this argument repeatedly, we find a sequence
of levels En, En + h̄ω0, En +2h̄ω0, . . . , En + lh̄ω0, with no upper limit on l, provided only
that the matrix element ofX between a state and the next one higher up is non-vanishing.
We will return to the question of which matrix elements of X are non-vanishing later
in this section. Before doing that, we explore the case where En′ < En. Returning to
Eqs.(6) and (7), this time the coefficient of exp(iω0)t must vanish, giving

< n′|X|n > −i < n′| P

mω0

|n >= 0. (9)

The coefficient of exp(−iω0t) must match on both sides, so we get

En′ = En − h̄ω0,

so we have found a state with energy one unit of h̄ω0 lower, provided that < n′|X|n > ̸= 0.
At first sight it would seem that this process could be repeated indefinitely. However, this
would eventually result in the energy eigenvalue going negative. But this is impossible.
Consider the expected value of H in a state |Ψ > . Writing this out in Hilbert space
notation instead of Dirac notation, we have

(Ψ, HΨ) =
1

2m
(Ψ, PPΨ) +

1

2
mω2

0(Ψ, XXΨ) =
1

2m
(PΨ, PΨ) +

1

2
mω2

0(XΨ, XΨ). (10)

Each term on the right side of Eq.(10) is certainly positive, regardless of the particular
state. The consequence is that H can have no negative eigenvalues. This means that
the argument we have been using cannot generate an infinite sequence of levels below
a given one, but it is allowed to generated an infinite sequence above a given one. The
consequence is that there must be a lowest state, which we denote as |0 > . It is then
natural to designate the sequence of levels upward from |0 > as |n >, where

En = E0 + nh̄ω0,



where n is any positive integer.
Finally, let us explore the question of which matrix elements of X and P are non-

vanishing. We start with the lowest state, |0 > . By the discussion just given, both X
and P, acting on |0 >, must lead to a state of higher energy. Let us take matrix elements
between |0 > and |1 > . This puts us in the case covered by Eq.(8) so we have

< 1(|X + i
P

mω0

)|0 >= 0. (11)

This relates matrix elements of X and P. To get a more powerful result, we consider
matrix elements between |0 > and |n > for n > 1. It is easy to see that all such ma-
trix elements of X and P must vanish, since the matrix elements < n|X(t)|0 > and
< n|P (t)|0 > have time dependence exp(inω0)t). But from Eqs.(4) and (5), the only
allowed frequency for the matrix element of a state higher in energy is ω0. ( This result
holds more generally, namely the matrix elements of X and P are only non-vanishing
between a state and the next one up or down in energy. ) Now consider the expression

(X + i
P

mω0

)|0 >

From Eq.(11) it has no matrix element to |1 >, and since the matrix elements of both X
and P vanish for any higher state, we have that

(X + i
P

mω0

)|0 >= 0 (12)

We can apply any operator to Eq.(12) and still get a vanishing result, so we also have

(X − i
P

mω0

)(X + i
P

mω0

)|0 >= 0 (13)

Multiplying this out we get{
XX +

PP

(mω0)2
+

i

mω0

[X,P ]

}
|0 >= 0 (14)

Supplying a factor mω2
0/2 and using [X,P ] = ih̄, we finally have

(H − h̄ω0

2
)|0 >= 0 (15)

or

E0 =
h̄ω0

2
To summarize, we have found the entire sequence of energy levels of the harmonic oscil-
lator. It is also easy to show that X and P only have matrix elements between |n > and
|n ± 1 >, except for n = 0, where the only non vanishing matrix elements are to |1 > .
A little more work of the same sort done above will deliver the actual values of these
matrix elements. This exercise shows that Heisenberg methods can be quite powerful in
certain cases.


