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Chapter 2 
 

Symmetry and Conservation Laws 
 
 
Symmetry and conservation laws are closely connected.  Conservation laws are 
results of symmetries in the physical system.  One can separate various symmetries 
into two categories: 
 

a)  Space-time symmetries including space translation, time translation, 
rotation, Lorentz transformation, space inversion, time-reversal, etc. 
 
b)  Other symmetries not related to space-time, such as isospin, permutation 
symmetry, charge-conjugation, gauge invariance, etc.   These can be 
considered as ‘internal’ symmetries. 

 
We first consider examples of the space-time symmetries.  Suppose we describe a 
physical system with two different frames of reference S and S′.  S and S′ are 
related by 
 ( ) ( ),  ,  ,  ,  ,  ,  t x y z t x y z′ ′ ′ ′→  
 
The transformation can be specified by the number of parameters it contains.  For 
example, a time translation t → t′ = t + τ is specified by a single parameter τ.  
Space translation, aν ν′ = +

G G G , is specified by three parameters (ax, ay, az).  Rotation 
(reorientation) of the coordinate system is also represented by three parameters. 
 
In general, these transformations form families or groups of transformation, and 
they have properties of a group.  We recall the properties of a group: 
 

1)  A law of combination, usually called multiplication, is defined such that 
 
 If ,  ,  then a G b G ab G∈ ∈ ∈  
 

2)  There exists an identity element e G∈ .  For all a in G, ea = ae = a 
 

3)  For every , there exists a G∈ 1a− G∈  such that  
 
 a-1a = aa-1 = e 
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4)  The law of combination is associative 
 
 (ab)c = a(bc) 
 
The simplest group consists of one element e with the multiplication law ee = e. 
 
The next simplest group consists of two elements e, a with a law of multiplication 
 
 ee = e, ea = ae = a, aa = e 
 
These groups are called Abelian groups, since all group elements commute. 
 
The smallest non-Abelian group is the group of permutation of three objects: 
 
 e = (1 2 3)     a = (2 1 3)     b = (1 3 2) 
 c = (3 2 1)     d = (3 1 2)     e = (2 3 1) 
 note:  ab = (3 1 2) while ba = (2 3 1) 
 ab ≠ ba 
 
The permutation group of n objects is called the symmetric group of degree n:  Sn
 
Note that S2 consists of two elements:   e = (1 2), a = (2 1),      
and it has the multiplication law e2 = e, a2 = e, ae = ea = a, just like the simple 
Abelian group of two elements mentioned earlier. 
 
Now consider the space translation 
 
 ,r r a r r b ′ ′′ ′= + = +

GG G G G G  
 

a)  Sequential  transformation gives r r r′→ →
G G G′′ ( )r r a b′′ = + +

GG G G , which is 
also a space translation. 

 
b)   is the identity transformation. 0a =

G

 
c)  ( ) 1a − = −

G aG  is clearly the inverse transformation. 
 

d)  Finally, ( ) ( )a b c a b+ + = + +
G GG G G cG .  Hence, the transformation is 

associative. 
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a) through d) show that space translation forms a group. 
 
Lorentz transformation also forms a group. 
 
 
Recall that Lorentz transformation is given as 
 

 
3

0

x x xµ µ ν µ ν
ν ν

ν =

′ = Λ = Λ∑  

where 
 ( ) ( )0 1 2 3,  ,  ,  ,  ,  ,  x x x x x ct x y zν = =  
 
Lorentz transformation leaves x2 invariant: 
 
 2 2 2 2 2 2x x x c t x y zµ

µ= = − − −  
 

 

1 0 0 0
0 1 0 0

          
0 0 1 0
0 0 0 1

x g x g gν µν
µ µν µν

⎛ ⎞
⎜ ⎟−⎜ ⎟= = =
⎜ ⎟−
⎜ ⎟−⎝ ⎠

 

 
 2x x x x g x x g xµ µ ν µ α ν

µ µν α µν β′ ′ ′ ′ ′= = = Λ Λ β  
 
but, 2x x g xα β

αβ=  
 
and Lorentz transformation leaves x2 invariant:  
 
 2 2x x gµ ν gα µν β αβ′ = ⇒Λ Λ =  
or 
 ( )T g g

µ ν
µν β αα

Λ Λ = β  
 
Hence T g gΛ Λ =  defines Lorentz transformation 
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To show that Lorentz transformations form a group: 
 
a)  Let   1 1 2 2          T Tg g gΛ Λ = Λ Λ = g

1then  3 2Λ = Λ Λ  
is also a Lorentz transformation. 

 
( ) ( )3 3 2 1 2 1

1 2 2 1 1 1           

TT

T T T

g g

g g

Λ Λ = Λ Λ Λ Λ

g= Λ Λ Λ Λ = Λ Λ =
 

 3 3
T g gΛ Λ =  

showing that, if ,  are Lorentz transformations, the 1Λ 2Λ 3 2 1Λ = Λ Λ  is also a 
Lorentz transformation. 
 

b)  Identity element is clearly  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
c)  First we show that for any , there exists an inverse 1Λ

1
1
−Λ . 

 

 

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 1 1 1

1 1 1 1

2
1

           det det

det det det det

                    det det det

T T

T T

g g g g

g g

g g

Λ Λ = Λ Λ =

Λ Λ = Λ Λ

= Λ =

 

 
Hence, 1det 1Λ = ±  
 
and  has an inverse . 1Λ

1
1
−Λ

 
We also need to show ( ) ( )1 1

1 1

T
g g− −Λ Λ =  

 

( )

( ) ( )
( ) ( )

1 1
1 1 1 1 1

1 1 1
1 1 1 1

1 1
1 1 1 1

T T

T TT

T T

g g g g

g g

g g g

1

1

− −

− − −

− −

Λ Λ = ⇒Λ Λ Λ = Λ

⇒ Λ Λ = Λ Λ

⇒ Λ Λ = = Λ Λ−
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Therefore ( )1 1
1 1

T
g g− −Λ Λ =  

 
d)   ( ) ( )1 2 3 1 2 3Λ Λ Λ = Λ Λ Λ  
 
as a result of matrix multiplication definition. 
 
If S and S′ are equally valid frames of reference for formulating the laws describing 
the behavior of a system, then S and S′ are related by a ‘symmetry transformation’.  
In S′, the wave function described in system S as ψ(x) now becomes ψ′(x′).  ψ′(x′) 
has the same value as ψ(x). 
 
 ( ) ( ) ( )( )1x x f xψ ψ ψ −′ ′ ′= =  
 
where x′ = f(x) signifies the coordinate transformation. 
 
The above equation can be re-expressed as a function of x, namely 
 
 ( ) ( )( ) ( )1x f x U xψ ψ ψ−′ = =  
 
where U is an operator which depends on the coordinate transformation (x′ = f(x)). 
 
The requirement that the norm ψ ψ  is preserved in the transformation implies 
 
 U U U Uψ ψ ψ ψ ψ +′ ′ = = ψ

1 G

 
 
Hence, U+U = 1, U+ = U-1 and U is a unitary operator.  However, U is not a 
Hermitian operator and is not necessarily an observable. 
 
However, if the transformation can be built up from an infinitesimal transformation 
 
 U iδα= +  
 
where δα is an infinitesimal real number.  Then 
 
 U+U = 1  G – G⇒ + = 0          G = G+

 
G is Hermitian, and an observable. 



P570  6 

 
For a symmetry transformation which leaves the Hamiltonian invariant 
 
 H H U HU Hψ ψ ψ ψ ψ ψ ψ ψ+′ ′ ′ ′ ′= = =  
and 

U+HU = H          U-1HU = H 

 is a constant of motion, and similarly for the generator G.  Therefore, G is a 

ote that for each parameter α, one can obtain the corresponding generator Gα.  
 

or discrete symmetry such as parity, there is no infinitesimal transformation, and 

 
 [H, U] = 0 
 
U
conserved observable. 
 
N
Therefore, for a transformation involving n parameters, there are n corresponding
generators and conserved observables. 
 
F
hence no corresponding conserved generator.  However, the unitary operator for 
parity satisfies 
 2 1pU =  
 
which follows from the fact that if the parity operation is applied twice, one obtains 
the identity transformation.  Since Up is also unitary 
 
 1p pU U+ =  
 
it follows that  p pU U +=  
 
and in this case, the operator Up is itself Hermitian and can be interpreted as an 

s an example, we consider time translation 

t → t′ = t + τ 

ime translation invariance implies that the description of a system is independent 

observable. 
 
A
 
 
 
T
of the choice of zero from which time is measured. 
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 ( ) ( ) ( )1( )U t f t tτψ ψ ψ ψ−′ = = = −τ  
 
 ( )1U iδτ Gδτ= +  
 

 ( ) ( ) ( )U t t t
tδτ
ψψ ψ δτ ψ δτ ∂= − = −
∂

 

 
but ( ) ( )( ) ( ) ( ) ( ) ( )1U t i G t t i Gδτψ δτ ψ ψ δτ= + = + tψ  
 

Hence iG
t
ψψ ∂

= −
∂

 

 

 G i H
t
∂

= =
∂

 

 
H, the Hamiltonian, is the conserved generator for time translation. 
 
Similarly, one can show that P i= ∇

G G
 is the conserved operator for space translation 

(3 conserved generators – Px, Py, Pz – for a 3-parameter transformation). 
 
Finally,  is the conserved operator for space rotation with three conserved 
generators, 

J
G

, ,x y zJ J J . 
 
We now discuss isospin conservation as an important example of unitary 
symmetry. 
 
Isospin Conservation in Strong Interaction 
 
In 1932, right after the discovery of the neutron, Heisenberg suggested that the 
similarity between proton and neutron mass implies that proton and neutron 
correspond to two degenerate states of strong interaction: 
 

 p p

n n

H E

H E

ψ ψ

ψ ψ

=

=
 

 
 (note that mass (n) = 939.56 MeV and mass (p) = 938.27 MeV) 
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This degeneracy reminds us of the two-fold degeneracy of the spin-½ system for  
sz = +½, sz = -½, and we describe proton and neutron as two different states of the 
“nucleon”, one with ‘isospin’ up and the other with isospin down. 
 

 

11 1,
02 2

01 1,
12 2

p

n

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

 

 
A ‘nucleon’ state can be expressed as 
 

  
1 0
0 1

p
p n

n

ψ
ψ ψ

ψ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 
and the transformation  
 

 p p p

n n p

n

n

ψ ψ αψ βψ

ψ ψ γψ δψ

′→ = +

′→ = +
 

 
would represent an equivalent state as far as strong interaction is concerned. 
 

 p p p

n n

U
n

ψ ψ ψα β
ψ ψ ψγ δ
′⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
The matrix U must be unitary to preserve the norm.  Also, this implies 2det  1U = . 
 
Choosing det U = +1, the 2 x 2 unitary matrices form the SU(2) group.  There are 
22 – 1 = 3 independent parameters. 
 
For an infinitesimal transformation U = 1 + iξ, where ξ is a 2 x 2 matrix whose 
elements are all small quantities.  det U = 1 now implies Tr ξ = 0 and the condition 
that U be unitary, (1 + iξ)(1-iξ+) = 1, implies ξ = ξ+. 
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Thus ξ is a 2 x 2 traceless Hermitian matrix.  It can be expressed as 
 
 ( )1 2 32          ,  ,  ξ ε τ ε ε ε ε= =

G GGi  

 1 2 3

0 1 0 1 0
                    

1 0 0 0 1
i

i
τ τ τ

−⎛ ⎞ ⎛ ⎞ ⎛
= = =⎜ ⎟ ⎜ ⎟ ⎜

⎞
⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 ,2 2 2
ji k

ijkiττ τε⎡ ⎤ ⎛ ⎞= ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
 

 
A finite transformation can be built from the infinitesimal transformation 
repeatedly, and one obtains 
 
 ( )exp 2U iα τ=

G Gi  
 
The invariance of the Hamiltonian H in SU(2) transformation leads to [H, U] = 0 
and [H, τG ] = 0.  The eigenvalues of τG  are constants of the motion. 
 
Consider states of several nucleons, the total isospin operators 
 

 1 2
1 1 1.....
2 2 2 AT τ τ τ= + +

G G G G  

 
also commute with the Hamiltonian.  Thus the eigenvalues of the T  operators are 
constant of the motion.  Energy levels of nuclei should be characterized by 
eigenvalues of T

G

2 and T3.  Isospin should be a good quantum number.  For each T, 
there are 2T + 1 ‘degenerate’ states. 
 
There are abundant examples for isospin conservation in nuclear physics.  As 
shown in the figure below, the pairs of ‘mirror nuclei’ 7 7 11 11

3 4 5 6Li Be and B C have 
very similar binding energies for ground state as well as the excited states, after 
differences in Coulomb interaction (which does not conserve isospin) are corrected 
for.  Similar isospin triplets and isospin quartets are observed for 18  
system and for 21 . 

18 18
8 9 10O / F/ Ne

21 21 21
9 10 11 12F/ Ne / Na / Mg
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 (a)  (Isospin    Mirror nuclei 
 doublet)    pair 
 
 A = 7    A = 11 
 
 
 Mirror nuclei 
 N Z

Z NA A⇔  
 
 
 (b)   A = 18   (c)   A = 21 
 
 
Isospin 
triplet 
(I = 1)  
 
 Isospin 
 quartet 
 ( I = 3/2) 
 
 
 
 
 
 Mirror nuclei pair    Mirror nuclei pair 
 
 
 
Isospin conservation also imposes important constraints on strong interaction 
processes.  Some examples follow: 
 
a)  Consider the reaction d + d → 4He + πo

 
The isospins of deuteron and 4He are both zero, while the isospin of πo is 1.  The 
initial state d + d can only have total isospin 0, while the final state has total 
isospin 1.  Therefore, this reaction violates isospin conservation and can proceed 
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only via electromagnetic interaction. An extensive effort to measure the cross-
section of this reaction led to a determination of 0.8 pb/sr as an upper limit (using 
800 MeV beam).  Very recently, however, experimenters at Indiana University 
claimed a successful detection of this reaction. 
 
 
b)  The 0J 0ψ π πψ′→ + +  was known to occur with a branching ratio of ~ 20% 

(meaning ~ 20% of all ψ′ decays end up in this channel).  In contrast, 
0Jψ πψ′→ +  has a much smaller branching ratio of 0.1%.  Since J

ψ  and ψ′ are 

cc  bound states with isospin = 0, the 0Jψ πψ′→ +  decay violates isospin 

conservation.  This explains why this decay mode is much inhibited compared with 
the 0J 0ψ π πψ′→ + +  mode, which does not violate isospin conservation. 

 
c)  Consider the reactions 
 
 a:  π+p → π+p    (elastic) 
 b:  π-p → π-p    (elastic) 
 c:  π-p → π0n  (charge-exchange) 
 
In these strong interactions, isospin is conserved.  Now, consider the isospins of 
the following system: 
 
 N

3 31 1: 1,1 , ,2 2 2 2pπ + =
��	�
 ��	�


 

 π+    p    π+p    isospin 
 
where 1,1  signifies , zI I  
 

 
0

1 231 1 1 1 1: 1, 1 , , ,2 2 2 2 2 23 3
2 131 1 1 1 1: 1,0 , , ,2 2 2 2 2 23 3

p

n

π

π

− − = − − −

− = − + −
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Now the cross-section is proportional to 
2

I
I

M∑ , namely 
2

~ I
I

Mσ ∑  

 
where 

 
( ) ( )
( ) ( )

1
2

3
2

1 1
2 2

3 3
2 2

f i

f i

M I H I

M I H I

ψ ψ

ψ ψ

= = =

= = =
 

 
we obtain 

  

2 2

3 3 1 3
2 22 2 2

3 1
22

1 3
2 2

1 2: : : 2 :
9 9

If  , then : : 9 :1: 2

If  , then : : 0 : 2 :1

a b c

a b c

a b c

M M M M M

M M

M M

σ σ σ

σ σ σ

σ σ σ

= + −

=

=

�

�

2

1

−

p

 

 
d)  As another example similar to c), we consider the following reactions: 
 
  0  and k p k nπ π− −+ → + Λ + → + Λ
 
Λ has isospin 0, and π + Λ can only have isospin = 1.  k − +  can couple to I = 0 
and I = 1, since  has I = ½, Ik −

z = -½ and p has I = ½, Iz = ½ .  
  

 ( )11 1 1 1, , 1,0 02 2 2 2 2
− = − ,0

n

 

 
Similarly  couples to I = 1 only  k − +
 
 1 1 1 1, , 12 2 2 2 , 1− − = −  

One therefore has  
 ( ) ( )0 1

2k p k nσ π σ π− − −+ → + Λ + → + Λ =  
 
 
 
e)  In addition to the (p, n) isospin doublet, there are many other examples of 
isospin multiplets for mesons and baryons: 
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3

2I =  ++∆  +∆  0∆  −∆  

(quark content) (uuu) (uud) (udd) (ddd) 
Iz 3

2  1
2  1

2−  3
2−  

mass 1230.8 MeV 1231.6 1233.5  
 
 
I = 1 +Σ  0Σ  −Σ  
(quark content) (uus) (uds) (dds) 
Iz 1 0 -1 
Mass 1189.4 MeV 1192.6 1197.4 
 
 

1
2I =  0Ξ  1Ξ  

(quark content) (uss) (dss) 
Iz 1

2+  1
2−  

mass 1314.8 MeV 1322.3 MeV 
 
 
I = 1 (mesons) π +  0π  π −  
(quark content) ( )ud  ( )uu dd  ( )ud  

Iz +1 0 -1 
mass 139.57 MeV 134.98 MeV 139.57 MeV 
 
f)  Finally, remember that isospin is not conserved in electromagnetic interaction.  
Although p, n have very similar mass, their magnetic moments are very different: 
 
 1.91           2.79n N p Nµ µ µ= − = µ  
 
This difference reflects the electromagnetic origins for the magnetic moment. 
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Conservation of Charge, Baryon Number, and Other Additive Quantum Numbers 
 
Isospin symmetry is an example of SU(2) unitary symmetry.  Extension to SU(3) 
can describe strong interaction (quantum chromodynamics) which is based on the 
symmetry of 3 colors (red, blue, green). 
There are also important implications when the unitary symmetry is applied to the 
transformation in one dimension.  In the U(1) symmetry, the unitary transformation 
is 
 
 i Ge αψ ψ′ =  
 
Note that there is no SU(1) symmetry, since the constraint of ( )det 1i Ge α =  would 
completely fix the transformation to a trivial ψ′ = ψ transformation. 
 
G is the generator of the U(1) transformation, and G is a conserved observable if 
the Hamiltonian H commutes with the U(1) transformation.  Therefore, the energy 
eigenstate can also be an eigenstate for the generator G: 
 
 Gψ = qψ          Hψ = Eψ 
 
The eigenvalue of G can be identified as the charge of a particle, for  example.  
Charge conservation is therefore a consequence of U(1) symmetry. 
 
Identical algebra can be adopted to describe other additive conservation laws such 
as baryons number conservation, lepton number conservation, strangeness 
conservation, etc.  These conservation laws are derived based on the assumption 
that [H, G] = 0.  Whether this is indeed true can only be tested by experiments.  
The charge conservation, however, is regarded as more robust compared with the 
other conservation laws (such as baryon number) since a dynamic theory, quantum 
electrodynamics, can be deduced based on the local gauge symmetry of U(1). 
 
Just like the isospin symmetry in SU(2), the charge conservation in U(1) gives rise 
to additive quantum numbers.  Consider a system consisting of n particles, the 
corresponding U(1) transformation is 
 

 
1 2

1 2( ..... )

..... n

n

i Gi G i G

i G G G

e e e
e

αα α

α + + +=
 

 



P570  15 

Hence, G = G1 + G2 + . . . . . + Gn is a conserved observable. 
 
We now consider baryon number conservation.  This conservation law is 
motivated by the fact that all known reactions and decay processes involving 
baryons conserve baryon numbers.  In particular, the lightest baryon, proton, 
appears to be perfectly stable. 
 
We mentioned already that charge conservation is a result of a field 
(electromagnetic field) coupled to the electric charge.  Lee and Yang suggested in 
1955 that the apparent conservation of baryon numbers implies the existence of a 
long-range field coupled to baryon number (analogous to the case for charge 
conservation ↔ electromagnetic field).  In particular, the gravitational force 
between an object and the earth 
 

 earth
Gravity 2

GM MF K
r

=  

 
could contain an additional term sensitive to the total baryon number of the object 
 

 ( )( )earth
Baryon 2

N N
B

M B M B
F K

r
=  

 
To measure such a new form of force coupled to baryon number (the fifth force), 
one could compare the gravitational force of two different objects having the same 
mass, but different total number of baryons.  This is possible by selecting two 
objects made of different materials.  The difference in the nuclear binding energies 
would give different total baryon number for equal mass.  By a comparison of 
objects made of aluminum and platinum, it was found that 
 
 KB < 10-9 K 
 
Altough the standard model does not allow proton decay (none of the fermion-
fermion-boson coupling diagrams we introduced in Chapter 1 allows proton 
decay), explanation for a well-known phenomenon in cosmology, namely the 
matter-antimatter asymmetry, requires baryon number non-conservation (the 
Sakharov conditions). 
 
In Grand Unified Theories (GUT), such as SU(5), there exist “leptoquark” with 
mass  10� 15 GeV.  The leptoquark can couple to qq or lq. 
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A possible diagram for proton decay is 
 
 
  u    x    e+

 p    u     d  
     π0

d     d 
 
 
The most favorable decay channel in SU(5) is p → e+π0.  In supersymmetry GUT, 
the most favored decay channel is p kτν

+→ .  Note that in these decays both 
baryon number conservation and lepton number conservation are violated.  
However, B – L, the difference between baryon number and lepton number, is 
conserved. 
 
Conservation of strangeness is a broken symmetry only valid in strong and 
electromagnetic interactions.  This conservation law is a special case of flavor 
conservation in strong and electromagnetic interactions.  A related quantum 
number Y, called hypercharged, is defined as 
 
 Y = B + S     (B is the baryon number and S is the strangeness) 
 
It is called hypercharge due to the following relationship between charge and Y: 
 

 3
1
2

Q e I Y⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
One can also define a generalized hypercharge Y′ as 
 
 Y′ = B + S + C + t + b 
 
where c, b, t are the additive quantum number for charm, bottom, and top quarks.   
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We have 
 

 B S C t b I3 Y′ 
3

1
2I Y ′+  Q 

u 1
3  0 0 0 0 1

2+ 1
3  2

3  2
3  

d 1
3  0 0 0 0 1

2− 1
3  1

3−  1
3−  

c 1
3  0 +1 0 0 0 4

3  2
3  2

3  

s 1
3  -1 0 0 0 0 2

3−  1
3−  1

3−  

t 1
3  0 0 +1 0 0 4

3  2
3  2

3  

b 1
3  0 0 0 -1 0 2

3−  1
3−  1

3−  
 
Note that the strangeness and bottom quantum numbers (s, b) are defined as -1 for 
the strange and bottom quarks, while c and t are +1 for the charm and top quarks.  
The above table shows that the relation 
 

 3
1
2

Q e I Y⎛ ⎞′= +⎜ ⎟
⎝ ⎠

 

 
holds for all quarks (and for all antiquarks, where all additive quantum numbers 
change sign). 
 
Note that charge conservation is valid for all types of interactions, while flavor (s, 
c, t, b) conservation only holds for strong and electromagnetic interactions.  
Furthermore, I3 is conserved in strong and electromagnetic interactions (since Q 
and Y′ are conserved).  For weak interaction, Y′ and I3 are not conserved. 
 
An example of I3 non-conservation can be seen in the following weak decays 
 
 k+ → π+ + π0          Λ → p + π-

                                I3     +½     +1     0            0    +½   -1 
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Discrete Symmetry and Multiplicative Quantum Numbers 
 
Space inversion (P), charge-conjugation (C), and time-reversal (T) are examples of 
discrete symmetry transformation which cannot be built up by infinitesimal 
transformation.  As discussed earlier, there is no Hermitian generator for such 
discrete transformation.  However, for P and C the transformation Up and Uc are 
Hermitian and if the Hamiltonian commutes with Up (Uc), the energy eigenstates 
could also be eigenstates of Up (Uc).  Since 2 21,  1p cU U= = , the possible eigenvalues 
are +1 and -1. 
 
 p pU ψ ψ λ ψ= ± =  
 
The multiplicative nature of the quantum number can be understood by considering 
a wave function consisting of several parts 
 
 1 2..... nψ ψ ψ ψ=  
 
The corresponding parity transformation Up is 
 

 
( ) ( ) ( )[ ]
( ) ( ) ( )

1 21 2 ..... .....

       1 2 .....
p p p p

p p p

U U U U n

n
nψ ψψ ψ

λ λ λ ψ

=

=
 

 
Parity (P) 
 
The parity operation corresponds to a transformation 
 
 (x, y, z) → (-x, -y, -z) 
 
  z        x 
 
   y    y 
 
 
 x        z 
 
It is clear that a right-handed coordinate system is changed into a left-handed 
system.  Space-inversion is equivalent to mirror reflection followed by rotation, 
and space-inversion and mirror reflection are often treated interchangeably. 
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Consider a particle experiencing a central potential v(r) which only depends on 
r r=

G .  The Schrödinger equation gives 
 

 ( ) ( ) ( )
2

2

2
v r r E r

m
ψ ψ

⎡ ⎤
− ∇ + =⎢ ⎥
⎣ ⎦

= G G  

 
The eigenstate can be separated into the radial and angular parts 
 
 ( ) ( ) ( ),n mr R r Yψ θ φ= A A

G  
 
The  can be expressed in spherical coordinates as r →−

G rG

 
                     r r θ π θ φ π φ→ → − → +  
 
Therefore, 

 

( ) ( ) ( ) ( )
( )( ) ( )

( ) ( )

,

             1 ,

             1

p n m

n m

U r r R r Y

R r Y

r

ψ ψ π

θ φ

ψ

= − = − +

= −

= −

A A

A
A A

A

G G

G

θ π φ

 

 
For even , parity = +1 A
For odd A ,  parity = -1 
 
The transformations of various quantities under space inversion are as follows: 
 

 

( ) ( )
( ) ( )
( )

momentum           ( ) angular momentum

spin                          electric field

magnetic field

p p L r p L

s s E E

B B

→− = × →

→ →−

→

GG G G G
G GG G

G G
 

 
The transformation properties of and E B

G G
 field under parity can be understood by 

requiring that the equation of motion for a charged particle 
 

 
2

2

1dF m r e E v B
dt c

⎡ ⎤= = + ×⎢ ⎥⎣ ⎦

G G GG G  
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be invariant under space inversions (both and r vG G  charge sign, hence 
,  E E B B→− →

G G G G
). 

 
What are the intrinsic parity of various hadrons (mesons and baryons), leptons, and 
gauge bosons? 
 
First consider mesons.  Since a meson consists of a quark and an antiquark, we 
have 
 parity (meson) = parity (q) x parity ( )q  x (-1)L

 
where L is the orbital angular momentum between the quark (q) and antiquark 
( )q . 

is defined as +1, and the antiquark’s parity is -1, 
pposite to that of the quark. 

ence parity (meson) = (-1)L+1

 0 (i.e. π, k, η, 
, ω, 

 
The intrinsic parity of quarks 
o
 
H
 
As will be discussed later, the lightest mesons are mostly L =   states 

φ . . . ).  Therefore, these mesons have negative parity (λρ  = -1). 

esons with L = 1 (a0, f0, b, h, etc.) have positive parity (
 
M λ  = +1). 

or baryons consisting of three quarks, we have 

parity (baryon) = parity (q1) 

 
F
 

× parity (q2) × parity (q3) × ( ) ( )1 21 1L L− × −   
 
where L1 is the orbital angular momentum between q1 and q2, and L2 is the orbital 
ngular momentum between q3 and the center-of-mass of q1q2: 

1  q2
 2

      q3

a
 
  L1
 q      
    L
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For light baryons, such as p, n, Λ, Σ, Ξ, Ω, L1 = 0, L2 = 0 and λ = +1.  Note that if 
the intrinsic parity of quarks were defined as negative, then these baryons would 
have  λ  = -1.  For baryons with L1 + L2 = odd, their parity is negative. 

nd it exists in two 
tates:   

ty state (right-handed), or 
λ = -1 for negative helicity state (left-handed) 

 
The wave function can be written as 

 
The intrinsic parity of photon is negative.  Photon has spin = 1, a
s
 
 λ = +1 for positive helici
 

 

( )
 

( )1
1 ipz

x y

1
1
2

2

ipz
x yA e ie eλ=+ = − +
G G

 
A e ie eλ=− = −

G G

 
for photons moving along the z-axis.  Upon parity transformation, 1Aλ=+  becomes 

1Aλ=−−  and vice versa. 
 
We now consider neutrinos.  It turns out that neutrinos are not eigenstates of parity.  

pon parity transformation, a left-handed neutrino would become a right-handed 
eutrino.  Since right-handed neutrino is not found in nature (only right-handed 

s not a parity eigenstate. 

ests of Parity Conservation

U
n
antineutrino exists), neutrino i
 
 
T  

, and 
 

o transitions between states within the same group were 
bserved.  In 1927, soon after the discovery of quantum mechanics, Wigner 

 
a)  Atomic Physics 
 
In 1924, Laporte found the following peculiar phenomenon in atomic x-ray 
transitions in iron atoms.  The atomic levels can be separated into two groups
photon transitions were only observed between two states belonging to the two
different groups.  N
o
suggested that the ‘Laporte’s Rule’ is a consequence of parity conservation in 
atomic transitions. 
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The probability for an atom to make a transition from a state ψa to a state ψb with 
ission of electric dipole radiation is proportional to the square of the matrix 

lement 
the em
e
 
 | |b adψ ψ

G
 

 
where r  is the electric dipole moment operator summed over all electrons.  

trix element is invariant under parity transformation if parity is conserved: 

 i
i

d e=∑
G G

This ma
 

| | | | | |b a b b a a a b b ad d dψ ψ ηψ η ψ η η ψ ψ= − = −
G G

 
G

a b

 
 
where ηa, ηb are the parities of ψa and ψb. 
 

 η η  = +1, then  | | | | 0b a b ad dIf ψ ψ ψ ψ= − =
G G

 

 

 
gnetic interaction, it is not surprising that no significant 

arity violation has been observed in atomic physics.  As will be discussed later, 
e interference of electromagnetic and weak interaction does allow parity 

 could only be detected in very 
ensitive measurements. 

)  Parity Violation Search in Strong Interaction 

ome examples of parity violation search in nuclear physics, where strong 

 
Hence, dipole transitions can only occur between states which have opposite 
parities, if parity is conserved. 
 
An interesting extension of the Laporte’s Rule concerns the static dipole moment 
of an atom, a nucleus, or other elementary particle.  In this case, ψa = ψb and ηaηb =
+1.  Hence, electric dipole moment vanishes if parity is conserved. 
 
Since atomic physics is dominated by electromagnetic interaction, and since parity
is conserved in electroma
p
th
violation in atomic physics.  The effect is tiny, and
s
 
 
b
 
S
interaction dominates, include 
 
  20Ne(1+, Ex = 11.3MeV) → 4He(0+) + 16O(0+) 
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T xcited his α-decay of an e tes parity.  
onservation of angular momentum requires that L = 1 between 4He and 16O.  The 

d(1 ) + He(0 ) → Li (0 , Ex = 3.6 MeV) 

, since angular momentum conservation dictates 
at the orbital angular momentum L between d and 4He be 1. 

onserved in strong interaction. 

- The τ-θ puzzle 
 

rior to 1956, the θ- and τ-mesons (not to confuse with the τ-lepton) were found to 
odes 

 (and 

20Ne 1+ state to 16O ground state viola
C
total parity for 4He + 16O is therefore negative (due to the (-1)L factor). 
 

+ 4 + 6 + 
 
This reaction also violates parity
th
 
Neither reaction has been observed experimentally, showing that parity is 
c
 
 
c)  Parity Violation in Weak Interaction 
 
 

P
have the decay m
 

 
0

0    )
θ π π

0τ π π π π π π

+ +

+ + + + − +

→ +

→ + + +
 

 
The masses and lifetimes of θ and τ were equal within experimental errors.  

ssuming θ, τ have spin = 0, the 0

τ → +

θ π π+ +→ +  decay requires that 0π π+ +  has A
positive-parity (since 0π π+ +  parity = ( ) ( ) ( )1 1 1 L 1− − − = +i i , L = J milarly, 

e negative parity.  It was a great puzzle why two 
articles (θ, τ) have identical masses and lifetimes, but opposite intrinsic parities. 

teraction.  Although there was plenty of evidence for the 
alidity of parity conservation in electromagnetic (atomic) and strong (nuclear) 

e 
s of 

 = 0).  Si
one can show that τ+ has to hav
p
 
 
 - The 60Co Experiment 
 
Lee and Yang suggested that the τ-θ puzzle could be resolved by parity non-
conservation in weak in
v
interactions, Lee and Yang pointed out that there was no experimental evidenc
whatsoever for parity conservation in nuclear β-decays or other weak decay
mesons and hyperons. 
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Wu, Ambler, Hayward, Hoppes and Hudson performed an experiment which 
conclusively demonstrated parity violation in nuclear β-decay.  They used 
polarized 60Co nuclei and measured electrons from the following decay: 
 

60 60Co Ni ee ν−→ + +   
 
They found e- prefers to be emitted in the direction opposite to the 60Co spin 

irection: 

Co        spin    o    

mirror    (not observed in nature) 

Co        spin      (not observed in nature) 

ns, 

d
 
 
 
 
 
 
60 60C spin 
 
 
 
 
 
mirror 
 
 
 
 
60

 
 
 
 
 
 
From the above figure, it is clear that the mirror images give un-physical situatio
where e- prefers to be emitted in the direction along the 60Co spin direction 
(independent of how you place the mirror). 
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Upon hearing the news on Wu’s experiment, Garwin, Lederman, and Weinrich 
ri ent confirming large parity violation effect in π+ and 

 decays.  They found 1) µ+ in the π+ → µ+ + νµ decay is polarized, i.e. the 
xpectation value 

carried out an elegant expe m
+µ

0s p
µ+ ≠

G Gi ; and 2) e+ emitted in the ee µµ ν ν+ +→ + +

otropic and the preferred d rection is correlated with the spin orientation of µ+. 

π+     π+    (not observed in nature) 

    
 
mirror 

 is not e

is i
 
 
 µ+     µ+

 
 
 
 
 
 νµ  νµ
 
 
 
 
Note that the asymmetry in the angle of emission of e in 60 60Co Ni ee ν−→ + +

JJG
 

decay and the ee µµ ν ν+ +→ + +
G  both reflect the existence of a non-vanishing 

expectation value for 
es pG Gi   

 
where sG  is the spin of 60Co (or µ+) and epG  is the momentum of e.  Since es pG Gi  
changes sign under parity transformation, it cannot have non-zero expectation 
value if pari + + +

ongitudinal
ty is conserved.  Similarly, in the π  → µ  + νµ decay, the fact that µ  is 
ly polarized means that the expectation value for l

 
 s p

µ µ+ +

G Gi  

 
is not zero.  Again s p

µ µ+ +iG G  changes sign under parity and must vanish if parity is 

uantities such as

conserved. 
 

 s pG Gi  are called pseudoscalars.  They behave like a scalar under 
tation, but changes sign under parity transformation.  Quantities such as 

Q
L
G

 and sG  ro
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are axial vectors, which behave like a vector under rotation, but do not change sign 
der parity. 

 
We can revisit the

un

 τ-θ puzzle and observe that the  

k+ → π+ + π0

ecay manifestly violates parity.  Since k+, π+, π0 all have Jπ (J is spin, π is parity) = 

harge-Conjugation

 
 
 
d
0− , the parity for π+ + π0 is (-1) x (-1) x (-1)L.  Conservation of angular momentum 
requires L = 0.  Hence, the parity for π+ + π0 is +1, opposite to the parity of the 
initial particle k+. 
 
 
C  

c  
 

he charge-conjugation transformation, U , reverses the sign of additive quantumT
numbers.  Other quantum number related to space-time (energy, momentum, spin) 
remain the same under Uc. 
 

( ) ( ),  ,  ,  ,  ,  ,  U Q B S L Q B S L cψ ψ= − − − −  
 
 (Q, B, S, L are charge, baryon number, strangeness, lepton number) 
 

ince 2 1, the eigenvalues for U  are +1, -1.  From the above relation, it is clear cU =S c

it is possible to form 
-parity eigenstates by conside

that only particles with Q = 0, B = 0, S = 0, L = 0 could be eigenstates of the c-
parity.  Particles such as π0, ρ0, γ have definite intrinsic c-parity. 
 
Although very few particles are themselves eigenstates of c, 

ring systems consisting of several particles.  For c
example, (π+π-), ( ),  p p , (π+, π-, π0) are eigenstates of c-parity. 
 
What is the c-parity of a system consisting of a boson and an antiboson (such as 
π+π-)? 
 
 ψ = ψ (space) ψ (spin) ψ (intrinsic) 
 
A particle-antiparticle exchange is identical to interchanging the two particles.  Let 
L, S be the orbital angular momentum and the total spin of the two bosons.  Upon 
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particle-antiparticle interchange, one obtains a factor (-1)L from ψ (space), (-1)S 

(-1)

from ψ (spin) and the c-parity of boson-antiboson pair is 
 

L+S 
 
For a fermion-antifermion pair (like pp  or e+e-), one obtains (-1)L from ψ (space), 

1)S+1 from ψ (spin) and (-1) from ψ (intrinsic).  The overall c-parity is again        

ty, ηc, for neutral mesons which have L = 0, S = 0, is therefore +1 
0, η0).  For ρ0, 

(-
(-1)L+S. 
 
The charge pari

φ(π  mesons which have L = 0, S = 1, ηc is -1. 

he photon has η  = -1 since all components of the electromagnetic field change 

+e- can form bound states called positronium.  The shortest-lived state of 
ositronium is in a 1So state (S = 0 hich can decay into 2γ (since ηc 
 (-1)L+S = +1) 

ote that c-parity conservation dictat - → 2γ has to occur from a ηc = +1 
ositronium state.  Similarly, 

e e  ( S1) → 3γ 

gous to π , which consists of a 

 
T c
sign under charge conjugation.  A system of n photons has ηc = (-1)n. 
 
e
p , L = 0, J = 0) w
=
 
 e+e- (1So) → 2γ 
 
N es that e+e
p
 

+ - 3 
 
Note that the positronium 1So state is analo 0 qq  pair 

 1So state.  Indeed, the dominant decay mode for π0 is 

hile the π0 → 3γ decay mode, which violates c-parity, has never been observed. 

 can be readily verified that c-parity conservation (in strong and electromagnetic 
e following decays: 

η → π0γ 
ρ → π0π0π0

in
 
 π0 → 2γ 
 
w
 
It
interactions) forbid th
 
 η → 3γ 
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 ρ → ηπ0

 
 
Tests of c-invariance 

 direct test of c-invariance can be made by comparing the cross-sections, energy 
action 

 b → c + d + e + . . .  

e char tion 

 
A
distribution for a re
 
 a +
 

ith th e con on reacw g jugati
 
 ..a c d e ..b+ →  

n example is the 

+ + +
 

0pp πA π π+ −→  reaction.  In the center-of-mass frame: 

 -

 π – θ 
  

 
   π+     π
    

      θ 
 p      p     p    p  
    charge 
 π-   π0     conjugation π+   π0

 
 
nvariance under charge conjugation requires I

 

( ) ( )d d
d dπ π

σ σθ π θ+ −= −
Ω Ω

  

 
i.e. the cross-section for π+ to be produced at an angle θ (with respect to the p  

irection) is identical to th e cross-section for π- to be produced at the angle π – θ.  d
In a similar fashion, one can readily show that 
 

( ) ( )0 0

d d
d d
σ 

π π

σθ π θ= −
Ω Ω

 

e center-of-mass frame should be 
 
In other words, the π0 angular distribution in th
ymmetric about θ = 90o. s
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 0pp π π π+ −→  reaction.  No evidence for c-parity violation was observed in

Extensive study of a similar process 
 
 η → π+π-π0

 
also did not find any evidence for c-violation. 
 
 
c-violation in Weak Interaction 
 
Parity violation in weak interaction also leads to c-violation.  For example, 

n nd antineutrino is right-handed.  This fact alone shows that 
harge-conjugation ymmetry is violated, since the charge-conjugation operation 
n left-handed neutrino would lead to a left-handed antineutrino. 

+ µ+ + νµ decay 
µ

neutrino is left-ha ded a
c  s
o
 
Another example is provided by the charged pion decay.  π  → 

roduces a left-handed ν  and µ+, while p µπ µ ν− −→ +  produces right-handed µν  
and µ- (the double-arrow indicates the spin direction): 
 
 µ+    π+    νµ     µ-    π-    µν  
 
 
 
A charge-conjugation operation on π+ → µ+ + νµ would lead to 
 

- - µ     π     µν  

hich is not observed in nature. 

ecay violates c-parity.  It is interesting to note that the 
P operation, which combines the c and p operations, is invariant.  The combined 
P operation on π+ → µ+ + νµ would yield 

µ-    π-    

 
 
w
 
Therefore, the π+ → µ+ + νµ d
C
C
 
 µν  
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which is observed in nature. 
 
 
CP-violation 

57, it diately recognized that 
-parity is also violated in weak interaction.  However, it was generally believed 
at the combined operation, CP, was a valid symmetry.  In 1964, CP-violation was 

discovered in neutral k-meson decays.  The physics origin of CP violation is still 
oorly u d, and it remains a very active area of research in particle and 

. 

We now discuss CP-violation in the neutral k-meson system.  We begin by 
escribing the interesting phenomenon of 

 
After the discovery of parity violation in 19 was imme
c
th

p nderstoo
nuclear physics
 

0 0k k−d  mixing. 
 
 

0 0k k−  Mixing 

e know that 
 
W
 

0 0 0

 
0          

            

P k k P k k

C k k C k k

= − = −

= =

 
Therefore 

 

0 0 0 0
 

 
0 0 0          CCP k k P k k= − = −  0

 
0
2k0

1k0k  and 0k , one can form  and From  which are eigenstates of
 

 CP 

( )

( )

0 0 0 0
1 1

0 0 0 0

0
1

0
2

          
2

1

k k k CP k k

k CP k

= − =

= +
 

1

 

2 2          
2

k k k = −
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0k  and 0kThe above expressions imply that  can mix to form the CP 

eige 0
1k  and 0

2k .  Possible diagrams in the Standard Model for mixing nstates 
0  and 0k  are k

 
d     u,c,t    s       d     w     s 

0  w     w     
 
k     0k     and    k0 u,c,t     u,c,t          0k  
 s      , ,u c t     d        s      w     d  
 

0
1k  can decay into π+π- or π0π0 channels which are CP-even, but not into π+π-π0 or 

0π0π0 which are CP-odd 

0
1

+ −

→

π
 

 1 ,k

k

π π π π→0 0 0

0 0 0 0,π π

0

2

,k

π π π π+ −
 

 
In contrast 
 

 
0k

0 0 0 0
2 π π π π π π+ −→

→ 0 0π π π
 

,π+ −

 
vora ays due to the 

phase-space consideration, the 
Since the 2π decay channels are more fa ble than the 3π dec

0
1 2k π→  occur more readily than 0

2 3k π→ .  In 
.  We therefore call  as kS and 

L

kS has a lifetime 

other words, 1k  has a shorter lifetime than
s k . 

0  0
2k 0

1k 0
2k  

a
 

 1⎛ ⎞

S
⎜ ⎟Γ⎝ ⎠

 of 0.89 x 10-10 sec 

L has a lifetime  k 1

L

⎛ ⎞
⎜ ⎟Γ⎝ ⎠

 of 5.2 x 10-8 sec 

eir lifetimes differ by a factor of ~ 600. 

k0 at t = 0 (via the 

 
th
 
Suppose one prepares a 0p kπ − → Λ  reaction, for example), then 
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( )0

0

1
2 S Lt

k k
=
= +   k

The time-evolution for k0 is (setting 
 

1,  1c= = ) =
 

0 2 2sim t
k k e

Γ
− −⎛1

2

s L
Lt im t t

S Lt t
k e

Γ
− −

=

⎞
= +⎜ ⎟

⎝ ⎠
  

 
using 
 

( )0 01
2Sk k= − k      and     ( )0 01

2Lk k k= +   

 
the probability of finding a 0k  at time t is  
 

( ) ( ) ( )
2

0 0 0 21| 2
4

s Ls L
tt t

t t
cosI k k k e e e mt− Γ +Γ−Γ −Γ

=
⎡ ⎤= = + + ∆⎢ ⎥⎣ ⎦

  

 
where 
 
 L Sm m m∆ = −  
 
Sim
 

ilarly, 

( ) ( ) ( )0 21 s Ls L
tt t 2 cos

4
I k e e e mt ⎤

⎢ ⎥⎣ ⎦
 

urthermore, the probability of finding a 

− Γ +Γ−Γ −Γ⎡= + + ∆ 

 
sk  at time t is F

 

 ( ) ( )1 1     and     
2 2

s st t
SSI k e I k e−Γ −= Γ=  

ility at time t is equal to the sum of  I(k0) and 
 

( )0I kThe decay probab  (or the sum 
f I(kS) and I(kL)). o
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 ( ) ( ) ( )0 0 1
s Lt tI k I k e e−Γ −Γ+ = +  

2

nd it is not an exponential decay. 
 
a
 
 
kS Re eratiogen n 

n traverses a slab of material, kS will 
e regenerated.  The mechanism is as follows:  a kL beam is a superposition of k0 
nd

 
Since the lifetime of k  is ~ 600 times shorter than k , a beam of k  would soon turn 
into an almost pure k  beam.  If this beam the

S L
0

L
b

 0k  a
 

( )0 01
2Lk k k= +   

 
The 0k  and 0k  components in Lk  are absorbed differently when matter is 

0kencountered.  In fact, the cross-section for  + N interaction is significantly larger 
ss-section for k0 + N interaction than the cro

 

( ) ( )
0

( ) ( ) ud
 

ssd uduud
k p π ++ → + Λ  

 
0 0k p π ++ Σ   + →

 
 0 0k p k p+ → +  are allowed 

However,  
 

( ) ( )

0

sd uud
k p+ →

( ) ( )udsud
π ++ Λ  

 
0k p+ → 0π ++ Σ   

 
 0k p k n++ → +  is allowed 

 a slab of material, 
 
After passing a kL beam becomes 
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( )0 01           
2

f k f k
 

( ) ( )1
2 S Lf f k f f k⎡ ⎤= − + +⎣ ⎦

ince f, the fraction of 

+
 

 
S 0k  surviving the interaction with matter, is different from 

( )  f f f� , we conclude that Sk  is regenerated after a kL beam passes through 
some material. 
 

0 0D D− , Particle-antiparticle mixing can also occur in other systems, such as 
0 0B B−  and S SB B− .  So far, only 0 0k k−  and 0 0B B−  mixings have been 

observed. 
 
Note that ν ν−  mixing cannot occur, since ν and ν  have opposite helicity. 
 
 

 n n−The possibility for  mixing has also been considered.  In the standard model, 
aryon number conservatio h antibaryon mixing.  
owever, in non-standard models, such 

b n would prevent suc  baryon-
n n−H  mixing has been found so far. 

short long
any channels and the restriction on their CP-even or CP-odd nature is negligible. 

So far, we have made the assumption that kS and kL are CP eigenstates.  Evidence 
r CP-violation was observed when it was found that k  can decay into the 

kL → π π          (BR  0.2%) 
 

his striking result showed that there is a small ponent in kL, namely 
 

 
ote that the lifetimes for B  and B  are very similar, since they can decay into N

m
 
 

fo L
‘wrong’ CP states of π+π-, and π0π0, with a small probability (~ 0.2%) 
 

 � 

T  com0
1k

( )
( )2 1

1
2 2

    with 0.0025Lk ε= �  
0 0

1

k kε

ε

+

+
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vation of kL → π π decays is caused by the small component of  in kL’s 0
1kThe obser

wave function.  Similarly, we have 
 

( )

0 0
1 2

1
2 21

S

k k
k

ε

ε

+
=

+
  

 
This suggests that kS can decay into π π π channels.  Indeed, this was observed 
experimentally. 
 
 
G-parity 

nstates of c-parity: 

 

 
lthough π0 is an eigenstate of c-parity, π+ and π- are not eigeA

 
          c cπ π π+ − −= =  π +

owever, a rotation in the isospin space by 180o along the y-axis would 
interchange π+ and π-.  Since isospin is conserved in strong interaction, it is useful 
to define G-parity operation as a combined operation of c-parity and isospin 

tation: 

 
H

ro
 

( )2 1 Ii IG ce cπ= = −   
 where I is the isospin of the mesons 
 
Since  

2

2e

i I

i T

e π

π

π π

 π π

2 0 0i Te π π π

+ −

− +

= −

he combined operation 

= −  

= −

 
T of 2i Ice π  on pions are 
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0 0G

G π π+ += −

G π π− −= −  

π π= −

 
G-parity conservation explains why ω0-meson, which has I = 0, c = -1,  
G = c(-1)I = -1, has the following branching fractions for 2π and 3π decays: 
 
 ω0 →π+π-     (2.2% branching) 
 ω0 → π+π-π0     (89% branching) 
 
The ω0 →π+π- decay, although favored by phase-space consideration, violates G-
parity and therefore can only proceed via electromagnetic interaction. 
 
 
Similarly, G-parity conservation can explain why 
 
 ρ0 → π+π-     (~ 100% branching) 
 ρ0 → π+π-π0     (< 1.2 x 10-4 branching) 
 
since ρ0 has G = +1. 
 


