
CSE P 501 – Compilers

Inlining and Devirtualization
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 X1-1

References

• Adaptive Online Context-Sensitive Inlining
Hazelwood and Grove, ICG 2003

• A Study of Devirtualization Techniques for a
Java JIT Compiler
Ishizaki, et al, OOPSLA 2000

• Earlier versions of this lecture by Vijay Menon,
CSE 501, Sp09 & Jim Hogg, CSE P 501 Sp14

UW CSE P 501 Spring 2018 X1-2

Inlining

UW CSE P 501 Spring 2018 X1-3

long res;

void foo(long x) {
res = 2 * x;

}

void bar() {
res = foo(5);

}

long res;

void foo(long x) {
res = 2 * x;

}

void bar() {
res = 2 * 5;

}

long res;

void foo(long x) {
res = 2 * x;

}

void bar() {
res = 10;

}

Benefits

• Removes overhead of function call
– No marshalling / unmarshalling parameters and

return values
– Better instruction cache locality

• Bonus: expands optimization opportunities
– CSE, constant propagation, unreachable code

elimination, ...
– Poor person’s interprocedural optimization

UW CSE P 501 Spring 2018 X1-4

Costs

• Code size
– Typically expands overall program size
– Can hurt instruction cache

• Compilation time
– Larger methods can lead to more expensive

compilation, more complex control flow

UW CSE P 501 Spring 2018 X1-5

Language / runtime aspects

• What is the cost of a function call?
– C: cheap, Java: moderate (virtual dispatch), Python:

expensive

• Are targets resolved at compile time or run time?
– C: compile time; Java, Python: run time

• Is the whole program available for analysis?
– “separate compilation”

• Is profile information available?
– If “m” is rarely called, don’t inline it

UW CSE P 501 Spring 2018 X1-6

When to inline?

Jikes RVM (with Hazelwood/Grove adaptations):
• Call Instruction Sequence (CIS) = # of

instructions to make call
– Tiny (function size < 2x call size): Always inline
– Small (2-5x): Inline subject to space constraints
– Medium (5-25x): Inline if hot (subject to space

constraints)
– Large : Never inline

UW CSE P 501 Spring 2018 X1-7

Gathering profile info
• Counter-based: Instrument edges in CFG
– Entry + loop back edges
– Enough edges (enough to get good results without

excessive overhead)
– Expensive - typically removed in optimized code
– Depends critically on the “training sets”

• Call stack sampling
– Periodically walk stack
– Interrupt-based or instrumentation-based
– May gather info on what calls what (callsite info)

UW CSE P 501 Spring 2018 X1-8

Object-oriented languages

• OO encourages lots of small methods
– getters, setters, ...
– Inlining is a requirement for performance
• High call overhead wrt total execution
• Limited scope for compiler optimizations without it

– For Java, C#, if you’re going to anything, do this!
– But ... virtual methods are a challenge

UW CSE P 501 Spring 2018 X1-9

Virtual methods

• In general, we cannot
determine the target
until runtime

• Some languages (e.g.,
Java) allow dynamic
class loading: all
subclasses of A may
not be visible until
runtime

UW CSE P 501 Spring 2018 X1-10

class A {
int foo() { return 0; }
int bar() { return 1; }

}

class B extends A {
int foo() { return 2; }

}

void baz(A x) {
y = x.foo();
z = x.bar();

}

Virtual tables

• Object layout in a JVM:

UW CSE P 501 Spring 2018 X1-11

Virtual method dispatch

• x is the receiver
object

• For a receiver object
with a runtime type
of B, t2 will refer to
B::foo.

UW CSE P 501 Spring 2018 X1-12

t1 = ldvtable x
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)
t4 = ldvtable x
t5 = ldvirtfunaddr t4, A::bar
t6 = call [t5] (x)

Source:
y = x.foo();
z = x.bar();

Devirtualization

• Goal: change virtual calls to static calls in
compiler

• Benefits: enables inlining, lowers call
overhead, better I-cache performance, better
indirect-branch prediction

• Often optimistic:
– Make guess at compile time
– Test guess at run time
– Fall back to virtual call if necessary

UW CSE P 501 Spring 2018 X1-13

Guarded devirtualization

• Guess receiver type is B
(based on profile or
other information)

• Call to B::foo is statically
known - can be inlined

• But guard inhibits
optimization

UW CSE P 501 Spring 2018 X1-14

t1 = ldvtable x
t7 = getvtable B
if t1 == t7
t3 = call B::foo(x)

else
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)

...

Guarded by method test

• Guess that method is
B:foo outside guard

• More robust, but more
overhead

• Harder to optimize
redundant guards

UW CSE P 501 Spring 2018 X1-15

t1 = ldvtable x
t2 = ldvirtfunaddr t1
t7 = getfunaddr B::foo
if t2 == t7
t3 = call B::foo(x)

else
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)

...

How to guess receiver?

• Profile information
– Record call site targets and / or frequently

executed methods at run time
– “monomorphic” vs. “polymorphic”

• Class hierarchy analysis
– Walk class hierarchy at compile time

• Type analysis
– Intra / interprocedural data flow analysis

UW CSE P 501 Spring 2018 X1-16

Class hierarchy analysis

• Walk class hierarchy at compilation time
– If only one implementation of a method (i.e., in

the base class), devirtualize to that target
• Not guaranteed in the presence of class

loading
– Still need runtime test / fallback

UW CSE P 501 Spring 2018 X1-17

Flow sensitive type analysis

• Perform a forward
dataflow analysis
propagating type
information.

• At each use site,
compute the possible
set of types.

• At call sites, use type
information of receiver
to narrow targets.

UW CSE P 501 Spring 2018 X1-18

A a1 = new B();
a1.foo();

if (a2 instanceof C)
a2.bar();

Alternatives to guarding

• Guarding impose overheads
– run-time test on every call, merge points impede

optimization
• Often “know” only one target is invoked
– call site is monomorphic

• Alternative: compile without guards
– recover as assumption is violated (e.g, class load)
– cheaper runtime test vs more costly recovery

UW CSE P 501 Spring 2018 X1-19

Recompilation approach

• Optimistically assume current class hierarchy will
never change wrt a call

• Devirtualize and/or inline call sites without guard
• On violating class load, recompile caller method
– Recompiled code installed before new class
– New invocations will call de-optimized code
– What about current invocations?

• Nice match with JIT compiling

UW CSE P 501 Spring 2018 X1-20

Preexistence analysis

• Idea: if the receiver object pre-existed the
caller method invocation, then the call site is
only affected by a class load in future
invocations.

• If new class C is loaded
during execution of baz,
x cannot have type C:

UW CSE P 501 Spring 2018 X1-21

void baz(A x) {
...
// C loaded here
x.bar();

}

Code-patching

• Pre-generate fallback virtual call out of line
• On invalidating class load, overwrite direct call

/ inlined code with a jump to the fallback code
– Must be thread-safe!
– On x86, single write within a cache line is atomic

• No recompilation necessary

UW CSE P 501 Spring 2018 X1-22

Patching - before

UW CSE P 501 Spring 2018 X1-23

t3 = 2 // B::foo (inlined)
next:

...

fallback:
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)
goto next

Patching - after

UW CSE P 501 Spring 2018 X1-24

t3 = 2 // B::foo (inlined)
next:

...

fallback:
t2 = ldvirtfunaddr t1, A::foo
t3 = call [t2] (x)
goto next

goto fallback

