Operational Semantics of Pure Functional Languages

Evaluation of an expression in a functional language can be
described as a rewriting of the expression into a canonical
form, with the function definitions as the rewrite rules.

Rewrite a function application by replacing the function
application by the body of the function, substituting the actual
arguments for formals, and renaming variables if needed.

Example:
Given the definition
double x = x + X

Evaluate
double 4

double 4 ==>

4+4 ==>
8

Alan Borning 1 CSE 505

Evaluation Order

Two important orders of rewriting:

* Normal order - rewrite the leftmost occurence of a function
application. (This is equivalent to call by name.)

» Applicative order - rewrite the innermost occurrence of a
function application first. (This is equivalent to call by
value.)

Normal order evaluation always gives the same results as lazy
evaluation, but may end up evaluating an expression more
times.

Examples: Consider
double x = x + x
average xy=(x+y)/2

To avoid confusion about infix notation, let's re-express this as:
double x = plus x x

average x y = divide (plus x y) 2

Evaluate:
double (average 2 4)

Alan Borning 2 CSE 505

Example of Normal vs. Applicative Order

Using normal order evaluation:
double (average 2 4) =>
plus (average 2 4) (average 2 4) =>
plus (divide (plus 2 4) 2) (average 2 4) =>
plus (divide 6 2) (average 2 4) =>
plus 3 (average 2 4) =>
plus 3 (divide (plus 2 4) 2) =>
plus 3 (divide 6 2) =>
plus 33 =>
6

Notice that (average 2 4) was evaluated twice ... lazy
evaluation would cache the results of the first evaluation.

Using applicative order evaluation:
double (average 2 4) =>
double (divide (plus 2 4) 2) =>
double (divide 6 2) =>

double 3 =>

plus 33 =>

6

Alan Borning 3 CSE 505

Different Semantics for Normal and Applicative Order
Evaluation

Now consider:
my_if True xy = x
my_if False xy =y

Evaluate:
my_if (less 3 4) (plus 5 5) (divide 1 0)

Normal order evaluation:
my_if (less 3 4) (plus 5 5) (divide 1 0) =>
my_if True (plus 5 5) (divide 1 0) =>
(plus 5 5) =>
10

Applicative order evaluation:
my_if (less 3 4) (plus 5 5) (divide 1 0) =>
my_if True (plus 5 5) (divide 1 0) =>
my_if True 10 (divide 1 0) =>
DIVIDE BY ZERO ERROR

Alan Borning 4 CSE 505




Properties of Evaluation Order; Strictness

Two important properties of evaluation order:

« If there is any evaluation order that will terminate and that
will not generate an error, normal order evaluation will
terminate and will not generate an error.

« ANY evaluation order that terminates without error will give
the same result as any other evaluation order that
terminates without error.

Definition : a function f is strict in an argument if that argument
is always evaluated whenever an application of f is
evaluated.

If a function is strict in an argument, we can safely evaluate the
argument first if we need the value of applying the function.

Alan Borning 5 CSE 505

Lazy Evalution and Stricness Analysis

We can use lazy evaluation on an ad hoc basis (e.g. for if ), or
for all arguments. If for all arguments, for some
implementations of functional languages we can improve
efficiency using strictness analysis.

plusab is strict in both arguments
ifxyz is strict in X, but notiny and z

We can do some analysis and sometimes decide if a user-
defined function is strict in some of its arguments:

Examples:
double x
is strict in x
squid n x = if n=0 then x+1 else x-n
is strict in n and x
crab n x = if n=0 then x+1 else n
is strict in n but not x

If a function is strict in an argument ¥, it is correct to pass x by
value, even with normal order evaluation semantics.

It is not always decidable whether a function is strict in an
argument - if we don’t know, pass using lazy evaluation.

Alan Borning 6 CSE 505




