W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

Assembly Programming |
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson

Kevin Bi

Linxing Preston Jiang
Cody Ohlsen

Yufang Sun

Joshua Curtis

CSE351, Spring 2017

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Administrivia

+» Lab 1 due Friday (4/14)

® Prelim submission (3+ of b1ts.c)due on TONIGHT (4/10).
Turn in whatever you have at that time (drop box closes at
11:59pm), no lates. Worth a small part (no more than 10%)
of total points for lab 1.

+» Homework 2 due next Wednesday (4/19)

W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

CSE351, Spring 2017

Roadmap
C: Java:

. x86 assembly
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();

Assembly get_mpg:
. pushq %rbp

language: movq %rsp, %rbp

éééq %rbp

ret |
Machine 0111010000011000 -

de: 100011010000010000000010 -
coae: 1000100111000010
110000011111101000011111 W|ndows8 Mac
v v

Computer

system:

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Translation
Code Time Compile Time Run Time
User W i 'Q
programH4+—| ¢ Assembler e
\ o compiler J l -{‘ﬁ
- C file .exe file

What makes programs run fast(er)?

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

HW Interface Affects Performance

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set !Different |
or algorithms generate instructions implementations
o R ~ Intel Pentium 4
i C Language !
| |
' | pro : Intel Core 2
| gram . T T T T T T]
A - '
| GCC | X864 Intel Core i7
: Lo oo _ B
I T
! |
I B
: AMD Athlon
: Clang
|
: Your ; mmm o - ‘
I | program ! | '
Rl | AR ARM Cortex-A53
o ; | (AArch64/A64) :
o v
Apple A7

W UNIVERSITY of WASHINGTON

LO7: Assembly Programming |

Instruction Set Architectures

«» The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)
countel

" The instructions the CPU can execute

CSE351, Spring 2017

= The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Instruction Set Philosophies

« Complex Instruction Set Computing (CISC): Add more
and more elaborate and specialized instructions as
needed

" |ots of tools for programmers to use, but hardware must be
able to handle all instructions

W—M is CISC) but only a small subset of instructions
encountered with Linux programs

+ Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular
= Easier to build fast hardware

" |et software do the complicated operations by composing
simpler ones

W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

General ISA Design Decisions

< |nstructions

" What instructions are available? What do they do?
®" How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

+» Memory

" How do you specify a memory location?

CSE351, Spring 2017

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

General ISA Design Decisions

< |nstructions

" What instructions are available? What do they do?
" How are they encoded? Instructions are data!

+» Registers
" How many registers are there?
®" How wide are they? Size of a word

+» Memory

" How do you specify a memory location? Different ways to
build up an address

W UNIVERSITY of WASHINGTON

LO7: Assembly Programming |

Mainstream ISAs

intel.

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)
Design
Type Register-memory

—————

Encoding Variable (1 to 15 bytes)
e e i

Endianness Little

Macbooks & PCs
(Core i3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit

Introduced 1985; 3 ars ago

Design @

Type Register-Register

Encoding AArch64/A64 and AArch32/A32

use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibility“]

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

CSE351, Spring 2017

MIFPSS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type @?ter—R_ngsjgr
Encoding _Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

10

LO7: Assembly Programming | CSES351, Spring 2017

W UNIVERSITY of WASHINGTON

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”
+» Microarchitecture: Implementation of the

architecture
= CSE/EE 469, 470

+» Are the following part of the architecture?

" Number of registers?

" How about CPU frequency?
" Cache size? Memory size?

11

LO7: Assembly Programming | CSES351, Spring 2017

W UNIVERSITY of WASHINGTON

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”
+» Microarchitecture: Implementation of the

architecture
= CSE/EE 469, 470

+» Are the following part of the architecture?

"= Number of registers? Yes
*" How about CPU frequency? No
" Cache size? Memory size? No

12

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Assembly Programmer’s View

CPU Addresses Memory
Registers ”

 Cod

bC Data ode

« > e Data

Condition Instructions e Stack

Codes)
+» Programmer-visible state
= PC: the Rrogram Counter (%rip in x86-64)

« Address of next instruction

= Named registers + Memory
« Together in “register file” = Byte-addressable array
« Heavily used program data = Code and user data

= Condition codes " |ncludes the Stack (for
« Store status information about most recent supporting procedures)

arithmetic operation

« Used for conditional branching 13

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

x86-64 Assembly “Data Types”

<« Integral data of 1, 2, 4, or 8 bytes 1

= Data values
@esses (untyped pointers)

= Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2 |
= Different registers for those (e.g. %xmm1, %ymm2)

Not covered

" In CSE 351
= Come from extensions to x86 (SSE, AVX, ...)
« No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
+ TWO common syntaxes P —

= “AT&T”: used by our course, slides, textbook, gnu tools, ...

= “Intel”: used by Intel documentation, Intel tools, ...

"= Must know which you’re reading

14

W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

CSE351, Spring 2017

What is a Register?

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g. %rsi)

+ Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

15

x86-64 Integer Registers — 64 bits wide

W UNIVERSITY of WASHINGTON

LO7: Assembly Programming |

i S B
%rax \ Yheax hr8 |\ %r8d
%rbx %ebx %r9 \ %r9d
%rCx Yhecx %r10 \ %r10d
%rdx thedx | [%r11 \ [wriid
%rsi Y%esi * %ri2 %ri2d
%rdi %edi %ril3 %r13d
%rsp Y%esp %ri4 %r14d
@ / %ebp %rlS %ri15d
. \/\/_/ - v

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

e

CSE351, Spring 2017

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Some History: IA32 Registers — 32 bits wide

i %eﬂgx %ax %ah %al accumulate
" %EC’)‘(%Cx %ch %cl counter
% %edx %dx %dh %d | data
o e~
g 7 %ebx wbx | %bh %ol |base
c
& %esi %si source index
L Y%ed %d destination index
%esp %sp stack pointer
%ebp %bp base pointer
\)
16-bit virtuYaI registers Name Origin

(backwards compatibility) (mostly obsolete)
17

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Memory vs. Registers
+~ Addresses vs. Names
= OX/7FFFD0O24C3DC %rdi
+ Big vs. Small
= ~8GiB (16 x8B)=1288
+ Slow vs. Fast
= ~50-100 ns sub-nanosecond timescale
+» Dynamic vs. Static
"= Can “grow” as needed fixed number in hardware

while program runs

18

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Three Basic Kinds of Instructions

1) Transfer data between memory and register

" [oad data from memory into register

- %reg = Mem[address] Remember: Memory
= Store register data into memory > '”de’;es {L_“Stl like an
array of bytes!

« Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data

"= Cc = a + b; Z = X << VY, i:h&g;

3) Control flow: what instruction to execute next
" Unconditional jumps to/from procedures
= Conditional branches

19

W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

Operand types

+» Immediate: Constant integer data
" Examples: $0x400, $-533
= Like C literal, but prefixed with “$~
" Encoded with 1, 2, 4, or 8 bytes

depending on the instruction

+~ Register: 1 of 16 integer registers
= Examples: %rax, %ril3
= But %rsp reserved for special use

= Others have special uses for particular
instructions

R/
*

at a computed address
= Simplest example: (%rax)
= Various other “address modes”

CSE351, Spring 2017

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

+» Memory: Consecutive bytes of memory

%rN

20

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Moving Data

» General form: mov_ source, destination
= Missing letter () specifies size of operands

" Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
In Xx86 instruction names

" |ots of these in typical code

+ movb src, dst + movl src, dst
" Move 1-byte “byte” = Move 4-byte “long word”
» MOVW Src, dst » movqg Src, dst

" Move 2-byte “word” " Move 8-byte “quad word”

21

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

mov(q Operand Combinations

Source Dest Src, Dest C Analog
(Reg movqg $0x4, %rax var_a = 0x4;
lmm
Mem movqg $-147, (%wrax) *p_a = -147;
movq< - Reg movq %rax, %rdx var d = var_a;
8 Mem movq %rax, (%rdx) *p_d = var_a;
\Mem Reg movqg (%rax), %rdx var d = *p_a;

+» Cannot do memory-memory transfer with a single
instruction

" How would you do it?
22

w UNIVERSITY of WASHINGTON LO7: Assembly Programming | CSE351, Spring 2017

Question

+» Which of the following statements is TRUE?
A. For float T, (f+2 == f+1+1) always

returns TRUE
B. The width of a “word” is part of a system’s
architecture (as opposed to microarchitecture

- 19> OFPE
C. Having more registers increases the performance

of the hardware, but decreases the performance
of the software

D. Mem to Mem (src to dst) is the only disallowed

/operand combination in x86-64 " Q
SOW\C\S ’\WU\{/ but C}v\\n()\' WOV & 'av\\,\\)\l\\\/\% v oon lmme ;;:E 9
e YNy

23

W UNIVERSITY of WASHINGTON LO7: Assembly Programming |

Summary

+» Converting between integral and floating point data
types does change the bits

" Floating point rounding is a HUGE issue!
 Limited mantissa bits cause inaccurate representations
 Floating point arithmetic is NOT associative or distributive

+» X86-64 is a complex instruction set computing (CISC)
architecture

+ Registers are named locations in the CPU for holding
and manipulating data

= x86-64 uses 16 64-bit wide registers

+» Assembly operands include immediates, registers,
and data at specified memory locations

24

CSE351, Spring 2017

