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Abstract

Markov Logic Networks (MLNs) define a probability dis-
tribution on relational structures over varying domain sizes.
Like most relational models, MLNs do not admit consistent
marginal inference over varying domain sizes i.e. marginal
probabilities depend on the domain size. Furthermore, MLNs
learned on a fixed domain do not generalize to domains of
different sizes. In recent works, connections have emerged
between domain size dependence, lifted inference, and learn-
ing from a sub-sampled domain. The central idea of these
works is the notion of projectivity. The probability distribu-
tions ascribed by projective models render the marginal prob-
abilities of sub-structures independent of the domain cardi-
nality. Hence, projective models admit efficient marginal in-
ference. Furthermore, projective models potentially allow ef-
ficient and consistent parameter learning from sub-sampled
domains. In this paper, we characterize the necessary and suf-
ficient conditions for a two-variable MLN to be projective.
We then isolate a special class of models, namely Relational
Block Models (RBMs). In terms of data likelihood, RBMs al-
low us to learn the best possible projective MLN in the two-
variable fragment. Furthermore, RBMs also admit consistent
parameter learning over sub-sampled domains.

Introduction

Statistical Relational Learning (Getoor and Taskar 2007;
Raedt et al. 2016) (SRL) is concerned with representing
and learning probabilistic models over relational structures.
Many works have observed that SRL frameworks exhibit un-
wanted behaviors over varying domain sizes (Poole et al.
2014; Mittal et al. 2019). These behaviors make mod-
els learned from a fixed or a sub-sampled domain unreli-
able for inference over larger (or smaller) domains (Mit-
tal et al. 2019). Drawing on the works of Shalizi and Ri-
naldo (Shalizi and Rinaldo 2013) on Exponential Random
Graphs (ERGMs), Jaeger and Schulte (Jaeger and Schulte
2018) have recently introduced the notion of projectivity as
a strong form of guarantee for good scaling behavior in SRL
models. A projective model requires that the probability of
any given query, over arbitrary m domain objects, is com-
pletely independent of the domain size.

Jaeger and Schulte (Jaeger and Schulte 2018) identify
restrictive fragments of SRL models to be projective. But
whether these fragments are complete characterization of
projectivity, remains an open problem.

In this paper, our goal is to characterize projectivity for a
specific class of SRL models, namely Markov Logic Net-
works (MLNs) (Richardson and Domingos 2006). MLNs
are amongst the most prominent template-based SRL mod-
els. An MLN is a Markov Random Field with features de-
fined in terms of function-free weighted First Order Logic
(FOL) formulae. Jaeger and Schutle (Jaeger and Schulte
2018) show that an MLN is projective if - any pair of atoms
in each of its formulae share the same set of variables.
We show that this characterization is not complete. Further-
more, we completely characterize projectivity for the class
of MLNs with at most 2 variables in their formulae. Our
charecterization leads to a parametric restriction that can be
easily incorporated into any MLN learning algorithm. We
also identify a special class of projective models, namely the
Relational Block Models (RBMs). Any projective MLN in
the two variable fragment can be expressed as an RBM. We
show that the training data likelihood due to the maximum
likelihood RBM is greater than or equal to the training data
likelihood due to any other projective MLN in the two vari-
able fragment. RBMs also admit consistent maximum like-
lihood estimation. Hence, RBMs are projective models that
admit consistent and efficient learning from sub-sampled do-
mains.

The paper is organized as follows: We first contextualize
our work w.r.t the related works in this domain. We then pro-
vide some background and notation on FOL and relational
structures. We also elaborate on the fragment of FOL with
at most two variables i.e. FO? and define the notion of FO?
interpretations as multi-relational graphs. We also overview
some results on Weighted First Order Model Counting. In
the subsequent section, we provide a parametric representa-
tion for any MLN in the two variable fragment. We then ded-
icate a section to the main result of this paper i.e. the neces-
sary and sufficient conditions for an MLN in the two variable
fragment to be projective. Based on the projectivity criteri-
ons we identify a special class of models namely Relational
Block Models. We dedicate a complete section to RBMs and
elaborate on their useful properties. We then move on to a
formal comparison between the previous characterizations
and the presented characterization of projectivity in MLNSs.
Finally, we discuss the consistency and efficiency aspects of
learning for projective MLNs and RBMs.



Related Work

Projectivity has emerged as a formal notion of interest
through multiple independent lines of works across ERGM
and SRL literature. The key focus of these works have been
analyzing (Snijders 2010; Poole et al. 2014) or mitigating
(Jain, Barthels, and Beetz 2010; Mittal et al. 2019) the ef-
fects of varying domain sizes on relational models. The ma-
jor step in formalizing the notion of projectivity can be at-
tributed to Shalizi and Rinaldo (Shalizi and Rinaldo 2013).
The authors both formalize and characterize the sufficient
and necessary conditions for ERGMs to be projective. It is
interesting to note that their projectivity criterion is strictly
structural i.e. they put no restrictions on parameter values
but rather inhibit the class of features that can be defined
as sufficient statistics in ERGMs. In contrast our results
w.r.t MLN are strictly parametric (which may correspond
to non-trivial structural restrictions as well). With respect
to SRL, the notion of projectivity was first formalized by
Jaeger and Schulte (Jaeger and Schulte 2018), they show
some restrictive fragments of SRL models to be projective.
Jaeger and Schulte (Jaeger and Schulte 2020) significantly
extend the scope of projective models by characterizing nec-
essary and sufficient conditions for an arbitrary model on
relational structures to be projective. Their characterization
is expressed in terms of the so called AHK models. But
as they conclude in (Jaeger and Schulte 2020), expressing
AHK models in existing SRL frameworks remains a signif-
icant open challenge. Hence, a complete characterization of
projectivity in most SRL languages is still an open problem.
Weitkamper (Weitkdmper 2021) has shown that the char-
acterization of projectivity provided by Jaeger and Schulte
(Jaeger and Schulte 2018), for probabilistic logic programs
under distribution semantics, is indeed complete. In this
work, we will extend this characterization to the two vari-
able fragment of Markov Logic Networks.

Another correlated problem to projectivity is learning
from sub-sampled or smaller domains. In the relational set-
ting projectivity is not a sufficient condition for consistent
learning from sub-sampled domains (Jaeger and Schulte
2018). Mittal et. al. have proposed a solution to this problem
by introducing domain-size dependent scale-down factors
(Mittal et al. 2019) for MLN weights. Although empirically
effective, the scale-down factors are not known to be a sta-
tistically sound solution. On the other hand, Kuzelka et. al.
(Kuzelka et al. 2017), provide a statistically sound approach
to approximately obtain the correct distribution for a larger
domain. But their approach requires estimating the relational
marginal polytope for the larger domain and hence, offers
no computational gains w.r.t learning from a sub-sampled
domain. In this work, we will provide a statistically sound
approach for efficiently estimating a special class of projec-
tive models (namely, RBM) from sub-sampled domains. We
also show that our approach provides consistent parameter
estimates in an efficient manner and is better than estimating
any projective MLN in the two variable fragment (in terms
of data likelihood maximisation).

Background

Basic Definitions. We use the following basic notation.
The set of integers {1,...,n} is denoted by [n]. We use
[m : n] to denote the set of integers {m, ...,n}. Wherever
the set of integers [n] is obvious from the context we will use
[] to represent the set [m+1 : n]. Weuse k = (kq, ..., k)
to denote an n-partition i.e. k; € Z* and Yicim ki = n.
We will also use multinomial coefficients denoted by

n () _ n!
ki, km) \k _Hie[m]ki!

First Order Logic and Relational Substructures. We
assume a function-free First Order Logic (FOL) language
L defined by a set of variables V and a set of relational sym-
bols R. We use A to denote a domain of n constants. For
ai,..,ar € VUA and R € R, we call R(aq,...ax) an
atom. A literal is an atom or the negation of an atom. If
ai,...,ar € V, then the atom is called a first order atom,
whereas if aq,...,ar € A, then it’s called a ground atom.
We use F to denote the set of first order atoms and G to de-
note the set of ground atoms. A world or an interpretation
w: G — {T,F} is a function that maps each ground atom
to a boolean. The set of interpretations w, in the language £
and the domain A of size n, is denoted by Q™). We say that
w € Q(”), has a size n and is also called an n-world. For a
subset I C A, we use w | I to denote the partial interpreta-
tion induced by I. Hence, w | I is an interpretation over the
ground atoms containing only the domain elements in I.

Example 1. Let us have a language with only one relational
symbol R of arity 2 and a domain A = {a, b, c}. Let us have
the following interpretation w:

Rla,a) | R(a,b) | Rla,c) | R(b,a) | R(B,0) | R(b,c) | Rlc,a) | R(c,b) | Ric,c)
T T F T T F T T F

then w | {a, b} is given as:

R(a,a) | R(a,b) | R(b,a) | R(b,D)
T T F T

For most of our purposes, we will be able to assume
w.lo.g that A = [n].

FO?, m-Types and m-Tables. FO? is the fragment of
FOL with two variables. We will use the notion of 1-types, 2-
type, and 2-tables as presented in (Kuusisto and Lutz 2018).
A 1-type is a conjunction of a maximally consistent set of
first order literals containing only one variable. For exam-
ple, in an FO? language on the unary predicate A and binary
predicate R, A(z) A R(z,x) and A(z) A —~R(z, ) are ex-
amples of 1-types in variable x. A 2-table is a conjunction
of maximally consistent first order literals containing ex-
actly two distinct variables. Extending the previous example,
R(z,y) A —R(y,z) and R(x,y) A R(y, z) are instances of
2-tables. We assume an arbitrary order on the 1-types and
2-tables, hence, we use i(z) to denote the i*" 1-type and
I(z,vy) to denote the [** 2-table. Finally, a 2-type is a con-
junction of the form i(z) A j(y) Al(z,y) A (z # y) and we
use ijl(x,y) to represent it. In a given interpretation w, we



say a constant c realizes the i'" 1-type if w |= i(c), we say a
pair of constants (c, d) realizes the [*" 2-table if w = I(c, d)
and (c, d) realizes the 2-type ijl(x,y) if w = ijl(c,d). We
call the 2-type ijl(y, =) the dual of iji(x, y) and denote it by
1jl(z,y). We will use u to denote the number of 1-types and

b to denote the number of 2-tables in a given FO? language.

Interpretations as Multi-relational Graphs. Given an
FO? language £ with interpretations defined over the do-
main A = [n], we can represent an interpretation w €
Q") as a multi-relational graph (z,y). This is achieved by
defining = (z1,...,2,) such that z, = 7 if w = i(q)
and by defining y = (y12,%13,---Ygrs ---s Yn—1,n), Where
g < r,such that y,, = [ if wk=I(g,7). We also de-
fine k; = ki(x) = ki(w) := |[{c € A : ¢ E i(c)}],
h' = m(y) = () = {led € A% w
ijl(c,d)}| and for any D C A% h?(D) = h)(w,D) :=
{(e,d) : w [ ijl(c,d)and (¢,d) € D}|. Notice that

i< Zle[b] b’ = (3) and Zle[b] h’ = k(i,j), where
k(i,7) is defined in equation (3) . We use (1, y) to rep-
resent the multi-relational graph for w | 1. Throughout this
paper we will use an interpretation w and it’s multi-relational
graph (x, y) interchangeably.

Weighted First Order Model Counting in FO2. We
will briefly review Weighted First Order Model Counting
(WFOMC) in FO? as presented in (Malhotra and Serafini
2021). WFOMC is formally defined as follows:

WFOMC(®,n) := Z w(w)
weN(M) :wE=d

where ® is an FOL formula, n is the size of the domain and
w is a weight function that maps each interpretation w to
a positive real. First Order Model Counting (FOMC) is the
special case of WFOMC, where for all w € Q") w(w) = 1.
We assume that w does not depend on individual domain
constants, which implies that w assigns same weight to two
interpretations which are isomorphic under the permutation
of domain elements.

A universally quantified FO? formula Vay.®(x,y) can be
equivalently expressed as Vay.®({z,y}), where ®({z,y})
is defined as @ (z, ) A®(z, y) APy, ) A®(y, y) A(x # y).
A lifted interpretation denoted by 7 : F — {T,F} assigns
boolean values to first order atoms. The truth value of the
quantifier free formula ®(z,y) under a lifted interpretation
7, denoted by 7(®(x,y)), is computed by applying classi-
cal semantics of the propositional connectives to the truth
assignments of atoms of ®({z, y}) under 7. We then define

Nij1 = ‘{T | T ): @({x,y}) /\Z]l(l’,y)” (1)

and ng; 1= 3 niji- First Order Model Counting for a
universally quantified formula Vzy.®(z, y) is then given as:

FOMC(Vzy.®(z,y),n) = Z (Z) Hnisj(i,j) )

k i<j
i,5€[0]

where k = (ki,...,k,) is a u-tuple of non-negative inte-
gers, () is the multinomial coefficient and
kilkiz1) s s

k(i,j) = 2 —J 3

(i) {kikj otherwise ®)

Intuitively, k; represents the number of constants ¢ of 1-type
1. Also a given constant realizes exactly one 1-type. Hence,
for a given k, we have (Z) possible ways of realizing k; 1-
types. Furthermore, given a pair of constants ¢ and d such
that ¢ is of 1-type 4 and d is of 1-type j, the number of ex-
tensions to the binary predicates containing both ¢ and d,
such that the extensions are a model of Vay.®(x, y), is given
by n;; independently of all other constants. Finally, the ex-
ponent k(i,j) accounts for all possible pair-wise choices
of constants given a k vector. Equation (2) was originally
proven in (Beame et al. 2015), we refer the reader to (Mal-
hotra and Serafini 2021) for the formulation presented here.

Families of Probability Distributions and Projectivity.
We will be interested in probability distributions over the
set of interpretations or equivalently their multi-relational
graphs. A family of probability distributions { P ) .pe N}
specifies, for each finite domain of size n, a distribution pm
on the possible n-world set Q") (Jaeger and Schulte 2020).
We will mostly work with the so-called exchangeable prob-
ability distributions (Jaeger and Schulte 2020) i.e. distribu-
tions where P(") (w) = P(") (') if w and w’ are isomorphic.
A distribution P (w) over n-worlds induces a marginal
probability distribution over m-worlds w’ € Q0™ as fol-
lows:

POLmW) = 3 PO

weQ (M :w|[m]=w’

Notice that due to exchangeability P(™) | T is the same for
all subsets I of size m, hence we can always assume any
induced m-world to be w | [m]. We are now able to define
projectivity as follows:

Definition 1 ((Jaeger and Schulte 2020)). An exchangeable
family of probability distributions is called projective if for
allm < n:

pP™ | [m] = p(m)

When dealing with probability distributions over multi-
relational representation, we denote by (X,Y") the random
vector where, X = (Xi,...,X,,) and each X, takes value
inful;and Y = (Y12,Y13,..., Yy, ..., Y1) Where g <
r and Yy, takes values in [b].

A Parametric Normal Form for MLNs

A Markov Logic Network (MLN) @ is defined by a set of
weighted formulas {(¢;, a;) };, where ¢; are quantifier free,
function-free FOL formulas with weights a; € R. An MLN
® induces a probability distribution over the set of possible
worlds w € Q™):

Pg”) (W) = Z(ln) exp( Z ai.N(gbi,oJ))

(¢i,a:)€P




where N (¢;,w) represents the number of true groundings
of ¢; in w. The normalization constant Z(n) is called the

partition function that ensures that qu") is a probability dis-
tribution.

Theorem 1. Any Markov Logic Network (MLN) ® =
{(¢i,a;)}i on a domain of size n, such that ¢; contains at-
most two variables, can be expressed as follows:

P(n H H H zgl l‘ (4)

1€[u] i,jEu] LE[b]
1<j

where s; and t;; are positive real numbers and k; is k;(w)
and b}’ is equal to h}’ (w).

Proof. Let ® = {(¢;,a;)}; be an MLN, such that ¢; con-
tains at-most two variables. Firstly, every weighted formula
(¢(x,y),a) € P that contains exactly two variables is re-
placed by two weighted formulas (¢(x, x), a) and (¢(x, y) A

(x # y),a). The MLN distribution Pé") is invariant un-
der this transformation. Hence, ® can be equivalently writ-
ten as {(aq(7), aq) tq U {(Bp(2,¥), bp) }p. where {aq(x)}q
is the set of formulas containing only the variable = and
{Bp(z,y)}p is the set of formulas containing both the vari-
ables x and y. Notice that every (3,(x, y) entails x # y.

Let us have w € Q™ where we have a domain constant
¢ such that w | i(c). Now notice that the truth value of
ground formulas {a(c)}, in w is completely determined by
i(c) irrespective of all other domain constants. Hence, the
(multiplicative) weight contribution of i(c) to the weight of
w can be given as exp(zq aqli(a)a, (). We define s; as

follows:
5= exp(z aqliz)a,(e)) ®)
q

Clearly, this argument can be repeated for all the domain
constants realizing any 1-type in [u]. Hence, the (multiplica-
tive) weight contribution due to 1-types of all domain con-
stants and equivalently due to the groundings of all unary
formulas, is given as Hie[u} si“

We are now left with weight contributions due to the
binary formulas {(8,(x,y),bp)}p. Due to the aforemen-
tioned transformation, each binary formula 5(z, y) contains
a conjunct (x # y). Hence, all groundings of (x,y) such
that both  and y are mapped to the same domain con-
stants evaluate to false. Hence, we can assume that x and
y are always mapped to distinct domain constants. Let us
have an unordered pair of domain constants {c, d} such that
w = ijl(c, d). The truth value of any binary ground formula
B(c,d) and 3(d, ¢) is completely determined by iji(c, d) ir-
respective of all other domain constants. Hence, the mul-
tiplicative weight contribution due to the ground formulas
{Bp(c,d)}p U {Bp(d,c)}, is given as t;;;, where t;;; is de-
fined as follows:

exp (Z bpLiji(e) =By (@) + D bpllijz(x,y)—ﬁm,w))
p p

(6)

Hence, the weight of an interpretation w under the MLN

® is given as
}’J
H I I ea™

[u]  djE[u] lE[b]
1<j

O

Definition 2. Given an MLN in the parametric normal form
given by equation (4). Then f;; is defined as ), ) tigt-

We will now provide the parameterized version of the par-
tition function Z(n) due to Theorem 1.

Proposition 1. Let ® be an MLN in the form (4), then the
partition function Z(n) is given as:

-3 () I M o

i,j€[u
z<7

where k(i, j) is defined in equation (3).

Sketch. The proposition is a parameterized version of equa-
tion (2), where [ [, s takes into account the weight con-
tributions due to the 1-type realizations and f;; is essentially
a weighted version of n;; i.e. given a pair of constants ¢ and
d such that they realize the i'” and the j'" 1-type respec-
tively, then f;; is the sum of the weights due to the 2-types
realized by the extensions to the binary predicates contain-
ing both ¢ and d.

O

Projectivity in Markov Logic Networks

We present the necessary and sufficient conditions for an
MLN to be projective in the two variable fragment. The
complete proofs are provided in the appendix.

Lemma 1 (Sufficiency). A Markov Logic Network in the
two variable fragment is projective if all the f;; have the
same value i.e. Vi,j € [u] : fi; = F, for some positive real
number F.

Sketch. The key idea of the proof is that if Vi,j € [u] :
fij = F, then the partition function factorizes as Z(n) =
(F )(3) (Z elu] S ) . Now, defining p; = Esi
Lt “allows us to re-define the MLN distribution (4) equiva-

F b
lently as follows:

PO =T T I ®

i€ [u] i,j€[u] LE[b]
1<

and w;;; =

Here, >, p; = 1and ), w;;; = 1. Hence, Pé")(w) is essen-
tially a (labeled) stochastic block model, which are known to
be projective (Shalizi and Rinaldo 2013). [

We will now prove that the aforementioned sufficient con-
ditions are also necessary.



Lemma 2 (Necessary). If a Markov Logic network in the
two variable fragment is projective then, all the f;; have the
same value i.e. Vi, j € [u] : fi; = F, for some positive real
number F'.

Sketch. We begin by writing the projectivity condition in
the multi-relational representation, i.e. Pg”rl) (X' =
2, Y' =) is equal to:

Y. (X =Y =y ©)
m[n] :Z,
Yn] :y/

Multiplying and dividing equation (9) by Z(n) and using
simple algebraic manipulations we get that for all '

n+1 Z H k(m’) (10)

i€lu]  jeE[u]

Now, the LHS of equation (10) is completely independent
of &', whereas RHS is dependent on «’. It can be shown
that this is possible iff f;; does not depend on ', which
in turn is possible iff f;; does not depend on 7 and j i.e.
Vi,j € [u] : fij = F, for some positive real F. O

We are finally able to provide the following theorem.

Theorem 2. A Markov Logic Network (MLN) ® =
{(¢i,ai)}i, such that ¢; contains at-most two variables is
projective if and only if all the f;; (as given in Definition 2)
have the same value i.e. Vi,j € [u] : fi;j = F, for some
positive real number F.

In the next section, we will show that the conditions in
Theorem 2 correspond to a special type of probability dis-
tributions. We will characterize such distributions and then
investigate their properties.

Relational Block Model

In this section we introduce the Relational Block Model
(RBM). We show that any projective MLN in the two vari-
able fragment can be expressed as an RBM. And any RBM
can be expressed as a projective MLN. Furthermore, we
show that an RBM is a unique characterization of a projec-
tive MLN in the two variable fragment.

Definition 3. Let n be a positive integer (the number of
domain constants), u be a positive integer (the number of
1-types), b be a positive integer (the number of 2-tables),
p = (p1,...,Du) be a probability vector on [u] = {1,...,u}
and W = (w;j;) € [0, 1]"*“*b where w;j; = wyji (wiji is
the conditional probability of domain elements (c, d) realiz-
ing the I*" 2-table, given i(c) and j(d)). The multi-relational
graph (z,y) is drawn under RBM(n, p, W) if @ is an n-
dimensional vector with i.i.d components distributed under
p and y is a random vector with its component Yy, = I,
where | € [b], with a probability w, .| independently of all
other pair of domain constants.

Thus, the probability distribution of (x,vy) is defined as
Sollows, where € [u]™ and y € [b](g)

n u
P(X =a):= [[ s, = [ ok

q=1 i=1
I weeos

1<g<r<n
I wi)™

1Sgﬁu 1<I<b

In the following example, we show how RBMs can model
homophily.
Example 2 (Homophily). Let us have an FO? language
with a unary predicate C (representing a two colors) and
a binary predicate R. We wish to model a distribution on
simple undirected graphs i.e. models of the formula ¢ =
Vay.—R(z,x) A (R(x,y) = R(y,x)) such that same color
nodes are more likely to have an edge. Due to ¢ the I-
types with —R(x, x) as a conjunct have a probability zero.
Hence, we can assume we have only two 1-types: 1(x) =
C(z)A—R(z,x) and 2(x) = ~C(x) A—R(x, ) (represent-
ing two possible colors for a given node). Similarly due to
@, we have only two 2-tables 1(x,y) : R(x,y) AR(y,x) and
2(z,y) : "R(z,y) N ~R(y, ) (representing existence and
non existence of edges). We can now easily define homophily
by following parameterization of an RBM. p; = ps = 0.5
i.e. any node can have two colors with equal probability.
Then we can define w111 = 0.9, w112 = 0.1, wae; = 0.9,
w2929 = 01, w121 = 0.1 and w122 — 0.9.

Theorem 3. Every projective Markov Logic Network in the
two variable fragment can be expressed as an RBM.

Proof. The proof follows from the sufficiency proof in
Lemma 3. Notice that in the proof, we derive equation (8)
(equivalently, equation (21) in the appendix), which is ex-
actly the expression for RBM. Hence, any projective MLN
can be converted to an RBM by defining p; and w;; as fol-
lows:

Si Liji
Pi= = Wil = = 1D

Zi Si Zl ijl

O

Theorem 4. Every RBM can be expressed as a projective
MLN in the two variable fragment.

Proof. Given an RBM as defined in definition 3 with pa-
rameters {p;, w;;; }, let us have a projective MLN @ such
that every 1-type i(x) is a formula in the MLN with a
weight log p;. ® also has a weighted formula iji(z,y) for
every 2-type, such that i < j. The weight for iji(z,y) is
log(w;j;) if ijl(x,y) # ijl(y,x), and is 0.5log(w;j;;) if
ijl(x,y) = ijl(y,x). It can be seen from definition of s;
(5) and t;5; (6), that for ®, s; = p; and ¢;;; = w;;;. Hence,
due to (4), we have that:

P(n) sz H H wzjl ;J (12)

i,7€[u] l[b]
i<j



In the MLN O, Zl S; = Zipi = 1 and Zl tijl =
> wiji = fi; = 1. Hence, using Proposition 1, we have
that Z(n) = 1. Hence, completing the proof.

O

Proposition 2. Given two RBMs with probability distribu-
tion P' and P" and parameters {p;, w;; } and {p;, wi}; }. If
P’ = P”, then, p; = p} and wl’.jl = w;'jl

Proof. The proposition is a consequence of the fact that the
parameter p; is marginal probability of an arbitrary constant
c realizing the " 1-type and wy;; is the conditional prob-
ability of an arbitrary pair of constants (c, d) realizing the
It 2-table given i(c) and j(d). Hence, two RBM:s that dis-
agree on the p; and w;;; cannot assign the same probability
mass to marginal probability of i(c) and iji(c, d) and hence,
cannot be the same distribution.

O

Corollary 1 (of Proposition 2). Given two projective MLNs
@’ and ®" such that they have the same probability distri-
butions Py and Py, with there respective RBMs parame-
terized by {p, w;;, } and {p;, wi’; }. Then we must have that
p; = p; and ngl = wé;z

Hence, RBMs are a unique representation for projective
MLNSs in the two variable fragment.

Previous Characterizations of Projectivity

Jaeger and Schulte (Jaeger and Schulte 2018) show that an
MLN is projective if it’s formulae ¢; satisfy the property that
any two atoms appearing in ¢; contain exactly the same vari-
ables. Such MLNs are also known as o-determinate (Singla
and Domingos 2012). We now show that in the two variable
fragment, Theorem 2 leads to a strictly more expressive class
of MLNs.

Proposition 3. Given an MLN ® = {¢;, a;}; such that any
two atoms appearing in ¢; contain exactly the same vari-
ables or equivalently that the MLN is o —determinate. Then:

Vi, j,i', 5" € [u], Yl € [b] : tyjn = tiji (13)

Proof. We first write an equivalent MLN & =
{ag(z),aq} U {Bp(z,y),bp} as presented in proof of
Theorem 1. Due to the conditions provided in the proposi-
tion, all the atoms in S, (z,y) contain both the variables x
and y. Using the definition of ¢;;; from (6), and the fact that
none of the f,(z,y) have an atom with only one variable,
we have that the value of ¢;;; depends only on the Ith
2-table, irrespective of the 1-types ¢ and j. This is because,
none of the first order atoms in the i*" and the j** 1-type
appear in 3, (z, y). Hence, t;;; only depends on [, giving us
equation (13). O

Proposition 3 is a stricter condition than Theorem 2. In
the following, we prove that o-determinate MLNs cannot
express all the projective MLNs in the two variable frag-
ment.

Theorem 5. There exists a projective MLN in the
two variable fragment which cannot be expressed as a
o—determinate MLN.

Proof. Let us have a o-determinate MLN @, since ® is pro-
jective, we can create it’s equivalent RBM (due to Theorem
4), say P. Let {p;, w;j;} be the parameters of P. Due to
equation (11) and Proposition 3, we have that w;;; = w;
for all 4, 7,4, j'. Due to existence of a projective MLN for
every RBM (from Theorem 4), we can always create an
MLN @’ for which the RBM parameters w;j; # wjsj;
for some ¢, j, 7', j'. Since, RBMs uniquely characterize the
probability distributions due to MLNs (from Corollary 1),
@’ can not be expressed as an MLN such that w;;; = wj/j/;.
Hence, ®’ can not be expressed as a o-determinate MLN.

O

In the following example, we provide an MLN which can-
not be written as a o —determinate MLN.

Example 3. Let us have a binary predicate R. We have
only two I-types R(x,z) (say 1(z)) and —~R(z,z) (say
2(x)) and four 2-tables, R(x,y) A R(y,x) (say 1(x,y)),
R(z,y) A =R(y, z) (say 2(x,y)), ~R(z,y) A R(y,z) (say
3(x,y)) and ~R(z,y) AN—R(y, x) (say 4(z,y)). An MLN P,
with the following 2-types as weighted formulas, cannot be
expressed as a o—determinate MLN:

111(z,y) : log7 114(z,y) : log4
124(x,y) : log64 221(x,y) : log8

In parametric normal form, t111 = exp(2log7), t114 =
exp(2log4), t124 = exp(log64) and ta21 = exp(2log38).
All the other t;j, such that ijl(x,y) is not a dual of
111(z,y), 114(x, y), 124(x,y) or 221(x,y), are equal to
exp(0) ie 1. It can be verified that f;; = 67 for all
i,j € [2], hence, this MLN is projective due to Theorem
2. Using Theorem 3, we can express this distribution as an
RBM, such that w111 = g and wi14 = 2% Ifw111 75 w114

then necessarily t111 # ti14 (as wij; is defined as tf—ﬂ and

fij is the same for all i, j in ® and in any equivalent MLN,
due to Theorem 2). Due to uniqueness of RBM parameters
for any set of projective MLNs expressing the same distri-
bution (Corollary 1), we have that in all MLNs equivalent
to ®, t111 # t114. Hence, using Proposition 3, we have that
any MLN expressing the same distribution as ® cannot be
expressed as a o —determinate MLN.

Maximum Likelihood Learning

In a learning setting, for an MLN {¢;, a;} in the two variable
fragment, we are interested in estimating the set of parame-
ters @ = {a;} that maximize the likelihood of a training ex-
ample such that the learnt MLN is projective. As analyzed in
(Xiang and Neville 2011; Kuzelka et al. 2017), we will focus
on the scenario where only a single possible world w € Q)
is observed. We estimate € by maximizing the likelihood

L (9lw) = Py (w) (14)

Notice that although every projective MLN can be equiv-
alently defined as an RBM, the maximum likelihood param-
eter estimate for an RBM is not the same as the parameter
estimate for an MLN such that it is projective.

We will now provide, the maximum likelihood estimator
for an RBM.



Proposition 4. Given a training example w € Q™) the

maximum likelihood parameter estimate for an RBM is given
ij

as, p; = % and w;j;; = %

Proposition 4 can be derived by maximizing the log like-
lihood due to the distribution given in Definition 3.

We will now see how maximum likelihood parameter es-
timate can be obtained for an MLN such that the MLN is
projective.

Given an MLN {¢;,a;}; in the two variable fragment,
where 8 = {a;}; are unknown parameters to be estimated,
due to Theorem 1, we can define s;(6) and ¢;;;(@), such that
the likelihood is given as:

1 k R
Low) = zos 1L s@™ 11 11 @@ as)
1€ [u] i,jE[u] LE[b]
i<j
Defining F'(0) as >, t;1j+1(8) for some fixed ¢’ and j’,
maximum likelihood parameter estimates such that the estl-
mated MLN is projective, can be then obtained by solving
the following optimization problem:

mammzze [ Z k;log s;(0) + Z Z hy’ logti;1(0)

ic[u) FEOIED

—nlog ( iez[u] 5:(0)) — (Z) log F(B)}

subject to:
(16)

Notice that due to factorization of Z(n) under projectivity
(see Lemma 3), —nlog (3, 5i(8)) — (3) log F(8) rep-
resents — log(Z(n)). The above optimization can be solved
through any conventional optimization algorithm. It can be
seen that this problem has a much lesser overhead as far
as computing log(Z(n)) is concerned. But the additional
constraints may counter act this gain. Furthermore, in many
cases it may happen that no non-zero weights exist that sat-
isfy the constraints and in that case the problem will return
zero weights for the MLN formulas.

Theorem 6. Given a training example w € Q™| then there
is no parameterization for any projective MLN in the two
variable fragment that has a higher likelihood for w than
the maximum likelihood RBM for w.

Proof. Let L be the likelihood of w due to the maximum
likelihood RBM. Let L’ be the likelihood of w due to a pro-
jective MLN @, such that L’ > L. Now, due to Theorem 3, ®
can be expressed as an RBM. Hence, we can have an RBM
such that the likelihood of w is L/, but L' > L which is a
contradiction. Hence, we cannot have a projective MLN that
gives a higher likelihood to w than the maximum likelihood
RBM. O

Theorem 6 shows us that if a data source is known to be
projective (i.e. we know that marginals in the data will be

independent of the domain at large) then in terms of like-
lihood, specially in the case of large relational datasets, we
are better off in using an RBM than an expert defined MLN.
This can also be argued from efficiency point of view as
RBMs admit much more efficient parameter estimates.

We will now move on to the question: are parameters
learned on a domain of size n, also good for modelling do-
main of a different size m ? This question is an abstraction of
many real world problems, for example, learning over rela-
tional data in presence of incomplete information (Kossinets
2006), modelling a social network from only sub-sampled
populations (Handcock and Gile 2010), modelling progres-
sion of a disease in a population by only testing a small set
of individuals (Srinivasavaradhan et al. 2021) etc.

Jaeger and Schulte (Jaeger and Schulte 2018) formalized
the afore mentioned notions in the following two criterions:

E, [argméix log L™ (0|w)] = argmax log L™ (0|w)
A7)

argmax E,[log L™ (0)w")] = argmax log L™ (0|w)
(18)

It is easy to see, by law of large numbers, that RBMs sat-
isfy both these criterions. On the other hand the same can
not be said about the maximum likelihood estimates for pro-
jective MLNs as described in (16).

Conclusion

In this work, we have characterized the class of projective
MLNSs in the two-variable fragment. We have also identified
a special class of models, namely Relational Block Model.
We show that the maximum likelihood RBM maximizes the
training data likelihood w.r.t to any projective MLN in the
two-variable fragment. Furthermore, RBMs admit consis-
tent parameter learning from sub-sampled domains, poten-
tially allowing them to scale to very large datasets, espe-
cially in situations where the test data size is not known or
changes over time.

From an applications point of view, the superiority of
RBMs in terms of training likelihood maximization and con-
sistent parameter learning can potentially make them a better
choice over an expert defined MLN, especially when train-
ing set is large and the test domain size is unknown or varies
over time. We plan to investigate such capabilities of RBMs
and projective MLNSs in future work, especially in compar-
ison to models like Adaptive MLNs (Jain, Barthels, and
Beetz 2010) and Domain Size Aware MLNs (Mittal et al.
2019).

On the theoretical front, the imposed independence struc-
ture due to projectivity clearly resembles the AHK models
proposed in (Jaeger and Schulte 2020). In future works, we
aim at investigating this resemblance and generalizing our
work to capture complete projectivity criterion for all the
MLNSs.
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Appendix
A.1 : Lemma 3 [Sufficiency]

Lemma 3 (Sufficiency). A Markov Logic Network in the two variable fragment is projective if all the f;; have the same value
ie. Yi,j € [u] : fi; = F, for some positive real number F.

Proof. LetVi,j € [u] : f;; = F. Hence, due to Proposition 1, we have:

2 =3 (i) I T o 19)

24
- (Z) [T ) = F(Z’)( 3 5i>n (20)
k 1€ u] i€ [u]

P - S IT T1 e

(Zze[u} ) (F) i€fu] i,j€[u] LE[b]

i<j
:H(z ) I e
i€ [u] i,j€[u] LE[b]
i<j
= sz IR
[u] ,zSEU]IG[b]

Using the multi-relational representation, Pgl) (w) can be equivalently expressed as:

PPX=2Y =y) =[] pes [ wosrrvar Q1)
w€n  arel
gq<r

Let (X', Y”) be the random vector containing X, and Y}, ;, with p < ¢ € [m]. Clearly, our goal is to show that
Pé’") 1 [m](X' _ :L'/,Y/ _ y/) _ Pq(,m)(X/ _ wl7yl _ y/)
Now, the marginal distribution over the m-worlds (X', Y"), due to Pé”) (X = a,Y = y) can be expressed as:

P Lm(X =2 Y =y)= Y PVX=2Y=y)

fﬂ[m]:m/
Yim) =Y’
= > Il v I worrnnr
@)=’ q€[n] q,r€[n]
Ym]=Y a<r

= H Pz, H wzqazryqr (Z H Pz, H Wz yzryqr H Wy mqur>

g€[m] q,r€[m] 1 g€[m] q,rE[rn] g€[m]
q<r Y[m) q<r re[mj
SIS T T
h,j€u] le[b]
i<j
k () h a9y (Ypm]) h 9 ([m)®m])
(ERA LI I L)

Ym) z<g 7.<]



where A® B = A x BU B x A. Notice that [ [, pfi(w,) H ’Je 1 I Lie w ( Vs Pé,m)(X’ =z, Y’ = y'). Hence, in
order to complete the proof, we will now show that for any =’

S IL e I [Lwi ™ T1 L wh ™™ =1 @2)
T 4

i,5€[u] L€[b] i,5€[u] 1€[b]
Ym] i<j i<g

The LHS of equation (22) can be written as:
2 < )H it TT Qowi™™ TT Qw7 23)
S k=n—m i,j€u] 1 i,j€u] 1

i<j i<j

By definition, for any 4, j € [u], >, w;;; = 1, and ), p; = 1. Hence, expression (23) can be written as:

> (") I (;pi)n_m )

S k=n—m

Hence, completing the proof. O

A.2 : Lemma 4 [Necessary]

Lemma 4 (Necessary). If a Markov Logic network in the two variable fragment is projective then, all the f;; have the same
value i.e. ¥i,j € [u] : f;; = F, for some positive real number F.

Proof. Let us have a markov logic network ® over a domain [n + 1]. Let X and Y be random vectors representing multi-
relational graphs on the domain [n + 1]. Let X’ and Y’ be random vectors representing multi-relational graphs on the domain
[n]. Then :

PY) (X =2 Y =y)= Y PUTV(X=2Y =y)
Z[n] 2
y[n]:y/
=Y o O s It
Z(n+1)
@[y =’ q€[n+1] q,r€[n+1]
y[n]:y’ a<r
= H Sz, H te, zrquZ n—l— Z STyt H b g@ny1yg,nt1
qe[n] q,rg yﬁ”ﬁl q€n]
= Pé)n) (X/ = w/’ Y/ = y Z smnﬁ»l H t$q$n+1yq n+1
Vi

Due to projectivity we have that:
PX =2 Y =y)= PV L (X =2 Y =)
Hence,

E St Il Lo g g1ygmin

Tn+1
yqnn+1 ac [n]

which can be equivalently written as:

n+1 ZS%H(ZW)JE

i€lu]  jEu] €[]



Now, >y tjiv = fji = fij- Hence:
Z(n + 1) Z H fk ()
i€fu]  jE[u]
Hence, for any choice of the domain size m and for any choice of m-worlds (x,y) and (', y’), we have that:
Sos [ =2 s 11 7™ (24)
i€fu]  j€[u] i€lu]  j€E[u]

which implies ! that:
Vi,j,i/,j/ S ['U/] : -f"_] = f,,:/j/
Hence, completing the proof. O

A.3 : Auxiliary Lemmas for Lemma 4
In proof of Lemma 4 we argue that, for any choice of the domain size m and for any choice of m-worlds (x,y) and (z’,y’),

we have that:
Sos [T = s [ £ (25)
i€fu]  j€[u]

i€fu]  jE[u]

This implies that:

Vi, j,i', 5" € [u] : fij = furj (26)
We will first infer a slightly stricter equation from (25). « and ' can have any 1-type cardinalities, say k = (k1 (x)...k,(x)) =
(k1...ky) and k" = (k1(2')...ky(2')) = (ki...k,,) respectively, such that 3,1 ki = >, (,) ki = m. Hence, we can conclude
that, for all k and k&’ such that ) _, €[] k=5, €[] k., we have that:

Z Si H fi] Z Si H 7.3] (27)
i€fu]  jeE[u]

[u]  je€lu]

Hence, our goal is to prove that (27) implies (26). We formally prove this statement in Lemma 6. Before proving Lemma 6, we
will need to prove the following auxiliary lemma.

Lemma 5. Let (z;),(y;)™, and (a;)7 be tuples of positive non-zero reals. If for all positive integers n.:

i a;xy = Zm: aiy; (28)
=1 1=1

then the set of entries in (x;)", and the set of entries in (y;)7, are the same.

Proof. Let {u;}’_, and {v;}{_, be the set of unique entries in (z;)!"; and (yl)l | respectively. Also, without loss of generality,
we may assume an ordering such that uy > ug > ... > uy, and v1 > vy > ... > v, and also that ¢ > p. We can rewrite (28) as:

VneZzt: ch Zdv (29)

As n grows the leading term on LHS is c;u} and on the RHS is dyv]. Hence, it must be :

Vn e Zt:cuf = dyof

Since, u1,v1, c1 and d; are non-zero positive reals, we can conclude that u; = v; and ¢; = d;. Hence, we may subtract c;u}

from both sides in (29) to get :
VneZzt: Zcz Zdv (30)

=2
We may now repeat the aforementioned argument and infer that us = v9 and ¢ = ds. Furthermore, repeating this argument
p times, we can infer that {u;};_, = {v;}_,, leaving us with 0 = 37 ., d;v}", which is a contradiction as d; and v; are
positive reals. Hence, we must have that p = ¢. Hence, we have that {u;}}_; = {v;}{_,. Hence, completing the proof. 0

'For a rigorous proof of why this is true, see Lemma 5 and Lemma 6 in Appendix A.3



Since, fi; = fji, we can see {f;;} as a symmetric v X w matrix (f;;) in R’;(X)“. Hence, the statement that equation (27)
implies equation (26) can be formally written as the following Lemma.
Lemma 6. Let S = (f;;) € RLG" be a symmetric matrix and let (s;)i_, € RY . Ifforallk = (ki,...,ky) and k' = (K7, ..., k},)
such that ki, kj, € Z* and Y| k; = ;" ki, we have that:

=1 "V’

Ss Il =3 I 7 31)
i=1  j€lu] i=1  j€[u]
then
Vivjvilvj/ : fij = fi/j’

Proof. Let k be such that k, = n, let k; = 0 for all i # p. Let k’ be such that &, = n and k; = 0 for all i # ¢. Then due to
(31), we have that:

VnezZt: Z Si(fip)n = Zsi(fiq)n (32)
i=1 i=1
Hence, due to Lemma 5, we have that the entries in (f;,)_; and (fi,)i, form the same set. A similar argument can be repeated
for any pair of columns. Hence, all columns in S have the same set of entries, we denote the set of such entries as U.
Let n = uk where k € Z". Let k be such that k; = k for all i € [u]. Let k be such that k, = n and k] = 0 for all 7 # q.
Then due to (31), we have that:

Vk e Z* :isi H i’;,:isi(fiq)uk
i=1  pelu] =1
ezt Y sil([] )" = si(fi)”
i=1  pelu] i=1

As k grows the leading term on left hand side and right hand side must agree for the equality to hold. Let ¢;/ (Hpe[u] fi/p)k and
din (f¥ )k be the leading terms on RHS and LHS respectively. Hence,

z//q
k u \k
Vi e ZV o ([ fin)* = din(fihy) (33)
pE(u]
Using Lemma 5, we have that Hpe[u] Jirp = [iing- Now, firq has to be equal to the maximum term in U, say m. Also,

]_[p ) firp 1s a product of all the terms in the pth matrix column of S. Since, each matrix column has the same set of terms U,
we have that Hpe[u] firp < m*. But due to (33), we have that, ]_[pe[u] firp = m™, which is possible iff:

Vi, g, 1,5 fij = fuy



