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The automorphism groups of the symmetric 2-(64, 28, 12) designs with the 
symmetric difference property (SDP), as well as the groups of their derived and 
residual designs, are computed. The symmetric SDP designs all have transitive 
automorphism groups. In addition, they all  admit transitive regular subgroups, or 
equivalently, (64, 28, 12) difference sets. These results are used for the enumeration 
of certain binary codes achieving the Grey-Rankin bound and point sets of elliptic 
or hyperbolic type in PG(5, 2). © 1994 Academic Press, Inc. 

1. INTRODUCTION 

We assume familiarity with the basic facts and ideas from design and 
coding theory. Our notation follows that from [1, 3, 13, 14, 16]. We also 
use some notions from the theory of strongly regular graphs and regular 
two-graphs [3, 15]. 

A symmetric 2-design has the symmetric difference property, or is an 
SDP design [ 11 ], if the symmetric difference of any three blocks is either 
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a block or the complement of a block. The parameters (v, k, 2) of a 
symmetric SDP design with k < v/2 are of the form 

V=22m, k = 2 2 m - l - 2  m-l, 2=22m--2--2 m-1. (1) 

A non-symmetric 2-(v, k, 2) design with parameters of the form 

/)=22m 1 2m-1 ' k = 2 2 m - 2 2  m 1, )~=22m--Z--2m--1--1, (2) 

o r  

V = 22m 1 + 2 m - l ,  k =  22m-2,  2 = 2 2 m - - 2 - - 2  m - 1  (3) 

is said to have the symmetric difference property, or to be an SDP design, 
if the symmetric difference of any two blocks is either a block or the 
complement of a block. 

A 2-design is quasi-symmetric with intersection numbers x, y (x < y) if 
any two blocks intersect in either x or y points. Clearly, a non-symmetric 
SDP design is quasi-symmetric. 

The parameters (2) correspond to that of a derived design of a sym- 
metric SDP design with parameters (1), while the parameters (3) are the 
same as those of a residual design of a symmetric design (1). The derived 
and residual designs of a symmetric SDP design are quasi-symmetric SDP 
designs [10]. Quasi-symmetric SDP designs that are derived or residual 
designs of non-isomorphic symmetric SDP designs are also non-isomorphic 
[9]. It was recently proved [17] that every quasi-symmetric SDP design 
is indeed the derived or residual of a unique symmetric SDP design. Conse- 
quently, two quasi-symmetric SDP designs can be isomorphic only if they 
are derived or residual designs of isomorphic symmetric SDP designs. 
Furthermore, two derived or residual designs of a given symmetric SDP 
design D with respect to a pair of blocks B,, B2 are isomorphic if and only 
if B 1 and B2 are in the same orbit under the automorphism group of D. 
This reduces the classification of the quasi-symmetric SDP designs up to 
isomorphism to the classification of the symmetric SDP designs and 
computing the orbits of their automorphism groups., 

The symmetric SDP designs were characterized by Dillon and Schatz 
[5] as designs formed by the minimum weight vectors in a binary code 
spanned by a first-order Reed-Muller code and the incidence vector of a 
bent function (or an elementary Abelian difference set in the affine space 
AG(2m, 2)). The quasi-symmetric SDP designs were characterized in [17] 
as designs formed by the minimum weight vectors in a code spanned by the 
simplex code and the incidence vector of a set of points in the projective 
space P G ( 2 m - 1 ,  2) that intersects every hyperplane in one of two 
prescribed number of points. Previous examples of sets with such intersec- 
tion property include elliptic or hyperbolic quadrics in P G ( 2 m -  1, 2) [2]. 
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It follows from the characterization of quasi-symmetric SDP designs [17] 
and some previous results from [9, 12] that the number of inequivalent 
point sets in PG(2rn- 1, 2) with the same intersection property as an ellip- 
tic or hyperbolic quadric grows exponentially with m. Furthermore, two 
sets of elliptic or hyperbolic type are projectively equivalent if and only if 
they correspond to points from one and the same orbit under the 
automorphism group of a given quasi-symmetric SDP design. 

There is a one-to-one correspondence between the codes spanned by the 
blocks of quasi-symmetric SDP designs and certain binary self-complemen- 
tary codes that are optimal in the sense of the Grey-Rankin bound [9]. 
Thus the classification of the SDP designs for given m and the knowledge 
of their groups implies also the classification of the corresponding optimal 
codes. 

There is a unique SDP design of type (1), (2), or (3) for m = 2, and 
precisely four non-isomorphic symmetric SDP 2-(64, 28, 12) designs for 
m = 3 [5]. In this paper we report the results of the computation of the 
automorphism groups of the four symmetric 2-(64, 28, 12) SDP designs, as 
well as the groups of their derived and residual designs (Section 5). All four 
symmetric SDP designs have transitive automorphism groups, only the 
symplectic one having a primitive (in fact, a doubly transitive) group. In 
addition, all four designs admit regular transitive subgroups; that is, they 
all come from (64, 28, 12) difference sets. We show in Theorem 4 that the 
only design that admits an Abelian difference set is the symplectic design, 
which admits non-Abelian difference sets as well. All four designs admit 
polarities with no absolute points and all four designs are in the switching 
class of the regular two-graph on 64 points defined by the Kronecker cube 
of J4 - 214. 

As an application, the inequivalent point sets of elliptic and hyperbolic 
type in PG(5, 2) are enumerated in Section 2. There are five projective 
classes of sets of elliptic type and seven classes of sets of hyperbolic type. 
The automorphism groups of the derived and residual designs enabled us 
also to compute the precise number of sets of every class. 

Another application is the enumeration of the binary self-complementary 
(28,7, 12) and (36,7, 16) codes up to equivalence. There are four 
inequivalent codes of each type (Section 3). 

Section 4 contains some open questions concerning SDP designs. 

2. POINT SETS IN PG(5, 2) WITH TWO INTERSECTION NUMBERS 

An (n, k, hi, h2) set S in the projective space PG(k-  1, q) is a set of n 
points in PG(k-  1, q) with the property that every hyperplane meets S in 
either hi or h2 points [2]. Two point sets with the same parameters are 
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equivalent if they are in one orbit under the action of the projective group 
PGL(k, q); that is, there is a projectivity in PG(k-1, q) that transforms 
one of the sets into the other. 

It has been proved in [17] that the point sets in PG(2m-1, 2) with 
parameters 

n = 2 2 m - l - - 2  m 1--1, k=2m, 
(4) 

hi = 22m--2-- 2m--l-- 1, h2=22m 2-- 1 

are in one-to-one correspondence with the points of quasi-symmetric SDP 
designs of type (2). Moreover, sets corresponding to non-isomorphic 
designs are inequivalent, and two sets belonging to a given design are 
equivalent if and only if they correspond to points that are in the same 
orbit under the automorphism group of the design. 

Similarly, the point sets in PG(2m- 1, 2) with parameters 

n=22m l + 2 m - 1 - -  1, k=2m, 
(5) 

h l = 2 2 m - 2 - } - 2  rn 1--1, h2_=- 22m-2-- 1 

are in one-to-one correspondence with the points of quasi-symmetric SDP 
designs complementary to the designs of type (3). Two sets are inequivalent 
if they correspond to points of non-isomorphic designs, and two sets 
corresponding to a pair of points from the same design are equivalent if 
and only if these two points are in one orbit under the group of the design. 

Examples of point sets of type (4) or (5) are provided by the elliptic or 
hyperbolic quadric in PG(2m- 1, 2), respectively [2, 7, 8, 18]. Therefore, 
a set with parameters (4) is called a set of elliptic type, and a set with 
parameters (5) is a set of hyperbolic type. 

Since the automorphism group of any quasi-symmetric SDP design is a 
subgroup of the projective group PGL(2rn, 2) [17], the classification of the 
point sets in PG(2m - 1, 2) of elliptic or hyperbolic type is thus reduced to 
the classification of the SDP designs (1), (2), (3) and computing their 
automorphism groups. 

As was already shown in [10], the derived 2-(28, 12, 11) designs and the 
residual 2-(36, 16, 12) designs of the four symmetric SDP 2-(64, 28, 12) 
designs (rn = 3) provide at least four non-isomorphic quasi-symmetric SDP 
2-(28, 12, 11)- and 2-(36, 16, 12) designs. Now the transitivity of the 
automorphism groups of the four symmetric SDP 2-(64, 28, 12) designs 
(Section 5) implies that up to isomorphism, there are precisely four quasi- 
symmetric SDP 2-(28, 12, 11) designs, and precisely four quasi-symmetric 
SDP 2-(36, 16, 12) designs. Note that there are more (at least 7) quasi- 
symmetric 2-(36, 16, 12) designs (see [9]), but only four are SDP designs. 

Three of the four SDP 2-(28, 12, 11) designs have point transitive 
automorphism groups, while one design has two point orbits. This implies 
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that there are precisely five equivalence classes of (27, 6, 11, 5) sets (of 
elliptic type) in PG(5, 2), namely one class of elliptic quadrics and four 
further classes of sets that are not quadrics but have the same intersection 
properties as a quadric. 

In the case of the residual 2-(36, 16, 12) SDP designs, there is only one 
design with point transitive group, and each of the remaining three designs 
has two point orbits. This implies that there are precisely seven equivalence 
classes of (35, 6, 19, 15) sets of hyperbolic type in PG(5, 2), one quadric 
and six non-quadrics. 

Having the automorphism groups, one can also compute the exact num- 
ber of distinct sets from a given equivalence class. The number of distinct 
sets that are projectively equivalent to a given set S is equal to 

IPGL(6, 2)1 

l a s l  ' 

where Gs is the stabilizer of S in PGL(6, 2). Note that the order of 
PGL(6, 2) is 

IPGL(6, 2)1 = 215(26 - 1)(25 - 1)(24 - 1)(23 - 1)(22 - 1) = 215. 34. 5.72.  31. 

From the other side, Gs is also a point stabilizer in a corresponding 
design D. Thus 

IAut DI 
t G s l  - l ' 

where Aut D is the automorphism group of D and l is the orbit length of 
the point of D corresponding to S. Therefore, the data from Section 5 for 
the groups of the derived 2-(28, 12, 11) designs imply the following 

THEOREM 1. There are 

28. 72. 31 elliptic sets of type 1 (elliptic quadrics), 

28. 33. 5.72.  31 elliptic sets of  type 2, 

2 l°- 34. 72. 31 elliptic sets of  type 3a, 

212- 33. 72. 31 elliptic sets of type 3b, 

212- 33. 5.72.  31 elliptic sets of type 4 

in PG(5, 2) with parameters (27, 6, 11, 15). 

Here the notation for the sets 1, 2, 3a, 3b, 4 is taken from [17], where 
explicit representatives of such sets are listed. 

Similarly, using the groups of the residual 2-(36, 16, 12) designs imply 
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THEOREM 2. There are 

28. 32. 7.31 elliptic sets of type 1 (hyperbolic quadrics), 

29. 33. 5 .7-  31 hyperbolic sets of type 2a, 

28. 33. 5.72. 31 hyperbolic sets of type 2b, 

21°. 33. 5- 72. 31 hyperbolic sets of type 3a, 

212. 33 • 72. 31 hyperbolic sets of type 3b, 

212. 33 • 5 • 72. 31 hyperbolic sets of type 4a, 

2 ~3. 33. 5 .7 .31  hyperbolic sets of type 4b 

in PG(5, 2) with parameters (35, 6, 19, 15). 

Again, the notation 1, 2a ..... is in accordance with [17]. 
A general formula for the number of quadrics of elliptic or hyperbolic 

type is available in [7; 8, Chap. 22.6]. 

3. THE SELF-CoMPLEMENTARY (28, 7, 12) AND (36, 7, 16) Coo~s 

The binary code spanned by the characteristic vectors of the blocks of a 
quasi-symmetric SDP design is a self-complementary (n, k, d) code with 

n = 2 2m-1 -- 2 m - l ,  k =  2 m +  1, d =  2 2 m - 2 -  2 m - 1  (6) 

for a design of type (2), and 

n = 2 2m - 1 + 2 m- 1, k = 2 m + l ,  d = 2  2m-2 (7) 

for a design of type (3) [10]. 
Any such code is optimal in the sense that it achieves the Gray-Rankin 

bound, and any self-complementary code with parameters (6) or (7) is the 
code of some quasi-symmetric SDP design [9]. Therefore, the characteriza- 
tion of the quasi-symmetric SDP designs as derived or residual designs of 
symmetric SDP designs [17] reduces the enumeration of such codes to the 
enumeration of the related SDP designs. In addition, since the blocks con- 
stitute the set of all minimum weight codewords, the automorphism groups 
of the code and the design coincide. 

It was pointed out previously in [10] that the derived and residual 
designs of the four symmetric SDP 2-(64, 28, 12) designs produce (at least) 
four inequivalent self-complementary (28, 7, 12) codes and (at least) four 
self-complementary (36, 7, 16) codes in this way. Now the transitivity of the 
groups of the four symmetric 2-(64, 28, 12) designs implies that there are 
precisely four quasi-symmetric SDP designs corresponding to each of the 
parameter sets 2-(28, 12, 11) and 2-(36, 16, 12). Thus we have 
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THEOREM 3. Up to equivalence, there exist precisely four binary self- 
complementary (28, 7, 12) (resp. (36, 7, 16)) codes. Their automorphism 
groups are of orders 1451520, 10752, 1920, and 672, respectively. 

An alternative enumeration of the self-complementary (28, 7, 16) codes is 
described in [6]. 

4. OPEN PROBLEMS 

The computation of the groups of the SDP designs for m = 3 raises some 
questions concerning these designs as well as SDP designs in general. 

Problem 1. Classify all regular subgroups (up to conjugacy) of the 
groups of the four symmetric SDP 2-(64, 28, 12) designs. 

We have found several non-conjugate regular subgroups (see Section 5) 
but we do not know if these are all of them. 

Some more general questions are: 

QUESTION 2. When does a symmetric SDP design admit a difference set? 

QUESTION 3. Given m, are all symmetric SDP designs obtainable by 
switching from the regular graph defined by the Kronecker product 
( . /4-  2/4) m, and if not, do SDP designs obtained in this way by switching 
have additional geometric or combinatorial properties that distinguish them ? 

5. TI-IB AUTOMORPHISM GROUPS 

All four symmetric SDP 2-(64, 28, 12) designs can be obtained from the 
symplectic one, defined by the Kronecker (tensor) cube of J4-214,  by 
switching its incidence matrix with respect to maximal 4-arcs [10]. An 
interesting question raised by Bill Kantor (private communication) whose 
answer we do not know how yet is what is the geometric nature of the 
4-arcs that switch the symplectic design into the other three designs. Here 
we use a slightly different presentation which features the designs as ones 
that admit polarities with no absolute points, or equivalently, as strongly 
regular graphs with parameters n = 64, k = 28, 2 = # = 12. 

The Kronecker product ( J4 -214)x  ( J4-214)x  (J4-214) gives a sym- 
metric Hadamard matrix H of order 64, such that H + I is a regular two- 
graph. In its switching class it has (64, 28, 12, 12) strongly regular graphs, 
four of which correspond to the SDP 2-(64, 28, 12) designs. They are 
obtained by switching H +  I with respect to the following four vertex sets: 
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1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

2. 1 2 3 4 5 6 8 9 10 11 12 13 15 16 20 25 
33 44 49 50 51 52 53 55 56 57 58 59 60 61 62 64 

3. 1 2 3 4 5 7 8 9 10 11 12 13 14 16 20 25 
33 34 37 43 44 48 49 51 52 54 56 57 58 60 61 63 

4. 1 2 3 4 5 6 11 12 13 16 17 20 33 34 35 36 
37 40 41 44 46 47 49 50 51 52 55 56 57 58 61 64 

We call these designs D1, D2, D3, and 0 4 in accordance with the bent 
functions f l ,  f2, f3, f4 from [10]. The full automorphism groups of these 
designs were found by computer. All four designs have transitive 
automorphism groups, only the symplectic one, Aut(D1), is doubly trans- 
itive and hence primitive. Using CAYLEY interactively, we were able to 
find regular subgroups for all of the designs. Thus all four SDP designs can 
be defined by (64, 28, 12) difference sets. Previously, only the group of the 
symplectic design was known to contain an elementary Abelian regular 
subgroup. We have not attempted to find all regular subgroups up to con- 
jugacy (see Problem 1 in the previous section). Our Theorem 4, below, 
shows that Aut(D2), Aut(D3), and Aut(D4) do not contain regular Abelian 
subgroups and hence that the corresponding designs do not admit Abelian 
difference sets (compare with [4]). 

To describe the structure of the groups we use the following notation: 
G..~2a+~b+c+"'~:H means that G has a normal subgroup Q of order 
2 a+b+c+ ' and complement H~-G/Q. Further, Z(Q) has order 2 a, and 

b + c +  Q/Z(Q) is elementary Abelian of order 2 " ,  which, as a 
GF(2)H~-GF(2)G/Q-module, has irreducible composition factors of order 
2 a, 2 b, .... If H has more than one non-isomorphic GF(2)-modules of a 
given dimension then we distinguish them by subscripts. 

THEOREM 4. Only the automorphism group of design D 1 has an Abelian 
regular subgroup. 

Proof. It is known that the group of Da contains a normal elementary 
Abelian regular subgroup [ 11 ]. 

Using CAYLEY we find that G=Aut(D2)..~Q:GL(3,2), where 
Q~23+~3'+3+3~ is a normal special subgroup of G of order 212 with 
IZ(Q)I = 23 on which GL(3, 2) = G/Q induces an irreducible 
GF(2) GL(3, 2)-module. We define a subgroup Q1 = Z(Q) StabQ(1) of Q. 
By CAYLEY, Q1 is normal in G and I Q l l =  29. Using CAYLEY again we 
find that Q/Q1 is a non-central chief factor for G and that Q/Q1 is, as a 
G/Q-module, dual to Z(Q). Now suppose that R is an Abelian regular sub- 
group of G. Since every element of R is fixed-point free, we obviously must 
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have R n Q1 <~ Z(Q). Suppose that R is not a subgroup of Q. Then, as R 
is Abelian, IRQ/QI ~<22 and I R n  Q[/>2 4. If Z(Q)<~R, then Z(Q) is cen- 
tralized by <R G > Q, which is impossible. So IR n Z(Q)I ~< 22 and similarly 
I(Q n R)Q1/QI[<. 22. Thus we deduce that all the above inequalities are in 
fact equalities. But then 

I CQm,(RQ/Q)I = I Cz(Q)(RQ/Q)I, 

which implies that Q/Q1 ~-Z(Q) as GF(2)G/Q-modules, which is not the 
case. Therefore, R<~ Q, R>~Z(Q), and Q=RQ1. Using CAYLEY we find 
that all of the 212-29 elements of Q/Q~ are fixed-point free. So to show 
that there are no Abelian regular subgroups we have to show that there is 
no Abelian group R1 of order 26 containing Z(Q) with Q=R~Q~. We 
reduce the size of the problem by noting that G/Q is two-transitive on 
Q/Q1 and so we can assume that R 1 = (Z(Q), xl, YX, Z>, where x 1 and Yl 
are in fixed distinct cosets xQ1 and yQ1 of Q1 in Q and z is chosen from 
CQ((xl ,  yl>)\(Q1, x, y>. Further, of the 29 elements of xQ1 and yQ1 we 
only need to consider those elements which fall into different Z(Q) cosets. 
Thus we finish with at the very most 642 possibilities to check that 
Co(<x~, yl>)\(Qa, x, y> is the empty set. This is done using CAYLEY. 

Using CAYLEY we find that G = A u t ( D 3 ) ~  Q: Sym(5), where Q is a 
normal special subgroup of G or order 2~°= 22+(4+4> with center of order 
4 on which G acts non-trivially with centralizer G'. We also find that 
Q/Z(Q) is, as a G/Q-module, a direct sum of two isomorphic modules 
which are, on restriction to (G/Q)', both natural SL(2, 4)-modules (to see 
this we consider the fixed points on Q/Z(Q) of an element of order 3; 
Q/Z(Q) has only one). We also observe that G' is not transitive. Thus if R 
is an Abelian regular subgroup of G, R g;G'. Hence 22>~IRQ/QI >12, 
]R n Z(Q)I = 2, and 24 >i ](R c3 Q) Z(Q)/Z(Q)I >~ 23. Because R ~ G' and 
ICQ/z(Q~(RQ/Q)I/>23, the structure of the module Q/Z(Q) implies that 
[RQ/QI = 2, I(R c~ Q) z ( o  )/z(o )l = 24 and R = < x, CQ(x) >, where x ~ O \O. 
We finally use CAYLEY to check that there are no such regular subgroups. 

Finally, from CAYLEY we find that G =  Aut(D3)~ Q: GL(3, 2), where 
Q is an elementary Abelian group of order 28 on which C/Q acts 
irreducibly (as is seen by noting that, for S t  Syl2(G), Co(S) has order 2 
and closes under the action of G to Q; it's the Steinberg module over GF(2) 
for GL(3, 2)). Further, we find that Q is not transitive. Hence, if R is an 
Abelian regular subgroup of G, R ~; G and, from the structure of the 
Steinberg representation of GL(3, 2), if [RQ/Q[ = 4, then [Co(R)[ ~< 22 and, 
if [RQ/QI = 2, I CQ(R)I = 24; thus IR[ ~< 25, which is nonsense. 

Below we list base blocks, group order, group structure, blocks of 
imprimitivity, group generators, generators of regular subgroups, and the 
order of the normalizer of the non-Abelian regular subgroup together with 

582a/67/1-3 
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an element of largest order in the normalizer that fixes the base block for 
the four 2-(64, 28, 12) designs 0 1  ... . .  D4, as well as similar data for their 
derived 2-(28, 12, 11) designs and residual 2-(36, 16, 12) designs. 

Design D1 
Base block: 

2 3 4 5 9  13 18 19 20 21 25 29 34 35 36 37 41 45 49 54 55 56 58 59 60 
62 63 64. 

Group order: 92897280 = 215. 3 4. 5.7. 

Group structure: Aut(D1)~26: Sp(6, 2). Primitive, doubly transitive. The 
stabilizer of a point is Sp(6, 2). 

Generators: 
1. (33, 49) (34, 50) (35, 51) 

(41, 57) (42, 58) (43, 59) 
2. (17, 33) (18, 34) (19, 35) 

(25, 41) (26, 42) (27, 43) 
3. (9, 13) (10, 14) (11, 15) 

(41, 45) (42, 46) (43, 47) 
4. (9, 25) (10,26) (11, 27) 

(33, 53) (34, 54) (35, 55) 

(36, 52) (37, 53) (38, 54) (39, 55) (40, 56) 
(44, 60) (45, 61) (46, 62) (47, 63) (48, 64) 
(20, 36) (21, 37) (22, 38) (23, 39) (24, 40) 

(28, 44) (29, 45) (30, 46) (31, 47) (32, 48) 
(12, 16) (25, 29) (26, 30) (27, 31) (28, 32) 
(44, 48) (57, 61) (58, 62) (59, 63) (60, 64) 
(12, 28) (13, 29) (14,30) (15, 31) (16, 32) 
(36, 56) (37, 49) (38, 50) (39, 51) (40, 52) 

(41, 45) (42, 46) (43, 47) (44, 48) (57, 61) (58, 62) (59, 63) (60, 64) 
5. (5, 9) (6, 10) (7, 11) (8, 12) (21, 25) (22, 26) (23, 27) (24, 28) (37, 41) 

(38, 42) (39, 43) (40, 44) (53, 57) (54, 58) (55, 59) (56, 60) 
6. (3, 4) (7, 8) (11, 12) (15, 16) (19, 20) (23, 24) (27, 28) (31, 32) 

(35, 36) (39, 40) (43, 44) (47, 48) (51, 52) (55, 56) (59, 60) (63, 64) 
7. (3, 7) (4, 8) (9, 14) (10, 13) (11, 12) (15, 16) (19, 23) (20, 24) (25, 30) 

(26, 29) (27, 28) (31, 32) (35, 39) (36, 40) (41, 46) (42, 45) (43, 44) 
(47, 48) (51, 55) (52, 56) (57, 62) (58, 61) (59, 60) (63, 64) 

8. (2,3) (6,7) (10,11) (14, 15) (18,19) (22,23) (26,27) (30,31) 
(34, 35) (38, 39) (42, 43) (46, 47) (50, 51) (54, 55) (58, 59) (62, 63) 

9. (1, 2) (5, 6) (9, 10) (13, 14) (17, 18) (21, 22) (25, 26) (29, 30) (33, 34) 
(37, 38) (41, 42) (45, 46) (49, 50) (53, 54) (57, 58) (61, 62) 

Generators of an elementary Abelian regular subgroup: 
1. (1,9) (2, 10) (3, 11) (4, 12) (5, 13) (6, 14) (7, 15) (8, 16) (17,25) 

(18, 26) (19, 27) (20, 28) (21, 29) (22, 30) (23, 31) (24, 32) (33, 41) 
(34, 42) (35, 43) (36, 44) (37, 45) (38, 46) (39, 47) (40, 48) (49, 57) 
(50, 58) (51, 59) (52, 60) (53, 61) (54, 62) (55, 63) (56, 64) 

2. (1,3) (2,4) (5,7) (6,8) (9,11) (10,12) (13,15) (14,16) (17,19) 
(18, 20) (21, 23) (22, 24) (25, 27) (26, 28) (29, 31) (30, 32) (33, 35) 
(34, 36) (37, 39) (38, 40) (41, 43) (42, 44) (45, 47) (46, 48) (49, 51) 
(50, 52) (53, 55) (54, 56) (57, 59) (58, 60) (61, 63) (62, 64) 
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3. (1,4) (2,3) (5,8) (6,7) (9,12) (10,11) (13,16) (14,15) (17,20) 
(18,19) (21,24) (22,23)(25,28)(26,27)(29,32)(30,31)(33,36) 
(34,35) (37,40)(38,39)(41,44)(42,43)(45,48)(46,47)(49,52) 
(50, 51) (53, 56)(54, 55)(57, 60)(58, 59)(61, 64)(62, 63) 

4. (1,5) (2,6) (3,7) (4,8) (9,13) (10,14) (11,15) (12,16) (17,21) 
(18,22) (19,23)(20,24) (25,29) (26,30)(27,31) (28,32) (33,37) 
(34,38) (35,39) (36,40)(41,45)(42,46)(43,47) (44,48)(49,53) 
(50, 54)(51, 55)(52, 56)(57, 61)(58, 62)(59, 63)(60, 64) 

5. (1,17) (2,18) (3,19) (4,20) (5,21) (6,22) (7,23) (8,24) (9,25) 
(10,26) (11,27) (12,28) (13,29) (14,30) (15,31)(16,32) (33,49) 
(34,50) (35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57) 
(42, 58)(43, 59)(44, 60)(45, 61)(46, 62)(47, 63)(48, 64) 

6. (1,33) (2,34) (3,35) (4,36) (5,37) (6,38) (7,39) (8,40) (9,41) 
(10,42) (11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49) 
(18,50) (19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57) 
(26, 58)(27, 59)(28, 60)(29, 61)(30, 62)(31, 63)(32, 64) 

Generators of a non-Abelian regular subgroup, R: 
1. (1,9) (2, 10) (3, 11) (4, 12) (5, 13) (6, 14) (7, 15) (8, 16) (17,25) 

(18, 26) (19, 27) (20, 28) (21, 29) (22, 30) (23, 31) (24, 32) (33, 41) 
(34, 42) (35, 43) (36, 44) (37, 45) (38, 46) (39, 47) (40, 48) (49, 57) 
(50, 58) (51, 59) (52, 60) (53, 61) (54, 62) (55, 63) (56, 64) 

2. (1, 3) (2,4) (5,7) (6,8) (9, 11) (10, 12) (13, 15) (14, 16) (17, 19) 
(18, 20) (21, 23) (22, 24) (25, 27) (26, 28) (29, 31) (30, 32) (33, 35) 
(34, 36) (37, 39) (38, 40) (41, 43) (42, 44) (45, 47) (46, 48) (49, 51) 
(50, 52) (53, 55) (54, 56) (57, 59) (58, 60) (61, 63) (62, 64) 

3. (1, 5) (2,6) (3, 7) (4,8) (9, 13) (10, 14) (11, 15) (12, 16) (17,21) 
(18, 22) (19, 23) (20, 24) (25, 29) (26, 30) (27, 31) (28, 32) (33, 37) 
(34, 38) (35, 39) (36, 40) (41, 45) (42, 46) (43, 47) (44, 48) (49, 53) 
(50, 54) (51, 55) (52, 56) (57, 61) (58, 62) (59, 63) (60, 64) 

4. (1, 51, 18, 36) (2, 52, 17, 35) (3, 50, 20, 33) (4, 49, 19, 34) (5, 55, 
22, 40) (6, 56, 21, 39) (7, 54, 24, 37) (8, 53, 23, 38) (9, 59, 26, 44) 
(10, 60, 25, 43) (11, 58, 28, 41) (12, 57, 27, 42) (13, 63, 30, 48) (14, 
64, 29, 47) (15, 62, 32, 45) (16, 61, 31, 46) 

Order of Na(R): 49152 = 214 .  3. 

An element of largest order in No(R) which fixes the base block: 
(1, 10, 14, 17, 26, 30) (2, 9, 13, 18, 25, 29) (3, 4) (5, 21) (6, 22) (7, 31, 
12, 8, 32, 11) (15, 28, 24, 16, 27, 23) (19, 20) (33, 61, 53, 50, 46, 38) (34, 
62, 54, 49, 45, 37) (35, 55, 60) (36, 56, 59) (39, 44, 51) (40, 43, 52) 
(41, 58) (42, 57) 
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Design D2 

Base block: 
23  4 5 79  13 14 18 19 21 29 33 34 35 36 37 41 44 45 49 55 56 58 59 
60 62 64. 

Group order: 688128 = 215. 3.7. 

Group structure: Aut(D2)~ 23+(31+ 3+ 31): GL(3, 2). The stabilizer of a 
point is 2(31+3): GL(3, 2). 

Blocks of imprimitivity: 
[1, 12, 22, 31, 39, 46, 52, 57], [-2, 11, 21, 32, 40, 45, 51, 58], [3, 10, 24, 
29, 37, 48, 50, 59], [4, 9, 23, 30, 38, 47, 49, 60], [5, 16, 18, 27, 35, 42, 
56, 61], [6, 15, 17, 28, 36, 41, 55, 62], [7, 14, 20, 25, 33, 44, 54, 63], 
[8, 13, 19, 26, 34, 43, 53, 64] 

Generators: 
1. (5, 61) (6, 62) (7, 63) (8, 64) (13, 53) (14, 54) (15, 55) (16, 56) 

(17, 41) (18, 42) (19, 43) (20, 44) (25, 33) (26, 34) (27, 35) (28, 36) 
2. (5, 64) (6, 63) (7, 62) (8, 61) (13, 56) (14, 55) (15, 54) (16, 53) 

(17, 20) (18, 19) (21, 45) (22, 46) (23, 47) (24, 48) (25, 28) (26, 27) 
(29, 37) (30, 38) (31, 39) (32, 40) (33, 36) (34, 35) (41, 44) (42, 43) 

3. (5, 7) (6, 8) (9, 49) (10, 50) (11, 51) (12, 52) (13, 55) (14, 56) (15, 53) 
(16, 54) (17, 43) (18, 44) (19, 41) (20, 42) (21, 45) (22, 46) (23, 47) 
(24, 48) (25, 27) (26, 28) (33, 35) (34, 36) (61, 63) (62, 64) 

4. (3,4) (5, 18) (6, 17) (7, 19) (8, 20) (9, 29)(10, 30)(11, 32)(12, 31) 
(13, 14) (23, 24) (25, 26) (33, 34) (37,49) (38, 50) (39, 52) (40, 51) 
(41, 62) (42, 61) (43, 63) (44, 64) (47, 48) (53, 54) (59, 60) 

5. (3, 13) (4, 14) (7, 9) (8, 10) (19, 29) (20, 30) (23, 25) (24, 26) (33, 60) 
(34, 59) (35, 56) (36, 55) (37, 64) (38, 63) (39, 52) (40, 51) (41, 62) 
(42, 61) (43, 50) (44, 49) (45, 58) (46, 57) (47, 54) (48, 53) 

6. (2, 3) (5, 13) (6, 15) (7, 14) (8, 16) (10, 11) (18, 19) (21, 29) (22, 31) 
(23, 30) (24, 32) (26, 27) (34, 35) (37, 45) (38, 47) (39, 46) (40, 48) 
(42, 43) (50, 51) (53, 61) (54, 63) (55, 62) (56, 64) (58, 59) 

7. (1,2) (3,4) (5, 17) (6, 18) (7, 19) (8,20) (9, 10) (11, 12) (13,25) 
(14, 26) (15, 27) (16, 28) (21, 22) (23, 24) (29, 30) (31, 32) (33, 53) 
(34, 54) (35, 55) (36, 56) (37, 38) (39, 40) (41, 61) (42, 62) (43, 63) 
(44, 64) (45, 46) (47, 48) (49, 50) (51, 52) (57, 58) (59, 60) 

Generators of a non-Abelian regular subgroup, R: 
1. (1, 18) (2, 36) (3, 7) (4, 53) (5, 22) (6, 40) (8, 49) (9, 64) (10, 14) 

(11, 41) (12, 27) (13, 60) (15, 45) (16, 31) (17, 51) (19, 38) (20, 24) 
(21, 55) (23, 34) (25, 29) (26, 47) (28, 58) (30, 43) (32, 62) (33, 37) 
(35, 52) (39, 56) (42, 57) (44, 48) (46, 61) (50, 54) (59, 63) 
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2. (1,45) (2,46) (3,4) (5,17) (6,18) (7,64) (8,63) (9,10) (11,39) 
(12,40) (13 ,54)(14,53)(15,27)(16,28)(19,44)(20,43)(21,57)  
(22,58) (23 ,24)(25,34)(26,33)(29,30)(31,51)(32,52)(35,55)  
(36, 56)(37, 38)(41, 61)(42, 62)(47,48)(49, 50)(59, 60) 

3. (1,63) (2,53) (3,18) (4,28) (5,24) (6,30) (7,57) (8,51) (9,17) 
(10,27) (1t, 64) (12,54)(13,58) (14,52) (15,23)(16,29) (19,40) 
(20,46) (21,34)(22,44)(25,39)(26,45)(31,33)(32,43)(35,50)  
(36, 60)(37, 56)(38, 62) (41, 49)(42, 59)(47, 55)(48, 61) 

Order of N~(R): 4096 = 212. 

An element of largest order in NG(R) which fixes the base block: 
(1, 9, 46, 38) (2, 50, 45, 29) (3, 32, 48, 51) (4, 39, 47, 12) (5, 26, 42, 53) 
(6, 33, 41, 14) (7, 15, 44, 36) (8, 56, 43, 27) (10, 21, 37, 58) (11, 59, 40, 
24) (13, 61, 34, 18)(16, 19, 35, 64) (17, 54, 62, 25) (20, 28, 63, 55)(22, 
30, 57, 49)(23, 52, 60, 31) 

Design D3 
Base block: 

2 3 4 5 69  13 15 18 19 21 29 33 35 36 41 43 44 45 48 49 50 53 54 56 
58 60 63. 

Group order: 122880 = 213- 3- 5. 

Group structure: Aut(D3) ~ 22 + (4 + 4): Sym(5). The stabilizer of a point is 
2(1 +4): Alt(5). 

Blocks of imprimitivity: 
[1, 4, 6, 7, 9, 12, 14, 15, 17, 20, 22, 23, 25, 28, 30, 31, 33, 36, 38, 39, 41, 

49, 52, 54, 55, 57, 60, 62, 3], [2, 3, 5, 8, 10, 11, 13, 16, 18, 
26, 27, 29, 32, 34, 35, 37, 40, 42, 43, 45, 48, 50, 51, 53, 56, 
64] 

44, 46, 47, 
19, 21, 24, 
58, 59, 61, 

Generators: 
1. 

. 

(5,50) (6,49) (7,52) (8,51) (13,58) (14,57) (15,60) (t6,59) 
(17,46) (18,45) (19,48) (20,47) (21,29) (22,30)(23,31)(24,32) 
(25,38) (26,37)(27,40)(28,39)(33,41)(34,42)(35,43)(36,44) 
(5,51) (6,52) (7,49) (8,50) (13,59) (14,60) (15,57) (16,58) 
(17,20) (18,19) (21,34) (22,33)(23,36) (24,35) (25,28) (26,27) 
(29, 42) (30, 41) (31, 44) (32, 43) (37, 40) (38, 39) (45, 48) (46, 47) 

3. (3, 5) (4, 6) (9, 15) (10, 16) (19, 21) (20, 22) (25, 31) (26, 32) (33, 55) 
(34, 56) (35, 51) (36, 52) (37, 53) (38, 54) (39, 49) (40, 50) (41, 57) 
(42, 58) (43, 61) (44, 62) (45, 59) (46, 60) (47, 63) (48, 64) 

4. (2, 3) (5, 58) (6, 60) (7, 57) (8, 59) (10, 11) (13, 50) (14, 52) (15, 49) 
(16, 51) (17, 46) (18, 48) (19, 45) (20, 47) (22, 23) (25, 38) (26, 40) 
(27, 37) (28, 39) (30, 31) (33, 36) (41, 44) (53, 56) (61, 64) 

582a/67/1-4 



36 PARKER, SPENCE, AND TONCHEV 

5. (1, 2, 52, 40) (3, 49, 37, 4) (5, 33, 35, 20) (6, 19, 55, 53) (7, 18, 54, 
56) (8, 36, 34, 17) (9, 10, 60, 48) (11, 57, 45, 12) (13, 41, 43, 28) (14, 
27, 63, 61) (15, 26, 62, 64) (16, 44, 42, 25) (21, 39, 51, 22) (23, 24, 
38, 50) (29, 47, 59, 30) (31, 32, 46, 58) 

Generators of a non-Abelian regular subgroup, R: 
1. (1, 34, 49, 59, 52, 64, 9, 48) (2, 36, 56, 7, 32, 28, 35, 54) (3, 39, 13, 

23, 24, 22, 19, 47) (4, 37, 12, 43, 60, 50, 57, 53) (5, 25, 40, 15, 18, 
44, 58, 55) (6, 27, 33, 51, 62, 16, 20, 45) (8, 30, 29, 31, 26, 38, 10, 
46) (11, 41, 61, 14, 21, 17, 42, 63) 

2. (1, 5, 57, 27) (2, 30, 21, 47) (3, 54, 29, 14) (4, 45, 49, 58) (6, 34, 55, 
53) (7, 10, 63, 24) (8, 17, 19, 36) (9, 40, 60, 51) (11, 23, 32, 38) (12, 
16, 52, 18) (13, 28, 26, 41) (15, 43, 62, 64) (20, 59, 44, 37) (22, 56, 
46, 42) (25, 50, 33, 48) (31, 61, 39, 35) 

3. (1, 7, 57, 63) (2, 50, 21, 48) (3, 40, 29, 51) (4, 17, 49, 36) (5, 26, 27, 
13) (6, 47, 55, 30) (8, 16, 19, 18) (9, 28, 60, 41) (10, 45, 24, 58) (11, 
59, 32, 37) (12, 14, 52, 54) (15, 38, 62, 23) (20, 39, 44, 31) (22, 25, 
46, 33) (34, 35, 53, 61) (42, 64, 56, 43) 

Order N~(R): 256 = 28. 

An element of largest order in NG(R) which fixes the base block: 
(1, 12) (4, 9)(6,  15)(7, 14)(17,28) (20,25)(22, 31) (23, 30)(33,44) 
(36, 41) (38, 47) (39, 46) (49, 60) (52, 57) (54, 63) (55, 62) 

Design D 4 

Base block: 
2 3 4 5  7 8 10 13 14 15 17 18 19 21 25 29 33 40 44 45 46 47 49 53 55 
56 58 64. 

Group order: 43008 = 211 • 3.7. 

Group structure: Aut(D4)~28: GL(3,2). The stabilizer of a point is 
2(3 + 2): Frob(21). 

Blocks of imprimitivity: 
[1, 4, 13, 16, 49, 52, 61, 64], [2, 3, 14, 15, 50, 51, 62, 63], [5, 8, 9, 12, 
53, 56, 57, 60], [6, 7, 10, 11, 54, 55, 58, 59], [17, 20, 29, 32, 33, 36, 45, 
48], [18, 19, 30, 31, 34, 35, 46, 47], [21, 24, 25, 28, 37, 40, 41, 44], [22, 
23, 26, 27, 38, 39, 42, 43] 

Generators: 
1. (5, 9) (6, 10) (7, 11) (8, 12) (17, 36) (18, 35) (19, 34) (20, 33) (21, 44) 

(22, 43) (23, 42) (24, 41) (25, 40) (26, 39) (27, 38) (28, 37) (29, 48) 
(30, 47) (31, 46) (32, 45) (53, 57) (54, 58) (55, 59) (56, 60) 
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2. (5, 57) (6, 58) (7, 59) (8, 60) (9, 53) (10, 54) (11, 55) (12, 56) (17, 32) 
(18, 31) (19, 30) (20, 29) (21, 40) (22, 39) (23, 38) (24, 37) (25, 44) 
(26, 43) (27, 42) (28, 41) (33, 48) (34, 47) (35, 46) (36, 45) 

3. (5, 22, 19) (6, 21, 20) (7, 24, 17) (8, 23, 18) (9, 39, 47) (10, 40, 48) 
(11, 37, 45) (12, 38, 46) (13, 52, 61) (14, 51, 62) (15, 50, 63) (16, 49, 
64) (25, 33, 58) (26, 34, 57) (27, 35, 60) (28, 36, 59) (29, 54, 44) (30, 
53, 43) (31, 56, 42) (32, 55, 41) 

4. (2, 3) (5, 56) (6, 54) (7, 55) (8, 53) (9, 60) (10, 58) (11, 59) (12, 57) 
(14, 15) (18, 19) (21, 40) (22, 38) (23, 39) (24, 37) (25, 44) (26, 42) 
(27, 43) (28, 41) (30, 31) (34, 35) (46, 47) (50, 51) (62, 63) 

5. (2, 14) (3, 15) (5, 56) (6, 59) (7, 58) (8, 53) (9, 60) (10, 55) (11, 54) 
(12, 57) (17, 29), (20, 32) (21, 44) (22, 39) (23, 38) (24, 41) (25, 40) 
(26, 43) (27, 42) (28, 37) (33, 45) (36, 48) (50, 62) (51, 63) 

6. (2, 17, 18) (3, 29, 31) (4, 13, 16) (5, 26, 24) (6, 10, 7) (8, 22, 25) (9, 
23, 21) (12, 27, 28) (14, 32, 19) (15, 20, 30) (33, 47, 62) (34, 63, 45) 
(35, 51, 36) (37, 56, 43) (38, 40, 60) (39, 44, 53) (41, 57, 42) (46, 50, 
48) (49, 64, 61)(54, 55, 59) 

7. (1, 2) (3, 4) (5, 25) (6, 26) (7, 27) (8, 28) (9, 21) (10, 22) (11, 23) 
(12, 24) (13, 14) (15, 16) (17, 18) (19, 20) (29, 30) (31, 32) (33, 47) 
(34, 48) (35, 45) (36, 46) (37, 56) (38, 55) (39, 54) (40, 53) (41, 60) 
(42, 59) (43, 58) (44, 57) (49, 63) (50, 64) (51, 61) (52, 62) 

Generators of a non-Abelian regular subgroup, R: 
1. (1, 17, 57, 35, 4, 33, 60, 19) (2, 25, 10, 42, 3, 41, 11, 26) (5, 30, 13, 

45, 8, 46, 16, 29) (6, 22, 62, 40, 7, 38, 63, 24) (9, 34, 52, 36, 12, 18, 
49, 20) (14, 37, 55, 39, 15, 21, 54, 23) (27, 50, 28, 58, 43, 51, 44, 59) 
(31, 61, 48, 56, 47, 64, 32, 53) 

2. (1, 6) (2, 5) (3, 8) (4, 7) (9, 15) (10, 16)(11, 13) (12, 14)(17, 24) 
(18, 23) (19, 22) (20, 21) (25, 29) (26, 30) (27, 31) (28, 32) (33, 40) 
(34, 39) (35, 38) (36, 37) (41, 45) (42, 46) (43, 47) (44, 48) (49, 54) 
(50, 53) (51, 56) (52, 55) (57, 63) (58, 64) (59, 61) (60, 62) 

3. (1, 8, 4, 5) (2, 6, 3, 7) (9, 64, 12, 61) (10, 62, 11, 63) (13, 57, 16, 60) 
(14, 59, 15, 58) (17, 30, 33, 46) (18, 32, 34, 48) (19, 29, 35, 45) (20, 
31, 36, 47) (21, 27, 37, 43) (22, 25, 38, 41) (23, 28, 39, 44) (24, 26, 
40, 42) (49, 56, 52, 53) (50, 54, 51, 55) 

4. (1, 12, 4, 9) (2, 59, 3, 58) (5, 64, 8, 61) (6, 15, 7, 14) (10, 50, 11, 51) 
(13, 53, 16, 56) (17, 34, 33, 18) (19, 20, 35, 36) (21, 22, 37, 38) (23, 
40, 39, 24) (25, 43, 41, 27) (26, 28, 42, 44) (29, 31, 45, 47) (30, 48, 
46, 32) (49, 60, 52, 57) (54, 63, 55, 62) 

Order of Na(R): 256 = 2 s. 
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An element of largest order in NG(R) which fixes the base block: 
(2, 3) (5,8) (9, 12) (14, 15) (17,45) (18,47) (19,46) (20,48) (21,44) 
(22, 42) (23, 43) (24, 41) (25, 40) (26, 38) (27, 39) (28, 37) (29, 33) 
(30, 35) (31, 34) (32, 36) (50, 51) (53, 56) (57, 60) (62, 63) 

Derived 2-(28, 12, 11) Design of  O 1 

Group order: 1451520 = 2 9. 3 4. 5.7. 

Group structure: Sp(6, 2). 

Orbit lengths: points: 28 (two-transitive); blocks: 63 (transitive). 

Base block: 2 3 8 9 14 15 21 22 24 25 27 28. 

Generators: 
1. (7, 13) (8, 14) (9, 15) (10, 16) (11, 17) (12, 18) 
2. (5, 6) (11, 12) (17, 18) (23, 26) (24, 27) (25, 28) 
3. (5, 11)(6,  12)(13,20)(14,21)  (15,22)(16, 19)(17, 18)(23,26) 

(24, 27) (25, 28) 
4. (4, 5) (10, 11) (16, 17) (20, 23) (21, 24) (22, 25) 
5. (3, 4) (9, 10) (15, 16) (19, 22) (23, 27) (24, 26) 
6. (2, 3) (8, 9) (14, 15) (21, 22) (24, 25) (27, 28) 
7. (1, 2) (7, 8) (13, 14) (20, 21) (23, 24) (26, 27) 

Derived 2-(28, 12, 11) Design of D2 
Group order: 10752 = 29. 3 • 7. 

Group structure: 2 (31 + 3): GL(3, 2). 

Orbit lengths: points: 28 (transitive); blocks: 7 + 56. 

Blocks of imprimitivity: 
[1, 11, 20, 24], [2, 12, 17, 25], [-3, 6, 21, 26], [4, 9, 15, 23], [5, 8, 13, 
19], [7, 10, 14, 28], [16, 18, 22, 27] 

Base blocks: 
23  5 10 15 16 19 22 23 25 26 28;3 5 6 8  13 16 18 19 21 22 26 27. 

Generators: 
1. (4, 28) (5, 27) (7, 23) (8, 22) (9, 10) (11, 20) (12, 17) (13, 16) (14, 15) 

(18, 19) 
2. (4, 27) (5, 28) (6, 21) (7, 8) (9, 18) (10, 19) (12, 17) (13, 14) (15, 16) 

(22, 23) 
3. (3, 6) (5, 8) (13, 19) (16, 18) (21, 26) (22, 27) 
4. (2, 3) (4, 9) (5, 10) (6, 12) (7, 8) (13, 14) (17, 21) (18, 27) (19,28) 

(25, 26) 
5. (2, 4, 10, 25, 9, 28) (3, 16, 5, 21, 27, 13) (6, 18, 8, 26, 22, 19) (7, 12, 

15, 14, 17, 23) (11, 20, 24) 
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6. (1, 2) (4, 7) (5, 8) (9, 10) (11, 12) (14, 15) (17, 20) (22, 27)(23, 28) 
(24, 25) 

Derived 2-(28, 12, 11) Design of D 3 

Group order: 1920 = 2 7.  3 • 5. 

Group structure: 2 (1+4): Alt(5). 

Orbit lengths: points: 16 + 12; blocks: 32 + 30 + 1. 

Base blocks: 
2 3 8 10 14 15 17 18 20 25 27 28; 1 2 5 8 9 10 14 17 22 24 26 28;3 5 
6 8 13 15 16 18 21 24 27 28. 

Generators: 
1. (4, 22) (5, 21) (7, 26) (8, 27) (9, 19) (10, 20) (11, 12) (13, 16) (14, 17) 

(15, 18) 
2. (3, 28) (4, 26) (6, 24) (7, 22) (9, 10) (11, 17) (12, 14) (13, 15) (16, 18) 

(19, 20) 
3. (3, 6) (5, 8) (13, 18) (15, 16) (21, 27) (24, 28) 
4. (2, 4) (3, 6) (5, 8) (10, 11) (13, 21) (14, 26) (15, 24) (16, 28) (17, 25) 

(18, 27) (19, 22) (20, 23) 
5. (1, 2) (3, 6) (4,26) (5,21) (7, 22) (8, 27) (9, 20) (10, 19) (13, 16) 

(15, 18) (23, 25) (24, 28) 

Derived 2-(28, 12, 11) Design of D4 

Group order: 672 = 25. 3 • 7. 

Group structure: 2 (3 +2~: Frob(21). 

Orbit lengths: points: 28 (transitive); blocks: 56 + 7. 

Blocks of irnprimitivity: 
[1, 2, 9, 103, [3, 8, 23, 28], [4, 6, 24, 26], [5, 7, 25, 27], [-11, 16, 17, 
20], [12, 13, 21, 22], [14, 15, 18, 19] 

Base blocks: 
23  5 6 10 13 18 19 22 25 26 28, 1 2 5 7 9  10 12 13 21 22 25 27. 

Generators: 
1. (4, 24) (5, 25) (6, 26) (7, 27) (11, 20) (12, 21) (13, 22) (14, 15) 

(16, 17) (18, 19) 
2. (3, 8) (4, 24) (5, 27) (6, 26) (7, 25) (11, 16) (12, 13) (14, 18) (15, 19) 

(17, 20) (21, 22) (23, 28) 
3. (3, 23) (4, 6) (5, 25) (7, 27) (8, 28) (11, 17) (12, 13) (16, 20) (21, 22) 

(24, 26) 
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4. (2, 9, 10) (3, 12, 20, 8, 13, 17) (4, 14, 27, 24, 18, 5) (6, 15, 25, 26, 
19, 7) (11, 23, 22, 16, 28, 21) 

5. (1, 2) (4, 26) (5, 25) (6, 24) (7, 27)(9, 10) (12, 13)(14, 18)(15, 19) 
(21, 22) 

6. (1, 3, 12, 7, 17, 15, 26, 9, 23, 13, 5, 16, 18, 6) (2, 8, 21, 25, 11, 14, 
4, 10, 28, 22, 27, 20, 19, 24) 

Residual 2-(36, 16, 12) Design of D 1 

Group order: 1451520 = 2 9. 3 4. 5- 7. 

Group structure: Sp(6, 2). 

Orbit lengths: points: 36 (two-transitive); blocks: 63 (transitive). 

Base block: 1 2 5 8 11 12 15 18 21 22 25 28 31 34 35 36. 

Generators: 
1. (5, 18) (6, 19) (7, 20) (8, 15) (9, 16) (10, 17) (21, 34) (22, 31) (23, 32) 

(24, 33) 
2. (11, 21) (12, 22) (13, 23) (14, 24) (15, 25) (16, 26) (17, 27) (18, 28) 

(19, 29) (20, 30) 
3. (5, 8) (6, 9) (7, 10) (15, 18) (16, 19) (17, 20) (25, 28) (26, 29) (27, 30) 

(35, 36) 
4. (4,14) (7,17) (8,18) (9,19) (21,30) (22,26)(23,25) (24,35) 

(27, 34) (28, 32) (29, 31) (33, 36) 
5. (3, 4) (6, 7) (9, 10) (13, 14) (16, 17) (19, 20) (23, 24) (26, 27) (29, 30) 

(32, 33) 
6. (2, 3) (5, 6) (8, 9) (12, 13) (15, 16) (18, 19) (22, 23) (25, 26) (28, 29) 

(31, 32) 
7. (1, 2) (6, 10) (7, 9) (11, 12) (16, 20) (17, 19) (21, 22) (26, 30) (27, 29) 

(31, 34) 

Residual 2-(36, 16, 12) Design of D2 

Group order: 10752 = 29. 3 - 7. 

Group structure: 2(31+3): GL(3, 2). 

Orbit lengths: points: 8 + 28; blocks: 56 + 7. 

Base blocks: 
1 2 4 9  11 14 15 18 21 24 26 29 32 33 34 3 5 ; 3 4 5 8  13 15 16 20 23 24 
25 28 29 30 32 35. 

Generators: 
1. (4, 13) (5, 12) (6, 11) (7, 9) (8, 10) (14, 16) (18, 20) (21, 23) (24, 33) 

(25, 32) (26, 31) (27, 30) (28, 29) (35, 36) 
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2. (4, 13)(5, 10)(6, 11)(7, 9)(8, 12)(14, 20)(16, 18)(21, 35)(22, 34) 
(23, 36)(24, 27)(30, 33) 

3. (3,4) (5,8) (10,14) (12,18) (13,15) (16,20) (22,26) (23,24) 
(25, 28)(29, 32)(30, 35)(31, 34) 

4. (3, 21) (4, 36)(5, 20) (6, 19)(7, 17)(8, 16)(10, 29)(12, 32)(13, 33) 
(14, 28)(15, 27)(18, 25)(24, 35)(26, 34) 

5. (2, 3, 5, 24, 21, 29, 33)(4, 10, 7, 15, 23, 35, 12) (6, 19, 26, 11, 31, 
34, 22)(8, 27, 28, 14, 9, 32, 30)(13, 36, 17, 25, 20, 16, 18) 

6. (1,22) (4,28) (6,26) (8,24) (10,33) (11,31) (13,29) (14,36) 
(16, 35)(19, 34) 

Residual 2-(36, 16, 12) Design of D 3 

Group order: 1920 = 2 7.  3 • 5. 

Group structure: 2 ~1 +4): Alt(5). 

Orbit lengths: points: 20 + 16; blocks: 32 + 30 + 1. 

Base blocks: 
1 4 7 9  11 14 15 18 21 22 23 26 27 32 34 35; 1 3 6 8 9 10 13 14 17 20 
22 25 30 32 34 3 6 ; 3 4 5  8 13 15 16 20 21 25 26 29 33 34 36. 

Generators: 
1. (3, 5) (4, 8) (10, 14) (11, 19) (13, 16) 

(24, 27) (29, 36) (31, 35) (33, 34) 
2. (3,13) (4,15) (5,16) 

(25, 34)(26, 29)(30, 32) 
3. (3, 22)(4, 21)(5, 26)(8, 

(20, 34)(24, 27)(30, 32) 
4. (2, 30)(4, 34)(5, 36)(7, 

(t5, 16)(17, 27)(18, 19) 
5. (2, 27)(5, 21)(7, 24)(8, 

(14, 35)(16, 36)(18, 32) 
6. 

(15,20) (21,25) (22,26) 

(8,20) (21,33) (22,36) (23,28) (24,27) 
(31,35) 
25) (9,17)(12,18)(13,36)(15,33)(16,29) 

32) (9,24)(10,23)(11,12)(13,21)(14,28) 
(20,26) (22,25) 

22) (9,19)(10,31)(11,17)(12,30)(13,15) 
(20, 33)(29, 34) 

(1, 2, 28, 14, 30) (4, 21, 13, 34, 8) (5, 22, 33, 25, 36) (6, 7, 23, 10, 
32) (9, 35, 24, 12, 11) (15, 16, 20, 29, 26) (17, 31, 27, 18, 19) 

Residual 2-(36, 16, 12) Design of O 4 

Group order: 672 = 25. 3 • 7. 

Group structure: 2 (3 + 2): Frob(21). 

Orbit lengths: points: 28 + 8; blocks: 56 + 7. 

Base blocks: 
1 2  3 8 11 14 17 20 21 23 24 27 30 31 34 35; 1 3 5 6 7 10 13 16 19 20 
23 26 29 31 33 34. 
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Generators: 
1. (3, 5) (7, 26) (8, 24) (9, 25) (10, 23) (11, 21) (12, 22) (13, 20) (14, 18) 

(15, 17) (16, 19) (27, 28) (31, 33) (35, 36) 
2. (2, 4) (7, 16) (8, 9) (10, 13) (11, 12) (14, 15) (17, 18) (19, 26) (20, 23) 

(21, 22) (24, 25) (27, 36) (28, 35) (30, 32) 
3. (2, 10, 17, 4, 20, 14) (3, 7, 27, 5, 19, 35) (6, 29, 34) (8, 9, 22, 25, 24, 

11) (12, 21) (13, 18, 32, 23, 15, 30) (16, 28, 33, 26, 36, 31) 
4. (1, 2, 10, 36, 14, 7, 31, 29, 4, 23, 28, 15, 26, 3) (8, 9, 25, 12, 24, 22, 

11) (5, 34, 30, 20, 27, 18, 16, 33, 6, 32, 13, 35, 17, 19) 
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