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1. INTRODUCTION

A binary (n, M, d) code C is a subset of {0, 1}” with M elements such
that any two elements of C differ in at least d coordinates. A code C is said
to be self-complementary whenever x € C implies X € C, where X denotes the
complement of the binary vector x, obtained by replacing each 0 in x by
1, and each 1 by 0. For example, any binary linear code containing the all
ones vector is a self-complementary code.

For any n and d, the Grey—Rankin bound is an upper bound for M. It
states that

8d(n—d)
M<n—(n—2a’)2

for any (n, M, d) self-complementary code, provided the right-hand side is
positive. We present a combinatorial proof of this bound in Section 2. Our
main result, proved in Section 3, is the following theorem.

THEOREM A. Suppose n and d satisfy n — ﬁ <2d<n. Then:

(1) If n is odd, there exists a self-complementary code meeting the
Grey—Rankin bound if and only if there exists a Hadamard matrix of size
n+1.
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(1) If n is even, there exists a self-complementary code meeting the
Grey—Rankin bound if and only if there exists a quasi-symmetric
2—(n,d, ) design with block intersection sizes d/2 and (3d —n)/2, where
A=d(d—1)/(n—(n—2d)%).

Part (i) of Theorem A implies that there are no self-complementary
codes of length n=1 (mod 4) meeting the Grey—Rankin bound, since a
Hadamard matrix (of size >2) has size divisible by 4.

We discuss linearity and find the parameters of all linear codes meeting
the bound in Section 4.

2. PROOF OF THE GREY-RANKIN BOUND

We now give a combinatorial proof of the bound. The bound is
originally due to Rankin [R], who proved it in a different context. Grey
[G] observed that Rankin’s result could be restated as Theorem I.
Delsarte [D3] (see also [MS, p.544]) gave a proof via linear pro-
gramming. The argument given here is due to R. M. Wilson. Recall that a
code is said to form an orthogonal array of strength ¢ if the projection of
the code onto any ¢ coordinates contains every ¢-tuple the same number of
times.

THEOREM 1 (Grey—Rankin bound). Let C be a binary (n, M, d) self-
complementary code and suppose that n — ﬁ <2d<n. Then

8d(n—d)
MSn—(n—Zd)z'

Equality holds if and only if the distances between codewords in C are all in
{0,d, n—d, n} and the codewords form an orthogonal array of strength 2.

Proof (Wilson). Let C be a binary self-complementary (n, M, d) code.
Let C' be any subcode of C consisting of one codeword from each com-
plementary pair of codewords, so C’ has M/2 elements and all distances in
C' are between d and n—d. We say xe C’ “agrees” in coordinates i and j
if x has the same digit in coordinates i and j.

Let {x, y} denote an unordered pair of distinct elements of C’, and let
{i, j} denote an unordered pair of distinct coordinates. Count the number
N of ordered pairs ({x, y}, {i, j}) so that either x agrees in coordinates i
and j but y does not, OR so that y agrees in coordinates i and j but x does
not. Given a pair {x, y} at distance 7, the number of such pairs {i, j} is



282 GARY MCGUIRE

t(n—1t)=d(n—d) (the property is invariant under translation so one can
assume x =0 where this is easy to see). So

M2

N>
.

> d(n—d).
On the other hand, if we choose an unordered pair of coordinates {i, j},
the maximum number of ways to choose {x, y} will occur when there are

M/8 of each of 00, 01, 10, 11 appearing in these coordinates in C’, in which
case this number is (M/4)% Thus,

n

<
ve(;

> (M/4)2,

We conclude that

<’;> (M/4)?> (Mz/ 2) dn—d),

which implies that
nn—1) M>=4M—2)dn—d)

and the result follows.

It is clear from this argument that equality holds if and only if any pair
{x, y} has distance either d or n—d and the code is a strength 2
orthogonal array. ||

Remarks. (1) The conditions for equality can also be derived from the
linear programming proof of Delsarte (see [ MS p. 544]) and the theorem
of complementary slackness characterizing optimal programs in a linear
programming problem [ D2, Theorem 3.4; MS, p. 537].

3. A CHARACTERIZATION OF EQUALITY

We now investigate codes meeting the bound. Throughout this section
we assume that C is a self-complementary code satisfying the Grey—
Rankin bound with equality, so M =8d(n — d)/(n — (n — 2d)?). The proof of
Theorem A for n even will be broken up into a few lemmata.

Let C be a self-complementary binary (n, M, d) code which satisfies the
Grey-Rankin bound with equality; w.lLo.g. 0, 1€ C. If d(x, y) denotes the
Hamming distance between x and y, and w(x) denotes the Hamming
weight of x, we will use the elementary fact that

d(x, y)=w(x—y)=w(x +y)=w(x) +w(y) —2w(xy), (1)
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where w(x ny) denotes the number of coordinates where x and y both
have a 1.

LemMa 2. C is distance invariant.

Proof. A typical calculation will suffice; let x be a codeword of weight d.
There is one codeword at distance 0 from x (itself) and one codeword at
distance n (its complement, x). If R is the number of codewords of weight
d at distance d from x, then the other (M —2)/2—1— R codewords of
weight d have distance n —d from x (by Theorem 1). The complements of
these two sets of codewords have the complementary distances from x, so
there are (counting the zero codeword) 1+ R+ (M—-2)2—1—R=
(M —2)/2 codewords at distance d from x. |

COROLLARY 3. If (A4, Ay, ..., A,) denotes the distribution vector of C,
then

Ag=A4,=1, Ay=A,_,=—, A;,=0 otherwise.
The dual distribution (A4j, 4, ..., A},) is given by
MAj = i A; P(i),
i=0
where P,(x) is the binary Krawtchouk polynomial of degree k. By defini-
tion, the dual distance d’ is the smallest nonzero i such that 4} #0.

LEMMA 4. The codewords of C form an orthogonal array of strength 3.

Proof. Using the properties that P (i)=(—1)" P,(n—i) and P,(0)=
(%), we see that

wai=(7)+ <MZ—2> Pud)+ <Mz_2> Pun—d)+P(n)

2+ (M =2) Pi(d), if kiseven
o, if kisodd.

This proves that the dual distance d’ is at least 4, because by [DlI,
Theorem 4.5] the codewords of C form an orthogonal array of strength
d' — 1, and the dual distance d’ is at least 3 since we know the codewords
form an orthogonal array of strength 2. ||



284 GARY MCGUIRE

Remarks. (2) Notethat MA,=2+(M—2) P,(d)=2+(M-2)(—1)'=M
if d is even, and so A, =1. Also we have 4} = A),_,. The expression for 4/
simplifies to

/_i _ - - - 2
A4—24n(n (n—2—(n—2d)%)

which is zero iff d=n/2 —./n—2/2. That this never happens will follow
later from some divisibility conditions; see Remark 8.

(3) Delsarte’s inequalities [ D2] say that 4} >0 for all k<. From k=4
we get d>=n/2—./n—2/2 as a necessary condition, which is slightly
stronger than the initial requirement on d.

(4) In terms of Delsarte’s four fundamental parameters [D1], we
have

_n+1

d=d, s=3, d =4, S >

3.

The next lemma follows from some general theorems (MS, Chapt. 6, Sec-
tion 4), but we include the proof because it is short and it gives the value
of A.

LEMMA 5. The codewords of weight d (and n—d) in C form a 2-design.

Proof. Let k=d or n—d, and let 1, =41,(u) denote the number of
codewords of weight k covering a fixed pair of coordinates, u. It will follow
from this argument that 4, does not depend on u. Since the codewords
form an orthogonal array of strength 2 we have

M
hat by g=7 = 1.

Counting in two ways the number of pairs (v, ¢), where v is a vector of
weight 3 covering u and ce C— {0, 1} is a codeword covering v, we have

(et 1)

the left-hand side follows from the fact that the codewords form an
orthogonal array of strength 3.
Solving these two equations gives



CODES MEETING THE GREY-RANKIN BOUND 285

for k=d,n—d. We have shown that the codewords of weight d form
a 2—(n,d, A,;) design, and the codewords of weight n—d form the
2—(n,n—d, A,_,) complementary design. ||

ExaMpPLE. The parameter set (24, 140, 10) gives equality in the Grey—
Rankin bound, but 4,,=90/8 is not an integer, so a self-complementary
(24, 140, 10) code does not exist.

We now complete the proof of Theorem A. Recall that a 2-design with
exactly two block intersection sizes is called a quasi-symmetric design.

THEOREM A. Suppose n and d satisfy n— ﬁ <2d <n. Then:

(1) If n is odd, there exists a self-complementary (n, M, d) code with
M=8d(n—d)/(n— (n—2d)?) if and only if there exists a Hadamard matrix
of size n+ 1.

(1) If n is even, there exists a self-complementary (n, M, d) code with
M=8d(n—d)/(n—(n—2d)?) if and only if d is even and there exists a
quasi-symmetric 2 —(n, d, 1) design with block intersection sizes d/2 and
(3d —n)/2, where A=d(d—1)/(n— (n—2d)?).

Proof. (i) Suppose n is odd. Any two of the (M —2)/2 codewords of
weight d must differ in either d coordinates, if d is even, or n—d coor-
dinates if d is odd, using (1). In either case, these codewords (or their com-
plements) give rise to a spherical 1-distance set in R”, i.e., a set of points
on the unit sphere in R” such that all points in the set are at distance 1
from all other points in the set. It is well known that such a set has
cardinality at most .

Hence (M —2)/2<n, and so M <2n+2. It is not hard to see that the
only way this can happen is if M =2n+2 and n=2d + 1. Assuming this, C
is a self-complementary (n, 2n+2, (n—1)/2) code with n codewords of
each weight (n+1)/2.

Such a code C exists if and only if there exists a Hadamard matrix of size
n+ 1.

(i1)) Suppose n is even, and let C be an (n, M, d) code meeting the
Grey—-Rankin bound. If d is odd, by (1) the only possibility is C=
{0,1, x, x}, and solving the equation M =4 leads to (n+d)>=2n>—n
which is impossible by parity.

Hence we may assume d is even. By Lemma 5, the codewords of weight d
form a 2 — (n, d, 1) design with A =d(d —1)/(n— (n —2d)?). Besides 0 and n,
there are only two distances in the code, namely d and n — d, so using (1) there
can be only two block intersection sizes in the design, namely d/2 and (3d —n)/2.

Conversely, given the design, taking the rows of the incidence matrix (with
blocks indexing rows) as codewords of a code, we get a (n, (M —2)/2,d)
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TABLE 1
n d M A dj2 (3d—n)/2 Existence Comments
n—(n—2d)

6 2 32 1 1 0 Yes Remark 9
10 4 32 2 2 1 Yes Remark 10
20 8 192 14 4 2 No [CF]
28 12 128 11 6 4 Yes Remark 11
36 16 128 12 8 6 Yes Remark 11
42 18 576 51 9 6 ?

66 30 288 29 15 12 ?

constant weight code. Adding in the complements of these codewords,
together with 0 and 1, gives a (n, 8d(n —d)/(n— (n—2d)?), d) code which
is closed under taking complements. |

Remarks. (5) In Table I we give all the possible parameter sets for the
design/code satisfying n <70, n and d both even, n— \/1; <2d<n, and
where the parameters satisfy all divisibility conditions. Entries for n>20
are taken from [ C], which is an extension (and update) of a table in [ N].

(6) If n=2 (mod4), by Theorem A(i) there does not exist a (n— 1,
2n, (n—2)/2) self-complementary code, although if a conference matrix of
size n exists then there is a code with these parameters [ MS, p. 57]. For
example, there is no self-complementary (17, 36, 8) code, although there is
a conference matrix code with these parameters.

(7) In the n=20, d=8 case, we would have a quasi-symmetric
2—(20, 8, 14) design with block intersection sizes 4 and 2. Such a design
does not exist; see [CF].

(8) Some divisibility conditions arise from computing the parameters
of the design. A further condition may be derived from consideration of the
eigenvalues of the adjacency matrix of the strongly regular block graph
defined by the design [ GS]. If the block intersection sizes are s, and s,, the
result is that s, —s, divides d—s,. In our case this implies that n—2d
divides n —d. It follows that n — 2d divides d, and hence also n.

This rules out the possibility that d=n/2—./n—2/2 as mentioned
earlier in Remark 2, because n—2d=./n—2 and this cannot divide n
unless n=6.

4. LINEARITY

In all the cases in TableI that a code/design is known to exist, the
number of codewords is a power of 2. This raises the question: are these
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codes linear? The binary code of a design is the binary code generated by
the rows of the incidence matrix of the design. If the code C giving equality
in the Grey—Rankin bound were linear, this would imply that the binary
code of the corresponding design is C and consists of the blocks, their
complements, and 0, 1.

In this section we consider the linearity of codes meeting the Grey—
Rankin bound. Examples of linear and nonlinear codes meeting the bound
are already known; see Remark 11.

Remarks. (9) In the case n =06, the code C consists of all even weight
vectors and is obviously linear. The blocks of the design are all 2-subsets
of a 6-set. Neumaier in [ N] classifies quasi-symmetric designs into four
classes and then some exceptional designs. This design falls into Class 3
in [N].

(10) In the case n=10, the design falls into Class 4 in [ N], namely
the design is the residual of a symmetric 2 — (16, 6, 2) design. A symmetric
2—(n,d, ) design with A=2 is also known as a biplane of order d—2.
There are three nonisomorphic biplanes of order 4, and they may be dis-
tinguished by the mod 2 ranks of their incidence matrices, which are 6, 7,
and 8. The biplane of 2-rank 6 has a residual of 2-rank 5, but the biplane
of 2-rank 7 has a residual of 2-rank 6. Hence the answer to the question of
linearity is no, in general.

(11) One of the exceptional designs in [N] is a 2—(28,12,11)
design with block intersection sizes 4 and 6 constructed by Cameron
(the reference in [N] is a personal communication). This gives us a
(28, 128, 12) self-complementary code giving equality in the Grey—Rankin
bound. There is also a 2 — (36, 16, 12) design, giving a (36, 128, 16) code.

These designs are part of an infinite family constructed from the symplec-
tic group Sp(2m, 2). The designs on 28 and 36 points correspond to the
m =13 case. One considers either the hyperbolic or elliptic quadratic forms
which polarize to a given symplectic form, and constructs the incidence
matrix where rows (blocks) are indexed by nonzero points x in the
symplectic space GF(2)*", and columns (points) are indexed by either
hyperbolic or elliptic forms Q, and (x, Q) are incident if Q(x)=0 (or
maybe 1).

These designs are on n=2%""'+2"-1 points, depending on whether
one takes hyperbolic or elliptic forms. In the elliptic case the parameters
(n,d, 1) are

(22m—1 _2)11—], 22m—2_2m—1, 22771—2_2)"—1 _ 1) (2)
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and b=2*"—1, r=n—1, and the block intersection sizes are s,=
22m=3_2m=1 and 5,=2%""3_-2""2 For each m >3, by Theorem A we
get a code meeting the Grey—Rankin bound, with parameters

(n, M, d)= (2%~ —2m—1 22m+1 p2m=2_pm=1y. (3)
similarly for the hyperbolic case, where
(n,d, 2)=(2¥" ' 42m—1 22m=2 pm=2_pm—1) (4)
and the code meeting the Grey—Rankin bound has parameters
(n, M, d)= (2> 4 2m—1 p2m+1 p2m=2) (5)

By putting the incidence matrices of the elliptic and hyperbolic designs
side-by-side, we obtain the incidence matrix of a symmetric design. This
symmetric design has parameters

(22711’ 22m—1_2m—1’22m—2_2m—1) (6)

and may be called a symplectic design; see [ CV, Chapt. 5]. These designs
were first introduced by Block [B]; see also [CS; K1]. The elliptic and
hyperbolic designs above may also be constructed by starting with this
symplectic design and by taking the derived design with respect to a block
(elliptic), or the residual design with respect to a block (hyperbolic).

In fact Kantor [ K1] studied a special class of designs with parameters
(6), called SDP designs. These are designs with minimal 2-rank, namely
2m+ 2. The classical example of an SDP design is the symplectic design
mentioned in the previous paragraph. Kantor [K2] showed that the
number of nonisomorphic symmetric SDP designs with parameters (6)
grows exponentially with m.

A residual or derived design of an SDP design has 2-rank equal to
2m+ 1, and it is seen from the actual construction that this is indeed the
case for both the elliptic and hyperbolic designs mentioned above. This
2-rank is clearly minimal among designs with parameters (2) and (4), since
there are b=2%"—1 blocks. There are designs with the same parameters
having a higher 2-rank; see [JT] or [LTT].

In [JT] it is shown that designs with parameters (2) or (4) which are
derived or residual designs of nonisomorphic SDP designs are themselves
nonisomorphic. From Kantor’s result mentioned above, it follows that the
number of nonisomorphic designs with parameters (2) or (4) and 2-rank
2m+ 1 grows exponentially with m. Each of these designs provides a linear
code meeting the Grey—Rankin bound. For m =3 it is shown in [JT] that
there are at least four nonisomorphic designs of 2-rank 7, and in [ T] (and
also in [ DEK]) it is shown that there are exactly four.
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In [LTT] the m=3 case is examined, and the authors find (using a
computer) a bunch of designs with 2-rank greater than 2m+ 1. More
specifically, they find eighteen 2 — (28, 12, 11) designs, and twenty-eight
2—(36, 16, 12) designs, all with 2-rank greater than 7. Each of these
designs provides a nonlinear code meeting the Grey—Rankin bound.

We conclude that the codes meeting the Grey—Rankin bound in Table I
may be linear, but there are also nonlinear codes with the same parameters.

The following theorem characterizes the parameters of linear codes
meeting the Grey—Rankin bound.

THEOREM B. Let C be a linear self-complementary code meeting the
Grey—Rankin bound. Then:

(i) If n is odd, the parameters of C are (n,M,d)=(2°—1, 2571,
2°='—1) for some s=2, and the corresponding Hadamard matrix is of
Sylvester type.

(i1) If n is even, the parameters of C are either (3) or (5).

Proof. (1) By Theorem A, the code C is obtained from the rows and
their complements of a normalized Hadamard matrix of size n+1 by
replacing +1 by 0, —1 by 1, and deleting the first column. If the code is
linear the size of the Hadamard matrix must be a power of 2, and further-
more the code is linear if and only if the Hadamard matrix is of Sylvester
type (see [ MS, p.491]).

(i) Let n be even, and suppose C is a linear self-complementary
(n, M,d) code meeting the Grey—-Rankin bound, so M =8d(n—d)/
(n—(n—2d)?). Shorten C to obtain a linear (n— 1, M/2, d) code D with
weight enumerator

Xn71-|—(M/2—r—1)X"7d71Yd+VXd71Y"7d,

where r=d(n—1)/(n—(n—2d)?) is the number of blocks in the design
containing a given point, and the coefficient of X” '~/ Y” is the number of
codewords of weight i.

Since D has two weights, and D* has minimum weight 3 by the proof
of Lemma 4 and Remark 2, we conclude that D* is uniformly packed by
a theorem of Goethals and van Tilborg (see [V, p. 110]). The parameters
of all uniformly packed codes are known, so the result follows from a list
of such codes [V, p. 116]. |

COROLLARY C. Any linear code of even length meeting the Grey—Rankin
bound is the binary code of a derived or residual design of a symmetric SDP
design.
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Proof. By Theorem B, such a code C has parameters (3) or (5). By
Theorem A, the code gives rise to a design with parameters (2) or (4), and
this design must have 2-rank equal to 2m + 1 since C is linear. A theorem
of Tonchev [ T] states that any such design is a derived or residual design
of a symmetric SDP design. ||

Remarks. (12) Even in the nonlinear case, from the proof of Theorem B
we get a distance invariant two-weight code with dual distance 3.
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