
Theoretical Computer Science 309 (2003) 1–41
www.elsevier.com/locate/tcs

Fundamental Study

The di"erential lambda-calculus
Thomas Ehrhard∗ , Laurent Regnier

Institut de Math�ematiques de Luminy, CNRS-UPR 9016, 163 Avenue de Luminy,
F-13288 Marseille, France

Received 15 June 2001; received in revised form 19 March 2003; accepted 14 July 2003
Communicated by P.L. Curien

Abstract

We present an extension of the lambda-calculus with di"erential constructions. We state and
prove some basic results (con2uence, strong normalization in the typed case), and also a theorem
relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Lambda-calculus; Linear logic; Denotational semantics; Linear head reduction

Prerequisites. This paper assumes from the reader some basic knowledge in lambda-
calculus and an elementary (but not technical) knowledge of di"erential calculus.

Notations. Following [15], we denote by (s)t the lambda-calculus application of s to
t. The expression (s)t1 : : : tn denotes the term (· · · (s)t1 · · ·)tn when n¿1, and s when
n=0. Accordingly, if A1; : : : ; An and A are types, both expressions A1; : : : ; An →A and
A1 → · · · →An →A denote the type A1 → (· · · (An →A) · · ·). If a1; : : : ; an are elements
of some given set S, we denote by [a1; : : : ; an] the corresponding multi-set over S. If
x and y are variables, �x;y is equal to 1 if x=y and to 0 otherwise. We denote by
N+ the set of positive integers {1; 2; : : :}.

1. Introduction

1.1. Presentation

Denotational semantics vs. analysis. Denotational semantics usually interprets programs
(lambda-terms) as partial functions. Partiality is necessary to account for the case of

∗ Corresponding author.
E-mail addresses: ehrhard@iml.univ-mrs.fr (T. Ehrhard), regnier@iml.univ-mrs.fr (L. Regnier).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00392-X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82396223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ehrhard@iml.univ-mrs.fr
mailto:regnier@iml.univ-mrs.fr

2 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

divergent computations which arise as soon as recursion is available. This is achieved
by considering the domains on which functions act as ordered sets with a least element
that plays the role of the divergent program. The structure of domains further allows, as
in Scott domains (we refer here to [2], as for all the standard lambda-calculus notions
and results), to express some continuity properties of functions that account for the
Enite nature of computation. The main property is that a continuous function is always
the limit (the least upper bound) of a sequence of 5nite functions (more precisely, of
compact functions). In other words, the natural notion of approximation is by Enite
functions. This viewpoint on program approximation is re2ected in the syntax by the
theory of BFohm trees.
However this approach is orthogonal to one of the mainstream mathematical view-

points where functions are total, deEned on vector spaces rather than ordered sets and
approximated by polynomials rather than by Enite functions. In analysis, functions are
approximated by (multi)linear maps through (iterated) di"erentiation.
Coherence semantics [12] suggests some way to conciliate these two viewpoints.

The web of a coherence space is very similar to a basis of a vector space and the
notion of stable linear map is similar to the usual notion of linear morphisms between
vector spaces. This is re2ected by the notation and terminology in use: tensor product,
linear maps, direct product, etc. This correspondence has been further studied in [13],
an attempt which however failed to fully account for the exponential connectives of
linear logic.
As it turns out, it is possible to deEne models of the typed lambda-calculus (or

equivalently of full linear logic) where types are interpreted as vector spaces and terms
as functions deEned by power series on these spaces (see [10]). 1 In these models all
functions can be di"erentiated. However usual domain-theoretic intuitions are lost; in
particular interpreting recursion becomes a delicate issue. A natural question to ask is
then whether di"erentiation is a meaningful syntactic operation, and the present work
provides a positive answer to this question by extending the lambda-calculus with
di"erential operators and examining the obtained di6erential lambda-calculus. This
gives also a syntactic solution to the recursion issue, since Ex-point operators can be
deEned in the untyped di"erential lambda-calculus.

Linearity in the syntax. The syntactic concept of linearity has been introduced in
lambda-calculus by the analysis of intuitionistic implication provided by linear logic
[12]: in that sense the head variable occurrence in a term (i.e. the leftmost occurrence)
is linear and is the only occurrence of variable in the term which is linear. This prop-
erty of the head occurrence is in particular used in linear head reduction, a very natural
notion in lambda-calculus that arises as soon as one wants to precisely evaluate re-
duction lengths. Linear head reduction has been considered by several authors (starting
with De Bruijn [9] where it is called minireduction), and in particular, Danos and the
second author, who related it to abstract machines (e.g. Krivine’s machine [8]), game
semantics and linear logic [7]. It is a kind of hyperlazy reduction strategy where at

1 We give an example of such a model in the appendix of this paper. Interestingly enough, just as in
Scott semantics, the basic idea of this 5niteness space semantics is that the interaction between two agents
should be Enite. But the resulting models are completely di"erent.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 3

each step, only the head occurrence may be substituted. As a side e"ect, only subterms
of the initial term are copied during a sequence of reductions.
It turns out that syntactic linearity can also be deEned more abstractly through non-

deterministic choice. Consider for instance three ordinary lambda-terms s, s′ and t,
and let u= s+s′ denote a non-deterministic choice between s and s′; we consider in
the present discussion that this expression reduces to s or s′, non-deterministically.
Then it is reasonable to consider that (u)t reduces to (s)t + (s′)t as the term u is
used exactly once in the head reduction of (u)t. But we can certainly not say that
(t)u reduces to (t)s + (t)s′ as in the evaluation of (t)u, the argument u can be used
several times leading to an arbitrary interleaving of uses of s and s′, whereas the term
(t)s+(t)s′ provides only the two trivial interleavings. We retrieve the fact, well known
in linear logic, that application is linear in the function but not in the argument. So,
as a Erst approximation at least, syntactic linearity can be deEned as commutation to
non-deterministic choice. This deEnition, quite satisfactorily, is completely similar to
the usual algebraic deEnition of linearity.

Sums vs. non-determinism. Notice that in our axiomatization of sums in the di"erential
lambda-calculus, the non-deterministic reduction rule s+s′ → s will not be valid, but
sums will nevertheless intuitively correspond to a version of non-deterministic choice
where all the actual choice operations are postponed: the result of a term reduction
will in general be a large formal sum of terms, and we can reduce the really “non-
deterministic” part of the computation to a unique ultimate step consisting in choosing
one term of that sum. This step is however a Ection and will not appear as a reduc-
tion rule of our calculus as otherwise essential properties such as con2uence would
obviously be lost. Another good reason for not considering this rule as an ordinary
reduction rule is that, as suggested by the discussion above, it can be performed only
when the “redex” stands in linear position.
Note that, from a logical viewpoint, introducing sums is not at all innocuous. In

particular, as it is well known in category theory, it leads to the identiEcation between
Enite categorical products and coproducts, the & and ⊕ connectives of linear logic.

Formal di6erentiation. Keeping in mind this syntactic viewpoint on linearity, we can
give an account of di"erentiation within lambda-calculus. When f(x) is a (suPciently
regular) function on a vector space E, its di"erential f′(x) at each point x∈E is a linear
map on E; thus if u∈E we can write f′(x) · u and read this as a linear application of
f′(x) to u. We therefore extend the lambda-calculus with a new syntactic construct:
when t and u are terms, then Dkt · u is a term that may be read as the di"erential of t
with respect to its kth argument, linearly applied to u. Similarly, the partial derivative
(@t=@x) · u, to be deEned by induction on t, may be understood as a linear substitution
of u for x in t, that is, a substitution of exactly one linear occurrence of x in t by u.

It is worth noting that linear substitution is a non-deterministic operation, as soon as
the substituted variable has several occurrences: one has to choose a linear occurrence
of the variable to be substituted and there are several possible such choices. This
fundamental non-determinism of the di"erential lambda-calculus might be an evidence
of a link with process calculi; this idea is enforced by the existing relation with the
resource calculi described below.

4 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Caution. Partial derivation is a linear substitution but does not behave exactly as one
could expect from a substitution operation. Typically we have in general

@t
@x

· x �= t:

If t is an ordinary lambda-term, the only case where the equation holds is when the
variable x is linear in t, that is when its sole occurrence is in head position in t. In
particular if x does not occur free in t then the left-hand side is 0.

1.2. Outline

The goal of the paper is to present the basics of di"erential lambda-calculus. Before
going into details, let us mention that this work could as well have been carried out
in the framework of linear logic where di6erential proof-nets can be naturally deEned.
The choice of lambda-calculus may however seem more natural as di"erentiation is
traditionally understood as an operation on functions, and the lambda-calculus claims
to be a general theory of functions.
The di"erential lambda-calculus is an extension of the usual lambda-calculus in two

directions:
• Terms can be summed, and more generally, linearly combined (with coePcients
taken in a commutative semi-ring 2) and a new term 0 is introduced. As already
mentioned, this is necessary, because derivating with respect to a variable that oc-
curs more than once leads to a sum. Keep in mind the usual equation of calculus
(uv)′ = u′v+ uv′ where the sum is here because the derivative is taken with respect
to a parameter on which both u and v can depend.

• A di"erential construction Dit · u is added which represents the derivative of a term
t with respect to its ith argument. This new term admits an additional parameter u,
and is “linear” with respect to this parameter.
The most important addition is the reduction rule concerning di"erentiation:

D1�x t · u = �x
(

@t
@x

· u
)

:

This is a di"erential version of the �-rule (oriented from left to right). The term
(@t=@x) · u is deEned by induction on t and the various cases in this inductive deEni-
tion correspond to well-known elementary results of di"erential calculus (chain rule,
derivative of a multi-linear function: : :). This rewriting rule and the ordinary �-rule will
be the two reduction rules of our system. As in ordinary lambda-calculus these rules
are extended to all terms by context closure (a notion that needs some care to be well
deEned, as we shall see).

2 A semi-ring is deEned exactly like a ring, apart that one only requires addition to be a law of commutative
monoid. A semi-ring will always be assumed to have a multiplicative unit. A typical example of semi-ring
is N with + and × as operations.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 5

For these rules, we prove con2uence (using an adaptation of the Tait–Martin–LFof
technique) and strong normalization for the simply typed version 3 (using an adaptation
of the Tait reducibility method). These two results enforce the idea that the di"erential
lambda-calculus can be considered as a reasonable logical system.
For illustrating these new constructions, consider the term t=(x)(x)y with two dis-

tinct free variables x and y. In this ordinary lambda-term, the only linear occurrence
of a variable is the Erst occurrence of x; all the other occurrences are non-linear. The
only occurrence of y in particular is non-linear as x could be instantiated by a non-
linear function. Let u be another term, and let us examine what should be the value of
the partial derivative s=(@t=@x) · u. We have already isolated a linear occurrence of x,
which is its Erst occurrence in t, so s will be of the shape s=(u)(x)y+s′ where s′ will
be obtained by substituting the other linear occurrences of x by u in t. But apparently,
there are no other such occurrences. In the subterm t1 = (x)y, the occurrence of x is
clearly linear, so u can be linearly substituted for x in t1, leading to the term s1 = (u)y.
The problem is that we cannot make the obvious choice for s′, namely s′ =(x)(u)y
as this term is not linear in u (if u is a variable, its occurrence in (x)(u)y is not
linear as it is not in head position). But the di"erential calculus gives us the solution:
consider the Erst occurrence of x as a function of one argument (which is applied here
to (x)y), and take the derivative x′(z; h)= (D1x · h)z of this function with respect to its
argument: this is a function of two parameters z and h, and it is linear with respect to
its second parameter h. Now if in that term we replace h by (u)y and z by (x)y, we
obtain the term s′ we were looking for. With our notations, s′ =(D1x · (u)y)(x)y. To
summarize,

@(x)(x)y
@x

· u = (u)(x)y + (D1x · (u)y)(x)y:

The term D1x · h represents the function x where we have isolated one linear instance h
of its parameter, that is, the function x to which we provide exactly one copy h of its
parameter. This means that, if we replace x by an “actual function” �z t in that term,
the resulting term should be equal to �z t′, t′ being t where z is replaced by h “exactly
once”, that is, linearly. In other terms, we should have D1�z t · h= �z ((@t=@z) · h).
Of course, D1x · h can be applied to another parameter which can be used an arbitrary

number of times, in addition to the linearly provided parameter h which has to be used
exactly once. This accounts for the presence of the “�z” which still appears in the
expression �z ((@t=@z) · h).
Taylor formula. As expected, iterated di"erentiation yields a natural notion of multi-
linear approximation of the application of a term to another one. This notion relates to
ordinary application through the Taylor formula:

(s)u =
∞∑
n=0

1
n!

(Dn
1s · un)0;

3 For strong normalization we require the coePcients to be natural numbers.

6 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

where D2
1s · u2 =D1(D1s · u) · u and so on. This equation is satisEed in the models we

alluded to at the beginning of this introduction.
The question is: what does it mean for a term to contain n linear occurrences of

a variable? We prove a simple theorem relating the Taylor formula to linear head
reduction that answers this question in a (not so) particular case: if s= �x s0 and u are
two ordinary lambda-terms such that (s)u is �-equivalent to a given variable ?, then
the number of occurrences of x in (s)u is the number of times u is substituted in s
during the linear head reduction of (s)u to ?.
More generally if one fully develops each application occurring in a term into its

corresponding Taylor expansion, one expresses the term as an inEnite sum of purely
di6erential terms all of which contain only (multi)linear applications and applications
to 0. Understanding the relation between the term and its full Taylor expansion might
be the starting point of a renewing of the theory of approximations (usually based on
BFohm trees).

1.3. Related work

Analysts have already extended smoothness and analyticity to “higher types”, deEn-
ing various cartesian closed categories of smooth and analytic functions (see e.g. [14]
where objects are particular locally convex topological vector spaces called “conve-
nient”). The di"erential lambda-calculus is probably the internal language of such cat-
egories.
The idea that di"erentiation is a kind of linear substitution already occurred in dif-

ferent contexts. For example, it is central in the work of Conor McBride where linear
substitution, or more precisely the notion of “one hole contexts”, is deEned in terms
of derivatives for a class of “regular” types which can be seen as generalized formal
power series [1,17].
Various authors introduced notions of linear substitution and reduction in the lambda-

calculus. Let us quote one of them that carries intuitions similar to ours, the lambda-
calculus with multiplicities (or with resources) [5,6]. In this system, application is
written (s)T where T is not a term, but a bag of terms written T =(tp1

1 | · · · | tpn
n)

where the order on the elements of the bag is irrelevant. The pi’s are integers or ∞ and
represent the number of time each ti may be used during the reduction. The “∞” cor-
responds to the status of an argument in ordinary lambda-calculus and satisEes t∞ = t |
t∞. The reduction of a redex (�x u)T consists in removing non-deterministically a term
t from the bag T (more precisely, decreasing its multiplicity, removing the term when
its multiplicity reaches 0) and substituting it “linearly” for some occurrence of x in u
through an explicit substitution mechanism.
Intuitions behind the di"erential lambda-calculus and the lambda-calculus with re-

sources are very similar: the term (Dn
1s · (u1; : : : ; un))t may be seen as the application of

s to the bag (u1 | · · · | un | t∞). However the lambda-calculus with resources equates
the terms (s)(t∞) and (s)(t | t∞), whereas the corresponding terms (s)t and (D1s · t)t
are distinct in di"erential lambda-calculus. Also, the central role played by the sum in
di"erential lambda-calculus seems to have no equivalent in resource lambda-calculus.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 7

2. Syntax

Let R be a commutative semi-ring with unit; R can be for instance the set of natural
numbers. 4 Given a set S, we denote by R〈S〉 the free R-module generated by S,
which can be described as the set of all R-valued functions deEned on S which vanish
for almost all values of their argument, with pointwise deEned addition and scalar
multiplication. As usual, an element t of R〈S〉 will be denoted

∑
s∈S ass where s → as

is the corresponding R-valued almost everywhere vanishing function (so that this sum
is actually Enite). We denote by Supp(t) the set {s∈ S | as �=0} (the support of t).
Since R has a multiplicative unit 1, S can naturally be seen as a subset of R〈S〉.
Let be given a denumerable set of variables. We deEne by induction on k an

increasing family of sets (�k). We set �0 = ∅ and �k+1 is deEned as follows.
Monotonicity: if t belongs to �k then t belongs to �k+1.
Variable: if n∈N, x is a variable, i1; : : : ; in ∈N+ =N\{0} and u1; : : : ; un ∈�k , then

Di1 ;:::;in x · (u1; : : : ; un)

belongs to �k+1. This term is identiEed with all the terms of the shape Di�(1) ;:::; i�(n)x ·
(u�(1); : : : ; u�(n))∈�k+1 where � is a permutation on {1; : : : ; n}.

Abstraction: if n∈N, x is a variable, u1; : : : ; un ∈�k and t ∈�k , then

Dn
1�x t · (u1; : : : ; un)

belongs to �k+1. This term is identiEed with all the terms of the shape Dn
1�x t ·

(u�(1); : : : ; u�(n))∈�k+1 where � is a permutation on {1; : : : ; n}.
Application: if s∈�k and t ∈R〈�k〉, then

(s)t

belongs to �k+1.
Setting n=0 in the Erst two clauses, and restricting application by the constraint

that t ∈�k ⊆R〈�k〉, one retrieves the usual deEnition of lambda-terms which shows
that di"erential terms are a superset of ordinary lambda-terms.
The permutative identiEcation mentioned above will be called equality up to di6er-

ential permutation. We also work up to �-conversion.

Terms and simple terms. We denote by � the union of all the sets �k . We call simple
terms the elements of � and di6erential terms or simply terms the elements of R〈�〉.
Observe that R〈�〉=⋃R〈�k〉. We write �(R) instead of � when we want to make
explicit the underlying semi-ring.

Induction on terms. Proving a property by induction on terms means proving this
property for each term t by induction on the least k such that t ∈R〈�k〉 (number
which can be called the height of t).

4 For expressing the Taylor formula one has to assume that R is a Eeld. One could also take R= {0; 1}
with 1 + 1= 1 in which case sum of terms is idempotent and the coePcients of the Taylor formula are all
equal to 1.

8 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Extending the syntactic constructs. Observe that if s is a simple term then �x s is
a simple term, and if t is a term then (s)t is a simple term. We extend these con-
structions by linearity to arbitrary terms s by setting �x

∑
s∈� ass=

∑
s∈� as�x s and

(
∑

s∈� ass)t=
∑

s∈� as(s)t. It is crucial that application is linear in the function but
not linear in the argument.
Given simple terms s and u, we deEne by induction on s the simple term Dis · u for

each i∈N+.

Di(Di1 ;:::;in x · (u1; : : : ; un)) · u = Di;i1 ;:::;in x · (u; u1; : : : ; un);

Di(Dn
1�x t · (u1; : : : ; un)) · u =

{
Dn+1

1 �x t · (u; u1; : : : ; un) if i = 1;

Dn
1�x (Di−1t · u) · (u1; : : : ; un) if i ¿ 1;

Di(t)v · (u1; : : : ; un) = (Di+1t · (u1; : : : ; un))v:

Of course, in the second clause, we assume without loss of generality that x does not
occur free in u.
We extend this construction to arbitrary terms s and u by bilinearity: Di(

∑
s∈� ass) ·∑

u∈� buu=
∑

s;u∈� asbuDis · u.
This choice of notations introduces an ambiguity for expressions such as Di1 ;:::; in x ·

(u1; : : : ; un) or Dn
1�x t · (u1; : : : ; un) which now can be considered either as expression

of the basic syntax of terms, or as expression in our extended setting. Obviously, no
con2ict can occur and this ambiguity is completely harmless.
An easy induction on s shows that

Di(Djs · u) · v = Dj(Dis · v) · u:
We denote by Di1 ;:::; ik t · (u1; : : : ; uk) the expression Di1 (· · · (Dik t · uk) · · ·) · u1. By the

equation above, for any permutation � of {1; : : : ; k} one has

Di�(1) ;:::;i�(k) t · (u�(1); : : : ; u�(k)) = Di1 ;:::;ik t · (u1; : : : ; uk):

When in particular the indices i1; : : : ; ik have a common value i, we write
Dk

i t · (u1; : : : ; uk) instead of Di1 ;:::; ik t · (u1; : : : ; uk) If furthermore all the terms ui are iden-
tical to a unique term u we simply write Dk

i t · uk .

Intuitions. We shall give a typing system for these terms which conveys basic intuitions
on the di"erential lambda-calculus: the interested reader can immediately have a look
at the Erst part of Section 3 where this system is presented and more intuitions are
given.

2.1. Substitution operators

Ordinary substitution. Let x be a variable and let t be a term; we deEne by induction
on the term s the substitution of x by t in s denoted s [t=x].

(Di1 ;:::;iny · (u1; : : : ; un)) [t=x] =

{
Di1 ;:::;in t · (u1 [t=x]; : : : ; un [t=x]) if x = y;

Di1 ;:::;iny · (u1 [t=x]; : : : ; un [t=x]) otherwise;

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 9

(Dn
1�y v · (u1; : : : ; un))[t=x] = Dn

1�y (v [t=x]) · (u1 [t=x]; : : : ; un [t=x]);

(v)w [t=x] = (v [t=x])w [t=x]:

Given the deEnition at heights 6k, these clauses deEne s [t=x] for each simple term
s of height k + 1. We conclude the deEnition for arbitrary terms of height k + 1 by
setting(∑

v∈�k+1

avv

)
[t=x] =

∑
v∈�k+1

avv [t=x]:

In the abstraction case one takes the usual precautions assuming without loss of gen-
erality thanks to �-conversion that y �= x and y does not occur free in t. Observe that
substitution is linear in s but not in t.

Derivation. We deEne now another operation which bears some similarities with sub-
stitution, but behaves in a linear way with respect to the substituted term: partial
derivative of s with respect to x along u denoted (@s=@x) · u. As substitution, it is
deEned by induction on terms.

@Di1 ;:::;iny · (u1; : : : ; un)
@x

· u= �x;yDi1 ;:::;inu · (u1; : : : ; un)

+
n∑

i=1
Di1 ;:::;iny ·

(
u1; : : : ;

@ui

@x
· u; : : : ; un

)

@Dn
1�y v · (u1; : : : ; un)

@x
· u=Dn

1�y
(
@v
@x

· u
)
· (u1; : : : ; un)

+
n∑

i=1
Dn

1 �y v ·
(
u1; : : : ;

@ui

@x
· u; : : : ; un

)

@(v)w
@x

· u =
(
@v
@x

· u
)

w +
(
D1v ·

(
@w
@x

· u
))

w

@
@x

(∑
v∈�

avv
)
· u =

∑
v∈�

av
@v
@x

· u;

where, again, in the abstraction case, the usual precautions have to be respected: y
should be di"erent from x and should not occur free in the term u.
This deEnition says essentially that partial derivative distributes over syntactic con-

structs that are linear such as abstraction. The application case is the most involved one:
partial derivative is safely applied to the function v because application is linear in the
function, producing the term ((@v=@x) · u)w. But in order to apply it to the argument w
which is not in linear position, we intuitively follow two steps: Erstly we replace (v)w
by (D1v ·w)w getting a linear copy of w; secondly we apply partial derivative to this

10 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

copy. This can also be seen as a formal way of expressing the chain rule of di"erential
calculus.
Note that, despite the intuition that D1v ·w is a linear application, it is false that

(v)w=(D1v ·w)w even up to di"erential reduction (to be deEned soon). Thus again
partial derivative may be considered as a substitution operator only to a limited extent.

Lemma 1. If i∈N+ and t; u; v∈R〈�〉, we have
(Dit · u)[v=x] = Dit[v=x] · u [v=x]

and

@Dit · u
@x

· v = Di

(
@t
@x

· v
)
· u+ Dit ·

(
@u
@x

· v
)

Both proofs are simple inductions on t.

Lemma 2. If x is not free in v, then we have

t [u=x] [v=y] = t [v=y] [u [v=y]=x]:

The proof is a simple induction on t. This lemma allows us to write the parallel
substitution of the terms ui for the variables xi in t, denoted t [u1; : : : ; un=x1; : : : ; xn],
when none of the variables xi is free in any of the terms ui.

Lemma 3. If x is not free in t, then (@t=@x) · u=0. For any term t and variable x,

@t
@x

·
(∑

j
ajuj

)
=
∑
j
aj

@t
@x

· uj:

The proof is an easy induction on t. In particular the application case is true thanks
to our linearization on the 2y.

Lemma 4. If the variable y is not free in the term u, one has

@
@x

(
@t
@y

· v
)
· u =

@
@y

(
@t
@x

· u
)
· v+ @t

@y
·
(
@v
@x

· u
)

:

In particular, when moreover the variable x is not free in the term v, the following
“syntactic Schwarz lemma” holds:

@
@x

(
@t
@y

· v
)
· u =

@
@y

(
@t
@x

· u
)
· v:

Proof. This is proven by an easy induction on t. We deal only with the cases “variable”
and “application”.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 11

If t=Di1 ;:::; in z · (u1; : : : ; un) we have

@
@x

(
@t
@y

· v
)
· u= @

@x

(
�y;zDi1 ;:::;in v · (u1; : : : ; un)

+
n∑

i=1
Di1 ;:::;in z ·

(
u1; : : : ;

@ui

@y
· v; : : : ; un

))
· u

= �y;zDi1 ;:::;in

(
@v
@x

· u
)
· (u1; : : : ; un) (1)

+ �y;z

n∑
i=1

Di1 ;:::;in v ·
(
u1; : : : ;

@ui

@x
· u; : : : ; un

)
(2)

+ �x;z

n∑
i=1

Di1 ;:::;inu ·
(
u1; : : : ;

@ui

@y
· v; : : : ; un

)
(3)

+
n∑

i=1

i−1∑
j=1

Di1 ;:::;in z ·
(
u1; : : : ;

@uj

@x
· u; : : : ; @ui

@y
· v; : : : ; un

)
(4)

+
n∑

i=1

n∑
j=i+1

Di1 ;:::;in z ·
(
u1; : : : ;

@ui

@y
· v; : : : ; @uj

@x
· u; : : : ; un

)
(5)

+
n∑

i=1
Di1 ;:::;in z ·

(
u1; : : : ;

@
@x

(
@ui

@y
· v
)
· u; : : : ; un

)
: (6)

Let us denote by S1, S2, S3, S4, S5 and S6 the six summands of this expression. By
inductive hypothesis we have S6 = S7+S8 where S7 =

∑n
i=1 Di1 ;:::;in z · (u1; : : : ; @=@y((@ui=

@x) · u) · v; : : : ; un) and S8 =
∑n

i=1 Di1 ;:::;in z · (u1; : : : ; (@ui=@y) · ((@v=@x) · u); : : : ; un). But S1
+S8 = (@t=@y) · ((@v=@x) · u) and, since (@u=@y)·v=0, we have by a similar computation

@
@y

(
@t
@x

· u
)
· v= �x;z

n∑
i=1

Di1 ;:::;inu ·
(
u1; : : : ;

@ui

@y
· v; : : : ; un

)

+ �y;z

n∑
i=1

Di1 ;:::;in v ·
(
u1; : : : ;

@ui

@x
· u; : : : ; un

)

+
n∑

i=1

i−1∑
j=1

Di1 ;:::;in z ·
(
u1; : : : ;

@uj

@y
· v; : : : ; @ui

@x
· u; : : : ; un

)

+
n∑

i=1

n∑
j=i+1

Di1 ;:::;in z ·
(
u1; : : : ;

@ui

@x
· u; : : : ; @uj

@y
· v; : : : ; un

)

+
n∑

i=1
Di1 ;:::;in z ·

(
u1; : : : ;

@
@y

(
@ui

@x
· u
)
· v; : : : ; un

)
= S3 + S2 + S5 + S4 + S7

and we are done.

12 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Assume now that t is an application, say t=(t1)t2.

@
@x

(
@t
@y

· v
)
· u

=
@
@x

((
@t1
@y

· v
)

t2 +
(
D1t1 ·

(
@t2
@y

· v
))

t2

)
· u

=
(

@
@x

(
@t1
@y

· v
)
· u
)

t2 +
(
D1

(
@t1
@y

· v
)
·
(
@t2
@x

· u
))

t2

+
(
D1

(
@t1
@x

· u
)
·
(
@t2
@y

· v
))

t2 +
(
D1t1 ·

(
@
@x

(
@t2
@y

· v
)
· u
))

t2

+
(
D2

1t1 ·
(
@t2
@y

· v; @t2
@x

· u
))

t2

=
(
D1

(
@t1
@y

· v
)
·
(
@t2
@x

· u
))

t2 +
(
D1

(
@t1
@x

· u
)
·
(
@t2
@y

· v
))

t2

+
(
D2

1t1 ·
(
@t2
@y

· v; @t2
@x

· u
))

t2

+
(

@
@y

(
@t1
@x

· u
)
· v
)

t2 +
(
@t1
@y

·
(
@v
@x

· u
))

t2

+
(
D1t1 ·

(
@
@y

(
@t2
@x

· u
)
· v
))

t2 +
(
D1t1 ·

(
@t2
@y

·
(
@v
@x

· u
)))

t2

by inductive hypothesis applied to t1 and t2. On the other hand, using the fact that
(@u=@y) · v=0, a similar computation leads to

@
@y

(
@t
@x

· u
)
· v

=
(
D1

(
@t1
@y

· v
)
·
(
@t2
@x

· u
))

t2 +
(
D1

(
@t1
@x

· u
)
·
(
@t2
@y

· v
))

t2

+
(
D2

1t1 ·
(
@t2
@x

· u; @t2
@y

· v
))

t2

+
(

@
@y

(
@t1
@x

· u
)
· v
)

t2 +
(
D1t1 ·

(
@
@y

(
@t2
@x

· u
)
· v
))

t2

and we conclude since D2
1t1 · ((@t2=@y) · v; (@t2=@x) · u) = D2

1t1 · ((@t2=@x) · u; (@t2=@y) · v)
and since(

@t1
@y

·
(
@v
@x

· u
))

t2 +
(
D1t1 ·

(
@t2
@y

·
(
@v
@x

· u
)))

t2 =
@(t1)t2
@y

·
(
@v
@x

· u
)

:

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 13

If x1; : : : ; xk are variables not occurring free in the terms u1; : : : ; uk one has therefore,
for any permutation � of {1; : : : ; k},

@
@x1

(
· · · @t

@xk
· uk · · ·

)
· u1 = @

@x�(1)

(
· · · @t

@x�(k)
· u�(k) · · ·

)
· u�(1)

and we use the standard notation

@kt
@x1 · · · @xk · (u1; : : : ; uk)

for the common value of these expressions (we avoid this notation when the condition
above on variables is not fulElled).

Derivatives and substitutions. We shall now state two lemmas expressing the commu-
tation between the derivative and the substitution operators.

Lemma 5. If x and y are two distinct variables and if y does not occur free in the
terms u and v, one has

@t[v=y]
@x

· u =
(

@t
@x

· u
)
[v=y] +

(
@t
@y

·
(
@v
@x

· u
))

[v=y]: (1)

In particular, if moreover x is not free in v, the following commutation holds:

@t [v=y]
@x

· u =
(

@t
@x

· u
)
[v=y]: (2)

The proof is similar to the previous one. This lemma can also be seen as a version
of the chain rule of di"erential calculus.

Lemma 6. If the variable x is not free in the term v and if y is a variable distinct
from x, we have(

@t
@x

· u
)
[v=y] =

@t [v=y]
@x

· (u [v=y]):

Proof. We Erst prove the lemma when y is not free in t:(
@t
@x

· u
)
[v=y] =

@t
@x

· (u [v=y]): (3)

This is a simple induction on t.
In the general case, let y′ be a fresh variable and let t′ = t [y′=y], so that t= t′ [y=y′].

Since y′ does not occur in u, by Lemma 5 we have (@t=@x) · u=((@t′=@x) · u)[y=y′].
Then by Lemma 2 we have ((@t=@x) · u)[v=y] = ((@t′=@x) · u)[v=y] [v=y′] (because y′ is
not free in v). So by (3), since y does not occur in t′, ((@t=@x) · u)[v=y] = ((@t′=@x) · u
[v=y])[v=y′], and so ((@t=@x) · u)[v=y] = (@t′ [v=y′]=@x) · u [v=y] by Lemma 5 because y′

is not free in u and in v. We conclude by observing that t′ [v=y′] = t [v=y] by deEnition
of t′.

14 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Iterated derivatives. Iterating derivations leads to rather complicated expressions.
However, one can easily prove the following lemmas which will be useful in the
normalization proof.

Lemma 7. If the variables x1; : : : ; xk do not occur free in the terms u1; : : : ; uk , the
derivative (@kDis · t=@x1 · · · @xk) · (u1; : : : ; uk) is a 5nite sum of expressions

Dis′ · t′;
where s′ and t′ have the shape:

s′ =
@r0s

@y(0)
1 · · · @y(0)

r0

· (u(0)1 ; : : : ; u(0)r0);

t′ =
@r1 t

@y(1)
1 · · · @y(1)

r1

· (u(1)1 ; : : : ; u(1)r1)

with r0+r1 = k, [y(0)
1 ; : : : ; y(0)

r0 ; y(1)
1 ; : : : ; y(1)

r1] = [x1; : : : ; xk] and [u(0)1 ; : : : ; u(0)r0 ; u(1)1 ; : : : ; u(1)r1]
= [u1; : : : ; uk].

Lemma 8. If the variables x1; : : : ; xk do not occur free in the terms u1; : : : ; uk , the
derivative (@k(s)t=@x1 · · · @xk) · (u1; : : : ; uk) is a 5nite sum of expressions

(Dq
1s

′ · (t′1; : : : ; t′q))t
where s′ and t′j have the shape

s′ =
@r0s

@y(0)
1 · · · @y(0)

r0

· (u(0)1 ; : : : ; u(0)r0)

t′j =
@rj t

@y(j)
1 · · · @y(j)

rj

· (u(j)1 ; : : : ; u(j)rj)

with
∑q

j=0 rj=k,
∑q

j=0 [y
(j)
1 ; : : : ; y(j)

rj] = [x1; : : : ; xk] and
∑q

j=0 [u
(j)
1 ; : : : ; u(j)rj]=

[u1; : : : ; uk].

Both lemmas are proved by induction on k.

3. Di erential reduction

Let us begin by introducing some terminology and easy lemmas on relations between
terms. We shall consider two kind of relations: relations from terms to terms which
are subsets of R〈�〉×R〈�〉 and relations from simple terms to terms which are subsets
of �× R〈�〉.
Linear relations. A relation & from terms to terms is linear if 0 & 0 and at+bu & at′+bu′

as soon as t & t′ and u & u′. In the particular case where & is a functional relation, this

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 15

means that it is a linear map. As with linear maps the image of a linear subspace of
R〈�〉 by & is a linear subspace. However the image of the subspace {0} is not in general
reduced to {0} (this is easily seen to be a necessary and suPcient condition for & to be
functional). Observe that as a subset of the linear space R〈�〉 × R〈�〉=R〈�〉 ⊕ R〈�〉,
a relation is linear i" it is a linear subspace (just as for linear functions).

Contextual relations. A relation & from terms to terms is contextual if it is re2exive,
linear and satisEes the following conditions. Let x be a variable and s, t, s′ and t′ be
terms such that s & s′ and t & t′; then

�x s & �x s′;

(s)t & (s′)t′;

Dis · t & Dis′ · t′:

Lemma 9. Let & be a contextual relation from terms to terms. If t, u and u′ are
terms such that u & u′, then (@t=@x) · u & (@t=@x) · u′ and t [u=x] & t [u′=x]

This is proved by induction on t.

Extending a relation. Given a relation & from simple terms to terms we shall deEne
two relations V& and &̃ from terms to terms by:
• t V& t′ if t=

∑n
i=1 aisi and t′ =

∑n
i=1 ais′i where the terms si are simple, the terms s′i

are such that si & s′i for each i and the ai are scalars;
• t &̃ t′ if t= as + u and t′ = as′ + u where s is a simple term, s′ is a term such that

s & s′, u is a term and a is a nonzero scalar.
These two operations are monotone and !-continuous in & which means that given
an increasing sequence of relations &n whose union is &, the sequences V&n and &̃n are
increasing and their respective unions are V& and &̃.
Observe that &̃ is not linear. On the other hand V& is the least linear relation from

terms to terms which contains &. In that sense it can be thought of as the extension
by linearity of &. Note that, given t=

∑
aisi where the si are pairwise distinct simple

terms and t′ such that t V& t′, it is not true in general that t′ may be written t′ =
∑

ais′i
with si & s′i . Typically if t=0 and s is any simple term such that s & s′ and s & s′′ then
we have t V& s′ − s′′ (assuming −1 belongs to R).

One-step reduction. We are now ready to give the reduction rules, completing the
deEnition of the di"erential lambda-calculus. Informally the one step reduction �1 is
the smallest relation that is closed under syntactic constructions (e.g., if s �1 s′ then
(s)v �1 (s′)v) and that contains:

Beta-reduction.

(�x s)t reduces to s [t=x]:

16 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Di6erential reduction. When x is not free in u:

D1�x s · u reduces to �x
(

@s
@x

· u
)

:

The last rule is similar to �-reduction up to the fact that it only substitutes one linear
occurrence of variable. This is why the abstraction remains. This rule is compatible
with the intuitions behind di"erentiation of a function (D1) and partial derivation with
respect to a variable.
Restricted to ordinary lambda-terms, this (to be precisely deEned) reduction is just

ordinary beta-reduction, which shows that the di"erential lambda-calculus is a conser-
vative extension of the ordinary lambda-calculus.
The simplest deEnition of the one step reduction in ordinary lambda-calculus is by

induction on the term to be reduced. By induction on (the size of) t, one deEnes the
set of all terms t′ such that t reduces to t′:
• x never reduces to t′;
• �x s reduces to t′ if s reduces to s′ and t′ = �x s′;
• (s)u reduces to t′ if s reduces to s′ and t′ =(s′)u, or u reduces to u′ and t′ =(s)u′,
or s= �x v and t′ = v [u=x].

This method is not available here because, when −1∈R, we must accept that (x)0
reduces to (x)(s′ − s) as soon as s reduces to s′, for an arbitrary term s. But specifying
this in a deEnition of the reduction by induction on the size of the term to be reduced
would require the size of s to be less than the size of (x)0, where s is an arbitrary
term!
Accordingly we shall build �1 by induction on the depth at which the redex is Ered.

We deEne an increasing sequence �1
k of relations from simple terms to terms by: �1

0
is the empty relation and
• (s)u �1

k+1 t
′ if t′ =(s′)u with s �1

k s′, or t′ =(s)u′ with u �̃1
k u′, or s= �x v and

t′ = [u=x];
• Di1 ;:::; in x · (u1; : : : ; un) �1

k+1 t
′ if t′ =Di1 ;:::; in x · (u′1; : : : ; u′n) with uj �1

k u′j for exactly one
j∈{1; : : : ; n} and ui = u′i for i �= j;

• Dn
1�x s · (u1; : : : ; un) �1

k+1 t
′ if t′ =Dn

1�x s
′ · (u1; : : : ; un) with s �1

k s′, or t′ =Dn
1�x s ·

(u′1; : : : ; u
′
n) with uj �1

k u′j for exactly one j∈{1; : : : ; n} and ui = u′i for i �= j, or

t′ = Dn−1
1 �x

(
@s
@x

· uj

)
· (u1; : : : ; uj−1; uj+1; : : : ; un)

for some j∈{1; : : : ; n}.
We deEne �1 =

⋃
�1
k . Thanks to the !-continuity of relation extensions, we have

that �̃1 =
⋃

�̃1
k.

The one-step reduction is weakly contextual in the following sense:

Lemma 10. We have the following:
1. (t)u �1 (t′)u if t is simple and t �1 t′;
2. (u)t �1 (u)t′ if u is simple and t �̃1 t′;
3. �x t �1 �x t′ if t is simple and t �1 t′;

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 17

4. Dit · u �1 Dit′ · u if t, u are simple and t �1 t′;
5. Diu · t �1 Diu · t′ if t, u are simple and t �1 t′.

Proof. Each statement is separately proved. Statements 1 and 3 (application in function
position and abstraction) are immediate by deEnition of �1.
Statement 2 (application in argument position) results from the deEnition of �̃1 and

the continuity remark: from t �̃1 t′ we deduce that there is a k such that t �̃1
k t′. Thus

(u)t �1
k+1 (u)t

′ and we are done.
Statement 5 is shown by induction on the simple term u.
Finally we prove statement 4 by induction on k showing that whenever t �1

k t′ then
Dit · u �1 Dit′ · u. If k =0 there is nothing to prove. In the case k + 1 we have the
following possibilities:
• t=(s)v; then Dit · u=(Di+1s · u)v is simple. If t′ =(s′)v where s �1

k s′ then by induc-
tive hypothesis Di+1s · u �1 Di+1s′ · u and we conclude by applying statement 1.
If t′ =(s)v′ where v �̃1

k v′ then we conclude by statement 2.
If s= �x w and t′ =w [v=x] then Dit · u=(�x Diw · u)v (assuming without loss of
generality that x is not free in u). Now w is simple because s is; so we have
(�x Diw · u)v �1

1(Diw · u) [v=x] =Diw [v=x] · u=Dit′ · u and we are done.
• t=Di1 ;:::; in x · (u1; : : : ; un) and t′ =Di1 ;:::; in x · (u′1; u2; : : : ; un) with u1 �1

k u′1 (up to equiva-
lence by permutations, we may suppose without loss of generality that the one step
reduction takes place in the Erst di"erential argument). Then Dit · u=Di; i1 ;:::; in x · (u; u1;
: : : ; un) and Dit′ · u=Di; i1 ;:::; in x · (u; u′1; u2; : : : ; un); we conclude by deEnition of �1 .

• t=Dn
1�x s · (u1; : : : ; un) and i=1. Then Dit · u=Dn+1

1 �x s · (u1; : : : ; un; u). If the one-
step reduction takes place in s or one of the terms ui we reason as in the preceding
case. Otherwise we have t′ =Dn−1

1 �x((@s=@x) · u1) · (u2; : : : ; un). Then Dit′ · u=Dn
1�x

((@s=@x) · u1) · (u2; : : : ; un; u) and we are done.
• t=Dn

1�x s · (u1; : : : ; un) and i¿1. Then Dit · u=Dn
1�x (Di−1s · u) · (u1; : : : ; un). We

have the following cases to consider, as to the reduction t �1
k+1 t

′:
◦ s �1

k s′ and t′ =Dn
1�x s

′ · (u1; : : : ; un); then Dit′ · u=Dn
1�x (Di−1s′ · u) · (u1; : : : ; un).

By inductive hypothesis we have Di−1s · u �1 Di−1s′ · u and we are done.
◦ u1 �1

k u′1 and t′ =Dn
1�x s · (u′1; u2; : : : ; un); then Dit′ · u=Dn

1�x (Di−1s · u) · (u′1; u2; : : : ;
un). We conclude by deEnition of �1 and the fact that as s is simple so is
Di−1s · u.

◦ t′ =Dn−1
1 �x((@s=@x) · u1) · (u2; : : : ; un). We thus have Dit′ · u=Dn−1

1 �x(Di−1((@s=
@x) · u1) · u) · (u2; : : : ; un)=Dn−1

1 �x(@=@x(Di−1s · u) · u1) · (u2; : : : ; un) since x does
not appear free in u.

Reduction. Let � be the re2exive and transitive closure of the relation �̃1 , and let
us write t �+ t′ when t reduces to t′ in at least one step (that is, t �̃1 u � t ′ for some
u∈R〈�〉).

Proposition 11. The relation � is contextual.

Proof. Linearity is clear and the other conditions result from linearity and from the
preceding proposition.

18 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

3.1. The Church–Rosser property

We prove con2uence using the Tait–Martin–LFof technique, and following the pre-
sentation of [15]. We Erst deEne the parallel reduction relation (from simple terms
to terms as the union of an increasing sequence ((k) of relations: (0 is the identity
relation and (k+1 is given by
1. (s)u (k+1 t′ in one of the following situations:

(a) t′ =(s′)u′ where s (k s′ and u V(k u
′;

(b) t′=((@nv′=@xn) · (w′
1; : : : ; w

′
n)) [u

′=x] where s=Dn
1�x v · (w1; : : : ; wn), v (k v′, u V(k

u′, and wj (k w′
j for each j;

2. Di1 ;:::; in x · (u1; : : : ; un) (k+1 t′ if t′ =Di1 ;:::; in x · (u′1; : : : ; u′n) where uj (k u′j for each j;
3. Dn

1�x s · (u1; : : : ; un) (k+1 t′ if t′ =Dn−p
1 �x((@ps′=@xp) · u′I) · u′J where I is a subset

of {1; : : : ; n} of p elements, J is its complementary set, u′K denotes the sequence
(u′k)k∈K for any K ⊆{1; : : : ; n} (with the obvious order relation), s (k s′ and uj (k u′j
for each j.

Lemma 12. The relation V(is contextual.

The proof is essentially the same as the proof of weak contextuality of �1 .

Lemma 13. �1 ⊆ (⊆ �. Thus the re@exive and transitive closure of V(is �.

Proof. For the Erst inclusion one proves by a straightforward induction on k that
�1
k ⊆ (k (using the obvious fact that (k is re2exive).
The second is obtained again by induction using the fact that � is contextual.
As (⊆ � which is linear we also have V(⊆ � from which, together with the Erst

inclusion, we derive the re2exive and transitive closure property.

Lemma 14. Let x be a variable and t, u, t′, u′ be terms. If t V(t′ and u V(u′, then

t [u=x] V(t′ [u′=x]:

Proof. We prove by induction on k that if t V(k t
′ and u V(u′, then t [u=x] V(t′ [u′=x]. For

k =0 we have t= t′ and we conclude by contextuality of V((applying Lemma 9).
Assume now that the property holds for k. By linearity of V(and of substitution (the

operation (t; u) → t [u=x] is linear in t) we can reduce to the case where t is simple
such that t (k+1 t′ and u V(u′.
Assume Erst that t=(s)w. Then t [u=x] = (s [u=x])w [u=x]. If t′ =(s′)w′ with s (k s′

and w V(k w
′ we conclude directly by inductive hypothesis and contextuality of V(.

If s=Dn
1�y v · (u1; : : : ; un), v (k v′, w V(k w

′, uj (k u′j for each j, and

t′ =
(
@nv′

@yn · (u′1; : : : ; u′n)
)
[w′=y];

then we have s [u=x] =Dn
1�y (v [u=x]) · (u1 [u=x]; : : : ; un [u=x]). Note that this term is not

necessarily simple, because v [u=x] is not simple in general. However since v [u=x] V(

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 19

v′ [u′=x] by inductive hypothesis, v [u=x] is a linear combination of simple terms vl and
v′ [u′=x] is a linear combination with the same coePcients of terms v′l such that vl (v′l
for each l. Thus by linearity of V(, of derivatives and of substitution, and by deEnition
of (we have

t [u=x] V(
(
@nv′[u′=x]

@yn · (u′1 [u′=x]; : : : ; u′n [u′=x])
)
[w′[u′=x]=y]

=
(
@nv′

@yn · (u′1; : : : ; u′n)
)
[u′=x] [w′ [u′=x]=y] by Lemma 6

=
(
@nv′

@yn · (u′1; : : : ; u′n)
)
[w′=y] [u′=x] by Lemma 2

= t′ [u′=x]

since we may suppose that y is not free in u′.
The case t=Di1 ;:::; iny · (u1; : : : ; un) is handled like in the proof of the next lemma.
Assume last that t=Dn

1�y s · (u1; : : : ; un) and that t′ =Dn−p
1 �y((@ps′=@yp) · u′I) · u′J

where I is a subset of {1; : : : ; n} of p elements, J is its complementary set, s (k s′

and uj (k u′j for each j. Then t [u=x] =Dn
1�y (s [u=x]) · (u1 [u=x]; : : : ; un [u=x]). Therefore,

by inductive hypothesis and by deEnition of (, we have t [u=x] V(Dn−p
1 �y((@ps′′=

@yp) · u′′I) · u′′J where s′′ = s′ [u′=x] and u′′l = u′l [u
′=x] for each l. But by Lemma 6 we

have (@ps′′=@yp) · u′′I =(@ps′=@yp · u′I)[u′=x] since we can assume that y �= x and that y
does not occur free in u′, and we are done.

Lemma 15. Let x be a variable and let t, u, t′, and u′ be terms. If t V(t′ and u V(u′,
then

@t
@x

· u V(@t′

@x
· u′:

Proof. We prove by induction on k that if t V(k t
′ and if u V(u′, then (@t=@x) · u V((@t′=@x)

· u′. For k =0, since (0 is the identity we have to show that (@t=@x) · u V((@t=@x) · u′
which is consequence of Lemma 9 because V(is contextual.
Assume now that the property holds for k. By linearity of V(and of the partial

derivative we can reduce to the case where t and u are simple such that t (k+1 t′ and
u (u′.
Assume Erst that t=(s)w. Then

@t
@x

· u =
(

@s
@x

· u
)

w +
(
D1s ·

(
@w
@x

· u
))

w:

If t′ =(s′)w′ with s (k s′ and w V(k w
′, then by inductive hypothesis we have (@s=@x) · u

V((@s′=@x) · u′ and (@w=@x) · u V((@w′=@x) · u′ and we conclude by contextuality of V(.

20 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

If s=Dn
1�y v · (u1; : : : ; un), v (k v′, w V(k w

′, uj (k u′j for each j, and

t′ =
(
@nv′

@yn · (u′1; : : : ; u′n)
)
[w′=y];

then we have

@s
@x

· u = Dn
1�y

(
@v
@x

· u
)
· (u1; : : : ; un) +

n∑
j=1

Dn
1�y v ·

(
u1; : : : ;

@uj

@x
· u; : : : ; un

)

and by inductive hypothesis we have (@v=@x) · u V((@v′=@x) · u′ and (@uj=@x) ·
u V((@u′j=@x) · u′ for each j. The property (@v=@x) · u V((@v′=@x) · u′ means that we may
write (@v=@x) · u and (@v=@x) · u as linear combinations

∑
alvl and

∑
l alv′l where the

terms vl are simple, in such a way that vl (v′l for each l. This together with the linearity
of substitution operators and the deEnition of (entails that (Dn

1�y((@v=@x) · u) ·
(u1; : : : ; un))w V(((@n=@yn)((@v′=@x) · u′) · (u′1; : : : ; u′n))[w′=y]. We proceed similarly for the
other terms of the sum and apply the inductive hypothesis to get eventually:

(
@s
@x

· u
)

w V(
(

@n

@yn

(
@v′

@x
· u′
)
· (u′1; : : : ; u′n)

)
[w′=y]

+
n∑

j=1

(
@nv′

@yn ·
(
u′1; : : : ;

@u′j
@x

· u′; : : : ; u′n
))

[w′=y]:

Similarly, we get

(
D1s ·

(
@w
@x

· u
))

w=
(
Dn+1

1 �y v ·
(
@w
@x

· u; u1; : : : ; un

))
w

(
@n+1v′

@yn+1 ·
(
@w′

@x
· u′; u′1; : : : ; u′n

)
[w′=y]:

On the other hand, by iterating Lemmas 4 and 5 (we can assume that y is not free in
u′), we get

@t′

@x
· u′ = @

@x

((
@nv′

@yn · (u′1; : : : ; u′n)
)
[w′=y]

)
· u′

=
(

@
@x

(
@nv′

@yn · (u′1; : : : ; u′n)
)
· u′

+
@
@y

(
@nv′

@yn · (u′1; : : : ; u′n)
)
·
(
@w′

@x
· u′
))

[w′=y]

=
(

@n

@yn

(
@v′

@x
· u′
)
· (u′1; : : : ; u′n)

)
[w′=y]

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 21

+
n∑

j=1

(
@nv′

@yn · (u′1; : : : ;
@u′j
@x

· u′; : : : ; u′n)
)
[w′=y]

+
@n+1v′

@yn+1 ·
(
@w′

@x
· u′; u′1; : : : ; u′n

)
[w′=y]

and we are done, in this particular case.
If t=Di1 ;:::; iny · (u1; : : : ; un), then

@t
@x

· u = �x;yDi1 ;:::;inu · (u1; : : : ; un) +
n∑

j=1
Di1 ;:::;iny ·

(
u1; : : : ;

@uj

@x
· u; : : : ; un

)
:

Moreover, we know that t′ =Di1 ;:::; iny · (u′1; : : : ; u′n) with uj (k u′j for each j. For each j,
we have (@uj=@x) · u V((@u′j=@x) · u′ by inductive hypothesis and we conclude by contex-
tuality of V(.
Assume last that t=Dn

1�y s · (u1; : : : ; un) and that t′ =Dn−p
1 �y((@ps′=@yp) · u′I) · u′J

where I is a subset of {1; : : : ; n} of p elements, J is its complementary set, s (k s′ and
uj (k u′j for each j. Then, denoting by [1; n] the set {1; : : : ; n},

@t
@x

· u = Dn
1�y

(
@s
@x

· u
)
· (u1; : : : ; un) +

n∑
l=1

Dn
1�y s ·

(
@ul

@x
· u; u[1; n]\{l}

)
(4)

and

@t′

@x
· u′ =Dn−p

1 �y
(

@
@x

(
@ps′

@yp · u′I
)
· u′
)
· u′J

+
∑
j∈J

Dn−p
1 �y

(
@ps′

@yp · u′I
)
·
(
@u′j
@x

· u′; u′J\{j}
)

=Dn−p
1 �y

(
@p

@yp

(
@s′

@x
· u′
)
· u′I
)
· u′J

+
∑
i∈I

Dn−p
1 �y

(
@ps′

@yp ·
(
@u′i
@x

· u′; u′I\{i}
))

· u′J

+
∑
j∈J

Dn−p
1 �y

(
@ps′

@yp · u′I
)
·
(
@u′j
@x

· u′; u′J\{j}
)

;

using Lemma 4 which is possible since y can be assumed not to occur free in u′.
By inductive hypothesis we have (@s=@x) · u V((@s′=@x) · u′ and (@ul=@x) · u V((@u′l=@x) · u′
for each l. Therefore (coming back to expression (4) of (@t=@x) · u), we have
Dn

1�y(@s=@x · u) · (u1; : : : ; un) V(Dn−p
1 �y((@p=@yp)((@s′=@x) · u′) · u′I) · u′J , and for each

l∈{1; : : : ; n}:
• if l∈ I , we have Dn

1�y s · ((@ul=@x) · u; u[1; n]\{l}) V(Dn−p
1 �y((@ps′=@yp) · ((@u′l=@x) ·

u′; u′I\{l})) · u′J ,

22 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

• and if l∈ J , we have Dn
1�y s · ((@ul=@x) · u; u[1; n]\{l}) V(Dn−p

1 �y((@ps′=@yp) · u′I) ·
((@u′l=@x) · u′; u′J\{l}).

This concludes the proof.

Multi-con@uent pairs of relations. Let us say that a pair of binary relations (&; ’)
from terms to terms is multi-con@uent if for any term t, any m∈N+ and any terms
t1; : : : ; tm, if t & ti for each i, then there exists a term t′ such that ti ’ t′ for each i.

Lemma 16. Let & be a relation from simple terms to terms and let ’ be a linear
relation from terms to terms. If the pair (&; ’) is multi-con@uent, then the pair (V&; ’)
is also multi-con@uent.

Proof. Let t; t1; : : : ; tm be terms such that t V& ti for each i. Let us write as usual t=
∑

s∈�
ass. From t V& ti we deduce that for each simple term s and for each i=1; : : : ; m, there
is a Enite set Ii(s), some scalars (ai

s; j)j∈Ii(s) such that as =
∑

j∈Ii(s) a
i
s; j and some terms

(Ui
j (s))j∈Ii(s) such that s &U i

j (s) and ti =
∑

s∈�

∑
j∈Ii(s) ai

s; jU
i
j (s). We have s &U i

j (s)
for each i and each j∈ Ii(s). But for each simple term s the set {Ui

j (s) | i=1; : : : ; m
and j∈ Ii(s)} is Enite.
If this set is empty, then each set Ii(s) is empty and therefore t=0 and ti =0 for

each i. Therefore ti ’ 0 for each i since ’ is linear.
If this set is nonempty, by multi-con2uence of (&; ’) there is a term V (s), depending

only on s, such that Ui
j (s)’V (s) for each i and each j∈ Ii(s). By linearity of ’ we

conclude that ti ’
∑

s∈�

∑
j∈Ii(s) ai

s; jV (s)=
∑

s∈� asV (s).

Proposition 17. The relation V(is con@uent.

Proof. We prove by induction on k that the pair (V(k ; V() is multi-con2uent and this
will clearly entail the con2uence of V(. The base case k =0 is trivial since V(0 is just
the identity relation. So let us assume that (V(k ; V() is multi-con2uent and let us prove
that (V(k+1; V() is multi-con2uent. For this purpose, by Lemma 16, it suPces to show
that the pair ((k+1 ; V() is multi-con2uent, what we do now. Let t be a simple term,
and let t1; : : : ; tm (with m¿1) be terms such that t (k+1 ti for each i.
Assume Erst that t=(s)w.
If for each i we have ti =(si)wi with s (k si and w V(k w

i, then the inductive hypothesis
applies (thanks to Lemma 16 for the argument side of the application).
Otherwise, we have s=Dn

1�y v · (u1; : : : ; un), v (k vi, w V(k w
i, uj (k ui

j for each i and
each j, and for some q∈{1; : : : ; m+ 1}:
• if 16i¡q, ti =((@nvi=@yn) · (ui

1; : : : ; u
i
n))[w

i=y]
• and if q6i6m, for some set Ii ⊆{1; : : : ; n} whose cardinality is pi and whose com-
plementary set is Ji, we have ti =(si)wi where si =Dn−pi

1 �y((@pivi=@ypi) · ui
Ii) · ui

Ji .
Observe that the Erst case must occur at least once, otherwise we are in the Erst
situation for the application. By inductive hypothesis (invoking Lemma 16 for w), we
can End terms v′, w′ and u′j for each j such that for each i, vi V(v′, wi V(w′ and ui

j V(u′j
for j=1; : : : ; n. For i such that 16i¡q, we apply Lemmas 14 and 15, and we get

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 23

ti V(((@nv′=@yn) · (u′1; : : : ; u′n))[w′=y]. For i such that q6i6m, we apply Lemma 15 as
well as the deEnition of (and obtain ti V(((@nv′=@yn) · (u′1; : : : ; u′n))[w′=y].

The case t=Di1 ;:::; in x · (u1; : : : ; un) is straightforward.
The last case is when t=Dn

1�x v · (u1; : : : ; un) and for some set Ii ⊆{1; : : : ; n} whose
cardinality is pi and whose complementary set is Ji, we have ti =Dn−pi

1 �x
((@pivi=@ypi) · ui

Ii) · ui
Ji (with v (k vi and uj (k ui

j), for each i=1; : : : ; m. Again, the in-
ductive hypothesis provides us with terms v′ and u′j such that for each i, vi V(v′ and
ui
j V(u′j for each j. Then applying for each i the deEnition of ((last case, with I = Ji
and J = ∅), we get ti V(�x(@nv′=@xn) · (u′1; : : : ; u′n) and we are done.

Since the re2exive and transitive closure of V(is �, we Enally get the main result
of this section.

Theorem 18. The relation � over terms of the pure di6erential lambda-calculus en-
joys the Church–Rosser property.

Remember that any ordinary lambda-term is a di"erential lambda-term. The Church–
Rosser result above enforces the observation that the di"erential lambda-calculus is
a conservative extension of the ordinary lambda-calculus since it easily entails the
following result.

Proposition 19. If two ordinary lambda-terms are � -equivalent in the di6erential
lambda-calculus, then they are �-equivalent in the ordinary lambda-calculus.

Remark. We can easily derive from Lemmas 15 and 14 and from the inclusions
�1 ⊆ (⊆ � (a direct proof would be possible as well) the two following lemmas,
which will be useful in the sequel.

Lemma 20. Let x be a variable and let t, u, t′, and u′ be terms. If t � t ′ and u � u ′,
then

@t
@x

· u �
@t′

@x
· u′:

Lemma 21. Let x be a variable and let t, u, t′, and u′ be terms. If t � t ′ and u � u ′,
then

t [u=x] � t ′ [u′=x]:

4. Simply typed terms

We are given some atomic types �; �; : : :, and if A and B are types, then so
is A→B. The notion of typing context is the usual one, and the typing rules are

24 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

as follows:

3; x : A � x : A (Variable)

3 � s : A→B 3 � t : A
(Application)

3 � (s)t : B

3; x : A � s : B
(Abstraction)

3 � �x s : A→B

3 � s : A1; : : : ; Ai →B 3 � u : Ai
(Di6erential application)

3 � Dis · u : A1; : : : ; Ai →B

(Zero)
3 � 0 : A

3 � s : A 3 � t : A
(Linear combination);

3 � as+ bt : A

where a and b are scalars.
The two last rules express that a type may be considered as an R-module.
Consider the di"erential application rule in the case i=1: we are given a term t with

3 � t :A→B that we may view as a function from A to B. The derivative of t should
be a function t′ from A to a space L of linear applications from A to B. So given
s :A and u :A; t′(s) is a linear function from A to B that we may apply to u, getting
a value t′(s) · u in B; this is precisely this value that the term (D1t · u)s denotes. So
D1t · u denotes the function which maps s :A to t′(s) · u :B. When i¿1, the intuition is
exactly the same, but in that case we do not derivate the function with respect to its
Erst parameter, but with respect to its ith parameter.
Let us say that a semi-ring is positive if a+ b=0⇒ a= b=0 for all a; b∈R.

Lemma 22. Under the assumption that R is positive, subject reduction holds, that is:
if t and t′ are canonical terms, if 3 � t :A and t � t ′, then 3 � t ′ : A.

This is proven by a straightforward induction on the derivation of 3 � t :A, with the
help of the following “substitution” lemma (and of an ordinary substitution lemma that
we do not state).

Lemma 23. If s and u are terms, if 3; x :A� s :B and 3 � u :A, then 3; x :A� (@s=@x) ·
u :B.

The proof is an easy induction on s.
The reason for the restriction on R is that we need the following property to hold:

whenever we write a term t as a linear combination
∑n

i=1 aisi of simple terms with
nonzero coePcients, each of the simple terms si belongs to Supp(t). Then we can show
that if 3 � t :A is derivable, so are all the judgments 3 � si :A.
For showing that the condition is necessary, assume that a; b∈R\{0} with a+b=0.

For any type A we have � 0 :A but 0= a(I)t + b(I)t (where I = �x x and t is any
nontypeable closed term). So 0 �̃1 at + b(I)t and this latter term is not typeable since
t is not typeable.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 25

5. Strong normalization

We prove strong normalization for the simply typed di"erential lambda-calculus,
using the Tait reducibility method, presented along the lines followed by Krivine in
[15]. In this section, we assume that R=N. The essential property of N that we shall
use is that there are only Enitely many ways of writing a natural number as the sum
of two natural numbers.
Consider for instance the di"erential lambda-calculus with nonnegative rational co-

ePcients (R=Q+), and let I = �x x. Then we have the following inEnite sequence of
reductions, which shows that our restriction on coePcients is essential.

(I)I =
1
2
(I)I +

1
2
(I)I �̃

1 1
2
I +

1
2
(I)I =

1
2
I +

1
4
(I)I +

1
4
(I)I

�̃
1 3
4
I +

1
4
(I)I =

3
4
I +

1
8
(I)I +

1
8
(I)I

�̃
1 7
8
I +

1
8
(I)I

... (5)

This problem has of course nothing to do with the di"erential part of the calculus and
would already appear in ordinary lambda-calculus extended with linear combinations.

The module of strongly normalizing terms. Observe Erst that if t ∈N〈�〉 and if we
write t= as+u with s simple and a �=0, then necessarily s∈Supp(t). This is due to the
fact that the scalars are natural numbers (more precisely: N is a positive semi-ring).

Lemma 24. Let t ∈N〈�〉. There are only 5nitely many terms t′ such that t �̃1 t′.

Proof. By induction on the height of t (the least k such that t ∈N〈�k〉). For k =0, t=0
and the property is trivial, so assume that it holds for heights 6k. Using the inductive
hypothesis, a simple inspection of the deEnition of �1 shows that the property holds
for t ∈�k+1; here we use the fact that for t simple, t �̃1 t′ implies t �1 t′ thanks to
our particular choice of scalars. 5 So let us prove the property for t ∈N〈�k+1〉. Then
t=

∑
s∈�k+1

ass and reducing t to t′ means:
• choosing s∈�k+1 such that as �=0 (there are only Enitely many such terms s);
• writing as = b + c with b �=0 (there are only Enitely many such decompositions of

as since the scalars are natural numbers);
• choosing s′ such that s �1 s′ (as we have seen, there are only Enitely many such

terms s′)
and then t′ = bs′ + cs+

∑
u∈�k+1\{s} auu. So there are only Enitely many terms t′ such

that t �̃1 t′.

5 This property would not hold if R were for instance the semi-ring of nonnegative rational numbers.

26 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Therefore, by KFonig’s lemma, when t is a strongly normalizing term, there is a
longest sequence of �̃1-reductions of t to its normal form. We denote by |t| the length
of such a sequence. With general coePcients (for instance with R=Z or R=Q+) such
a deEnition would not be possible.
We denote by N the set of all strongly normalizing simple terms. Given t=

∑
s∈N

ass∈N〈N〉, we set ‖t‖= ∑s∈N as|s| and deEne in this way a linear operation from
N〈N〉 to N.
Observe that if u �̃1 u′, then u+ t �̃1 u′+ t for any term t. From this, it results easily

that any strongly normalizing di"erential term belongs to N〈N〉. We want now to
prove the converse.

Lemma 25. Let s∈N and let s′ be such that s �1 s′. Then ‖s′‖¡|s|.

Proof. Since the scalars are natural numbers, the term s′ can be written as a sum
of simple terms, s′ =

∑m
i=1 ui and since s′ is strongly normalizing, so are the terms

ui. We have by deEnition ‖s′‖= ∑m
i=1 |ui|. Now for each i we can End a reduction

of length |ui| of ui to its normal form, and concatenating these reductions, we get a
reduction from s′ of length ‖s′‖, whence the result since s reduces to s′ in one step.

Lemma 26. The set of all strongly normalizing terms is N〈N〉.
Proof. We only have to prove that if t=

∑
s∈N ass∈N〈N〉, then t is strongly nor-

malizing. We prove this by induction on ‖t‖. Assume Erst that ‖t‖=0. If as �=0, then
|s|=0, that is s is normal. From this it results that t itself is normal. Indeed, if we
can write t= bs+ u with s simple and b �=0, then necessarily s∈Supp(t) because our
scalars are all positive numbers.
Inductive step: we have ‖t‖¿0 and we want to prove that t is strongly normalizing.

So assume that t �̃1 t′. This means that we have found s∈Supp(t), b∈N such that
0¡b6as and two terms s′ and u such that t= bs + u, t′ = bs′ + u and s �1 s′. We
have s∈Supp(t)⊆N, hence s′ is strongly normalizing, hence s′ ∈N〈N〉 and therefore
t′ ∈N〈N〉 (because u∈N〈N〉). We have ‖t′‖= b‖s′‖+‖u‖= b‖s′‖+‖t‖−b|s|= ‖t‖−
b(|s|−‖s′‖). Therefore we have ‖t′‖¡‖t‖ by Lemma 25. Now by inductive hypothesis
t′ is strongly normalizing and therefore t itself is strongly normalizing.

We conclude by observing the following easy fact which again results from our
particular choice of scalars.

Lemma 27. Let s; t ∈N〈�〉, X⊆� and let a∈N\{0}. If as + t ∈N〈X〉, then
s∈N〈X〉.
Proof. Since a �=0 and since all coePcients are positive we have Supp(s)⊆
Supp(as+ t)⊆X.

Redexes and contexts. An N-redex is a simple term of the shape

t = (Dn
1�x s · (u1; : : : ; un))v;

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 27

where s; u1; : : : ; un ∈N and v∈N〈N〉. We denote by Red(t) the following set of terms,
obtained by reducing this redex:
• if n=0, then Red(t)= {s [v=x]};
• otherwise, the elements of Red(t) are all the terms(

Dn−1
1 �x

(
@s
@x

· ui

)
· (u1; : : : ; ui−1; ui+1; : : : ; un)

)
v

for i=1; : : : ; n.
An N-context is a context C of the shape

C = (Dj1 ;:::;jk [] · (w1; : : : ; wk))h1 · · · hp

where w1; : : : ; wk ∈N and h1; : : : ; hp ∈N〈N〉. As usual, if t is a term, C[t] is the term
obtained by Elling the hole [] of C with t. Observe that C[t] is simple if t is simple.
Moreover C[0]= 0 and C[as+ bt] = aC[s] + bC[t] (the hole is in linear position).
We shall say that a set X of simple terms is closed under variable renamings if

t [y=x]∈X whenever t ∈X and x; y are variables.

Saturated sets. A set S of simple terms is saturated if it satisEes the two following
conditions.
1. For any N-redex t and any N-context C, if C[t′]∈N〈S〉 for all t′ ∈Red(t), then

C[t]∈S.
2. S is closed under variable renamings.

These two saturation properties will be essential in the proof of the interpretation
Lemma 34 (case of an abstraction), the most important being of course the Erst one
and the second one being of a purely technical nature. In that proof we shall need
a slightly di"erent version of the Erst property, that we can prove by “iterating” the
deEnition above. This is the object of the next lemma.

Lemma 28. Let S be a saturated subset of N and let n∈N. Let s; u1; : : : ; un ∈N
and let v∈N〈N〉. If
1. for all I ⊆{1; : : : ; n} one has (denoting by k the cardinality of I)

@ks
@xk

· uI ∈ N〈S〉

2. and if

@ns
@xn

· (u1; : : : ; un)[v=x] ∈ N〈S〉;

then (Dn
1�x s · (u1; : : : ; un))v∈S.

Proof. By induction on n. The term t=(Dn
1�x s · (u1; : : : ; un))v is an N-redex and so,

since S is saturated, it is suPcient to show that t′ ∈N〈S〉, for all t′ ∈Red(t). If n=0,
we have t′ = s [v=x] and our hypothesis (2) gives directly t′ ∈N〈S〉. Assume now that
n¿0. Then

t′ =
(
Dn−1

1 �x
(

@s
@x

· ui

)
· u[1;n]\{i}

)
v

28 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

for some i∈{1; : : : ; n}. We can write (@s=@x) · ui as a linear combination of simple terms
with nonzero coePcients: (@s=@x) · u= ∑m

q=1 aqsq. If we can show that, for each q, the
data sq, u[1; n]\{i} and v satisfy conditions (1) and (2), then by inductive hypothesis, it
will follow for each q that (Dn−1

1 �x sq · u[1; n]\{i})v∈S, and hence that t′ ∈N〈S〉.
So let q∈{1; : : : ; m} and let us check that sq, u[1; n]\{i} and v satisfy hypothesis (1),

checking (2) being completely similar. Let I ⊆ [1; n]\{i} and let k be the cardinality
of I . We have to show that (@ksq=@xk) · uI ∈N〈S〉. But

m∑
r=1

ar
@ksr
@xk

· uI =
@k

@xk

(
@s
@x

· ui

)
· uI

=
@k+1s
@xk+1 · uI∪{i};

where one should observe that k + 1 is the cardinality of I ∪{i} since i =∈ I . By con-
dition (1) satisEed by s; (u1; : : : ; un) and v, we obtain

∑m
r=1 ar(@ksr=@xk) · uI ∈N〈S〉.

Applying Lemma 27, we get Enally (@ksq=@xk) · uI ∈N〈S〉 since aq �=0.

Lemma 29. The set N is saturated.

Proof. We prove property (1) of saturation. We use the notations above for an
N-redex t and an N-context C. We set |t|0 = |s| + |v| + ∑n

i=1 |ui| and |C|=∑k
j=1 |wj|+

∑p
r=1 |hr|.

By induction on |t|0 + |C|, we show that if

∀t′ ∈ Red(t) C[t′] ∈ N〈N〉; (6)

then

C[t] ∈ N; or equivalently; if C[t] �1 s′; then s′ ∈ N〈N〉:
There are several cases to consider as to the reduction C[t] �1 s′. The Erst case is

when the redex Ered in this reduction is t itself, and then s′ =C[t′] where t′ ∈Red(t);
we conclude applying directly our hypothesis (6).
In the other cases, the redex Ered in the reduction C[t] �1 s′ is a subterm of C or

of t. These cases can be subdivided in two categories:
• the cases where the reduction takes place in a subterm in linear position, that is in
one of the terms s, ui or wi;

• and the cases where the reduction takes place in a subterm in non-linear position,
that is in v or in one of the hi.

We check only one case of each of these categories, the others being similar.
A non-linear case: Assume that v �̃1 v′ and s′ =C[t′] with t′ =(Dn

1�x s · (u1; : : : ; un))v′.
Since t′ is simple, it suPces to show that C[t′]∈N. But v′ is strongly normalizing
since v is and hence t′ is an N-redex. Moreover |t′|0¡|t|0 and hence the inductive
hypothesis applies to the pair (C; t′). Let t′′ ∈Red(t′), it will be suPcient to show that
C[t′′]∈N〈N〉.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 29

If n¿1, we have t′′ =(Dn−1
1 �x((@s=@x) · ui) · (u1; : : : ; ui−1; ui+1; : : : ; un))v′ for some i.

The term t̂=(Dn−1
1 �x((@s=@x) · ui) · (u1; : : : ; ui−1; ui+1; : : : ; un))v belongs to Red(t) and

hence C[t̂]∈N〈N〉 by our assumption (6) on (C; t). But C[t̂] �C[t ′ ′] by contextuality
of � and hence C[t′′] is strongly normalizing, that is, by Lemma 26, C[t′′]∈N〈N〉
as required.
If now n=0, we have t′′ = s [v′=x]. We have t̂= s [v=x]∈Red(t) and hence C[t̂]∈

N〈N〉 by our assumption (6) on (C; t). By Lemma 21, we get t̂ � t ′ ′ and hence C[t̂] �
C[t′′] by contextuality of � . We conclude as before that C[t′′]∈N〈N〉.
A linear case: Assume that n¿1 and that u1 �1 u′1 and s′ =C[t′] with t′ =(Dn

1�x s · (u′1;
u2; : : : ; un))v. We have u1 ∈N and hence u′1 is strongly normalizing and thus belongs
to N〈N〉, that is, u′1 is a linear combination of strongly normalizing simple terms

u′1 =
m∑

q=1
aqu′1;q

with aq �=0 for all q. Then s′ is the linear combination s′ =
∑m

q=1 aqC[t′q] of simple
terms where

t′q = (Dn
1�x s · (u′1;q; u2 : : : ; un))v

for q=1; : : : ; m. For each q, we show that C[t′q]∈N and this will show that s′ ∈
N〈N〉, as required.
We have |t′q|0¡|t|0 and hence the inductive hypothesis applies to the pair (C; t′q)

(observe indeed that t′q is an N-redex since u′1; q is strongly normalizing). Therefore,
it will be suPcient to show that for any t′′ ∈Red(t′q), one has C[t′′]∈N〈N〉. There
are two cases to consider as to the reduction of t′q to t′′.
Assume Erst that t′′ =(Dn−1

1 �x((@s=@x) · u′1; q) · (u2; : : : ; un))v. Let t̂=(Dn−1
1 �x((@s=

@x) · u1) · (u2; : : : ; un))v, we have t̂ ∈Red(t) and therefore C[t̂]∈N〈N〉 by our assump-
tion (6) on (C; t). But u1 � u1′ =

∑m
r=1 aru′1; r and hence, by Lemma 20 and contextu-

ality of �, we get

C[t̂]�
m∑

r=1
arC[t′r

′];

where t′′r =(Dn
1�x((@s=@x) · u′1; r) · (u2; : : : ; un))v for r=1; : : : ; m (so that t′′q = t′′). Since

C[t̂]∈N〈N〉 and aq �=0, we deduce that C[t′′]∈N〈N〉 by Lemma 27.
The other case is: t′′ =(Dn

1�x ((@s=@x) · ui) · (u′1; q; u2; : : : ; ui−1; ui+1; : : : ; un))v for some
i∈{2; : : : ; n}, if n¿1. It is handled similarly.
Property (2) of saturation is easy: it suPces to show that t [y=x] �1

k t′ [y=x]⇒ t �1
k t′

and this is done by induction on k.

Reducibility. Remember that if t; u1; : : : ; un are simple terms, then the term Di1 ;:::; in t ·
(u1; : : : ; un) is always simple.
If X and Y are sets of simple terms, one deEnes X→Y⊆� as

X → Y = {t ∈ � | ∀p ∈ N;∀s ∈ N〈X〉;∀u1; : : : ; up ∈ X;

(Dp
1 t · (u1; : : : ; up))s ∈ Y}:

30 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

This deEnition, which involves di"erential applications and not only ordinary appli-
cations, is motivated by the next lemma which will be essential in the proof of the
Interpretation lemma 34.

Lemma 30. Let X1; : : : ;Xi and Y be sets of simple terms. If t ∈Xi → · · · →X1 →Y
and u∈X1, then Dit · u∈Xi → · · · →X1 →Y.

Proof. By induction on i¿1. For i=1, it is an obvious consequence of the deEnition
of X1 →Y. Assume that the property holds for i, and take t ∈Xi+1 →Xi → · · · →
X1 →Y and u∈X1. We must show that Di+1t · u∈Xi+1 →Xi → · · · →X1 →Y. So let
v1; : : : ; vp ∈Xi+1 and s∈N〈Xi+1〉, we have to show that (Dp

1 (Di+1t · u) · (v1; : : : ; vp))s
belongs to Xi → · · · →X1 →Y.
By deEnition (Dp

1 t · (v1; : : : ; vp))s belongs to Xi → · · · →X1 →Y and thus, by in-
ductive hypothesis, so does Di(D

p
1 t · (v1; : : : ; vp))s · u. We conclude because this latter

term is equal to (Dp
1 (Di+1t · u) · (v1; : : : ; vp))s.

Lemma 31. If X⊆X′ ⊆� and Y′ ⊆Y⊆�, then X′ →Y′ ⊆X→Y.

The proof is immediate.

Lemma 32. Let S⊆� be saturated and let X⊆N be closed under variable renam-
ings. Then X→S is saturated.

Proof. We prove Erst property (1) for the saturation of X→S. So, with the notations
of the deEnition of an N-redex t and of an N-context C, assume that C[t′]∈N〈X
→S〉 for all t′ ∈Red(t), we have to show that C[t]∈X→S. Let wk+1; : : : ; wk+q ∈X
and let hp+1 ∈N〈X〉; we must show that s=(Dq

1(C[t]) · (wk+1; : : : ; wk+q))hp+1 ∈S. But
s=C′[t] where C′ is the N-context

C′ = (Dj1 ;:::;jk+q [] · (w1; : : : ; wk+q))h1 : : : hp+1;

where we have set jl =1 + p for l= k + 1; : : : ; k + q. The fact that C′ is an
N-context results from our assumption X⊆N. Since S is saturated, it suPces there-
fore to show that C′[t′]∈N〈S〉 for all t′ ∈Red(t). But this results from our hypoth-
esis that C[t′]∈N〈X→S〉 for all such t′ and from the fact that C′[t′] = (Dq

1(C[t
′]) ·

(wk+1; : : : ; wk+q))hp+1.
Now we prove that X→S is closed under variable renamings. Let t ∈X→S

and let x and y be variables. Let w1; : : : ; wn ∈X and h∈N〈X〉. Let z be a variable
which does not occur free in any of the terms t; w1; : : : ; wn and h. For i=1; : : : ; n, let
w′
i =wi [z=x] and let h′ = h [z=x]. Since X is closed under variable renamings, we have

(Dn
1t · (w′

1; : : : ; w
′
n))h

′ ∈S and hence, since S is closed under variable renamings and
x does not occur free in any of the terms w′

i and h′, we get (Dn
1t [y=x] · (w′

1; : : : ; w
′
n))h

′

∈S. Last using again the fact that S is closed under variable renamings we get
(replacing z by x) (Dn

1t [y=x] · (w1; : : : ; wn))h∈S as required.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 31

Let N0 be the set of all simple terms of the shape

(Di1 ;:::; ik x · (u1; : : : ; uk))s1 : : : sn;

where u1; : : : ; uk ∈N, s1; : : : ; sn ∈N〈N〉 and x is a variable. It is clear that N0 ⊆N.

Lemma 33. The following inclusions hold:

N0 ⊆ N → N0 ⊆ N0 → N ⊆ N:

Proof. The Erst inclusion immediately results from the deEnition of N0. The second
inclusion results from Lemma 31. For the last inclusion, take t ∈N0 →N, and take a
variable x. Then x∈N0 and thus (t)x∈N. This clearly implies that t ∈N.

With a simple type A, we associate a saturated set A∗ of simple terms by setting
�∗ =N for all atomic types �, and (A→B)∗ =A∗ →B∗. Then combining Lemmas 31
and 33, we get for all type A:

N0 ⊆ A∗ ⊆ N;

and A∗ is saturated by Lemmas 29 and 32.

Lemma 34 (Interpretation). Let t be a canonical term whose free variables belong to
the list (without repetitions) x1; : : : ; xn, and assume that the typing judgment

x1 : A1; : : : ; xn : An � t : A

is derivable, for some types A1; : : : ; An; A. Let i1; : : : ; ik ∈{1; : : : ; n} and let u1 ∈A∗
i1 ; : : : ;

uk ∈A∗
ik . Let also s1 ∈N〈A∗

1〉; : : : ; sn ∈N〈A∗
n〉. Assume that the variables x1; : : : ; xn do

not occur free in any of the terms s1; : : : ; sn and u1; : : : ; uk . Then(
@kt

@xi1 · · · @xik
· (u1; : : : ; uk)

)
[s1; : : : ; sn=x1; : : : ; xn] ∈ N〈A∗〉:

Proof. By induction on the typing derivation of the judgment x1 :A1; : : : ; xn :An � t :A.
If the last rule is a zero rule or a linear combination rule, we conclude straightforwardly
by linearity of the substitution and derivation operators. We consider the other possible
last rules.
Variable. So t= xi for some i, and A=Ai.
If k =0 we conclude since we know that si ∈N〈A∗

i 〉.
If k¿1 and i =∈{i1; : : : ; ik} then ((@kt=@xi1 · · · @xik) · (u1; : : : ; uk))[s1; : : : ; sn=x1; : : : ; xn] =

0∈N〈A∗〉.
If k =1 and i= i1 then ((@kt=@xi1 · · · @xik) · (u1; : : : ; uk))[s1; : : : ; sn=x1; : : : ; xn] = u1 since

none of the variables xj is free in u1 and we are done, since we have assumed that
u1 ∈A∗

i1 .
If k¿2 and i is equal, say, to i1 then we have (@kt=@xi1 · · · @xik) · (u1; : : : ; uk)= (@k−1=

@xi2 · · · @xik)(@t=@xi1 · u1) · (u2; : : : ; uk)= (@k−1u1=@xi2 · · · @xik) · (u2; : : : ; uk) = 0 ∈ N〈A∗〉
because the variables xij do not occur free in u1.

32 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Application. So t is an ordinary application t=(s)w with x1 :A1; : : : ; xn :An � s :B→A
and x1 :A1; : : : ; xn :An �w :B. By Lemma 8, the term ((@kt=@xi1 · · · @xik) · (u1; : : : ; uk))
[s1; : : : ; sn=x1; : : : ; xn] is a sum of terms of the shape (Dq

1s
′ · (w′

1; : : : ; w
′
q))(w[s1; : : : ; sn=

x1; : : : ; xn]) with

s′ =
@ps

@y1 · · · @yp
· (v1; : : : ; vp)[s1; : : : ; sn=x1; : : : ; xn]

(with the variables yj taken among x1; : : : ; xk and the terms vj taken among u1; : : : ; uk),
and similarly

w′
r =

@prw

@y(r)
1 · · · @y(r)

pr

· (v(r)1 ; : : : ; v(r)pr
)[s1; : : : ; sn=x1; : : : ; xn]

(with the variables y(r)
j taken among x1; : : : ; xk and the terms v(r)j taken among u1;

: : : ; uk). By inductive hypothesis, we know that s′ ∈N〈B∗ →A∗〉 and that w′
1; : : : ; w

′
q ∈

N〈B∗〉, and also that w [s1; : : : ; sn=x1; : : : ; xn]∈N〈B∗〉, and therefore

(Dq
1s

′ · (w′
1; : : : ; w

′
q))(w[s1; : : : ; sn=x1; : : : ; xn]) ∈ N〈A∗〉

by deEnition of B∗ →A∗, and we conclude.

Di6erential application. So t can be written t=Dis ·w for some i¿1 with x1 :A1; : : : ;
xn :An � s :B1 → · · · →Bi →B=A and x1 :A1; : : : ; xn :An �w :Bi. By Lemma 7, one can
write the term ((@kt=@xi1 · · · @xik) · (u1; : : : ; uk))[s1; : : : ; sn=x1; : : : ; xn] as a sum of terms of
the shape Dis′ ·w′ with

s′ =
@ps

@y1 · · · @yp
· (v1; : : : ; vp)[s1; : : : ; sn=x1; : : : ; xn]

(with the variables yj taken among x1; : : : ; xk and the terms vj taken among u1; : : : ; uk),
and similarly

w′ =
@qw

@z1 · · · @zq · (v′1; : : : ; v′q)[s1; : : : ; sn=x1; : : : ; xn]

(with the variables zj taken among x1; : : : ; xk and the terms v′j taken among u1; : : : ; uk).
By inductive hypothesis, we know that s′ ∈N〈A∗〉 and that w′ ∈N〈B∗

i 〉. We conclude
by Lemma 30 that Dis′ ·w′ ∈N〈A∗〉, as required.

Abstraction. So t= �x s, the typing derivation of t ends with

x1 : A1; : : : ; xn : An; x : B � s : C

x1 : A1; : : : ; xn : An � �x s : B→C

and we have A=B→C. We must show that �x s′ ∈ N〈B∗ →C∗〉, where

s′ =
(

@ks
@xi1 · · · @xik

· (u1; : : : ; uk)
)
[s1; : : : ; sn=x1; : : : ; xn]

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 33

(we assume of course that x is di"erent from all the variables xi and does not occur
free in any of the terms uj or si). So let v1; : : : ; vp ∈B∗ and let w∈N〈B∗〉, we must
show that

(Dp
1 �x s

′ · (v1; : : : ; vp))w ∈ N〈C∗〉
and for this purpose, since C∗ is a saturated subset of N, we are in position of applying
Lemma 28 to s′, v1; : : : ; vp and w. Indeed, all these terms are strongly normalizing: let
z be a variable di"erent from x; x1; : : : ; xn and not occurring in any of the terms uj or
si; by inductive hypothesis, since z ∈N0 ⊆N〈B∗〉, we have s′ [z=x]∈N〈C∗〉⊆N〈N〉
and hence s′ ∈N〈N〉 since N is closed under variable renamings, and we also know
that v1; : : : ; vp ∈N and w∈N〈N〉 since B∗ ⊆N. So it suPces to show that
• for all I ⊆{1; : : : ; p} one has

@ms′

@xm
· vI ∈ N〈C∗〉; (7)

where m is the cardinality of I
• and

@ps′

@xp
· (v1; : : : ; vp)[w=x] ∈ N〈C∗〉: (8)

Let us prove (8), the proof of (7) being completely similar. Let z1; : : : ; zn be pairwise
distinct variables, which are distinct from x; x1; : : : ; xn and which do not occur free in
any of the terms s, u1; : : : ; uk , s1; : : : ; sn, v1; : : : ; vp and w. If r is a term, we denote by r̃
the term r [z1; : : : ; zn=x1; : : : ; xn]. Since B∗ is closed under variable renamings, we have
ṽ1; : : : ; ṽp ∈B∗ and w̃∈N〈B∗〉. Moreover, the variables x; x1; : : : ; xn do not occur free in
any of these terms. Therefore, by inductive hypothesis, we have(

@k+ps
@xi1 · · · @xik @xp

· (u1; : : : ; uk ; ṽ1; : : : ; ṽp)
)
[s1; : : : ; sn; w̃=x1; : : : ; xn; x] ∈ N〈C∗〉;

but by our hypotheses on variables and by Lemma 5, this term is equal to (@ps′=@xp) ·
(ṽ1; : : : ; ṽp)[w̃=x]. Since N〈C∗〉 is closed under variable renamings, we get ((@ps′=@xp) ·
(ṽ1; : : : ; ṽp)[w̃=x])[x1; : : : ; xn=z1; : : : ; zn]∈N〈C∗〉, and this latter term is equal to (@ps′=
@xp) · (v1; : : : ; vp)[w=x] since the variables zi are fresh.

Theorem 35. The reduction relation � is strongly normalizing on typeable terms in
�(N).

Proof. Take Erst a closed term t which is typeable of type A. Then by the inter-
pretation lemma we have t ∈N〈A∗〉. But A∗ ⊆N, so t is strongly normalizing. For
a nonclosed term which is typeable in some typing context, any of its �-closures is
strongly normalizing, and so the term itself is strongly normalizing.

Observe that saturated sets are closed under arbitrary intersections. Therefore, it is
straightforward to adapt the proof above and show strong normalization of a second-
order version of the di"erential lambda-calculus.

34 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Weak normalization. The strong normalization theorem can be generalized to arbitrary
commutative semi-rings R satisfying the following properties.
• If ab=0 then a=0 or b=0 (this integral domain property is used in the proof of

Lemma 27).
• For all a∈R, there are only Enitely many b; c∈R such that a= b+ c.
• If a+ b=0 then a= b=0 (positivity).
In particular, given formal indeterminates 71; : : : ; 7n, the semi-ring N[71; : : : ; 7n] of poly-
nomials satisEes these properties, and strong normalization holds for terms whose co-
ePcients belong to this semi-ring.
Now let R be an arbitrary commutative semi-ring and let t ∈�(R). This term t

contains a certain number of coePcients a1; : : : ; an ∈R that we can replace by formal
indeterminates 71; : : : ; 7n, leading to a term t̂ ∈�(N[71; : : : ; 7n]). This term strongly
normalizes to a unique normal form t0 ∈�(N[71; : : : ; 7n]). By replacing in t0 each
indeterminate 7i by its value ai ∈R (and evaluating in R the coePcients of t0 which
are polynomials over the indeterminates 7i), we obtain a term t1 ∈�(R). It is easy to
check that t reduces to t1. The term t0, and a fortiori the term t1, contains no redexes;
indeed, when evaluating the polynomial coePcients in R, some subterms of t0 can
vanish, but certainly, no new non-normal term can appear.
Strictly speaking however, the term t1 obtained in this way is not a normal form

when R is not positive, for the reason we have already mentioned several times that
t0 = t0 + u − u for any non-normal term u, when −1∈R; and this kind of operation
can be applied to any subterm of t1 which is in argument position (of a standard
application, that is, in non-linear position). We can nevertheless say that a restricted
form of weak normalization holds, since any term obtained by reducing t1 will reduce
to t1 (by the Church–Rosser property) and so t1 can reasonably be considered as a
kind of normal form.
When R is positive, this phenomenon cannot occur and t1 is a “true” normal form.

Therefore weak normalization holds in that case, but strong normalization does not:
remember the example (5) with R=Q+.

6. Linear head reduction and the Taylor formula

We prove Erst a version of Leibniz formula which will be useful in the sequel.

Lemma 36. Let t and u be terms and let x and y be distinct variables such that y
not occur free in u. Then

@t[x=y]
@x

· u =
(

@t
@x

· u
)
[x=y] +

(
@t
@y

· u
)
[x=y]:

This an easy consequence of Lemma 5. The assumption y �= x is of course abso-
lutely essential for the assumptions of Lemma 5 to be fulElled (look at what happens
when t= x or t=y). This equation has a clear logical meaning in terms of cut elim-
ination: it expresses how derivation behaves when interacting with a contraction. We

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 35

generalize now this formula to iterated derivatives, and this leads to the announced
Leibniz formula.

Lemma 37. Let t and u be terms and let x and y be distinct variables such that y
does not occur free in u. Then

@nt[x=y]
@xn

· un =
n∑

p=0

(
n

p

)(
@nt

@xp@yn−p : · un
)
[x=y]:

Proof. Induction on n, using the lemma above and the well known identity
(n+1
p+1

)
=(n

p+1

)
+
(n
p

)
.

Lemma 38. Let x be a variable, let Vt= t1 : : : tk be a sequence of terms and let u be a
simple term. Let y be a variable di6erent from x and not occurring free in Vt and in
u. Assume also that x does not occur free in u. Let n¿1. Then

@n(x)Vt
@xn

· un = n
@n−1(u)Vt
@xn−1 · un−1 +

(
@n(y)Vt
@xn

· un
)
[x=y]:

Consequently(
@n(x)Vt
@xn

· un
)
[0=x] = n

(
@n−1(u)Vt
@xn−1 · un−1

)
[0=x]:

Proof. By Lemma 37, we have, since (x)Vt=((y)Vt) [x=y],

@n(x)Vt
@xn

· un =
(
@n(y)Vt
@xn

· un
)
[x=y]

+
n∑

p=1

(
n

p

)(
@n−p

@xn−p

(
@p(y)Vt
@yp · up

)
· un−p

)
[x=y]:

Since y does not occur free in Vt, one has, for p¿1,

@p(y)Vt
@yp · up =

(
@py
@yp · up

)
Vt =

{
(u)Vt if p = 1

0 if p ¿ 1

and this proves the Erst statement. The second statement is a consequence of the Erst
one and of an iterated use of Lemma 8 (if the length of the sequence of terms Vt is 1,
then the lemma applies directly, otherwise some iteration on the length of this sequence
is needed). A more interesting way of proving this statement is as follows.
Let us say that a term s is linear in a variable y if we have

@s
@y

· z = s [z=y]

36 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

where z is some (or equivalently, any) variable not occurring free in s. Applying
Lemmas 4 and 5, one shows that if s is linear in y and y does not occur free in the
term u, then (@s=@x) · u is linear in y, as soon as x is a variable di"erent from y.
We conclude using the fact that if s is linear in y, then s [0=y] = (@s=@y) · 0=0 and

the fact that (y)Vt is linear in y (indeed, y is linear in y and if s is linear in y and y
does not occur free in t, then (s)t is linear in y).

Let ? be a distinguished variable.

Theorem 39. Let s and u be terms of the ordinary lambda-calculus, and assume that
(s)u is �-equivalent to ?. Then there is exactly one integer n such that (Dn

1s · un)0 ���

0, and for this value of n, one has

(Dn
1s · un)0 �� n!?:

This means that the Taylor formula

s(u) =
∞∑
n=0

1
n!
(Dn

1s · un)0

holds in a rather trivial way in that particular case. This formula always holds, seman-
tically, at least in the simply typed case (see [10]), but is not so easy to interpret in
general.

Proof. If the term t is solvable (i.e. has a head normal form, i.e. has a Enite head
reduction), we call the head normal form of t the result of the head reduction of t. We
recall the well-known lambda-calculus property that if t and v are any terms such that
(t)v (resp. t [v=x]) is solvable, then so is t. We write t &k t′ when t head reduces in k
steps to t′. Another standard lambda-calculus property that we shall also use without
further mention is that if t &k t′ then t [v=x] &k t′ [v=x].
Assume s and u are as in the theorem. Thus s is solvable. For any term v we denote

by v′ the term v [u=x]. We deEne a number L(s; u) by induction on the length of the
head reduction of (s0)u to ? where s0 is the head normal form of s. Without loss of
generality we may assume that s is in head normal form. There are two cases:
• s= �x ? where x �=?;
• s= �x (x)Vt for some sequence of terms Vt such that (u)Vt ′ �� ?.
In the former case we set L(s; u)= 0. In the latter case we deEne s+ by

s+ = �x(u)Vt:

Note that s+, u satisfy the assumptions of the theorem because (s+)u�� (u)Vt ′ �� (s)u.
Let s+0 be the head normal form of s+; then s+0 = �x v for some v. Let k be the
length of the head reduction of s+. With these notations we have (u)Vt &k v. Therefore
(s)u &1 (u)Vt ′ &k v′. On the other hand (s+0)u &1 v′ so that the length of the head reduction
to ? of (s)u is strictly greater than the length of the head reduction of (s+0)u to ? as
soon as k¿0.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 37

If k¿0 then by induction L(s+; u) is deEned and we set

L(s; u) = L(s+; u) + 1:

If k =0 then (u)Vt is a head normal form, thus u is a variable. Since (u)Vt ′ �� ?,
the sequence Vt is empty and u=?. Hence s= �x x and s+ = �x ?. In this case we set
L(s; u)= 1. We note that, since from the Erst case of the induction L(s+; u)= 0, we
still have L(s; u)=L(s+; u) + 1.
We now prove the result by induction on L(s; u), which happens to be the announced

value of n. If L(s; u)= 0, this means that s�� �x ?. Then

(Dn
1s · un)0 ��

(
@n?

@xn
· un
)
[0=x] =

{
0 if n �= 0

? if n = 0 = L(s; u)

since x �=?. Assume now that L(s; u)¿0 so that s�� �x (x)Vt. If n=0 then

(Dn
1s · un)0 �� (s)0 �� (0)Vt = 0:

Otherwise if n¿1 we have

(Dn
1s · un)0 ��

(
@n(x)Vt
@xn

· un
)
[0=x] �� n

(
@n−1(u)Vt
@xn−1 · un−1

)
[0=x]

by Lemma 38. So we have

(Dn
1s · un)0 �� n(Dn−1

1 s+ · un−1)0:

But by inductive hypothesis

(Dn−1
1 s+ · un−1)0 ��

{
(n− 1)!? if n− 1 = L(s+; u) = L(s; u)− 1;

0 otherwise

and the result is proved.

The number L(s; u) counts the substitutions of the successive head variables of s in
the linear head reduction of (s)u ([7]). The head variable of s is the only occurrence
of variable in (s)u which may be considered as linear. So L(s; u) may be viewed
as counting the number of linear substitutions by u that are performed along the
reduction. The theorem enforces the intuition that the derivation operator implements
linear substitution in lambda-calculus.
Going now in the opposite direction, we want to conclude this section by computing

the Taylor expansion of the outermost application in the well known nonsolvable term
(�)�, where �= �x (x)x. This expansion is

∞∑
n=0

1
n!
(Dn

1� · �n)0:

Let tn =(Dn
1� · �n)0. Up to reduction, we have tn =((@n(x)x=@xn)·�n)[0=x]. By Lemma 38

(with u= � and Vt= x), we get (again, up to conversion) tn+1 = (n + 1)tn for each n.

38 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

But clearly t0 = 0 and hence tn =0 for each n. Hence the Taylor expansion of (�)�
is 0. This re2ects of course the fact that this term is unsolvable, and this observa-
tion enforces the idea that the Taylor expansion provides an approach to term ap-
proximations similar in spirit to the BFohm tree approach, the role of 8 being played
by 0.

Acknowledgements

We would like to thank especially one of the referees of this paper, who made many
insightful comments on an earlier version of this work and derived us to clarify several
delicate syntactical aspects of the di"erential lambda-calculus.

Appendix A. Short survey of the semantics

In [10], the Erst author introduced a semantics of linear logic based on KFothe spaces
which are locally convex topological vector spaces of a quite particular kind, in some
sense similar to coherence spaces. We present here shortly a simpliEed version of this
semantics, based on the notion of 5niteness spaces, a “discrete” analogue of KFothe
spaces. This model will be presented more thoroughly in [11].
Given a set I and a subset F of P(I), let us denote by F⊥ the set of all subsets of

I which have a 5nite intersection with all the elements of F. A Eniteness space is a
pair X =(|X |; F(X)), where |X | is a set (the web of X) and F(X) is a subset of P(|X |)
which satisEes F(X)= F(X)⊥⊥ and whose elements are called the 5nitary subsets of
|X |. Given a Eniteness space X , we deEne R〈X 〉 as the subset of all x∈R|X | such
that the set |x|= {a∈ |X | | xa �=0} belongs to F(X). The set R〈X 〉 has clearly a module
structure (all operations being deEned pointwise), since the union of two Enitary sets
is still Enitary. 6

The main purpose of these deEnitions is that, given x∈R〈X 〉 and x′ ∈ R〈X⊥〉, it is
possible to deEne 〈x; x′〉 ∈R as

∑
a∈|X |xax

′
a since this sum is Enite 7 by deEnition (of

course, X⊥ is deEned as (|X |; F(X)⊥)). In this way, the pair (R〈X 〉; R〈X⊥〉) carries a
well-behaved duality (each module can be seen as the topological dual of the other for
a suitable linear topology in the sense of [16], but this needs not be explained here).
A morphism from X to Y (Eniteness spaces) is a linear function from R〈X 〉 to R〈Y 〉
which is continuous for the topologies mentioned above. But these morphisms admit a
more concrete matricial characterization as we shall see.
We can use Eniteness spaces for interpreting all the formulae of propositional linear

logic and we brie2y survey now the corresponding space constructions and their main
properties. Let X and Y be Eniteness spaces.

6 The point of the condition F(X)= F(X)⊥⊥ is that, for checking that u⊆ |X | is Enitary in X , one has
only to check that u has a Enite intersection with all the elements of F(X)⊥; therefore if u and v are Enitary
in X , so is u ∪ v.

7 More precisely, it has only Enitely many nonzero terms.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 39

• The direct sum X ⊕Y and the direct product X &Y of X and Y are the same space
whose web is |X |+ |Y | (disjoint union) and where a subset of this disjoint union is
Enitary if each of its restrictions to |X | and |Y | is Enitary (in X and Y , respectively).
InEnite direct sums and products can be deEned as well but do not coincide anymore.

• The tensor product of X and Y is the space X ⊗ Y whose web is |X | × |Y | and
where a subset of that web is Enitary if its two projections are Enitary (in X and Y
respectively). It can be checked that the subset F(X ⊗ Y) of P(|X | × |Y |) deEned
in this way satisEes indeed that F(X ⊗ Y)⊥⊥ = F(X ⊗ Y).

• The linear function space X (Y is deEned as (X ⊗ Y⊥)⊥. An element of R〈X (Y 〉
should be seen as a matrix indexed over |X | × |Y |, with coePcients in R. Given
A ∈ R〈X (Y 〉 and B∈R〈Y (Z〉, the product of matrices BA∈R|X | × |Z| is given by
(BA)a; c =

∑
b∈|Y |Aa;bBb; c. Due to the fact that |A| ⊆ F(X (Y) and |B| ⊆ F(Y (Z),

this sum indeed is always Enite and it is not hard to check that BA∈R〈X (Z〉.
The identity matrix I ∈R〈X (X 〉 is deEned as usual by Ia; b = �a; b and is the neutral
element for matrix composition. In this way we have deEned a category of Eniteness
spaces, where a morphism from X to Y is an element of R〈X (Y 〉, called linear
category in the sequel.

If A∈R〈X (Y 〉 and x∈R〈X 〉, we can deEne A · x∈R〈Y 〉 by (A · x)b =
∑

a∈|X |Aa;bxa,
thus allowing one to see any element of R〈X (Y 〉 as a (linear and continuous 8)
function from R〈X 〉 to R〈Y 〉. This map from matrices to linear and continuous functions
turns out to be a bijection.
This linear category is a model of multiplicative-additive linear logic, that is, a

?-autonomous category with Enite sums and products (see [3]). In particular, all the
operations we have deEned are functorial. Of course, we need more for getting a
model of full linear logic, or of simply typed lambda-calculus. We have to deEne an
exponential.
Given a Eniteness space X , we deEne !X as follows: |!X | is the set of all Enite

multi-sets of elements of |X |, and if U is a collection of such multi-sets, we decide
that it is Enitary (that is, belongs to F(!X)) if the union of the supports 9 of the
elements of U is Enitary in X . It turns out that this collection F(!X) of subsets of |!X |
satisEes our basic requirement, namely F(!X)⊥⊥ = F(!X).
This operation on objects can be turned into an endofunctor on the linear category

described above by deEning its action on matrices: if A∈R〈X (Y 〉, it is possible
to deEne !A∈R〈!X (!Y 〉. We do not describe this operation here, we just give its
fundamental property (which completely characterizes it). Given x∈R〈X 〉, we can
deEne x! ∈R〈!X 〉 by (x!)m = xm =

∏
a∈|X | x

m(a)
a (since m is Enite, this product is well

deEned; by m(a), we denote the number of occurrences of a in the multi-set m). Then
we have (A · x)! = !A · x!. It turns out that this endofunctor has all the structure required
for interpreting the “bang” modality of linear logic (basically: it is a comonad and there
is a natural isomorphism between !(X &Y) and !X ⊗ !Y).

8 With respect to the linear topologies we mentioned above on R〈X 〉 and R〈Y 〉.
9 The support of a multi-set m is the set of all the elements which occur at least once in m.

40 T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41

Given ’∈R〈!X (Y 〉 and x∈R〈X 〉, we can set

’(x)=’ · x! = ∑
b∈|Y |

(∑
m∈|!X |

’m;bxm
)

eb ∈ R〈Y 〉;

where (eb)b∈|Y | is the “canonical basis” of R〈Y 〉 deEned by (eb)b′ = �b; b′ so that the
elements of !X (Y can be considered as power series from R〈X 〉 to R〈Y 〉. In view
of all the structure presented so far, it is a standard fact in the semantics of linear
logic that the category whose objects are the Eniteness spaces and where a morphism
from X to Y is an element of R〈!X (Y 〉, and equipped with a notion of composition
deEned in terms of the comonad structure of the “!” functor, 10 is a cartesian closed
category, that is, a model of simply typed lambda-calculus: the Kleisli category of the
comonad “!”. See for instance [4].
We Enish this short presentation by a word about di"erentiation. Due to the fact

that Enite sums and products coincide, we can build a canonical linear morphism M
from !X ⊗ !X to !X (we apply the ! functor to the co-diagonal of the sum X ⊕X
which is an element of R〈X ⊕X (X 〉=R〈X &X (X 〉; seen as a linear map from
R〈X 〉×R〈X 〉 to R〈X 〉, this morphism is just addition). By pre-composing a power
series ’∈R〈!X (Y 〉 with M , we obtain an element of R〈!X ⊗ !X (Y 〉, that is, a
two-parameter power series, which is characterized by (x; y)=’(x + y). We have
on the other hand a linear morphism @0 from X to !X which actually embeds 11 X
into !X ; this morphism is the matrix given by @0a;m = �[a]; m. If ’ is as above, by pre-
composing @0 with ’ in the linear category, we get a linear morphism from X to Y
which is easily seen to be the derivative of ’ (considered as a power series) at 0.
Now it should be clear how to use M and @0 to compute the derivative of ’ at any
point x of R〈X 〉, and not only at 0: translate ’ using M and then use @0 for derivating
the obtained power series y → ’(x + y) at 0.
Cartesian closedness of the Kleisli category and these operations M and @0 are

the basic ingredients for interpreting the di"erential lambda-calculus in this category.
A type will be interpreted as a Eniteness space (implication on types being interpreted
by the operation (X; Y) → !X (Y on spaces), and a closed term of type A will be
interpreted by an element of R〈X 〉 where X is the space interpreting A.

References

[1] T. Altenkirch, N. Ghani, C. McBride, Derivatives of containers, in: M. Hofmann (Ed.), Proc. Sixth
Typed Lambda Calculi and Applications Conf, Lecture Notes in Computer Science, Vol. 2701, Springer,
Berlin, 2003, pp. 16–30.

[2] H. Barendregt, The lambda calculus, in: Studies in Logic and the Foundations of Mathematics, Vol.
103, North-Holland, Amsterdam, 1984.

[3] M. Barr, ∗-autonomous categories, in: Lecture Notes in Mathematics, Vol. 752, Springer, Berlin, 1979.

10 This notion of composition coincides of course with the standard composition of the power series
associated with morphisms.
11 In the sense that there is a morphism d from !X to X such that d ◦ @0 = Id; this latter morphism d

corresponds to the dereliction rule of linear logic and is part of the comonad structure of the ! functor.

T. Ehrhard, L. Regnier / Theoretical Computer Science 309 (2003) 1–41 41

[4] G. Bierman, What is a categorical model of intuitionistic linear logic? in: M. Dezani-Ciancaglini, G.D.
Plotkin (Eds.), Proc. Second Typed Lambda-Calculi and Applications Conf, Lecture Notes in Computer
Science, Vol. 902, Springer, Berlin, 1995, pp. 73–93.

[5] G. Boudol, The lambda calculus with multiplicities, Tech. Report 2025, INRIA Sophia-Antipolis, 1993.
[6] G. Boudol, P.-L. Curien, C. Lavatelli, A semantics for lambda calculi with resource, Mathematical

Structures in Computer Science 9 (4) (1999) 437–482.
[7] V. Danos, H. Herbelin, L. Regnier, Games semantics and abstract machines, in: Proc. Eleventh Symp.

on Logic in Computer Science, IEEE Computer Society Press, Silver Spring, MD, 1996.
[8] V. Danos, L. Regnier, Head linear reduction, 2003, submitted for publication.
[9] N.G. De Bruijn, Generalizing automath by means of a lambda-typed lambda calculus, in: D.W. Kueker,

E.G.K. Lopez-Escobar, C.H. Smith (Eds.), Mathematical Logic and Theoretical Computer Science,
Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1987, pp. 71–92. (Reprinted
in: Selected papers on Automath, Studies in Logic, vol. 133, pp. 313–337, North-Holland, Amsterdam,
1994).

[10] T. Ehrhard, On KFothe sequence spaces and linear logic, Mathematical Structures in Computer Science
12 (2002) 579–623.

[11] T. Ehrhard, Finiteness spaces, Preliminary version accessible from http://iml.univ-mrs.fr/
∼ehrhard/, 2003.

[12] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.
[13] J.-Y. Girard, Coherent banach spaces: a continuous denotational semantics, Theoretical Computer

Science 227 (1999) 275–297.
[14] A. Kriegl, P.W. Michor, The convenient setting of global analysis, in: Mathematical Surveys and

Monographs, vol. 53, American Mathematical Society, Providence, RJ, 1997.
[15] J.-L. Krivine, Lambda-Calculus, Types and Models, Ellis Horwood Series in Computers and Their

Applications, Ellis Horwood, Chichester, UK, 1993 (Translation by RenZe Cori from French 1990 edition
Masson).

[16] S. Lefschetz, Algebraic topology, in: American mathematical society colloquium publications, Vol. 27,
American Mathematical Society, Providence, RI, 1942.

[17] C. McBride, The Derivative of a Regular Type is its Type of One-Hole Contexts, Unpublished,
electronically available, 2000.

http://iml.univ-mrs.fr/~ehrhard/
http://iml.univ-mrs.fr/~ehrhard/

	The differential lambda-calculus
	Introduction
	Presentation
	Outline
	Related work

	Syntax
	Substitution operators

	Differential reduction
	The Church--Rosser property

	Simply typed terms
	Strong normalization
	Linear head reduction and the Taylor formula
	Acknowledgements
	References

