
JOURNAL OF ALGEBRA 7, 343-362 (1967) 

Stable Range in Commutative Rings 

DENNIS ESTES’ 

AND 

JACK OHM* 

Louisiana State University, Baton Rouge, Louisiana 70803 

Communicated by Marshall Hall, Jr. 

Received January 20, 1967 

Let R’ be a ring with identity. Bass’s main criterion for determining the 
stable range of R’ is the following theorem ([I], p. 29, Theorem 11.1): 

If R’ is a finite R-algebra, R being a commutative ring with identity, such 
that Spm (R) is Noetherian, then dim Spm (R) = d implies d + 1 defines 
a stable range for GL(R’). 

Here Spm (R) denotes the maximal spectrum of R. (We review the defini- 
tions in detail in Section 1.) 

In Section 2 we reprove Bass’s theorem for the case R = R’, showing 
that it is then an elementary result. Section 3 is concerned with establishing 
the inequality dim Spm (R) < dim Spm (R’), under certain assumptions on 
these rings. We apply this result in Section 4 to show that for any integer 
n > 0 there exists an integral domain D such that dim Spm (D) = n and 1 
is in the stable range. The device used in this construction is the Kronecker 
function ring. The Kronecker function ring is a Bezoution domain having 1 
in the stable range, and in Section 5 we give a characterization of such rings. 
We also show in Section 5 that a principal ideal domain with 1 in the stable 
range is Euclidean. 

Section 6 is devoted to some general theorems on homomorphisms and 
quotient rings, and these results are used in Section 7 to investigate over- 
rings R (contained in the rational numbers) of the integers 2. For any semi- 
local overring R of 2, dim Spm (R) = 0; so 1 is in the stable range. At the 
other extreme, we prove that 1 is not in the stable range of any finite extension 

1 Present address: California Institute of Technology, Pasadena, California. 
* Partially supported by a grant from the National Science Foundation. 

343 



344 EWES AND OHM 

of 2. Intermediate to these two extremes we exhibit classes of rings which 
have 1 in the stable range and classes of rings which do not. 

Up to this point our main concern has been with stable range 1. In Section 8 
we venture slightly further to the question of when 2 is in the stable range of 
Z?[X], where R is a principal ideal domain and X is an indeterminate. The 
main result here asserts that unimodular sequences (al , a2 , a), with ai E REX] 
and a E R, are stable. 

1. NOTATION AND BASIC CONCEPTS 

We shall use R to denote a commutative ring with identity, and we observe 
the conventions of Bourbaki ([2], Chapt. 5, p. 9) regarding such rings. An 
ideal of R means an ideal # R. If A is an ideal of R, J(A) denotes the Jacobson 
radical of A, i.e., the intersection of the maximal ideals containing A. C de- 
notes containment and < denotes proper containment. 

Let J = {ideals A of R 1 J(A) = A}. By a chain of ideals of length n, we 
mean a sequence of ideals A, < A, < ... < A,. The Krull dimension of R, 
written dim R, is the sup of the lengths of chains of prime ideals of R; whereas 
the dimension of the maximal spectrum, denoted by dim, R, is the sup of the 
lengths of chains of prime ideals from J. Then dim, R < dim R. 

For any ideal A of R, a prime ideal P in / which contains A is called a 
component of A if P is minimal among the primes of J which contain A. 
Every A E J is the intersection of its components. We say that R is J-Noethe- 
rian if the ideals of J satisfy the ascending chain condition. R is J-Noetherian 
implies that every ideal of R has only finitely many components (and the 
statements are equivalent when dim, R is finite). Moreover, any prime of J 
which contains A also contains a component of A. 

We refer the reader to Grothendieck ([5], p. 6, Paragr. 14) for a proper 
perspective of these concepts. There both dim and dim, are treated simultane- 
ously by considering spec (R) = {prime ideals of R, with Zariski topology} 
and the subspace Spm (R) consisting of the maximal ideals of R. Our set J 
corresponds to the collection of closed subsets of Spm (R), and dim, R 
is the combinatorial dimension of Spm (R) in Grothendieck’s terminology. 

We shall call a sequence (a, ,... , a, , a,,,), s >, 1, of elements of R stabZe 
if there exist b, ,..., b, E R such that 

(a, t..., as, as,,) = (al + ha,,, I..., as + b?9+l).2 

‘I’he sequence (al ,..., a, , a,,,) is called unimodular if (al ,..., a, , a,,,) = R. 

2 We use (a, ,..., ~2,+~) to denote both a sequence and the ideal generated by the 
elements of the sequence; but the context will always make our meaning clear. 
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We shall say that n is in the stable range of R if for every s > n, every uni- 
modular sequence (al ,..., a, , a,,,), ai E R, is stable. [With some misgivings, 
we have abbreviated Bass’s terminology ([I], p. 14). He says “n defines a 
stable range for GL(R)“]. It follows that if n is in the stable range of R, then 
also m is in the stable range of R for any m >, n. 

2. BA& THEOREM FOR R = R’ 

Let a, ,..., a,+l be elements of R, and let P, ,..., P, be prime ideals of R 
such that Pi I# P, for i # j. 

LEMMA 2.1. If a,,, $ PI ,..., P, , then for any j, 1 < j < s, there exist 
6, E R such that if a; = as + b,a,+l , then a; $ PI ,..., P, . 

Proof. Suppose aj E P, ,..., Pi , $ Pi+l ,..., P, , i > 0. Choose 
b, 6 Pi+1 ,..., P, , $ P, ,..., P,; and let a; = ai + bja,+l . Such a b, exists, 
since we can take b, E Pi,l * *** . P, and #PI v ‘.. v Pi. 

COROLLARY 2.2. Let R be J-Noetherian. Then there exist b, ,..., b, E R 
,such that if a; = ai + b,a,+, , then for any i 1 < i < s, any component of 
(a, , 4 ,..., aiel) which contains a; also contains a,,, . 

Proof. Apply Lemma 2.1 s times. 

THEOREM 2.3. Suppose R is J-Noetherian and dim, R < s. Then any 
unimodular sequence (al ,..., a,,,), ai E R, is stable. 

Proof. Let a0 = 0 and choose b, as in 2.2. Suppose (as , a; ,..., a:) < R, 
and let P be a component of this ideal. a,,, $ P since 

(a, , 4 , . . . . a, , a,+d = (aI , . . . . a,+,) = R. 

Therefore 

(ao, 4 ,..-, a:) 1 (a,, a; ,..., a:.--l) r> ..* 3 (a0 , a:) 3 (aO) 

implies there exists a sequence of primes P 1 Psel 1 .** r> PI 3 P,, , where Pi 
is a component of (a0 , a; ,..., a:). By 2.2, the inclusions are proper, a con- 
tradiction to the hypothesis that dim, R < s. Q.E.D. 

The above theorem is the case of Bass’s theorem when R = R’ (in the 
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terminology of the introduction).3 The device used in its proof is analogous 
to the process of cutting down with hypersurfaces in algebraic geometry. 

3. AN INEQUALITYFOR dim, 

Let R and R’ be commutative rings with identity, and suppose we are 
given a homomorphism f : R + R’ (i.e., R’ is an R-algebra). If A’ is an 
ideal of R’, we let (A’)C =f-l(A’); and if A is an ideal of R, we let 
A” = f (A) . R’. By the lying over and going up conditions, we mean the 
following: 

(LO): For any prime ideal P of R, there exists a prime P’ of R’ such that 
(P’)” = P. 

(GU): For any primes PI C P, of R, if Pi is a prime of R’ such that 
(Pi)” = P, , then there exists a prime Pi of R’ such that Pi C Pi and 
(Pi)” = Pz . 

LEMMA 3.1. Suppose (GU) holds for R + Ii’, and let P’ be a prime ideal 
of R’ and P = (P’)“. Then (J(P’))c = J(P). Moreover, J(P) = P implies there 
exists a prime ideal Pi of R’ such that Pi 3 P’, (Pi)” = P, and /(Pi) = Pi . 

Proof. Let a E ( J(P’))c, and let M be a maximal ideal containing P. By 
(GU), there exists a prime Pi 3 P’ such that (Pi)” = M. Let M’ be a maximal 
ideal of R’ such that Pi C M’. Then a E (M’)C = M, so (J(P’))” C J(P). 
Conversely, let M’ be a maximal ideal containing P’. Choose M to be a maxi- 
mal ideal of R such that (M’)c C M. By (GU) there exists a prime ideal M; 
of R’ such that M’ C M; and (M;)” = M. But then M’ = M;; so also 
(M’)c = (M;)c = M. Therefore a E M implies a E (M’)C. Hence 
J(P) = (JW)c. 

For the second assertion, choose Pi to be maximal with respect to the 
properties that Pi r) P’ and Pi n f (R - P) = 4. Then Pi is prime by [12], 
p. 4, (2.1), and (Pi)” = P. But also, by the first assertion, (J(P;))” = J(P) = P; 
so by the maximality of Pi , we have Pi = J(P;). 

THEOREM 3.2. Suppose (GU) and (LO) hold for R -+ R’. Then 
dim, R Q dim, R’. 

* The proof given here has recently been extended [by Ohm and Pendleton, Commu- 
tative rings with Noetherian spectrum-to appear] to an elementary proof of Bass’s 
theorem for the case where R’ is an arbitrary commutative R-algebra. The missing 
link is provided by their theorem: if dimJR is finite and R is J-Noetherian, then any 
Unite integral extension of R is also J-Noetherian. 
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Proof. Let PO < **- < P, be a chain of prime ideals of R such that 
J(P,) = Pi . By applying (LO) + 3.1 + (GU), one constructs a chain of 
primes Pi < a-* < PA of R’ such that (Pi)” = Pi and J(Pi) = Pi. Q.E.D. 

4. THE KRONECKER FUNCTION RING 

Let D be an integrally closed domain with quotient field K, and let X be 
an indeterminate. The Kronecker function ring of D is a domain D* having 
quotient field K* = K(X), and Krull ([9], pp. 558-561) gives the following 
construction for D*: 

Write D = n R, , where {R,) is the set of all valuation rings bf K which 
contain D. Let V* denote the trivial extension of v to K(X) [i.e., define 
~*(a,-, + a,X + *.* + a,Xa) = infi=o,...,n{v(ui))], and let R,* be the valua- 
tion ring of v*. Then D* = n R,, . 

Krull’s main theorem on D* asserts that any valuation ring of K* which 
contains D* is one of these R,* . Moreover, 

PROPOSITION 4.1. If a:, a$ ED*, then (a:, a:) = (at + X%z) for 
some m > 0. 

Proof ([9], p. 559). If uf = a#, u$ = a,/d, with a,, us, d E D[XJ, 
choose m > deg u,(X). Q.E.D. 

Thus, in particular, it follows that 1 is in the stable range of D*, and also 
that D* is Bezoutian (i.e., every finitely generated ideal is principal). Since 
every Bezoutian domain is also a Priifer domain (i.e., every quotient ring 
with respect to a prime ideal is a valuation ring), the set {R,,} then coincides 
with the set of rings D& , where P* is a prime ideal of D*. (For these con- 
cepts, see for instance [2], Chapt. 7, pp. 94-95). 

In [a (or [A), Jaffard defines the valuative dimension of a domain D, 
denoted dim, D, to be the sup of the ranks of the valuation rings of K which 
contain D. Moreover, he shows that dim, D > dim D, and when D is Noethe- 
rian, then = holds. For a Priifer domain D*, = also obviously holds. Thus, 
for the Kronecker function ring D*, we have dim D < dim, D = dim, D* = 
dim D*; and when D is Noetherian, then the first equality is also valid. 

We continue to use D to denote an integrally closed domain having D* 
as its Kronecker function ring. 

THEOREM 4.2. D-t D* satisfies (LO) and (GU). 

Proof. (LO): If P is any prime ideal of D, there exists a valuation ring 
R, of K which is centered on P (see [12], p. 37, (11.9)). Then RR,+ is centered 
on a prime P* of D* lying over P. 
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(GU): Suppose PI C Pz are prime ideals of D and PC is a prime ideal of 
D* such that (Pf)” = P, . Let Rf be a valuation ring of K* centered on PF, 
and let R, = Rf n K. Then R, is a valuation ring of K centered on P, . 
There exists a valuation ring R, of K such that R, C R, and R, is centered 
on Pz (apply [12], p. 35, (11.4)). Then th e corresponding valuation ring R$ 
of K* has the property that R$ is centered on a prime Pz of D* lying over 
P,; and R,* C Rf implies PF C PC. 

COROLLARY 4.3. dimJ D < dim, D*. 

Proof. Use 3.2 and 4.2. Q.E.D. 

From the’ above corollary and the preceding discussion, we can conclude 
that if D is Noetherian and dim D = dim, D, then dim, D* = dim D 
also. Consider then D = k[X, ,..., X,], K a field and the Xi indeterminates. 
Dim D = dim, D = n, so dim, D* = n for this ring. Thus, we have proved 
the following: 

THEOREM 4.4. For any n > 0 there exists a domain D* such that 

dim, D* = n and 1 is in the stable range of D*. 

Instead of K[X, ,..., X,], one could more generally choose D to be any 
Noetherian Jacobson ring of dim n (see Krull [ZZ]). 

We conclude this section by giving an example to show that < can occur 
in 4.3. 

EXAMPLE 4.5. Of a domain D having Kronecker function ring D* such 
that dim, D = 0, dim D = dim, D* = 1, and dim D* = 2. 

Let K = K(x, y), k a field and x, y indeterminates; and let v be the x-adic 
valuation of K over k(y). Then R, is the additive direct product of k(y) with 
iV7, , where A4, is the maximal ideal of R, . Let D = k + ikf, . D is l-dim, 
quasi-local, with maximal ideal M, . (See [IO], pp. 670-671.) Therefore 
dim, D = 0. 

If {Rvl) is the set of nontrivial valuation rings of K(y) over K and R, denotes 
the inverse image of R,,+ under the canonical homomorphism f: R, -+ R,/MO , 
then the R, are rank-2 valuation rings of K which are contained in R, . 
Since n R,,,, = k, n R, = D. Moreover, if Ru is a nontrivial valuation ring 
of K such that D C R, , then R, = R, or R, = R, for some w. For, R, 
must have center M, on D, since M,, is the only prime # 0 of D. Then 
[CR%, $ R, implies l/feM,,CM,,, which is impossible. Therefore 
R, C R, , so R, = R, or f (R,) = Rul is a nontrivial valuation ring of 
k(y) over k and hence equals Rwl for some w1 . But then R, = R, since 
M, =ker(f)CR,. 

It follows that dim, D = 2 and hence that dim D* = 2. Therefore 
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dim, D* < 2. To show dim D* = 1, we need only see then that 
n MW* = M,,* , where M,* , M,,t are the centers of the R,* , R,t , respec- 
tively, on D*. 

First observe that any unit of R, has value # 0 for only finitely many U, 
since the wr have a similar finiteness property in K(y). Thus, also any finite 
set of units of R, will be units in almost all R, . Let then d* E n Mm. . 
d* = a/b, a, b E K[X]; and we may assume a, b E R,[Xj and that at least one 
coefficient of a or b is a unit in R, . Then ~*(a) > 0 implies d* E M,* , 
and we are done; so we may assume that v*(a) = 0. Then u*(b) = 0 also, 
and hence both have at least one coefficient which is a unit in R, . But by 
our initial remark, we can find a w which has value 0 at all coefficients of a, b 
which are units in R, , and which then has value > 0 at the other coefficients. 
Therefore w*(a) = w*(b) = 0; so w*(d*) = 0, a contradiction to d* EM,,,, . 
Thus, d* E M,, and n M,* = M,, . Q.E.D. 

Note that this example gives a D* which is of dim, = 1 and which is 
J-Noetherian. Whether there exist Kronecker function rings of arbitrary 
dimJ which are J-Noetherian is an open question.4 

5. BEZOUTIAN DOMAINS WITH 1 IN THE STABLE RANGE 

A Bezoutian domain is a domain in which every finitely generated ideal 
is principal. As we have observed, the Kronecker function ring is an example 
of such a domain. Moreover, we saw in 4.1 that any 2-sequence of a Kronecker 
function ring is stable. The next proposition shows that this property 
characterizes Bezoutian domains with 1 in the stable range. 

PROPOSITION 5.1. The following are equivalent for an integral domain D: 

(i) 1 is in the stable range of D and D is Bezoutian. 
(ii) For any a, , a2 E D and b E (al , a2), there exist c, d E D such that 

b = c(al + da,). 
(iii) For any a I , a2 E D, there exists d E D such that (a, , a,) = (al + da,). 

Proof. (i) =S (ii): b E (a, , az) = (a) implies ai = aja, b = b’a, where 

(a ; , ai) = D. Therefore 1 is in the stable range of D implies there exists 
d E D such that u = a; + da; is a unit. Therefore bu = b’(a, + du.J, so 
b = (b’/u) (a, + da,). 

(ii) 3 (iii): a2 E (a, , aJ implies there exist c, d E D such that 
a2 = c(al + da,). But then a, = (1 - cd) (a, + da2), so (a, , a,) = (a, + da,). 

4 William Heinzer, Louisiana State University, has recently shown the existence 
of Kronecker function rings of arbitrary dirnJ which are J-Noetherian. 
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(iii) 3 (i): If (al ,..., a,,,) is any ideal of D, then there exist bi E D such 
that (ai + b,us+l) = (ui , a,,,), i = l,..., s. Therefore 

(a, ,..., a,,,) = (a, + bus+1 >..., us f b,as+d. Q.E.D. 

It would be interesting to know if there is some statement similar 
to (i) o (iii) which holds for the case of a domain having stable s-sequences, 
s > 2. 

COROLLARY 5.2. Let D be a Bezoutian domain with quotient field K, and 
let D’ be a domain such that D C D’ C K. If 1 is in the stable range of D, then I 
is in the stable range of D’. 

Proof. D’ = DS for some multiplicative system (abbreviated henceforth 
to m.s.) S of D(see [4], p. 99, Corollary 2.4). For any elements u; , ui E D’, 
if b’ E (a; , a;), then there exist nar , m2 E S such that b’ = b/m, , u: = q/ml , 
b, a, E D, and such that m,b E (ur , ua). Therefore by 5.l(ii), there exist c, d E D 
such that m,b = c(ul + da,). Thus, b’ = (c/mz) (a; + da;); so again by 5.1, 
1 is in the stable range of D’. Q.E.D. 

In particular, 5.2 implies that 1 is in the stable range of every overring 
(in K*) of a Kronecker function ring. See Corollary 6.8 for other examples 
of rings with the property that 1 is in the stable range of RS whenever 1 is 
in the stable range of R. 

We conclude this section by considering the case of a Noetherian Bezoutian 
domain, i.e., let now D be a principal ideal domain. For any a # 0 in D, we 
canwriteu=up?..*.*# s*, where u is a unit of D and pi are distinct primes. 
Then we define 1 a / to be the integer XI1 tj . Then 1 a 1 depends only on a 
and 1 a I> 0, ] ub 1 = / a 1 + I b 1. 

THEOREM 5.3. Let D be a principal ideal domain. Then 1 is in the stable 
range of D implies D is a Euclidean domain with I 1 as its Euclidean function. 

Proof. Let a, , s a ED with us # 0. By 5.l(ii) there exist c, d E D such 
that a2 = c(ar + da,). Therefore I ua I = I c 1 + I a, + da, I , so either 
1 a, + da, 1 < 1 us I or I c I = 0; and if I c I = 0, then c is a unit and us I a, . 

Q.E.D. 

One sees immediately that the converse to this theorem is not valid; for 
example, take D = K[x], K an algebraically closed field. 

COROLLARY 5.4. A semilocal principal ideal domain is Euclidean. 
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6. HOMOMORPHISMS,QUOTIENT RINGS, AND STABLE UNIMODULAR~AIRS 

We denote 4?(R) the multiplicative group of units of R. If A is an ideal of R, 
then the canonical homomorphism R + R/A induces a homomorphism 
P)~ : 4(R) -+ @(R/A). We denote the kernel v,;;l(l) by X(A). The following 
lemma is immediate from the definitions. 

LEMMA 6.1. vA is surjective for every ideal A of R if and only if every 
unimodular sequence (a, , aJ, a, E R, is s&e. 

As an application of this observation, one sees that 1 is not in the stable 
range of the integers 2 by taking A = (p), p a prime # 2,3; and similarly, 
if k is a field and X an indeterminate, then that 1 is not in the stable range of 
k[Xl is seen by taking A = (1 - X2). The following proposition and its 
corollaries shed further light on this phenomenom. 

PROPOSITION 6.2. Let A, B be ideals of R, and suppose that every unimodular 
sequence (al , a2), ai E R, is stable. Then X(A) C X(B) implies either (i) ;4 C B, 
OY (ii) A $ J(B) andf or every maximal ideal M such that B C M and A $ M, 
we have RIM gg Z/(2). 

Proof. Suppose first that A C J(B) and A $ B. Then there exists 
a E A, $ B; and no maximal ideal can contain (1 + a, AB). Thus, 
(1 + a, AB) = R, so 1 + a E~(R/AB). By 6.1, there exists u E&(R) such 
that u = (1 + a) mod AB. Therefore u = 1 mod A and u + 1 mod B, so 
u EX(A) and g%(B), a contradiction. 

Suppose then that A $ J(B), and let M be a maximal ideal such that 
B C M, A q! M. If RIM L$ Z/(2), then there exists c E R such that 
c + 0,l mod M. Since A q! M, there exists a E A such that a = 1 mod M; 
and then c = ac mod M. Therefore ac = 0 mod A and ac + 1,O mod M; 
so if d = 1 - ac, then d = 1 mod A and d + 0, 1 mod M. Therefore 
d 4 M, so (d, AM) = R and q&d) E @(R/AM). By 6.1 there exists u E Q(R) 
such that u = d mod AM. Therefore u = 1 mod A and u + 1 mod M. 
Hence X(A) $X(M), so, a fortiori, X(A) $X(B). Q.E.D. 

Note that B C A implies Y(B) C X(A). Thus, 

COROLLARY 6.3. Suppose any unimodular sequence (al , a.J of R is stable, 
and let A, B be ideals of R such that B < A C J(B). Then s(B) < z(A). 

COROLLARY 6.4. Suppose any unimodular sequence (a, , a,) of R is stable, 
and suppose a is a nonunit of R which is not a O-divisor. Then .X(a) is infinite. 

Proof. (a) > (a”) > ***, since a is not a O-divisor. Therefore by 6.3, 
X(a) > ,X(a2) > se* . Q.E.D. 
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Thus, if 1 is in the stable range of a domain D and D is not a field, then 
Q(D) must be infinite. This immediately excludes a number of domains 
from having 1 in the stable range, e.g. the integers of an imaginary quadratic 
field (see [3], p. 96, Theorem 3). We shall show at the end of Section 7 that, 
in fact, 1 is not in the stable range of any ring of algebraic integers. {Thus, 
Bass’s assertion ([I], p. 18) that 1 is in the stable range of any ring of algebraic 
integers can be corrected by inserting the word “not”.} 

In 6.2, case (ii) actually can occur, as one sees by taking R = Z/(6), for 
example. Then 1 is in the stable range of R since dim, R = 0. If B = (0), 
then A’(B) = 1. However if A = (3), then X(A) = 1 also. This example 
also shows that the assumption in 6.4 that a is not a O-divisor is necessary in 
order to insure that X(a) be infinite. 

We now expand 6.1 into a criterion for stability of unimodular pairs of a 
quotient ring of R. Let then S be a m.s. in R, and let h : R + R, be the 
canonical homomorphism. The saturation of S, denoted Y(S), is given by 
Y(S)={a~Rlth ere exists b E R such that ab E S}. Y(S) may also be 
characterized by Y(S) = {u E R 1 h(u) E%(R~)}. Moreover S is said to be 
saturated if Y(S) = S. In particular then, Y(S) contains all units of R; 
and Ryes) = Rs{actually canonically isomorphic ([2], Chapt. 2, p. 154). 

We define the quasi-saturation of S, denoted b(S), by 2(S) = {a E R [ there 
exists m E S such that am E S}. Then S C d(S) C Y(S), and these inclusions 
can be proper (take R = Z, S = (6*, i > 2}, for example). 

LEMMA 6.5. Y(S) = L?(S) if and only ;f %(R,) = {h(mJh(mJ, mi E S}, 
[i.e., if and only if the multiplicative group generated by h(S) is ‘%(Rs)]. 

Proof. 2(S) is always contained in Y(S), so we need only consider the 
lemma for Y(S) C 2(S). 

j: Let U’ E @(Rs). Then there exists u E R, m ES such that 
u’ = h(u)/h(m); and then h(u) E Q(R,). Therefore u E Y(S) C b(S), so there 
exists mi E S such that mlu = ma E S. Then U’ = h(m,)/h(mm,). 

+: Let a E g(S). Then h(u) E %(Rs); so h(u) = h(mJh(m,), mi E S. 
Therefore h(m,u - m,) = 0, so there exists m E S such that m(m,u - q) = 0. 
Hence mmzu E S and a E A!(S). 

COROLLARY 6.6. If S is a multiplicative group (and hence C @c(R)), then 
Y(S) = .2(S) ifund only ;fS = 4(R). 

The m.s. S is said to be prime to the ideal A if bm E A for some m ES 
implies b E A (i.e., no element of S is congruent to a O-divisor mod A). Let 
fA denote the canonical homomorphism R -+ R/A, let R’ = R/A, and let 
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S’ =f”(s). If s . p 1s rime to A, we then have the following commutative 
diagram ([16J, p. 226): 

h h ’ 

T I 
Rfi R’ 

THEOREM 6.7. Let S be a m.s. of R such that 9(S) = Y(S). Then every uni- 
modular sequence (x1 , x2), xi E Rs , is stabZe if and onZy ;fS( fA(S)) = 9’( fa(S)) 
for every ideal A of R such that S is prime to A. 

Proof. 5: If U’ E %(R&), then there exists u E%(R~) such that 
f’(u) = u’, by 6.1. Since 3(S) = Y(S), u = h(mJh(m,), mi E S, 
by 6.5. Therefore u’ = f ‘(u) = f ‘h(m,)/f’h(m,) = h’(m;)/h’(m;), where 
rni = fA(mi) E S’. Thus, Y(S’) = 9(S) by 6.5. 

-G: Any ideal of Rs is of the form h(A) Ii,, where A is an ideal of R 
which is prime to S. If u’ E@(R~,), then u’ = h’(m;)/h’(m& ml E S’, by 6.5. 
There exist mi E S such that fA(mi) = rn; . If u = h(mJh(m,), then u E %(R,) 
and f’(u) = u’. Now apply 6.1. Q.E.D. 

Note that the above proof shows that the implication + is actually valid 
for every ideal A such that A n S = @. 

We give the following corollary as an immediate application of this theo- 
rem. When R is Noetherian, the corollary includes the result of 5.2. 

COROLLARY 6.8. If dim A < 1 and every nonunit (# 0) of R is in only 
finitely many prime ideals, then 1 is in the stable range of R implies 1 is in the 
stable range of Rs for any m.s. S. 

Proof. We may take S saturated, so S = d(S) = Y(S). dim, Rs < 
dim Rs < dim R < 1 implies 2 is in the stable range of Rs , by 2.3; and hence 
we need only show that unimodular pairs are stable. If A # 0 is any ideal 
prime to S, then fA(S) consists of non-O-divisors in R/A. But R/A is quasi- 
semilocal of dim 0 so every nonunit of R/A is a 0-divisor,-see [12], p. 19, 
(7.1). Therefore fA(S) C@(R/A). But S is saturated implies @(R) C S; 
and 1 is in the stable range of R implies 4(R) --+ @(R/A) is surjective so 
VW CfA(S). Thus, @(R/A) =fA(S), and the corollary follows from 6.6 
and 6.7. Q.E.D. 
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In 6.7 one might hope to conclude that unimodular pairs are stable when- 
ever 9(fA(S)) = 9’(fA(S)) for every prime ideal A such that S is prime to 
A rather than for every A such that S is prime to A. That this is not the case 
can be seen from R = K[X], K an algebraically closed field and X an inde- 
terminate. Take S = {aXi, i > 0, cx f 0 E R}. Then S is saturated and 
R, = k[X, l/Xl. Moreover, fA(S) = k - (0) for every prime ideal A of R 
such that S is prime to A, so 3’(fA(S)) = Y(fA(S)) for any such prime 
A # 0. However 1 is not in the stable range of Rs: 

Proof. Let P = (X - l), A = P2. Then fA(S) = {a[nX - (n - l)] / n 
an integer > 0, (Y # 0 in K}. (1 + X)2 = 4X mod A, so 1 + X E 9’( fA(S)). 
Suppose then 1 + X E 9( fA(S)), so that there exist m, , m2 E S with 
m,(l + X) = m2 mod A. Then there exist integers rzi , tla > 0 and fl E K 
such that (2n, + 1) X - 2n, + 1 = p[n,X - (n, - l)]. Therefore 
2n, + 1 = /3n2 and - 2n, + 1 = p( - n2 + 1). Eliminating /3,2n, = 2n, - 1, 
which is impossible. Thus, 9( fA(S)) < 9’( fA(S)), so 1 is not in the stable 
range of Rs . Q.E.D. 

7. OVERRINGS OF 2 

We consider now overrings of the integers Z which are contained in the 
rationals Q. We shall refer to such rings merely as “overrings of Z”, under- 
standing thereby a ring CQ. By a prime in Z we shall, of course, mean 
an integer p > 1 such that (p) is a prime ideal. If {p,J is a collection of primes, 
then the saturated m.s. generated by the {pll} WI ‘11 consist of all integers of the 
form fp, * **a * p, , pi E {pa}. Such a set of primes uniquely determines an 
overring Zs of Z. Conversely, any overring of Z is a quotient ring with respect 
to a m.s.; and if the m.s. is taken to be saturated, then it is uniquely specified 
by the primes which it contains (see, for example, [4]). 

There are two possible extremes among the overrings: (i) S contains 
almost all primes of Z (i.e., all but a finite number of primes), (ii) S contains 
only finitely many primes. If S is of type (i), then the Z, are exactly the 
semilocal overrings; while if S is of type (ii), the Z, are exactly the finite 
extensions of Z. As one might then expect, 1 is in the stable range of 
Z, of type (i) (since dim, Z, = 0); and we prove in 7.2 that 1 is not 
in the stable range of any Z, of type (ii). However, we shall construct 
examples of overrings which are neither of type (i) or (ii) and which show 
that for such rings both possibilities can occur. Thus, the problem of a 
complete classification of overrings of Z having 1 in the stable range remains 
open. 

Finally note that for any overring R of Z, dim, R < dim R < 1; so by 
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2.3, 2 is in the stable range of R. Therefore we need only check unimodular 
pairs in determining if 1 is in the stable range of R. 

If a is a nonunit of 2, we denote the canonical homomorphism Z-+ Z/(a) 
by fa . The next theorem provides examples of overrings which do not have 1 
in the stable range. 

THEOREM 7.1. Let S be a saturated m.s. of 2. If there exists a nonunit 
a E Z such that fa(S) < %(Z/(a)), then 1 is not in the stable range of Zs . 

Proof. fa(S) is a multiplicative group in Z/(a), since m’ Ef&S) implies 
(m’>i = 1 for some i; and then (m’)i-l = (m’)-l E f&S). Moreover, 

fa(S) C@(Z/ ) Pl ( ) P a im ies a is rime to S. Therefore, since fa(S) # @(Z/(a)) 
by hypothesis, we can apply 6.6 and 6.7 to conclude that 1 is not in the stable 
range of Zs . 

COROLLARY 7.2. 1 is not in the stable range of any finite extension of Z. 

Proof. Any finite extension of Z is of the form Z, , where S is the satur- 
ated m.s. determined by primes p, ,..., p, . By 7.1 it is thus sufficient to see 
that there exists a prime p #pi such that & 1,pr ,...,pt do not generate, 
mod (p), the multiplicative group of the field Z/(p). Since this group is cyclic, 
it suffices then to exhibit a primep > 2 such that - 1, pr ,..., p, are quadratic 
residues mod (p). For example, by quadratic reciprocity ([3], p. 19), a prime 
of the form p = 1 + 8p, * *es *p,m works. Q.E.D. 

Note that the proof of 7.1 only uses the fact that ‘@(Z/(a)) is a torsion 
group; so it seems likely that at least part of what follows will extend to 
more general rings. 

We can apply 7.1 to construct other Zs which do not have 1 in the stable 
range. For example, if a is a prime > 3, let s(a) be the saturation of the 
m.s. generated by {primesp 1 p = 1 mod (a)}. Then m E S(a) implies 
m 3 f 1 mod (a); so 2 E%(Z/(U)), $fa(S). Thus, 1 is not in the stable range 
of Z, . One can more generally, for a given u, take all primes congruent to 
the elements of a proper m.s. of @(Z/( )) u containing - 1, and then let S be the 
saturation of the m.s. generated by these primes. Again by 7.1, 1 is not in the 
stable range of Z, . 

We now turn to the construction of overrings which do have 1 in the 
stable range. 

LEMMA 7.3. Let D be a principal ideal domain and let S be a saturated 
m.s. of D. Then the following are equivalent: 

(i) 1 is in the stable range of Ds; 
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(4 if (a, , a2) is a unimodular sequence of D such that the ai are relatively 
prime to every element of S, then there exist m E S, b E D such that 
aim + a,b E S. 

Proof. (i) q (ii): immediate. 

(ii) + (i): Since dim, Ds < dim Ds < 1, we need only check that 
unimodular pairs are stable. Suppose then (a;, a;) = Ds , u: E Ds. Then 
al = ui/mi , ai E D, mi E S. (a1 , a2) = (a); and (a, , u2) D, = Ds implies 
a, , a,) n S + 0, so a E S since S is saturated. Now write ai = binin, where 

tb, , b,) = D and rzi E S, and the bi are relatively prime to the elements of S. 
By (ii) there exists m E S, b E D such that b,m + b,b E S. Therefore, multi- 
plying by n,n,a, a1(mn2) + a,(bn,) E S. Thus, a, + (bn,/mn,) a2 is a unit 
of Ds. 

THEOREM 7.4. Suppose S is a saturated m.s. of Z and there exist a # 0, 
u E Z such that 

(0 f&Y 1 @W(4>l 
(4 f&4 E @(Z/(4>, 

and p 3 u mod (a) implies p E S for almost all primes p. Then 1 is in the stable 
range of Z, . 

Proof. By 7.3 it is sufficient to show that for every unimodular sequence 

(aI y 2 a ) of Z such that the ai are relatively prime to the elements of S there 
exist m E S, b E Z such that aim + a,b E S. By Dirchlet’s theorem there 
exists a prime p, = a, mod a2 such that p, { a. If p, E S, we are done; so 
suppose p, $ S. Since p, f a, p, is a unit mod (u). Therefore by (i), there 
exists m, E S such that (plu) m1 = 1 mod (a). Then (plmr, uas) = Z; so 
again by Dirchlet’s theorem, there exists a prime p not in the finite excep- 
tional set of (ii) such that p,m,p * 1 mod (aaJ. Then a fortiori 
p,m,p = 1 mod (a); so p = u mod (a), and hence by (ii), p ES. Thus, 
ai = 1 mod (a2) is the required expression. Q.E.D. 

Observe that any semi-local overring of Z satisfies the conditions of 7.4; 
for if p, ,...,pt are the primes which are nonunits of such a ring, then one 
need only choose a = p, * a** * p, . Theorem 7.4 can be used to construct 
other Zs having 1 in the stable range as follows: 

Let a be an integer > 1, and choose u E Z such that fa(u) E @(Z/(a)). Let 
S be the saturation of the m.s. generated by all primes p such that 
p 3 u mod (a) and enough other primes p, ,..., p, such thatfa(S) = @(Z/(a)). 
Then 1 is in the stable range of ZS . 

Instead of taking all primes p = u mod (a), we could delete a finite number 
of such primes; and 7.4 would still apply. In such a way, one constructs an 



STABLE RANGE IN COMMUTATIVE RINGS 357 

infinite descending chain of overrings of 2 having 1 in the stable range; and 
moreover, such a chain of overrings can be chosen to have intersection 2. 

Let us consider a special case. For example, let a = 5, and let S be the 
saturation of the m.s. generated by 2 and all primes p such that p z 1 mod (5). 
ThenS={fl,f2,fp}prl mod (5). By the above, 1 is in the stable 
range of .Zs . Note however that by 7.1, 1 is not in the stable range of Zs, , 
where S’ is the saturation of the m.s. generated by the primes = 1 mod (5). 
Moreover, 2, = Z&]; so Z, is even a finite extension of Z,,: In particular 
then, 7.2 does not even generalize to overrings of Z. 

This last observation can be put more generally: 

COROLLARY 7.5. Suppose S is a saturated m.s. of Z and there exist a # 0, 
u E Z which satisfy (ii) of 7.4. Then 1 is in the stable range of a$nite extension 
Of-G- 

Proof. Let p, ,...,pr be a set of primes < a which with 1 generate 
@(Z/(a), mod (a); and let S’ be the saturation of the m.s. generated by S 
and the pi . By 7.4, 1 is in the stable range of Z,, = Zs[ l/p, *** p,]. 

Q.E.D. 

We conclude this section by proving that 1 is not in the stable range of any 
ring of algebraic integers. 

PROPOSITION 7.6. Let D be an integrally closed domain with quotient field 
K, and let D’ be the integral closure of D in a finite separable extension K’ of K. 
Then there exists an integer n such that if (a, b) is a unimodular sequence of D 
which is stable in D’, then (an, b) is stable in D. 

Proof. By going to a possibly larger field, we may assume that K’ is a 
normal extension of K. (a, b) is stable in D’ implies there exists d’ E D’ 
such that a + d’b is a unit of D’. Therefore, if di , i = 1 ,..., n, are the con- 
jugates of d’ over K, then ny=, (a + djb) = a” + db is a unit of D. Moreover, 
dEKnD’=D;sowearedone. 

COROLLARY 7.7. 1 is not in the stable range of the ring of algebraic integers 
of any fkite algebraic number field. 

Proof. Take a = 2 and 6 an odd integer which does not divide an f 1. 
Q.E.D. 

Throughout this section we have used specific properties of the integers, 
e.g., Dirchlet’s theorem, or that Z/(a) is finite. Question: Do analogous 
results exist for K[X] ? 
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8. STABLE TRIPLES 

If R is a principal ideal domain and X is an indeterminate, then 
dim, R[X] < dim R[X] < 2; so 3 is always in the stable range of R[xJ. 
We are concerned in this section with the question of when 2 is in the stable 
range of R[X]. To begin, we let R denote an arbitrary ring (of course, com- 
mutative with identity), and we fix the following notation: Ifs, t are positive 
integers with s < t, M(R, s x 5) is the set of s x t matrices with entries 
from R, GL(R, s x t) is the set of s x t matrices whose s x s subdetermi- 
nants generate the unit ideal and SL(R, s x s) denotes the s x s matrices 
of determinant 1. By an elementary matrix of M(R, s x s), we mean a 
matrix of the form I + aEij , i # j, where I = s x s identity matrix and 
E,j = s x s matrix with 0 everywhere except in the (i, j)th place, and 1 there. 

If Ml E M(R, st x t) and M, E M(R, sa x t), we shall use the notation 
M, x Ma to denote the matrix of M(R, (sl x ss) x t) having its first si rows 
equal to those of Ml and its bottom ss rows equal to those of M, . We now 
consider the following condition on R, which merely says that every uni- 
modular s-vector, s > 2, can be filled out to an s x s matrix of determinant 1: 

(CONDITION s*). For every a E GL(R, 1 x s) there exists 
ME M(R, (s - 1) x s) such that OL x ME SL(R, s x s). 

Any R satisfies 2*. Moreover, Kaplansky ([??I, p. 469, Theorem 3.7) 
has shown that a Bezoutian domain satisfies s* for all s; Seshadri [24] has 
shown that R[X] satisfies s* for all s when R is a principal ideal domain and 
X an indeterminate; and it is a famous open question of Serre ([13], 23, p. 12) 
whether K[X, ,..., X,] satisfies s* for all s (the answer being “yes” 
for 72 = 1,2). 

PROPOSITION 8.0. If R satisfies s* and s is in the stable range of R, then R 
satis$es t* for all t > s. 

Proof. If ai = ai + ab, , i = l,..., s, then 

det[n; L “]=det[-: { -: J 
1 8 

Q.E.D. 

EXAMPLE. Let K = reals, K, = K[X, ,..., X,], rr > 2, and let 
ki = k[X, ,..., X,J(pn(X)), where p,(X) = Xrs + *me + X,2 - 1. It is 
known ([15], p. 270) that k; does not have property 1z* for tl # 2,4, 8; and, 
in fact, the unimodular vector (Xi ,..., XA) of kh cannot be filled out to an 
n x n matrix of determinant 1 for these n. 
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CLAIM. If (Xl ,. . . , X, , p,J is stable in k, , then k,, does not haoe property 
nr*, for all m >, n > 2. 

Proof. First observe that (Xi ,..., X, ,p,) is stable in k, implies that 
(Xl ,--*, X, , pm) is stable in k, , for all m 2 n; for 

(Xl + %p, ,-*., -G + a&J C (4 + alAL 9...y X + a,& , X+, ,..., &J 

if ai E k, . Thus it is sufficient to show that k, does not have property n*. 
Suppose k, does have n*. Since (Xi ,..., X, ,p,,) is stable, there exist 

ai E k, such that if Yi = Xi + a,p, , then 1 E (Yr ,..., Y,). By n*, (Yl ,..., Y,) 
can be filled out to a matrix of determinant 1 over k,; and then reducing 
mod P, , we can fill out (Xi ,..., Xh) to a matrix of determinant 1 in kk . 
By our introductory remarks, this implies n = 2, 4, or 8. However, 

1 =det[” & yn]=&t [-I $ -F f’ xl 
. . . 

Xl --* & xn,, Pn,, 

= det 
M 0 0 

X,+,a, **- x,+,a, 1 0 ’ 
--a, *** --a, 0 1 I 

the sequence of events being (i) col. (n + 1) + X,,, col. (n + 2), 
(ii) col. (n + 1) c-) col. (n + 2), (iii) row (n + 1) t) row (n + 2), (iv) 
row (n + 1) - X,+, row (n + 2). Now reduce modp,,, to conclude that 
x; )..., Xk,, can be filled out to a matrix of determinant 1 over k,+1 . HOW- 
ever, n + 1 # 2, 4, 8; so this is impossible. Q.E.D. 

Since any ring has property 2*, we conclude: 

COROLLARY 8.1. (X1 , X, , Xi2 + Xaz - 1) is not stabZe in k[X, , X,l, 
k the real numbers. 

If a is a nonunit of R, the homomorphism R -+ R/(a) induces a map of 
M(R, s x t) --+ M(R/(a), s x t). We shall use ’ for elements of R/(a); and 
when we remove the ’ with no reservations, we are merely denoting an arbi- 
trary element of the inverse image. 

PROPOSITION 8.2. SL(R, s x s) + SL(R/(a), s x s) is surjective if and 
only if GL(R, (s - 1) x s) + GL(R/(a), (s - 1) x s) is surjectiwe. 

Proof. a: If M’ EGL(R/(u), (s - 1) x s), then 

M’ x 0~’ E SL(R/(a), s x s) 
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for some cy’ E M(R/(a), 1 x s). N ow lift to an element IM X a: E SL(R, s X s). 
Then M is the required matrix. 

e: Let M’ E SL(R/(a), s x s). M’ = Mi x cl, M; E GL(R/(a), 
(s - 1) x 4, 01’ E M(R/(a), 1 x s). By hypothesis, M; lifts to an 
element &Zr E GL(R, (s - 1) x s). Then Ml x 01 = M mod (a) implies 
det (Ml x a) = 1 + ba, b E R. But since Ml EGL(R, (s - 1) x s), there 
exists ,5 E M(R, 1 x s) such that det (M, x /3) = b. Therefore 
det (Ml x (CX - a/3)) = 1, so Ml x (a - up) is the required matrix. Q.E.D. 

At the present we are only concerned with these things for s = 2. Since 
GL(R, 1 x s) --f GL(R/(a), 1 x ) s is surjective if and only if every unimodu- 
lar sequence (a, ,..., a,, u) is stable, we have the following corollary. 

COROLLARY 8.3. SL(R, 2 x 2) + SL(R/(u), 2 x 2) is surjective ;f and 
only if every unimodulur sequence (al , u2 , a) is stable, ai E R. 

LEMMA 8.4. If M = (mii) E GL(R, s x s), then (a, ,..., a, , u) is stable 
if und only if (a; ,..., a:, a) is stable, where u; = C mijuj . 

Proof. If bi = C mijbi , then 

(u; + ub; ,..., a: + ubb) C (u, + 4 ,..., us + ah). 

The reverse inclusion follows by using M-l. 

LEMMA 8.5. Let (a,, u2 , u) be a unimodular sequence from R, and let 
n be an integer > 1. Then (al , a2 , a) is stable implies (al , a2 , an) is stable. 

Proof. (al , u2 , u) is stable implies there exist b, , 6, E R such that 
(al + b,a, a2 + b,u) = R. Then det M = 1 for some 

M= 
[- 

4 4 
u2 - bp a1 + b,u 1 ’ diER. 

Let (4 , 2 a’) be the result of applying M to the column vector (ur , az). Then 

I 

a; , ai) = (1,O) mod (a); and by 8.4, (a, , as , u) is stable if and only if 
a;, u; , a) is stable. But u; = 1 - era, u; = c,a, ci E R. Therefore let 

bi = - c;“-‘ca + a. Then a;1 + b;a” = a*+r mod (a;); so any maximal ideal 
containing (a; , ui + b@) also contains (u; , ai , a). Thus (a; , a; + b&z%) = R. 

LEMMA 8.6. If (a, ,... , a, , a) is a unimodulur stable sequence and b 1 a, 
then (a, ,..., a, ,b) is also stable. 

Proof. (al + b,u,..., a, + b,a) = R and a = u’b imply 

(al + @,a’) b,..., u8 + (b,u’) b) = R. 
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COROLLARY 8.7. Let (al , a2 , b> . . . . * b>) be a unimodular sequence. 
Then(a,,a,,bp.... * 62) is stable if and only zf (al , a2 , b, * **a * b,) is stable. 

Proof. 3: Apply 8.6. 

-=: (al, a,, 4 * --. * b,) is stable implies (a, , a, , bit * . . . * bst) is stable, 
by 8.5. Choosing t sufficiently large and applying 8.6, we get 
(ai , us , bp * . . . * b:) stable. Q.E.D. 

THEOREM 8.8. Let R be a principal ideal domain, and let (al , a2 , a) be a 
unimodular sequence with a,, a2 E R[Xj and a E R. Then (a,, a2, a) is stable. 

Proof. By 8.7 it is sufficient to consider the case where 
a = p, - . . . * p, , p, distinct primes; and by 8.3 we must show that 
for such an a, SL(R[XJ, 2 x 2) -+ SL(R[Xj/(a), 2 x 2) is surjective. Since 
R/(a) g K1 0 ... @ K, , ki a field, R[Xj/(a) E K,[Xl 0 *a* @ k,JXJ Thus, 
R[X]/(a) is a direct sum of Euclidean domains. By a well known proof, if E is 
a Euclidean domain, then any element of SL(E, s x s) can be written as a 
product of elementary matrices; and this property immediately extends to a 
direct sum of Euclidean domains. In particular then, any element of 
SWLXI W, 2 x 2) is a product of elementary matrices. Since an element- 
ary matrix lifts trivially we can then lift any element of SL(R[XJ(a), 2 x 2) 
to an element of SL(R[XJ, 2 x 2). Q.E.D. 

Remark. Conversations with William Heinzer after this paper was 
prepared have led to the following observation: 

Let Do , D be integral domains with quotient fields K,, , K respectively. 
Assume D, is integrally closed and D is integral over D, and that [K : K,,] 
is finite. Then the argument of 7.6 yields: if a, b ED,, and (a, b) is stable 
in D, then (a’~, b) is stable in D, for some q < [K : &,I. Applying the 
normalization theorem ([Z6], Vol. 2, p. 200), we have the following theorem: 
If a domain D is a finitely generated extension of afield k such that the trans- 
cendence degree of D over k is > 1, then 1 is not in the stable range of D. 
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