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Abstract. Starting from a theorem on the distance matrix of a projective linear code, one intro-
duces an axiomatic definition of a strongly regular normed space. It is then shown that every
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this yieids a one-to-one correspondence between two-weight projective codes over prime fields
and some strongly regular graphs.

§ 1. Introduction

The Hamming distance plays an important role in the study of linear
codes, both for practical reasons, when codes are used for detecting or
correcting errors on a noisy channel, and for more theoretical reasons.
For instance, as shown by MacWilliams [9], two linear codes are equiv-
alent under generalized permutation on their coordinates, if and only if
they are isomorphic as normed spaces, when the Hamming weight is
taken as the normn.

In this paper, we define the distance matrix of a code to be the ma-
trix whose (i, j) entry is the Hamming distance between the ith and the
i code vectors. For some linear codes, called projective codes, it turns
out that this matrix satisfies remarkable equations, very similar to those
satisfied by the adiacency matrix of a strongly regular grapl (cf. for in-
stance Seidel [15]). Taking these properties as axioms, we introduce
the concept of a stromzlv regular normed space, and we sirow that every

ace is isomorphic to some projective code (when the
t is taken as the r.orm).
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Some classes of two-weight cyclic codes have been discovered by
McEliece [12] and Delsarte and Goethals [6]. However, no systematic
investigation of such codes has yet been made. In $33 and 5 of the
present paper, we establish a one-to-one correspondence between two-
weight projective codes over prime fields and a large class of strongly
regular graphs; some results on tha: subjcet will appear in a forthcoming
paper. In fact, our derivation of strongly regular graphs from two-weight
codes is similar, especially in the binary case, to a method introduced by
Goethals and Seide! [8] for quasi-symmetric designs.

The foll~wing notations are used throughout the text: the transpose
of a matrix A is denoted by AT ; the matrices /, and J,, are the unit ma-
trix and the ali-one square matrix of order », respectively. The additive
group of a linear space V is denoted by (¥, +). The notations for group
characters are the same as in the author’s recent paper on Abclian codes

[s].

§2. Hamming metric of linear codes

We first introduce some definitions. Let ' = GF(g) be the Galois field
of q elements, where ¢ is a prime power, and iet F" denote ihe n-dimen-
sional linear space of all n-tuples over £. For a vector

a=@V,a?,. ... &), dPeF,

of F", and for an element X in F, we define N(A, a) as the number of

coordinates @), 1 < i< n, being equal to A. As usual, the number of -
nonzero coordinates

(7 wy@= 2 N\, @)

A#0

is called the Hamming weight of a. This function wy has the classical
properties of a norm. For future use, we now recall them:
Let V be a linear space over F, and let w be a mapping from ¥ into

R’, the set of nonnegative real numbers. Then w is called a norm if it
satisfies the three following conditions:
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(A1) (w@)=0)= (a=0), Vae V,

(A2) w@+l)<w@+wp), VYa,beV,

(A3) w(a)=w(a), YacV, A€F, \+0.
If & is a positive integer not exceeding n, we define an (n, k) linear code
over F to be a k-dimensional subspace of F”. The linear code C wili be
called a projective code if any two of its coordinates are.linearly inde-
pendent or, equivalently, if the minimum weight of the dual code of C
is at least equal to three. A generator matrix for such acodeisa k X #
matrix, of rank k, whose columns correspond to » distinct projective
points in PG(k — 1, q). Hence £ < n < (¢* — 1)/(4 — 1) for any (n, k)
projective code. i

The distance matrix of a code C is the symmetric matrix D, of order
v = g¥, given by

-~

D=[dy(a, b)a,beCl,

where dy; (a, b) = wy (a — b) is the Hamming distance between the code
vectors a and b.

Theorem 1. The distance matrix cf any (n, k) projective code over
F = GF(q) satisfies -

2) DJ,=mqg*~'J,,

v
(3) Dr+g*'D=m(m+ ¥,
withv=gqk, m=n(q - 1).

Proof. Let A be the v X n matrix over F whose rows are the vectors of a
given (n, k) projective code C, and let B denote the v X m matrix

4 B=[A,wA, w?A, .., w241,

where w is a primitive root in F.

For g = p®, p prime, e 2 1, we define ¢ to be a homomorphic map-
ping from (F; +), the additive group of F, onto the group of complex
p"’ roots of unity, so that ¢ is a nonprincipal characier of (F, +). It is
well known that one has
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 q,ifA=0,
(5) 2 plaN) = |
«EF L0,ifA#0,

for any A in F'

We first show ihat the column vectors of the matrix ¢(B) are ortho-
gonal to each other, and to the all-one vector, over the field of comple\a
numbers, i.e.,

(6) ¢(~BT)¢(B) vl ,
(7) ¢(—BTYI, =0,

where $(X is the matrix whose entries are the ¢-iinages of the corres-
ponding entries of X. Indeed, for 1 < i,j < n, the (i, /) entry g; ; of the
first member of (6) is equal to

8ij=¢(by; — by )t d(by;—by)+..+o(b,; — b,

where b, ( is the (7. 5) entry of B. Since C is assumed to be a projective
code, the columns of B are not zero, and are distinct from each other.
On the other hand, the rows of B form a linear spice over F. Hence, for
fixed indices i and j, { # j, it is easily seen that eac clement of F appears
v/q times among the differences b, ; — &, ;, 1 < r < v. Ea. (6) then fol-
lows from the property (5) of ¢. The proof of (7) is very similar.

Maxt, we show that the distance matrix D of the code C is given by

(8) $(B) $(—BT)=mJ, — qD.

Ind-eéd, according to (4) and the definition of N(A; a}. one has the fol-
lowing expression for ihe (7, j) entry %; ; of the first member of (8):

= 2 NQO\q :~)‘¢.>\)+¢(wm+ 4+ o(wI2N),
AEF

where g; is the i™ row of 4, i.e., the i code vector of C. From (1) and
(5), with N(O, a) = n - wy(a), one readily obtains
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hi,j =n(g - 1) - qwy(a; — a]-) ,

which is equivalent to (8), with m = n(q — 1).
Finally, the desired formulas (2) and (3) follow from (6), (7) and (8),
by straightforward matrix calculation.

A code C for which the Hamming weight wy (@) takes s + 1 distinct
values, namely wy =0, wy, w,, ..., w,, is called an s-weight code, and
Wy, Wy ..., W, are called the weights of C. Let N; be the number of code

vectors of weight w; in C; the following result is an immediate conse-
quence of Theorem 1.

Corollary 1. (Assmus and Mattson [1], MacWilliams [10], Pless [13]).
The weight distribution of an s-weight (n, k) projective code satisfies

$

= k=1
2z Nyw;,=mq* ™",
i=1

§

= k-2
2 Now? =m(m+ 1)gk~2 .
i=1

Proof. Use (2) and the equality between the diagonal elements in both
members of (3).

Let us denote by ML(k, g) any ((¢* — 1)'(q — 1), k) projective code
over F. It can be shown that ML(k, g) is ¢quivalent to the so called ma-
ximal length FSR code (cf. Berlekamp [2]). In fact, as shown by Mac-
Williams [9], ML(k, q) can be d=fined, up to equivalence, as the unique
1-weight projective code of dimension k over F, the weight being
wy =gk1.

1 .

For a subfield F' = GF(q') of F, with g = q"*, let  be an isomorphic
mapping from the field F onto a code ML(#, g'), both considered as‘t-
dimensional spaces over F'. Then, if C is an (#, k) linear code over F.let

C' = y(C) be the y-image of C, i.e., the set of vectors

(v(@®), v(@?), ..., v(a™)) ,
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where a is a code vector of C. It is easily seen that ' is an (n', k') linear
code cver F', with n'(¢’' — 1) =n(q — 1), k' = kt. Moreover, the weights
w; of C' are given by

w;=wilq', i=1,2,..5,

when wy, w,, ..., w, are the weights of C. It can also be shown that C’
is a proje. tive code over F' whenever C is a projective code over F. In
agreemer.t with this, the reader could verify that the distance matrix
D' = qD/q' of C' sarisfies (2) and (3), where ¢ and k are replaced by g’
and %', respec:ively, whenever D itself satisfies (2) and (3).

-§3. Graphs derived from two-weight codes

First, we recall a definition due to Seidel [ 15] for the strongly regu-
lar graphs introduced by Bose [4]. The adjacency mat:ix of an undi-
rected graph on v vertices (without loops and multiple edges) is the
square matrix A, of order v, whose elements are ¢;; =0, and ¢; ; =@;; =
—1 or+1, for i # j, according as the ith and j™ vertices are adjacent or
not. The graph is called strongly regular if its adjacency matrix satisfies
the two following equations:

&) AJ, =pol, ,
(10) A -p )4 —py )=~ 1+pp;3)J,,

wiiere pg is an integer, 1 —v < py <v —1,and p,, p, are some real
nuinbers. It has been proved (cf. Seide! [15]) that, except for graphs
with pg =0, p; = —p, =t v!/2, the eigenvalues g, and p, of 4 are odd
integers of different signs As usual, we assume p, < 0< Py -

Let C be a 2-weight linear code of dimension % over 7, and let w 1
w, be the weights of C, with w; < w,. To C we associate a graph I'(C),
on v = g¥ vertices, as follows. The vertices of the graph are identified -
with the code vectors, and two vertices are taken as adjacent or not, ac-
cording tc the Hamming distance between the corresponding vectors
being w; or w,. The adjacency matrix 4 of I'(C) is clearly given by
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(1) (wy ——wl)A=2D-—(wl +w2)(.lv -1,),
where D is the distance matrix of the code C.

Theorem 2. Let C te a 2-weight (n, k) projective code over F. Then the
associated graph I'(C), on v vertices, is strongly regular; the eigenvalues
p; of its adjacency matrix are given by

(12) (W —wy)pg = 2mv/q — (wy +wy)(v — 1),
(13) Wy —wlp; =w, +wy — (1+(=D /g, i=1,2,
withv=g*, m=n(g - 1).

Proof. With the above values of pg, p;, p5, equations (2) and (3) are
transformed into (9) and (10), when A is defined by (11). This is

easiest verified by identification of the corresponding eigenvalues in
both members of (11). Hence Theorem 2 is a consequence of Theorem 1.

Corollary 2. Let C be a 2-weight projective code over F = GF(p°®), p
prime. Then the weights of C are of the form

(14) Wl=upt9 W2=(U+3-)pt,

for suitable integers uand t,u 2 1,t 2 0.

Proof. From (13), with ¢ = p¢, we get (w, — wy)(p; — p3) = 2¢% 1,
where the p; are the eigenvalues of the adjacency matrix of I'(C). Since
$(p; — p,) is an integer, w, — w, has to be a power of p. Hence (14)
rollows from (13) withu = }(p; — 1).

Example 1. Let n be an integer, 2<n< g — 1,and let A;, \,, ..., A, be
n distinct nonzero elements of . We take the matrix
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as a generator matrix for an (n, 2) code C over F. Obviously, C is a 2-
weight projective code, with wy, =n — 1, w, = n. Using Theorem 2, we
get the following values for the parameters of the associated strongly
regular graph I'(C) on v = g2 vertices:

po=@—1Ng+1-2n), py=2n—1, p,=2n—-q)— 1.

In fact, I'(C) is a Latin square grapb L, (q) of order g (cf. Bose [4] and
Mesner [i.]).

Example 2. Let C be the (11, 5) ternary Golay code, i.e., the “unique”
(11, 5) codzs over GF(3) having the weights w; = 6, w, = 9 only (cf.
Pless [14]). Since C is a projective code, Theorem 2 produres a strongly
regular graph, on v = 243 vertices, whose parametars are

p0=~-12. pl=5, p2:4-49.

In fact, I(C) is closely related to anciker graph, on the same number of -
vertices, recently derived by Berlekamp et al. [3] from the (11, 6) ter-
nary Golay code. This relationship is a particular case of a nice duality
existing among graphs associated with 2-weight projective codes; it will
be examined in a for;hcoming paper.

We conclude this section with two remarks:

Remark 1. For a 2-weight linear code C over F, the graph I'(C’) asso-
ciated to the image C' = y¥(C) of C over F' is exactly the same as I'(C),
for every subfield F’ of . Heice considering linear codes over prime

fields implies no loss of generality in our construction of graphs from
2-weight codes.

Remark 2. On the other hand, the additive group of an (n, k) linear code
over GF(p®), v prime, is isomorphic to the elementary Abelian p-grouyp
G, of order v = p°* . Therefore, a strongly regular graph on v vertices
cannot be the associated graph of some 2-weight linear code unless the
auwiomorphism greup of the graph contains a regular subgroup isomor-
phic to G,. In §5 of this paper, it will be shown that, in general, this is
also a sufficient condition.
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§4. Strongly regular normed spaces

Let V be a linear space of dimension k = | over F = GF(q). We make
V a normed linear space by defining a norm w over V, i.e., a mapping
fiom Vinto R, satisfying the classical axioms (A1), (A2), (A3). In ana-
iogy to the concept of a strongly regular graph, the normed space will

ve called strongly regular if the norm satisfies the following two condi-
tions

(A4} 2 w@—b)=r, YacV,
X%

(A5) 2J w@—cyw(b—c)+swa-b)=t, Ya,beV,

ceV
where r, s and ¢ are some fixed positive real numbers.

An arbitrary choice of one of these parameters implies no loss of
generality in the problem, since it merely fixes the “‘scale’ of the norm;
here we sets = q" -1 On the other hand, adding up both members of
(AYS), for & running through V, we get r(r + 5) = tq" , from (A4). Hence,
one can write

(15 r=mvlq, s=v/q, t=mim+ /q?,
i

withv=1V]= q" , for some positive number m. In that standard form,
the parameter n = m/(q — 1) will be called the length of the normed
space, which will now be denoted by [V, w, n).

With the definition (15) of r, s, 2, eqgs. (2) and (3) are the matrix
form of (A4) and (AS5), respectively (fcr w = wyy, V = (). Hence Theo-
rem | can be reformulated as follows:

Theorem 3. Let C be an (n, k) projective code over I, and let wy de-
note the Hamming weight. Then (C, wy, n) is a strongly regular normed
space over F.

The rest of this section is essentially devoted to the proof of a con-
verse of Theorem 3, asserting that any “‘abstract’ strongly regular nor-
med space admits an associated code C isomorphic to it, when the Ham-
ming weight is taken as the norm.
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Thecrem 4. Let (V, w, n) be a strongly regular normed .space 0 f length
n and dimension k over F. Thern n is an integer, withk<n< (q -1/
(g — 1), and there exists an (n, k) projective code Cover F such that
the normed spaces (V, w, n).and (C, wy, n) are isomorphic io each
other. '

Before we proceed to the proof, we.need some material on the cor-
respondence between F¥ and the elementary Abelian p-group G, of or-.
derv=gq , with q = p¢, p prime. The characters of the group G, are the
homomcrphic mappings ¢ from G, inte the group C, of complex p®
roots of unity. It is well known that the characters can be numbered
with the elements x of G, in such a way that y,(y) = ¥, (x), Vx,y €G,.
Asin [5], we adopt the notation of a symmetric inner product, that is

<x,y>=f¢x(y) , - Vx,ye G, .

Lemma 1. Let ¢ be a fixed homomorphzsm from (F, +) onto C Then,
for every isomorphism I from G, onto (F*, k +), there exists one and
only one isomorphism M, from Gv onto (F*, K +), such that

(16) x, ) =g(LxIM'(y)), Vx,y€G,,
where MY (y) is the transpose' of the.row vector M(y} in F*. k

Proof. Let N be any 1somorph1sm from G, onto (F k. +). Then the map-
ping ¢ defined by -

P(x) = ¢(L(x)NT (), xegG,,
is a character of G, for every y in G,. We denote his cnaracter by
Y(x) = (x, A(y)) since it only depends on y: it is readily seen that 4 is
an automorphism of G,,. Hence the mapping M given by M(A(y)) = N( »)
is an isomorphism from G, onto (F k. +) that satisfies | 16). Finally, the

uniqueness of M results from the fact that ¢(abT) = ¢(acT) cannot hold
for all vectors ¢ in F* unless b = ¢. /
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Definition 1. Let w be a primitive root in F, and let L be an isomor-

phism from &, onto (F k +). To L we associate the automorphism §
of G, defined by

a7 L(S(x))=wL.x), Vx€G, .

Obviously, S9! is the identity and the subsets of transitivity of G,\{1}
for the group generated by S have cardinality ¢ — 1. They have the form

{x, S(x), S*(x), ..., $7T2(x)} ,

and are called the S-classes of G,. (There are (q" — 1)/(g — 1) such S-
classes and their L-images are the projective points of PG(k — 1, q)).

Definition 2. Let 4 and AT be two automorphisms of G, satisfying
(18) x,AO) =, ATx), Vx,yeG,.

Then AT is called the transpose of A. It is well known that each auto-
morphism admits exactly one transpose. Moreover, according to (18),
one has (ATT = 4.

Lemma 2. Let (L, M) be a pair of isomorphisms (from G, onto (F%, +))
satisfying (16). Then (17) is equivalent to

(19) MEST() =wMy), VyeG,,

and GU\{ 1} can be divided into disjoint ST -classes of order q - 1 as well
as into S-classes.

Proof. This is an easy consequence of Lemma 1 anc the definition (18)
of the transpose.

Proof of Theorem 4. Let E be an isomorphism from F k onto V.,and L
an isomorphism from G, onto (F¥, +). The code C will be defined by
means of its generator matrix X, in such a manner as to make the follow-

ing diagram
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(20) v < G, >c
N
o

commutative, i.e.,
(21) VJ’H (L(X)K) = [.l(x) . Vx € Gv .
with p(x) = w(EL(x)). The reasoning is rather long and is divided in fcur
parts: .
(i). Considering & = Zxu(x) as an element in the group algebra RG,

of the group G, over the field R of real numbers, and using (15) with
m = ji(q — 1), one can write (A4), (A5) as

(2% wo,=n(g-1g*lo,,
(23) p?+pgtl=tc,,

respectively, where o, stands for the sum of all elements of G, over R.
We now calculate tie characters

(24) yw= 2 @y, xux), yeGC
.xEGv

1

of p € RG,, in the field of complex nerbers. By the well-knuwa pro-
perties f group characters, we get both equations

(‘25) (l, p,‘ = ‘:V‘v(q — l)qk—l ,
{26) (y, l.l)(qk—l + (y’ “)) = (] , Vy + 1 ’

fiom (22) and (23), respectively. Indeed, <y, 0, ) is equal to v or to Zero,
according as y is equal to 1 (the unit of G,) or not. Let us examine the
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inversion formula for group characters, i.e.,

(27) ux) =v! [ 2 ur,y‘IXy,u)] .

YEG,

According to (26), one has(y, u} =0 or —g*~!, for y # 1. Hence (cf.
also (25)), eq. (27) becomes

where H is the set of elements y in G\ {1} with ¢y, u) # 0. In particular,
forx = 1, (28) yields qu(1) = n(q — 1) — |H\. Since u(1) = w(0) =0, by
(A1), this implies n(q — 1) = |HI.

(ii). On the other hand, let w be a primitive root in F. Dzfining S by
(17), one verifies, using (A3), that u(S(x)) = u(x), for any x in G,
Therefore, one has

STy, w= 2 0, SE»ux) =y, w, VYeG,,

xEGv

by (18) and (24). Hence (cf. Lemma 2) (y, u) is constant over each ST.
class of G, so H must be the union of some of these classes. Therefore,
the length n = |Hl/(q — 1) of the normed space must be a positive inte-
ger, less than or cqual to (q" — D/(q - D).

(ii). Next, noting that y~1 belongs to the same ST class y as y, one
can write (28) as follows

(29) u(x) =q71 [n(q—l)—« 2 2 <x,z)] ,

vCH zey

where H denotes the set of ST-classes v in H. Remembering the defini-
ticn of an S-class, and using Lemma 1, one has

q-2 q-2
(30) Y x, = 2 (S, = 2 pW LeOMT (),

ZEY =0 =0
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for a suitable isomorphism M from G, onto (F¥, +). From ) it foliows
that the third member of (39) is equal tog — 1 or —1 according as
L{x)MT (y) is zero or not, so (30) yields

2 x,zv=q-1—q LM (W),
zEY

where IA]-- 0 or 1, accorcing as A equals zero or not, in #. Substituting
this in (29!, one obtains

n

Gl px =27 LM ),

i=1

where {y,,¥,, ..., V,} denotes any set of n elements of G, obtained by
taking exactly one elemcnt in each ST-class y of H.

(iv). Finally, we define C to be the linear code of length n over F' ge-
nerated by the k X n matrix

K=IM"(y),M (y,), .. 5T (y)] .

Since (31) is equivalent to (21), diagram (20) is commutative and it
only remains to be shown that C is actually a projective code of dimen-

sion k. This is an easy consequence of (A1) and Lemma 2; the details
are omitted.

Remark 3. Property (A2) ha: not been used in the proof of Theorem 4,
so it can be omitted as an 1xi0+n for strongly regular normed spaces. In
fact, (A2) becomes a cons."que-ice of Theorem 4, since in¢ Hamming
weight wy satisfies it.

Remark 4. According (o a theorem of MacWilliams [9] on the equival-
ence between linear codes, Theorems 3 and 4 establish z vne-to-one cor-
respondence between the clazses of nonisomcrphic strongly regular
normed spaces of length » and dimension k over F, and the classes of
inequivatent (#, k) projeciive codes over F.
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§5. Two-weight codes derived from graphs

Ve first show that, in some cases, (A3) is a 1edundant axiom for
strongly regular normed spaces.

Lemma 3. Let V be a k-dimensional linear space over GF(p), p prime,
and let w be a mappirg from V into the nonnegative rational numbers,
satisfying (A1), (A4) and (AS). Then (V, w, n) is a strongly regular
normed space.

Proof. According to Remark 3, we only need to show that w satisfics
(A3). To that end, let us use the first part (depending on (A1), (A4)
and (AS) only) of the proof of Theorem 4. The right hand member of
(28) belongs to the cyclotomic field Zp of p" roots of unity and, for
anintegeri, 1 <i< p — 1, we readily get

pix) = (u(x), vxeG,,

| where p,(x) denotes the it conjugate of u(x) in Z'p. Since u(x) is assu-
med to be rational, one must have u(x) = u(x); whence u(x’) = u(x) or,
equivalently,

w(a) = w(ia) , Yae V, 1<i<p -1.

This is identical to (A3) for the prime field F = GF(p), and the lemma
is proved.

We now go back to strongly regular graphs and 2-weight codes. The
following result is the converse of Theorem 2.

Theorem 5. Let T be a strongly regular graph on v = p* vertices, p prime,
whose adjacency matrix has integral eigenvalues pg. py. py with p; > 1.
Assume the automorphism group of T' contains a regular subgrcup iso-
morphic to the elementary Abelian p-group G,. Then I is the ¢ssociated
graph of some 2-weight (n, i) projective code, whose length n and w/icse
weights w; are given by
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32) (py —P2)X(p — Dr=py +pv—1),

(33 (07 — pdW;=(py +(=Dpfp, i=1,2.

Proof. Let V be a k-dimensional linear space over the prime field
F = GF(p). Since &, is isomorphic to ( V,+), it is possiole to number
the vertices of 1* with the elements of V in such a way that vertex v,
becomes atiacent to v,, if and only if v,_, is adjacent to vy, Va,bE V.
Indeed, thi, simply means that the additive @ up of V, acting as a reg-
nlar permutation group on the vertices, transforms the graph I into it-
self. ,
Next, for the positive numbers w; given by (33), ~ne defines a map-
ping w from V into the nonnegative rational numbers as follows: one
sets w(0) = 0, and w(a) = w; or w, according as v, is 2djacent to vy or
not, fora € V, a # 0. In other words, w is defined in such a manner that
the matrix ‘

(34) D =[w(a - b);a,be V]

satisfies (11), when A is the adjacency matrix of the given graph I'.
From egs. (%) and (10) of a strongly regular graph, it easily follows that
) satisfies (2) and (3) or, equivalently, (A4) and (AS), withg =p, if n,
w; and w, are given by (32) and (33). Therefore, according to
Lemma 3, (V, w, n) is a strongly regular normed space over F.

Finally, by Theorem 4, the length » is an integer and there exists a
2-weight (r, k) projective code C over F whose distance matrix is (34).

This means that the given graph I is the associated graph of C, so the
theorem is proved.

Remark 5. The restrictions on the eigenvalues in the assumptions of
Theorem 5 only exclude graphs of one of the following two types: the
ladder graphs, for which p, = 1 (cf. Seidel [15]), and the graphs with
v=p* k=1(mod 2),py =0, #1 = —py =2 Graphs of the second
type are known to exist if and only if p = | (mod 4); cf. for instance
Goethals and Seidel [7].
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We conclude with an illustration of Theorem 5. Goethals and Seidel
[8] recently derived a strongly regular graph I' on v = 2048 vertices

from the Golay (24, 12) binary code. The eigenvalues of the adjacency
matrix of I" are

p0=529, p1=?7, p2="'111.

Moreover, the automorphism group of I" contains a regular subgroup
isomorphic to G,. Hence, according to Theorem 5, there exists a 2-
weight projective code C over GF(2) whose associated graph is I'(C) = I'.
Using (32) and (33), with p = 2, one obtains the following values for the
parameters of

n=276, k=11, w, =128, w,=144,

The reader familiar wiil the Golay code will easily find a “direct’ con-
struction for such a code.
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