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Abstract
We consider environments in which smart devices
equipped with limited communication and com-
putation capabilities have to cooperate to self-
configure their state in an energy-efficient manner,
as to meet user-defined requirements. Such require-
ments are expressed as scene rules, configured by
the user using an intuitive interface that connects
conditions on sensors’ and actuators’ states and ac-
tions on actuators. We translate this smart environ-
ment configuration problem into a constraint op-
timization problem. As to install distributiveness,
robustness, and openness, we solve it using dis-
tributed message-passing algorithms. We illustrate
our approach through a running example, and eval-
uate the performances of the implemented proto-
cols on a simulated realistic environment.

1 Introduction
The rise of cheap and reliable technologies in the fields of
Ambient Computing fosters the development of applications
for smart environments, like smart homes. Such environ-
ments are equipped with devices with limited capabilities
–e.g. wireless link with 250 kbps throughput, and micro-
controllers with just a few KBytes of RAM– connected to a
Home Area Network (HAN). These devices are used to pro-
vide services and make inhabitants live more comfortable. In
addition to user preferences, global goals can be defined and
applied to all scenes, to embody some global qualities that the
system should have. Energy efficiency is an example of such
a quality, where the system should always try to achieve the
behavior requested by the user in the most energy efficient
manner. However, developing such applications and coordi-
nating such devices are still key research challenges for AI.

The introduction and the adoption of such smart environ-
ments could greatly gain by putting more “smart” into the
objects and their infrastructure. Commercial solutions (e.g.
from [Orange, 2016], [ARCHOS, 2016] or [Samsung, 2016])
have several major weaknesses. First, they require the user
to define scenes he wants to be implemented by specifying
conditions on the state of some sensors, and consecutive ac-
tions on the actuator devices (e.g. light bulbs or shutter locks).
Even, he is asked to explicitly reference, one by one, every

object used in the scenario, which will prove difficult with
a growing number of objects and when shifting from smart
home to smart building scenarios. Second, when some de-
vices are out-of-order or newly plugged to the building some
user-defined rules may become inadequate, and the user has
to manually update/add rules to take these changes into ac-
count. Finally, current solutions are lacking robustness and
resilience. Solutions mainly rely on a mixed cloud and gate-
way infrastructure to control and monitor the system. Typi-
cally a physical home automation box hosts the building be-
havior and relies on proprietary cloud services to configure
the devices. If this box is faulty, or internet connection is
broken, the system will no more implement the specified be-
haviors (at best in a degraded mode). To overcome these lim-
itations, one can make the devices interact seamlessly in the
home and provide services without requiring the user to setup
complex configurations to express his preferences. Objects
should arrange among themselves and decide autonomously
the best way to realize the requested behavior, without hu-
man intervention, based on the definition of rules that does
not explicitly refer to specific equipments.

We address this spontaneous configuration problem using
the distributed constraint optimization framework (DCOP),
where devices are part of a multiagent system whose task
is to maximize adequacy to user’s requirements while meet-
ing non-functional requirements on energy efficiency. We ex-
pound some background on DCOP in Section 2. The model
for smart environment configuration problem (SECP) is de-
tailed in Section 3, and translated into a DCOP in Section 4.
Section 5 discusses how to deploy the factor graph resulting
from the DCOP formalization in the physical devices. Sec-
tion 6 presents results and analyses of experiments on realis-
tic simulated smart home scenarios, as to benchmark differ-
ent algorithms to solve SECP. Finally, we conclude this paper
with some perspectives in Section 7.

2 Background and Related Works
This section expounds the DCOP framework and some re-
lated algorithms from the literature are discussed, especially
concerning their applicability to smart environment settings.

2.1 Distributed Constraint Optimization
One way to model the coordination problem between smart
objects is to formalize the problem as a DCOP.
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Definition 1 (DCOP) A discrete Distributed Constraint Op-
timization Problem (or DCOP) is a tuple hA,X ,D, C, µi,
where: A = {a1, . . . , a|A|} is a set of agents; X =
{x1, . . . , xn

} are variables owned by the agents; D =
{D

x1 , . . . ,Dxn} is a set of finite domains, such that variable
x

i

takes values in D
xi = {v1, . . . , vk}; C = {c1, . . . , cm}

is a set of soft constraints, where each c

i

defines a cost
2 R [ {1} for each combination of assignments to a sub-
set of variables (a constraint is initially known only to the
agents involved); µ : X ! A is a function mapping vari-
ables to their associated agent. A solution to the DCOP is an
assignment to all variables that minimizes

P
i

c

i

.

A large literature exists on solution methods for DCOPs,
which fall into two categories:(i) complete algorithms like
ADOPT and its extensions [Modi et al., 2005], or infer-
ence algorithms like DPOP [Petcu and Faltings, 2005] or Ac-
tionGDL [Vinyals et al., 2010], are optimal, but mainly suf-
fer from expensive memory (e.g. exponential for DPOP) or
communication (e.g. exponential for ADOPT) load –which
we may not be able to afford in a constrained infrastructure
like our smart environment setting; (ii) approximate algo-
rithms like Max-Sum [Farinelli et al., 2008] or MGM [Mah-
eswaran et al., 2004] are usually faster with a limited memory
print and communication load, but losing optimality in some
settings. Yet, suboptimality may suffice especially when it
comes to human interpretation and comfort. Both categories
mainly exploit the fact that an agent’s utility (or constraint’s
cost) depends only on a subset of other agents’ decision vari-
ables, and that the global utility function (or cost function) is
a sum of each agent’s utility (constraint’s cost). In the follow-
ing, we will focus on two such inference algorithms.

DPOP. The distributed pseudo-tree optimization procedure
(DPOP) is an optimal method implementing dynamic pro-
gramming in a distributed way [Petcu and Faltings, 2005].
DPOP runs three phases. (1) It builds a depth-first search
(DFS) tree that overlays the constraint network. This pseudo-
tree, made of parent links and pseudo-parent links (when
loops appear in the constraint graph) is used by agents owning
variables to interact during the next phases. (2) Once the DFS
tree is build, cost messages are sent by the leafs and propa-
gate from children to parent up to the root. A cost message,
assessed by joining all the messages received from children,
is a relation associating a cost to every possible assignment
of the variables in the agent’s separator, i.e. the minimal set
of ancestors whose removal completely disconnect the sub-
tree rooted at this agent to the rest of the problem. (3) Once
the root has received the cost messages from its children, it
assesses the aggregated costs of the whole problem and then
it decides the best assignment for its variables. Finally, it
broadcasts this assignment in a value message to its children,
who assess their best assignments and send them down the
tree. DPOP returns an optimal assignment, with only a linear
number of messages. Many DPOP extensions and other exact
algorithms work in a similar way [Vinyals et al., 2010].

Max-Sum. There exists another class of algorithms, falling
under the framework of the generalized distributive law [Aji

and McEliece, 2000], that can be used to obtain good approx-
imate solutions. Among them, Max-Sum is of particular in-
terest in our case. It operates on a factor graph (FG): an undi-
rected bipartite graph in which vertices represent variables
and constraints (called factors) and edges link constraints to
the variables in their scope. Messages will flow from factors
to variables, and vice versa and are only associating costs to
values of the recipient. A factor f

m

assesses the message
R

m!n

to a variable x
n

by adding its own cost c
m

to the costs
received from all the variables connected to it, except x

n

, and
choosing the best cost for a value of x

n

when several alterna-
tives exists for obtaining this value. In return, a variable x

n

assesses a message Q

n!m

to factor f
m

by only adding mes-
sages received from connected factors except the factor f

m

.
When a factor or a variable computes twice the same mes-
sage for the same recipient, it stops propagation. The process
ends at convergence or when a time limit is reached. Max-
Sum is complete for tree-shaped constraints graphs, subopti-
mal for loopy graphs where it may not converge at all. But
it has been shown to compute better quality solutions than
the approximate class with acceptable computation compared
to representative complete algorithms [Farinelli et al., 2008].
Though, a bounded version of Max-Sum, that is able to ef-
ficiently compute solutions with a guaranteed approximation
ratio, has been proposed in [Rogers et al., 2011].

2.2 DCOP for Ambient Intelligence Scenarios
As far as an ambient intelligence coordination problem is
modeled as a DCOP –which is not always straightforward–
the aforementioned techniques can be used for finding the
optimal configuration. Approaches exist to model such co-
ordination problems as dynamic CSP [Degeler and Lazovik,
2013]. However, their approach is not distributed among de-
vices. To the best of our knowledge, few past works have
focused on the use of DCOPs in ambient environment set-
tings, except [Pecora and Cesta, 2007], which uses a variant
of ADOPT to coordinate ambient application services, and
not devices themselves. Indeed, the proposed solution is not
applicable to in-board implementation, due to ADOPT limi-
tations. Closer works, not focused on smart environment, de-
ploy DCOP algorithms on real constrained devices [Farinelli
et al., 2008; Jain et al., 2009] for robotic or sensor coordi-
nation problems. In fact, ambient intelligence applications,
while requiring efficient coordination of devices, may afford
suboptimality: e.g., if an ambient system is asked to find the
best configuration for emitting light at a desired level of 400
lumens and only achieve 380 lumens, it may not even be per-
ceivable by the user, who may finally agree the actual ser-
vice level. Message-passing inference approaches like Max-
Sum seem more relevant when it comes to deploy on-board
[Farinelli et al., 2008]. But before discriminating optimal so-
lutions, we propose to model a smart environment configura-
tion problem to be solved by DCOP algorithms we will imple-
ment and evaluate, to support this hypothesis. In fact, depend-
ing on the DCOP model, the realistic number of devices, the
nature of the constraints coming from the user requirements
and the physical models (e.g. consumption laws of devices,
influence of light bulbs on light level in a room), it is possible
scalable complete algorithms, like DPOP, are efficient.
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3 Smart Environment Configuration Problem
Here, we expound and illustrate the smart environment con-
figuration problem we address in this paper.

3.1 Sample Scenario
We consider the following AmI scenario. Our system is made
of several smart devices: light bulbs, roller shutters, a TV set,
several luminosity sensors and a presence detector. Each such
device is defined by (i) a unique identifier (e.g. its MAC ad-
dress), (ii) its location (e.g. living room), (iii) a list of capa-
bilities (e.g. emitting light or playing videos), (iv) a list of
actions (e.g. setting power at 2Wh), (v) a consumption law
associating an energy cost to each action. The user can use
an application on a tablet to configure simple behaviors (or
scenes), using the value of the sensors or the state of actua-
tors as triggers for implementing smart home actions. For ex-
ample, one could configure the system such that a luminosity
level of 60 is reached in the living room whenever somebody
is in this room. Note that the user does not need to specify
which lamp must be used: the system autonomously decides
the best way to achieve this target, by opening the shutter,
dimming the lamp and maybe even switching the TV on if
no other source of light is available. This also means that
light bulbs may be added or removed and they will be au-
tomatically integrated into the system. We want our system
to choose the most energy-saving configuration for a given
scene.

Example 1 (Scene specification) Rule (1) defines a scene
where the light level of the living room should be set at 60
lumens whenever someone is present in the room:

IF presence living room = 1
THEN light level living room  60

(1)

Rule (2) refines rule (1) by triggering only when the light level
is less than 60 lumens and closing the shutter of the living
room as an additional action:

IF presence living room = 1
AND light sensor living room < 60
THEN light level living room  60
AND shutter living room  0

(2)

This problem is close to what is proposed in [Degeler and
Lazovik, 2013], a rule-based dynamic constraint satisfaction
approach, but our requirements imply embedding the coor-
dination protocol within devices. Alternatively to satisfac-
tion, this configuration problem can be seen as an optimiza-
tion problem with values to assign to actuators (e.g. a light
bulb is assigned a power) and user’s target values (e.g. the
light level in living room is 60 lumens), whilst maximizing
the adequacy to user-defined scenes and minimizing the over-
all energy consumption.

3.2 Problem Definition
Let A be the set of available actuators. We note ⌫(A) the set
of variables stating the values of actuators i 2 A (e.g. the
power assigned to a bulb). We use x

i

to refer to a possible
state of x

i

2 ⌫(A), that is x

i

2 D
xi (domain of x

i

). Each
actuator i has a cost to be activated, noted c

i

: D
xi ! R. This

cost can be directly derived from the consumption law of each
device (e.g. mapping a cost in euro to each action). We note
C = {c

i

|i 2 A}. Among the possible values, every actuator
i has a possible “switched off” state value, noted 0 2 D

xi ,
with an associated cost (most probably 0).

Let S be the set of available sensors, and ⌫(S) the set of
variables encapsulating their states. We note s

`

2 D
s` the

current state of sensor ` 2 S. Sensor values are not control-
lable by the system: they are read-only values.

Let R be the set of user-defined scene rules. Each scene k

is specified as a condition-action rule expressed using the set
of available devices (actuators and sensors) and capabilities.
The condition part of a scene is specified as a conjunction of
boolean expressions using state of actuators (e.g. power of
light bulb #1 is greater than 2Wh) or state of sensors (e.g.
someone is present in the living room) and binary predicates
(e.g. >, <, =). The action part of scenes defines target values
for either (i) some direct actions on actuators (e.g. power
of light bulb #1) or (ii) indirect actions (or corresponding to
users’ goals) on more abstract concepts (e.g. light level in
living room) –both are called scene action variables.

These scene action variables are therefore either (i) some
x

i

2 ⌫(A) or (ii) other values constrained by values assigned
to some actuators (e.g. the light level of living room depends
on the power assigned to the two light bulbs in this room).
We note y

j

2 ⌫(�) the state of such an indirect scene action
j (e.g. the current level of light in a room). We note x

k

i

(resp. y

k

j

) the target value defined by the user for the scene
action variable x

i

(resp. y
j

) in the rule k. We use y

j

to refer
to a possible state of y

j

, that is y

j

2 D
yj (domain of y

j

).
Obviously, xk

i

2 D
xi and y

k

j

2 D
yj for all i, j and k. Note

that a scene action variable can be used in several rules, but
that a rule can only specify a unique target value for the scene
action variable.

A scene rule can be either active or inactive depending on
the state of devices appearing in the condition part of the rule.
Each active scene has also a utility to be implemented, noted
u

k

:
Q

s2�(uk)
D

s

! R, with �(u
k

) ✓ ⌫(A) [ ⌫(�) be-
ing the scope of the rule (the subset of variables used in the
rule). The more the states of the scene action variables (from
⌫(A) and ⌫(�)) are close to the user’s target values for this
scene, the higher the utility. Moreover, if the condition to ac-
tivate the rule (from ⌫(A) and ⌫(S)) are not met, the utility
should be neutral, i.e. equals to 0. We can therefore consider
u

k

’s to be functions of the distance between the states of the
scene action variables x

i

’s (resp. y

j

’s) and the target values
x

k

i

(resp. yk

j

). We note U = {u
k

|k 2 R}.

Example 2 (Scene rule utility) Let us consider rule (1),
where s1 is the value of the presence sensor. Here a possi-
ble utility function, which is the negated distance between the
current value of y1 and the target value y

1
1 = 60 defined in

rule (1):

u1(y1) =

⇢
�|y1 � 60| if s1 = 1
0 otherwise

Here a possible utility function for rule (2), where s2 is the
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sensed light level and x3 is the level of the shutter:

u1(y1, x3) =

⇢
�
p

|y1 � 60|2 + |x3|2 if s1 = 1, s2 > 60
0 otherwise

Each scene action variable y

j

depends physically on the
values of several actuators. We note the model of this depen-
dency �

j

:
Q

&2�(�j)
D

&

! D
yj , where �(�

j

) ✓ ⌫(A) is
the scope of the model, i.e. the set of variables influencing
y

j

. Let �
j

= |�(�
j

)| the arity of �
j

, and � = {�
j

} be the
set of all physical models between actuators and user-defined
values. In a more general form, a physical dependency model
links a set of objects –with a given capability (e.g. emitting
light, like a bulb or a TV set), in a given location (e.g. liv-
ing room)– to a physical value (e.g. light level) that can be
measured by some sensor (e.g. light sensor).
Example 3 (Physical model) We can consider that the level
of light y1 in a room depends on the total power of installed
“light-emitting” devices installed in the room, i.e. bulbs x1

and x2, and a TV set x3:
y1 = �1(x1, x2, x3) = 30x1 + 30x2 + 10x3

Weights assigned to each x

i

is related to the luminous efficacy
of each device [Stimson, 1974].

Given all the previous concepts and notations, we define
SECP as follows:
Definition 2 (SECP) Given a set of actuators A (and their
related costs c

i

2 C), a set of sensors S, a set of scene rules
R (and their related utility functions in u

k

2 U), and a set of
physical dependency models �, the Smart Environment Con-
figuration Problem (or SECP) hA,C,S,R,U,�i amounts to
finding the configuration of actuators that maximizes the util-
ity of the user-defined rules, whilst minimizing the global en-
ergy consumption and fulfilling the physical dependencies.

4 Formulation of SECP as a DCOP
SECP can be straightforwardly mapped to a multi-objective
optimization problem:

minimize
xi2⌫(A)

X

i2A

c

i

and maximize
xi2⌫(A)

yj2⌫(�)

X

k2R

u

k

subject to �

j

(x1
j

, . . . , x

�j

j

) = y

j

8y
j

2 ⌫(�)

(3)

The multi-criteria problem (3) can be formulated as a
mono-objective problem by aggregating the two objectives,
provided that the ranges of u

k

’s and c

i

’s are normalized or
prioritized (using weights !

u

,!

c

> 0):

maximize
xi2⌫(A)

yj2⌫(�)

!

u

X

k2R

u

k

� !

c

X

i2A

c

i

subject to �

j

(x1
yj
, . . . , x

�j
yj ) = y

j

8y
j

2 ⌫(�)

(4)

Hard constraints corresponding to physical dependencies
are encoded as factors noted '

j

, to translate (4) into a DCOP.
We note � the corresponding set of '

j

’s.

'

j

(x1
j

, ..., x

�j

j

, y

j

) =

(
0 if �

j

(x1
j

, ..., x

�j

j

) = y

j

�1 otherwise
(5)

Using equation (5), SECP is then formulated as a DCOP
hA,X ,D, C, µi where: A is a set of smart devices; X =
⌫(A) [ ⌫(�); D = {D

xi |xi

2 ⌫(A)} [ {D
yj |yj 2 ⌫(�)};

C = U [ C [�; µ is a function that maps variables and con-
straints to smart devices; with the following objective:

maximize
xi2⌫(A)

yj2⌫(�)

!

u

X

k2R

u

k

� !

c

X

i2A

c

i

+
X

'j2�

'

j (6)

Such a DCOP can be represented as a factor graph, noted
G = hV

x

, V

f

, Ei, which is a generalization of classical con-
straint graphs [Farinelli et al., 2008]. For SECP, variable
nodes are taken from V

x

= ⌫(A) [ ⌫(�), connected through
factors in V

f

= U [ C [ � by applying the following rules:
(i) each x

i

2 ⌫(A) is a variable node, (ii) each x

i

2 ⌫(A)
is connected to a unary factor c

i

specifying its cost, (iii) each
y

j

2 ⌫(�) is a variable node, (iv) each y

j

and all x
i

2 ⌫(A)
in the scope of a physical dependency model �

j

are connected
to a factor '

j

, (v) each scene rule k 2 R is represented by a
utility factor u

k

–which is a function of the distance to the tar-
get values xk

i

’s and y

k

j

’s and the current values of all variables
in �(u

k

)– connected to all the x

i

2 �(u
k

) and y

j

2 �(u
k

).
As to explicit the information coming from sensors’ state that
may trigger rules, we add read-only variables for each sen-
sor state s

`

2 S, like in [Pecora and Cesta, 2007]. For-
mally, each such a read-only variable can be considered as
a variable-factor pair hs

`

, f

`

i, where:

f

`

(s
`

) =

⇢
0 if s

`

= s

`

+1 otherwise
(7)

Example 4 (Factor graph) Fig. 1a represents a factor
graph for rule (2), where x1 is the state of the light bulb #1;
x2 is the state of the light bulb #2; x3 is the state of the shut-
ter; y1 is the light level in lumens; c1, c2, c3 are costs to ac-
tivate actuators; u2 is the factor representing the scene rule
and defining the utility depending on a target value y

2
1 for

variable y1; y1 is the variable representing the theoretical
light level in lumen; '1 is the physical dependency model be-
tween the light level and the state of actuators; s1 and s2 are
read-only variable nodes, represented as dotted diamonds.

5 SECP Deployment and Solving
In our setting, connected objects cooperate autonomously to
reach the user-specified goals. Now that we have modeled
this cooperation as a DCOP, we map the corresponding FG
into the available physical devices, and explain how it is de-
ployed within the available nodes/agents before running a
message-passing algorithm like Max-Sum or DPOP.

Our devices are assumed to be resource constrained and
the communication link between them is implemented with
a low power network with limited throughput (typically 250
kps). Devices with only a sensing role are usually powered
on battery and run as sleepy nodes, meaning that they switch
off their communication interface most of the time in order
to save energy and only turn it on when they want to emit a
new value. As a result, these nodes cannot be reached most
of the time and are not good candidates to host the computa-
tions needed for the variables and factors in our DCOP. On the
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x1

x2

x3

c1

c2

c3

'1 y1 u2

s1

s2

(a) Factor graph

c1

x1

N1

x2 c2

'1 y1

N2

u2 x3

c3

N3

(b) Sample distribution

Figure 1: Factor graph (1a) and a possible distribution (1b)
on 3 agents (N1, N2 and N3) for the SECP for rule (2)

other hand, actuators, and especially light sources, are usually
connected to the main power line and always reachable. So,
our FG is only hosted on the actuator devices, called agents.
Agent with actuator i is denoted N

i

and the set of agents cor-
responds to A.

The distribution of a DCOP is usually given by a function
µ which maps each variable in the DCOP to an agent. Here,
as we use a FG model, and because in Max-Sum factors cor-
respond to computation to perform, we also map factors to
agents. Formally, defining an optimal mapping is an opti-
mization problem by itself, namely graph partitioning, which
typically falls under the category of NP-hard problems [Bi-
chot and Siarry, 2011]. Since this paper does not focus on
this specific problem, we only provide here a heuristic map-
ping, defined as follows.

x

i

variables and c

i

factors are naturally hosted on agent
N

i

, which they represents. Variables and factors y

j

, '
j

and
u

k

do not map directly to any physical devices and must be
distributed on existing agents. Each pair hy

j

,'

j

i is hosted
on a agent N

i

with i chosen such that x
i

2 �(�
j

), meaning
that x

i

is one of the variables influencing y

j

. Similarly the
factor u

k

is hosted on a agent N
i

such that x
i

2 �(u
k

). Intu-
itively this means that the factor representing a rule is always
hosted on a agent affected by this rule. This distribution re-
duces the amount and size of messages between agents when
solving the DCOP. As to ensure a balanced computation load,
y

j

’s, '
j

’s and u

k

are fairly distributed among the candidate
agents. This gives us the following definition for the mapping
function:

µ : V
x

[ V

f

! A
x

i

7! N

i

8x
i

2 ⌫(A)
c

i

7! N

i

8c
i

2 C
y

j

7! N

i

, x

i

2 �(�
j

) 8y
j

2 ⌫(�)
'

j

7! N

i

, x

i

2 �(�
j

) 8'
j

2 �

u

k

7! N

i

, x

i

2 �(u
k

) 8u
k

2 U

(8)

Fig. 1b represents a possible distribution of computation
with each agent denoted with a dotted rectangle, for the FG
presented in Fig. 1a.

The deployment is performed once the user has defined
the rules. This operation is performed on a smartphone (or
a tablet), which is only part of the system during this phase:
once the system is configured the smartphone is switched off
and the devices operate autonomously. To deploy the DCOP,
the program on the smartphone must perform two tasks. First
it compiles the u

k

factors. As a user-defined rule k is embod-
ied in the factor u

k

, which encodes the target values x

k

i

and
y

k

j

(for all x
i

and y

j

in �(u
k

)) defined in the rule k, this factor
must be re-compiled whenever the rule is modified. Second,
it must assign each element v of the FG to an agent using the
mapping function µ. Once the FG of the SECP specified by
the user deployed, the smart devices are configured to imple-
ment a message-passing protocol, like DPOP or Max-Sum,
to solve this specific instance. From then, the system is au-
tonomous and self-configures without user intervention. For
instance, if a device is newly introduced, systems finds an-
other alternative configuration that meets user’s requirements,
by only running the same protocol.

6 Experiments on Simulated Environments
In order to analyze the applicability of DCOP solvers to
SECP, we implement and evaluate DPOP and Max-Sum on
randomly generated instances. We consider here a realis-
tic smart house with actuators (light bulbs), physical models
and user-defined scene rules. Each actuator/light is associ-
ated with an efficiency factor, which defines a cost function
as a linear function of the emitted luminosity. Physical de-
pendency models are weighted sums of the luminosity levels
emitted by the light bulbs in its scope and yield the theoreti-
cal resulting luminosity in a given place as an indirect scene
action variable. Finally, rules assign target values to one or
several scene action variables (actuators and models). Vari-
ables, models and rules are randomly connected and we only
consider active rules, which have an actual influence on the
problem. The resulting SECP is deployed as described in Sec-
tion 5. As physical models map to different rooms and spaces
in the house, which might be independent one from the other,
the corresponding house-level SECP can generally be divided
into several independent subsets that can be solved in parallel.
As this would distort results, all our experiments are made on
indivisible SECPs, which can be mapped to connected FGs.
For each problem size (same number of rules, models and ac-
tuators), 30 instances are generated and solved. The average
of the results are plotted.

In our first experiment, SECP are generated with 10 actua-
tors, 5 rules and a growing number of models (from 1 to 20).
As the corresponding FG are connected, each rule constrains
a growing number of models. Figure 2(a) shows the total
number of exchanged messages (log scale). Clearly, Max-
Sum generates more messages before converging. However
Figure 2(b), where total message size is given as the number
of transmitted variable values and costs (encoded as floats),
shows that DPOP generates a larger network load for com-
plex problems. Even while generating less messages than
Max-Sum, DPOP is still more communication-extensive than
Max-Sum. Moreover Max-Sum is remarkably stable and its
total message size grows slowly with the number of models.
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Figure 2: Messages count (a), messages size (b), and resolu-
tion time (c) for a growing number of models.
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Figure 3: Messages count (a), messages size (b), and resolu-
tion time (c) for a growing number of rules.

Figure 2(c) shows the time (in seconds) taken by Max-Sum
and DPOP to solve the SECP instances. Surprisingly, even
if Max-Sum is a approximate algorithm, DPOP solves the in-
stance faster than Max-Sum but the difference is stable, which
means it might be implementation-dependent.

In our second experiment, SECP are generated with 10 ac-
tuators, 5 models and a growing number of rules (from 1 to
10). Figures 3(a) and 3(b) show respectively the total number
and size of messages exchanged ; as before DPOP generates
less messages but can produce a higher network load for com-
plex problems. With both algorithm, we see that SECP with
more rules are simpler ; this is due to the decrease in the av-
erage arity of the rules and models as the number of rules
increases, as we only consider SECPs with a connected FG.

In our third experiment, we generate a very large number of
connected SECP with a random number of actuators, models
and rules. Figure 4(a) and 4(b) shows respectively the size of
messages exchanged and the resolution time plotted against
the number of cycles (i.e. cardinality of the cycle basis) in
the corresponding FG. Clearly, the complexity of the SECP
depends on the number of cycles in the graph but Max-Sum
manage to keep a remarkably stable message size indepen-
dently of the problem’s complexity.

We use DPOP as a reference optimal cost to evaluate the
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Figure 4: Messages size (a) and resolution time (b) against
cycle count.

quality of the solutions provided by Max-Sum. In 99.5% of
our test cases our implementation of Max-Sum is optimal, de-
spite the high cyclicity of the SECPs the global cost of the so-
lution it produces is the same than the cost of the optimal so-
lution produced by DPOP. When several equivalent symmet-
ric solutions exist, Max-Sum might break an hard constraint
corresponding to a physical model. In order to break ties we
introduce random noise to the actuator costs. In our exper-
iments, the remaining 0.5% of non-optimal solutions corre-
spond to cases where this approach fails to break ties.

7 Conclusions and Perspectives
We have presented a model for coordinating connected de-
vices in a smart environment. Devices operate themselves
the configuration process, without supervision. The model
makes use of physical relations between objects as to prevent
the user to explicitly specify the role of each object, easing
the definition of rules and the introduction of new devices at
runtime. We propose to use message-passing methods, like
DPOP and Max-Sum, to implement the coordination proto-
col. From our experiments on a simulated smart home sce-
nario, Max-Sum is best suited for the constrained devices
commonly used in smart environment and our SECP model is
a viable approach for autonomous coordination among these
devices.

There are several paths to future research. First, we as-
sumed that physical models linking devices to sensed mea-
sured are a priori known. However, physical dependencies
may strongly depend on the positioning of devices. There-
fore, we will investigate inexpensive methods for learning
this models from sensed data, like simple polynomial regres-
sion, that could be embedded into devices. Second, we have
directly used on-the-shelf methods without adapting them to
the specific case of SECP. But, due to the specification of
the physical factors (e.g. weighted sum) and the loopy na-
ture of the graph, we will investigate a dedicated algebra for
messages, to make them more compact and faster to assess.
Third, instead of handling multi-objectiveness using penal-
ization, we wish to cast our SECP into the multi-objective
DCOP framework (MO-DCOP) [Matsui et al., 2012]. Fi-
nally, as to provide openness and adaptiveness, we need to
consider the resilience of the proposed approach, by provid-
ing mechanisms to handle device (dis)appearance and using
redundancy in the factor graph deployment, without impact-
ing the performances, like proposed in a centralized way in
[Degeler and Lazovik, 2013].
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