
University of Oslo
Department of Informatics

Service Discovery
in On-demand
Mobile Ad-hoc
Networks

Cand. Scient. Thesis

Yan Zheng
yanz@ifi.uio.no

18th July 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 I

Abstract

Discovery of services and other named resources is expected to be a crucial feature
for the usability of mobile ad-hoc networks (MANETs). Different types of service
discovery architectures are distinguished by the extent that service coordinators (SCs)
are implemented in the network. A service coordinator is a node that holds a central
repository for caching attributes and bindings for services of servers located in its
neighborhood.

In this thesis, we evaluate the performance of different service discovery architectures
in terms of service availability, message overhead and latency on reactively routed
MANETs. We also discuss different methods that can be used to enhance the service
availability and their pros and cons. We have, in this thesis, especially focused on the
trade-off between the service availability and the message overhead.

This thesis will also demonstrate the benefits of combining the service discovery with
the route discovery, especially on on-demand MANETs where reactive routing
protocols are being used.

 II

 III

Preface

This thesis is submitted to the Department of Informatics at the University of Oslo as
part of a Cand. Scient. degree.

Acknowledgement

I would like to thank my supervisor, Paal Engelstad, for his incessant encouragement,
support, guidance and help throughout the whole period.

I would like to thank, Professor Paal Spilling, for sharing his knowledge.

I would also like to thank the people who are working in Telenor R&D for providing
such a warm working environment and for making this whole experience memorable.

A special thank should be given to a fellow master student, Kjetil Marinius Sjulsen,
for the great fellowship and discussion during the work.

Finally, I would like to thank my family for always being there for me.

 IV

 V

TABLE OF CONTENTS

ABSTRACT.. I

PREFACE.. III

LIST OF FIGURES .. IX

LIST OF TABLES .. XI

CHAPTER 1 INTRODUCTION..1

1.1 RESEARCH PURPOSE..2

CHAPTER 2 BACKGROUND ..3

2.1 MOBILE AD HOC NETWORK ...3
2.2 ROUTING PROTOCOLS FOR MANETS ...3

2.2.1 Proactive routing protocols ...4
2.2.1.1 Destination-Sequenced Distance Vector (DSDV)4
2.2.1.2 Optimized Link State Routing (OLSR) ...5

2.2.2 Reactive routing protocols...6
2.2.2.1 Ad hoc On-demand Distance Vector (AODV)..................................7
2.2.2.2 Dynamic Source Routing (DSR) protocol ...8

2.2.3 Hybrid routing protocols ...9
2.2.3.1 Zone Routing Protocol (ZRP)..9

2.2.4 A general comparison of proactive, reactive and hybrid routing
approaches...9

2.3 SERVICE DISCOVERY...10
2.3.1 Service Location Protocol (SLP) ...11
2.3.2 Jini Technology..13
2.3.3 Salutation Protocol ..15
2.3.4 Universal Plug and Play (UPnP) ..16
2.3.5 Bluetooth Service Discovery Protocol (SDP)18
2.3.6 A comparison of the existing service discovery protocols19

2.4 SERVICE DISCOVERY IN MIDDLEWARE TECHNOLOGIES.................................21
2.4.1 The importance of service discovery in Middleware21
2.4.2 CORBA...22
2.4.3 XML Web Services ...22
2.4.4 Middleware challenges in mobile ad hoc networks.............................23

2.5 SERVICE DISCOVERY IN MANETS..23

CHAPTER 3 RELATED WORKS..25

3.1 SERVICE DISCOVERY ARCHITECTURES..25
3.2 GROUP-BASED SERVICE DISCOVERY PROTOCOL FOR MANETS25
3.3 NAME RESOLUTION AND SERVICE LOOKUPS IN ON-DEMAND MANETS.......26
3.4 SLP-BASED SERVICE DISCOVERY ON MANETS..26
3.5 WHAT LACKS ..26

 VI

CHAPTER 4 SERVICE DISCOVERY ARCHITECTURES AND
MECHANISMS ON A REACTIVELY ROUTED MANET............29

4.1 ROLES OF NODES...29
4.2 SERVICE DISCOVERY ARCHITECTURES..29
4.3 MESSAGE TYPES..30
4.4 RELATION TO REACTIVE ROUTING PROTOCOLS...31
4.5 SERVICE COORDINATOR PLACEMENT..33

CHAPTER 5 SIMULATION SETUP ...39

CHAPTER 6 AN INITIAL SIMULATION WITH FIVE NODES41

6.1 BROADCASTED MESSAGE OVERHEAD VS. SC ANNOUNCEMENTS INTERVAL 42
6.2 BROADCASTED MESSAGE OVERHEAD RELATIVE TO ACTIVE ROUTE TIMEOUT

 45
6.3 DISCUSSION..45

CHAPTER 7 SIMULATIONS WITH STATIC NETWORK TOPOLOGIES
 47

7.1 HYBRID ARCHITECTURE..47
7.1.1 RSR relative to server density and SC density47
7.1.2 Message overhead relative to server density and SC density49
7.1.3 RSR relative to different scope parameters ...52

7.2 PURE FLOODING ARCHITECTURE...53
7.2.1 RSR relative to server density and flooding scope...............................53
7.2.2 Broadcasted message overhead relative to server density and flooding
scope 54

7.3 COMPARISON BETWEEN THE PURE FLOODING AND THE HYBRID

ARCHITECTURE...54
7.3.1 RSR comparison...54
7.3.2 Message overhead comparison..57
7.3.3 Latency comparison...58

7.4 DISCUSSION..59
7.4.1 Latency...59
7.4.2 Tradeoff between the service availability and the message overhead.59

7.4.2.1 Comparing the pure flooding and the hybrid architecture at a 20%
SC density ..61

7.4.2.1.1 Considering single-hop SC announcement scope......................61
7.4.2.1.2 Considering multi-hop SC announcement scope.......................63

7.4.2.2 Comparing the pure flooding and the hybrid architecture at a 30%
SC density ..64
7.4.2.3 Flooding scope vs. SC announcement scope in the hybrid scheme.66

CHAPTER 8 SIMULATIONS WITH DYNAMIC NETWORK
TOPOLOGIES 67

8.1 HYBRID ARCHITECTURE..68
8.1.1 RSR relative to server density and sc density68
8.1.2 Message overhead relative to server density and SC density69
8.1.3 False positive replies from service coordinator70

8.2 PURE FLOODING ARCHITECTURE...71
8.2.1 RSR relative to server density and flooding scopes.............................71

 VII

8.3 COMPARISON BETWEEN THE HYBRID AND THE PURE FLOODING

ARCHITECTURE...72
8.3.1 RSR comparison...72
8.3.2 Message overhead comparison..73
8.3.3 RSR and message overhead relative to max moving speed74

8.4 DISCUSSION..77
8.4.1 Tradeoff between the service availability and the message overhead.77

8.4.1.1 Comparing the pure flooding and the hybrid architecture at a 20%
SC density ..78

8.4.1.1.1 Considering single-hop SC announcement scope......................78
8.4.1.1.2 Considering multi-hop SC announcement scope.......................80

8.4.1.2 Comparing the pure flooding and the hybrid architecture at a 30%
SC density ..82

8.4.2 Comparing the static and the dynamic network topology83
8.4.2.1 RSR comparison ..83
8.4.2.2 Message overhead comparison ..83
8.4.2.3 Negative effects caused by the service coordinator under the
conditions of node mobility ...84

8.4.3 Considering service request interval ...84

CHAPTER 9 CONCLUSION AND FUTURE WORK85

REFERENCES...87

APPENDIX A
ARTICLE SUBMITTED FOR REVIEW ...89

APPENDIX B
SAMPLE CONFIGURATION FILE FOR SIMULATIONS..........99

APPENDIX C
PARTIAL IMPLEMENTATION CODES FOR SERVICE DISCOVERY ON
REACTIVELY ROUTED MANETS...101

A.1 INITIATE RREQS WITH OR WITHOUT EXTENSIONS..101
A.2 INITIATE RREPS WITH OR WITHOUT EXTENSIONS..104
A.3 HANDLE RREQS WITH OR WITHOUT EXTENSIONS..105
A.4 HANDLE RREPS WITH OR WITHOUT EXTENSIONS...109
A.5 HANLDE SC ANNOUCEMENTS...113
A.6 HANDLE SERVICE REGISTRATIONS...115
A.7 CLIENT, SERVER, SERVICE COORDINATOR SELECTION115

 VIII

 IX

LIST OF FIGURES

FIGURE 1: SLP’S TWO DIFFERENT OPERATING MODES WITH OR WITHOUT DAS PRESENT

..12
FIGURE 2: PURE FLOODING SERVICE DISCOVERY ARCHITECTURE..................................29
FIGURE 3: HYBRID SERVICE DISCOVERY ARCHITECTURE..30
FIGURE 4: SERVICE DISCOVERY MODEL USED IN THE SIMULATION................................32
FIGURE 5: SC PLACEMENT 1 (CLIENT – SERVER – SC)...33
FIGURE 6: SC PLACEMENT 2 (SERVER – CLIENT – SC)...34
FIGURE 7: SC PLACEMENT 3 (EVERYONE SEES EVERYONE) ...35
FIGURE 8: SC PLACEMENT 4 (CLIENT – SC – SERVER)...36
FIGURE 9: A SIMULATION WITH FIVE NODES...41
FIGURE 10: BROADCASTED MESSAGE OVERHEAD VS. SC ANNOUNCEMENT INTERVAL.43
FIGURE 11: BROADCASTED MESSAGE OVERHEAD AROUND 10S SC ANNOUNCEMENT

INTERVAL ..44
FIGURE 12: DETAIL OF OVERHEAD BY MESSAGE TYPE FOR THE SIMULATION WITH FIVE

NODES...44
FIGURE 13: BROADCASTED MESSAGE OVERHEAD PER SERVICE REQUEST VS. ACTIVE

ROUTE TIMEOUT..45
FIGURE 14: RSR RELATIVE TO SC AND SERVER DENSITY FOR THE STATIC NETWORK

TOPOLOGY (HYBRID) ..48
FIGURE 15: TWO SERVICE COORDINATORS WITH OVERLAPPING CHARGING AREAS.......49
FIGURE 16: MESSAGE OVERHEAD RELATIVE TO SC AND SERVER DENSITY FOR THE

STATIC NETWORK TOPOLOGY (HYBRID)..49
FIGURE 17: BROADCASTED MESSAGE OVERHEAD RELATIVE TO SC AND SERVER DENSITY

FOR THE STATIC NETWORK TOPOLOGY (HYBRID) ..50
FIGURE 18: DETAIL OF BROADCASTED MESSAGE OVERHEAD BY MESSAGE TYPE FOR THE

STATIC NETWORK TOPOLOGY (HYBRID)..51
FIGURE 19: DETAIL OF MESSAGE OVERHEAD BY MESSAGE TYPE FOR THE STATIC

NETWORK TOPOLOGY (HYBRID)..51
FIGURE 20: RSR RELATIVE TO DIFFERENT SCOPE PARAMETERS FOR THE STATIC

NETWORK TOPOLOGY (HYBRID)..52
FIGURE 21: RSR RELATIVE TO SERVER DENSITY AND FLOODING SCOPE FOR THE STATIC

NETWORK TOPOLOGY (PURE FLOODING) ..53
FIGURE 22: BROADCASTED MESSAGE OVERHEAD FOR DIFFERENT FLOODING SCOPES FOR

THE STATIC NETWORK TOPOLOGY (PURE FLOODING)..54
FIGURE 23: RSR COMPARISON BETWEEN THE PURE FLOODING AND THE HYBRID

ARCHITECTURE FOR THE STATIC NETWORK TOPOLOGY...55
FIGURE 24: THE EFFECT OF SC, SCENARIO 1 ...56
FIGURE 25: THE EFFECT OF SC, SCENARIO 2 ...56
FIGURE 26: DETAIL COMPARISON OF MESSAGE OVERHEAD BY MESSAGE TYPE FOR THE

STATIC TOPOLOGY...57
FIGURE 27: COMPARISON OF TOTAL NUMBER OF SERVICE REQUESTS BROADCASTED ...58

 X

FIGURE 28: LATENCY COMPARISON BETWEEN THE PURE FLOODING AND THE HYBRID

ARCHITECTURE FOR THE STATIC NETWORK TOPLOGY...58
FIGURE 29: THE EFFECTS OF INCREASING SC DENSITIES FOR THE STATIC NETWORK

TOPOLOGY..65
FIGURE 30: NETWORK PARTITIONS FOR THE DYNAMIC NETWORK TOPOLOGY...............68
FIGURE 31: RSR RELATIVE TO SC AND SERVER DENSITY FOR THE DYNAMIC NETWORK

TOPOLOGY (HYBRID) ..68
FIGURE 32: MESSAGE OVERHEAD RELATIVE TO SC AND SERVER DENSITY FOR THE

DYNAMIC TOPOLOGY (HYBRID) ..69
FIGURE 33: DETAIL OF MESSAGE OVERHEAD BY TYPE FOR THE DYNAMIC NETWORK

TOPOLOGY (HYBRID) ..70
FIGURE 34: FALSE POSITIVE REPLIES PERCENTAGE...71
FIGURE 35: THE PERIOD DURING WHICH FALSE POSITIVE REPLIES ARE PASSED OUT......71
FIGURE 36: RSR RELATIVE TO SERVER DENSITY AND FLOODING SCOPE FOR THE

DYNAMIC NETWORK TOPOLOGY (PURE FLOODING) ..72
FIGURE 37: RSR COMPARISON BETWEEN THE PURE FLOODING AND THE HYBRID

ARCHITECTURE FOR THE DYNAMIC NETWORK TOPOLOGY.....................................72
FIGURE 38: MESSAGE OVERHEAD COMPARISON BETWEEN THE PURE FLOODING AND THE

HYBRID ARCHITECTURE FOR THE DYNAMIC NETWORK TOPOLOGY73
FIGURE 39: RSR RELATIVE TO MAX MOVING SPEED..74
FIGURE 40: MESSAGE OVERHEAD RELATIVE TO MAX MOVING SPEED...........................76
FIGURE 41: DETAIL OF MESSAGE OVERHEAD BY TYPE FOR THE HYBRID ARCHITECTURE

VS. MAX MOVING SPEED..76

 XI

LIST OF TABLES

TABLE 1: MESSAGE TYPES AND TYPE-SPECIFIC VALUES USED IN SIMULATIONS............32
TABLE 2: SIMULATION PARAMETERS FOR A SIMULATION WITH FIVE NODES42
TABLE 3: SIMULATION PARAMETERS FOR STATIC SIMULATIONS...................................47
TABLE 4: THE EFFECT OF VARYING DIFFERENT SCOPE PARAMETERS FOR THE STATIC

NETWORK TOPOLOGY (HYBRID)..52
TABLE 5: RSR COMPARISON AT A SERVER DENSITY OF 5% FOR THE STATIC NETWORK

TOPOLOGY..55
TABLE 6: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 5% SERVER DENSITY FOR THE

STATIC NETWORK TOPOLOGY..60
TABLE 7: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 20% SERVER DENSITY FOR THE

STATIC NETWORK TOPOLOGY..60
TABLE 8: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 40% SERVER DENSITY FOR THE

STATIC NETWORK TOPOLOGY..61
TABLE 9: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID ARCHITECTURE

("HYBRID") WITH SERVER DENSITY OF 5%, SC ANNOUNCEMENT SCOPE OF 1 HOP.
THE VALUES ARE EXTRACTED FROM TABLE 6...62

TABLE 10: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID

ARCHITECTURE ("HYBRID") WITH SERVER DENSITY OF 20%, SC ANNOUNCEMENT

SCOPE OF 1 HOP. THE VALUES ARE EXTRACTED FROM TABLE 7.62
TABLE 11: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID

ARCHITECTURE ("HYBRID") WITH A SERVER DENSITY OF 40%, SC ANNOUNCEMENT

SCOPE OF 1 HOP. THE VALUES ARE EXTRACTED FROM TABLE 8.63
TABLE 12: COMPARING PURE FLOODING SCHEME (“FLOODING”) AND DIFFERENT

HYBRID SCHEMES ("HYBRID") WITH INCREASING SC ANNOUNCEMENT SCOPES. THE

VALUES ARE EXTRACTED FROM TABLE 6, WHICH COVERS A SERVICE DENSITY OF

5% ..63
TABLE 13: COMPARING PURE FLOODING (“FLOODING”) AND DIFFERENT HYBRID

SCHEMES ("HYBRID"), WHICH COVERS A SERVICE DENSITY OF 20% AND AN

INCREASING SC DENSITY OF 30% FOR THE STATIC NETWORK TOPOLOGY.............65
TABLE 14: SIMULATION PARAMETERS FOR DYNAMIC SIMULATIONS.............................67
TABLE 15: RSR COMPARISON AT A SERVER DENSITY OF 40% FOR THE DYNAMIC

NETWORK TOPOLOGY..73
TABLE 16: THE EFFECT OF MOBILITY..75
TABLE 17: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 5% SERVER DENSITY FOR THE

DYNAMIC NETWORK TOPOLOGY..77
TABLE 18: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 20% SERVER DENSITY FOR THE

DYNAMIC NETWORK TOPOLOGY..78

 XII

TABLE 19: OVERALL COMPARISON BETWEEN THE PURE FLOODING ("FLOODING") AND

THE HYBRID ARCHITECTURE ("HYBRID") AT A 40% SERVER DENSITY FOR THE

DYNAMIC NETWORK TOPOLOGY..78
TABLE 20: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID

ARCHITECTURE ("HYBRID") WITH SERVER DENSITY OF 5%, SC ANNOUNCEMENT

SCOPE OF 1 HOP. THE VALUES ARE EXTRACTED FROM TABLE 17.79
TABLE 21: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID

ARCHITECTURE ("HYBRID") WITH SERVER DENSITY OF 20%, SC ANNOUNCEMENT

SCOPE OF 1 HOP. THE VALUES ARE EXTRACTED FROM TABLE 18.79
TABLE 22: COMPARING PURE FLOODING ("FLOODING") AND THE HYBRID

ARCHITECTURE ("HYBRID") WITH A SERVER DENSITY OF 40%, SC ANNOUNCEMENT

SCOPE OF 1 HOP. THE VALUES ARE EXTRACTED FROM TABLE 19.80
TABLE 23: COMPARING PURE FLOODING SCHEME (“FLOODING”) AND DIFFERENT

HYBRID ARCHITECTURE SCHEMES ("HYBRID") WITH INCREASING SC

ANNOUNCEMENT SCOPES. THE VALUES ARE EXTRACTED FROM TABLE 17, WHICH

COVERS A SERVICE DENSITY OF 5%...81
TABLE 24: COMPARING PURE FLOODING (“FLOODING”) AND DIFFERENT HYBRID

ARCHITECTURE SCHEMES ("HYBRID") UNDER THE CONDITIONS OF NODE MOBILITY,
WHICH COVERS A SERVICE DENSITY OF 20% AND AN INCREASING SC DENSITY OF

30% ..82
TABLE 25: OVERALL MESSAGE OVERHEAD COMPARISON BETWEEN STATIC AND

MOBILITY CASE AT A SERVER DENSITY OF 20%...84

 1

Chapter 1
Introduction

A mobile ad hoc network (MANET) is a set of mobile nodes connected by wireless
links forming a dynamic autonomous network without any pre-existing infrastructure.
Because of the arbitrary and unpredictable movement of the nodes in the ad hoc
network, the network topology will be subject to constant changes. Ad hoc nodes are
heterogeneous and they function as both routers and hosts.

Discovery of services and other named resources is anticipated to be a crucial feature
for the usability of mobile ad-hoc networks. In the dynamic environment of
MANETs, different nodes offering different services may enter and leave the network
at any time. Efficient and timely service discovery is a prerequisite for good
utilization of shared resources on the network.

On a MANET, any node may in principle operate as a server and provides its services
to other MANET nodes or as a service requestor and uses the service discovery
protocol to discover available services and their service attributes presented on the
network. This includes IP addresses, port-numbers and protocols that enable the client
to initiate the selected service on the appropriate server.

The Internet community has not yet reached a consensus on one particular service
discovery protocol that is likely to be supported by most Internet hosts. There are a
number of proposed service discovery mechanisms - such as Jini [10], Service
Location Protocol (SLP) [7] [8], Salutation Protocol [11], UPnP/SSDP [13] and
Bluetooth SDP [20] [21].

As a slight simplification, one may say that all these protocols are based on two
baseline mechanisms for management of service discovery information:

1.Information about services offered on the network is stored in one or a few
centralized nodes.

2.Information about each service is stored on the node that is offering the service.

In this thesis we define the service discovery architectures with regard to these two
mechanisms. Solution only based on the first mechanism is referred to as a service
coordinator based architecture, while a solution only based on the second
mechanism is referred to as a pure flooding architecture. Finally, a solution based
on a mixture of both the first and the second is referred to as a hybrid architecture .

Existing service discovery mechanisms are normally designed with a fixed network in
mind, and might not fit well to mobile ad-hoc networks. Mobile ad hoc networks are
normally highly dynamic and without any pre-existing infrastructure. These

 2

characteristics call for particular considerations. Hence, before a service discovery
mechanism for ad-hoc networks can be designed or selected, one need to evaluate
what kind of service discovery architectures are most suitable for mobile ad-hoc
networks.

Güichal [34] undertakes an analysis of different service discovery architectures based
on simulations. The work concludes that the hybrid architecture normally outperforms
both the service coordinator based and the pure flooding architecture. The pure
flooding architecture is the second best choice, and yields less messaging overhead.
Despite this, Güichal [34] concludes that the hybrid architecture gives an overall
better performance, because it yields higher service availability. A shortcoming of the
simulations from Güichal’s work [34] is that they do not take the importance of
underlying routing into consideration. This assumption might be appropriate when a
proactive routing protocol is being used, because with proactive routing the traffic
patterns and service discovery search patterns do not influence the amount of routing
messages. With a reactive routing protocol, on the contrary, this assumption may not
hold, and the simulation results are not applicable. Data traffic will trigger messaging
by the reactive routing protocol. Hence, service discovery messages will increase the
routing overhead. We therefore anticipated that the routing overhead would be much
higher with the hybrid architecture than with the pure flooding, simply because the
hybrid architecture proved to require more messages on the network.

The layout of the thesis is as follow:
Chapter 2 gives an overview of the major research areas in MANETs including
routing and service discovery. Chapter 3 presents relevant work related to service
discovery in MANETs. Chapter 4 shows how service coordinators can be introduced
to reactively routed MANETs in a bandwidth-efficient way. This chapter also
discusses the importance of the placement of service coordinators relative to service
requestors and servers. Chapter 5 presents the simulation setup. Chapter 6 presents the
results from a simple simulation with five nodes. Chapter 7 presents simulation results
that compare the performance between the pure flooding and the hybrid service
discovery architecture in networks with static topologies. Chapter 8 repeats the same
simulations with mobility added to the network. Conclusions are drawn in Chapter 9,
and directions for further work are discussed.

1.1 Research purpose
In this thesis, a new comparison will be made between the pure flooding and the
hybrid architecture, to determine if Güichal's conclusion [34] still holds in a reactively
routed network. Both the overhead of the service discovery mechanism, as well as the
additional routing that is triggered by the mechanism is taken into evaluation. When
we evaluate the two architectures, we look for a user-friendly solution that gives a
high level of service availability, low discovery delay, and so forth. At the same time,
we want a network-friendly solution, i.e. with low messaging overhead and with little
additional complexity added to the network. To a certain degree, it is also possible to
increase the user-friendliness at the cost of introducing more messaging. Since the
service discovery mechanism has an influence on the reactive routing protocol and
since the two mechanisms share a lot of similarities, it is possible to make
optimizations between the two to reduce the overall routing overhead. Here we use
the optimization methods that are based on the proposals from [30] and [31].

 3

Chapter 2
Background

This chapter will briefly present some of the major research topics related to mobile
ad hoc networks including routing, service discovery and middleware technology with
special emphasis put on the service discovery.

2.1 Mobile Ad Hoc Network
A Mobile Ad Hoc Network (MANET) is a set of mobile nodes connected by wireless
links forming a dynamic autonomous network without any pre-existing infrastructure.
Because of the arbitrary and unpredictable movement of the nodes in the mobile ad
hoc network, the network topology will be subject to constant changes.

MANET nodes are heterogeneous with respect to their processing power, storage
capacity, battery life and so forth. They communicate with each other without the
need of any centralized access points or base stations. They function as both routers
and hosts and they are responsible to cooperate with each other to route network
traffic. Multiple hops may be needed when two nodes out of each other’s radio range
wish to communicate, hence the term multi-hop network.

A MANET is easy to set up because of its minimal dependency on the fixed
infrastructure. This makes it ideal in supporting applications that need instant network
formation in mobile or temporary environment where fixed infrastructure is
unavailable or undesirable, e.g. conventions, construction site, disaster relief etc.

2.2 Routing Protocols for MANETs
Traditional routing protocols for packet switched network using either link state or
distance vector algorithms are designed primarily for fixed network with infrequent
topological changes and stable and symmetric links. They don't fit so well in
MANETs due to several salient restrictions of MANETs, for example dynamic
topology, limited bandwidth, constrained energy etc.

In a MANET, a high rate of unpredictable topological changes is expected, which are
often caused by the mobility of nodes, power outages etc. In addition, the bandwidth
is usually very limited. Thus the dissemination of up-to-date routing information can
easily cause network congestion if the routing algorithm should react to the
topological changes. Furthermore, it often takes long time for a network to converge
by using traditional routing algorithms, which is not considered as an ideal situation
for an extremely dynamic environment like the MANET. MANETs call for fast
convergence so as to ensure seamless communications between mobile nodes.
Routing in MANETs is typically performed using only host specific routes as opposed

 4

to network specific routes in fixed networks. Routes should be formed with minimal
overhead and bandwidth consumption.

Existing schemes for routing in MANETs can be broadly classified into three
categories, namely proactive, reactive and hybrid. They all have their pros and cons.
Following subsections will give an overview of some of them.

2.2.1 Proactive routing protocols
Proactive routing protocols bear a strong similarity to the traditional routing
algorithms. They are also called table-driven routing protocols because of their
concerted effort to keep the various tables updated. Proactive routing protocols
maintain consistent routing information from each node to every other node in the
network. In order to keep routing information consistent and up to date, they will
periodically distribute routing updates throughout the network to reflect the
topological changes. Different proactive routing protocols distinguish themselves by
the way routing information is handled.

2.2.1.1 Destination-Sequenced Distance Vector (DSDV)
The DSDV [1] routing protocol is a modification of the conventional Bellman-Ford
routing scheme. It adapts the traditional distance vector based routing to MANETs. It
solves the routing loop and counting-to-infinity problems that often occur in the
traditional distance vector based routing due to topological changes.

A node that implements DSDV [1] maintains two important tables, one is the routing
table which is used for forwarding packets and the other is the route-settling table
which is used for damping the network fluctuation.

The routing table records in each of its entry the address of the available destination
node, the next hop towards the destination, number of hops to the destination, a
destination generated sequence number, a lifetime indicating the period of time the
route is considered to be valid and a pointer to an entry in the route-settling table. The
routing table maintains fresh routing information to all the available destinations in
the network. Loop freedom is guaranteed through the use of destination generated
sequence numbers. When a node receives route updates from its neighbor nodes, it
will only update the recorded route to a destination if one of the following two criteria
is met.

- The new route has a higher sequence number.
- The sequence number is the same, but the new route exhibits a better metric

(i.e. fewer hops to the destination).

The route-settling table holds information concerning the stability of routes to various
destinations. For every available destination, it is recorded an average settling time, i.e.
the average time taken between the receipt of the first and the best route for the
destination. A node should wait twice the average settling time before re-broadcasting
the route updates received from the neighbor nodes. In such a way, the network
fluctuation will be alleviated and network traffic is reduced by eliminating the
unnecessary broadcast of route updates that might occur if a node should always
receive the route with worse metric first and a better one right after.

 5

In DSDV [1], route updates are broadcasted periodically or immediately triggered by
significant topological changes due to the movement of nodes or alike so as to keep
all the tables up to date and consistent. Two types of update packets, full dump and
incremental update packet can be sent. The former contains the whole routing table
information, which usually consumes several network protocol data units (NPDUs)
and should be broadcasted periodically regardless of the existence of any topological
changes. These packets can be transmitted infrequently in a rather static network.
Incremental update packets contain only those routing information that has been
changed since last full dump. Each of these packets should fit in one NPDU, thereby
sparing the bandwidth usage. These packets are sent between full dumps. If it should
happen that the size of one NPDU is exceeded, a full dump will be scheduled.

Evaluation: Several parameters need to be negotiated for this routing protocol, for
example, the updates interval (i.e. full dump updates interval and incremental route
updates interval), the settling time for each destination and the route expiration time,
so that a balance can be made between route validity and communication overhead.
DSDV [1] assumes bi-directional links, which are not always the case in MANETs.

2.2.1.2 Optimized Link State Routing (OLSR)
OLSR [2] is another proactive, table-driven routing protocol worth mentioning.
The optimizations as the name promises are reflected in two ways:

- The protocol engages only a set of nodes called multipoint relays (MPRs) in
retransmitting the control messages that are meant to be flooded to the entire
network, thereby reducing the total number of duplicate retransmissions.

- The protocol allows control messages from a node to contain only the
information about link states to those neighbor nodes that have chosen this
node as their multipoint relay, thereby reducing the size of the control
messages.

Multipoint Relay (MPR)
MPRs are a subset of a node's one-hop, symmetrical (i.e. bi-directional link) neighbor
nodes that are selected independently by the node based on the criterion that they
should cover all the two-hop neighbors of the node. In such a way, control messages
can be flooded to all the nodes in the network through multipoint relays. As
mentioned above, only multipoint relays are engaged in relaying the control messages
throughout the network. Accordingly, the smaller the MPR set, the less bandwidth it
is consumed and the more optimal it becomes. However, a bigger MPR set can secure
eventual link failures.

Neighbor sensing
The neighbor sensing mechanism in OLSR [2] has made it possible for a node to
detect its direct connected neighbors. It is done with the help of so-called HELLO
messages.

Every node in the network will periodically broadcast HELLO messages to its one-
hop neighbors. These messages contain information about sending node’s one hop
neighborhood and the link status. The MPR set chosen by the sending node is also
announced through these messages. Through the information conveyed in these

 6

HELLO messages, a node is able to keep a neighbor sensing information base that
holds the information about its one-hop neighbors, two-hop neighbors, MPRs and
MPR selectors. MPR selectors are those neighbor nodes that have chosen this node to
be their multipoint relay. The neighbor sending information base will be updated from
time to time to reflect the topological changes in the neighborhood.

Network topology
In order to construct routes to all the other nodes in the network, each node keeps a
topological information base for the whole network. Topological information is
gathered through another periodic message type called Topological Control (TC)
messages. TC messages are generated by MPRs (advertising nodes). They must at
least contain the reachability information to those one-hop neighbors that have
selected the advertising node as their multipoint relay. It is a partial link state.

Besides TC messages, there are two other important control messages that help a node
in gaining a complete view of the network topology.

One is called Multiple Interface Declaration (MID) messages, which are broadcasted
by nodes that are associated with more than one network interface and all of which
are running OLSR [2]. These messages contain the interface addresses that are
associated with the sending node. Through these messages, each node can build an
interface association information base for the entire network.

The other type of message is called Host and Network Association (HNA) messages
that are broadcasted to the entire network by those nodes that act as “gateways”
between the ad hoc network and a group of hosts or a subnet that doesn’t run OSLR
[2].

Routing tables
Routing tables are constructed with the information acquired through all the
aforementioned control messages. Through these messages, a node will record in its
topological information base a number of connected pairs in the form of [last-hop,
destination node]. Routes are formed by tracking these connected pairs in a
descending order. Changes in the neighbor sensing information base, the topological
information base or the interface association information base will trigger a routing
table update.

Evaluation: OLSR [2] is best optimized in a compact network with random traffic. It
is even better if the communication pairs change over time, because route is available
all the time as opposed to reactive routings in which significant amount of query
traffic may be initiated.

2.2.2 Reactive routing protocols
Considering all the overhead in trying to keep all the routes up to date in the proactive
routing protocols and the fact that some of these routes may never even be used,
another approach in routing protocols for MANETs is made. They are called source-
initiated on-demand or reactive routing protocols. Routes are only created when
desired by the source node and maintained under the duration of the communication
between the source node and the destination node.

 7

2.2.2.1 Ad hoc On-demand Distance Vector (AODV)
AODV [3] is one of the representative routing protocols that fall under this category.
Only routes to those destinations that a node is communicating with are maintained in
the node's routing table.

Route request
When a node wishes to communicate with another node, but doesn’t yet possess any
valid routes to it, the node will then initiate a route discovery by broadcasting a route
request (RREQ) to the network. A monotonically increasing broadcast ID is
associated with every new RREQ initiated by the node. This broadcast ID together
with the IP address of the RREQ initiator uniquely identifies the route request. This
information will be stored in every receiving node of the RREQ for a predefined
period of time, so that duplicate route requests can be ignored. En expanding ring
search technique is used to prevent unnecessary network-wide dissemination of
RREQs. The basic idea of this technique is to incrementally increase the flooding
scope of a RREQ until a route reply is received or until it reaches a predefined
threshold beyond which a network-wide flooding scope will be used. As RREQ
traverses the network, reverse routes to the RREQ initiator are generated. Reverse
routes will be needed to eventually route back the route reply. This requires bi-
directional links.

Loop freedom and route freshness
Loop freedom and route freshness are ensured by the use of destination generated
sequence numbers. This is the same idea as that mentioned for DSDV [1].

Route reply
A route reply (RREP) is unicasted back to the RREQ initiator from either the
destination node itself or any intermediate node with a “fresh” enough route to the
destination. A “fresh” enough route means the cached route to the destination has a
valid sequence number that is at least as great as the one from the RREQ packet.
Route replies are relayed back using reverse routes that were created along with the
RREQ. In the case of RREP by an intermediate node, an unsolicited RREP will be
sent to the destination node by the intermediate node as if the destination node has
requested a route to the source node. This is to facilitate a bi-directional
communication between the source (RREQ initiator) and the destination. As RREP is
routed back along the reverse route, a forward route to the destination node will be
created. Precursor lists for the source and the destination node will also be created. A
Precursor list, as one field of the route entry for a certain destination, is a list of nodes
(active neighbors) that have recently utilized this active route to forward packets to
the destination. These are the nodes to which route error message (RERR) should be
forwarded when the destination becomes unreachable. Multiple route replies may be
received by a certain node, only better routes (i.e. routes with greater sequence
number or same sequence number yet fewer hops) will be forwarded towards the
source node. The source node will begin to use the first discovered route, however,
better route will be discovered and used over time.

 8

Route maintenance
Route maintenance concerns only nodes in active routes as opposed to proactive
routing protocols where all nodes are engaged in route maintenance. A link breakage
can be discovered by failing to receive any kind of broadcast messages (e.g. RREQ,
RREP), periodic HELLO messages from the neighbor or by link layer methods. If one
of the intermediate nodes on the active path discovers a broken link to the next hop
towards the destination, a route error message will be propagated to the node’s active
upstream neighbors and in turn their active neighbors until the message reaches the
source node. Along with the propagation of route error messages, routing tables are
searched and routes affected are invalidated.

Evaluation: AODV [3] requires symmetric links between nodes, which cannot be
guaranteed in the ad hoc environment. Due to its relative low memory and CPU usage,
its scalability is quite promising.

2.2.2.2 Dynamic Source Routing (DSR) protocol
DSR [4] is another on-demand routing protocol. A node that is running DSR [4] will
record in its route table a full path to a destination as opposed to all the
aforementioned routing protocols in which only next hop information is recorded.
This increases the memory usage in individual nodes, which could be a scarce
resource for some devices. Furthermore, the complete path to the destination is
included in the header of every data packet sent. This might cause the packet size to
exceed the maximum MTU of the underlying network, which leads to fragmentations.

DSR [4] consists of two phases; route discovery and route maintenance.

Route discovery
In an on-demand route discovery, a node will broadcast a route request when there are
no valid routes cached for the destination it intends to communicate with. The
mechanism to avoid duplicate processing and forwarding of route requests is the same
as that in AODV [3]. The intermediate node that receives the route request will first
append its own address to the route record that is contained in the route request packet
and then rebroadcast the packet until it reaches the destination node or an intermediate
node with a valid route to the destination. Route replies can be generated either by the
destination itself or the intermediate node with a valid cached route. In the former
case, the route record will be copied directly to the route reply from the route request.
In the latter case, the route record should be appended with the cached route first
before being copied to the route reply. There are three alternatives to route the route
reply back to the source node. A route reply can be propagated back to the source
through a cached route. Alternatively, the node can simply reverse the route record
contained in the route request and use the reversed route to route back the reply. A
third alternative is to trigger a new route discovery and piggyback the route reply in
the route request. The cost of route discovery by flooding the route request is very
high in terms of bandwidth, power and time etc. Hence nodes usually choose to cache
many learned or overheard routes. In addition, multiple routes for a single destination
are cached. In such a way, the cache can be exploited aggressively so as to reduce the
need for route discovery.

 9

Route maintenance
DSR [4] does not rely on periodic HELLO messages to supervise the link
connectivity. Instead, built-in acknowledgement mechanisms are used. One might use
link layer acknowledgements or passive acknowledgements (i.e. overhearing
transmissions of neighbors). Alternatively, software acknowledgements (i.e. explicit
acknowledgement request messages) can be used. In case of a link failure, a route
error message will be sent back to the source host. Upon receiving a route error
message, the broken link will be removed from the route cache and all routes
containing the broken link will be truncated from that point on.

Evaluation: DSR [4] exhibits a big message overhead and a high memory usage due
to the fact that a full path has to be carried in every packet transmitted and has to be
stored in the route table. Cached routes are meant to cut the need for route discoveries.
However, stale routes may be used due to the aggressive usage of cached routes.
Optimizations that require each node to work in promiscuous mode in order to
monitor the network traffic within range (i.e. overhear routes from other nodes) will
result in more CPU usage, but this problem can eventually be solved using special
network interface hardware.

2.2.3 Hybrid routing protocols
In order to provide a better trade-off between the communication overhead and the
delay, the hybrid approach comes into being. It partitions the whole network into
(overlapping) zones and uses a proactive approach in the intrazone routing while a
reactive approach in the interzone routing.

2.2.3.1 Zone Routing Protocol (ZRP)
ZRP [5] is representative in this category. It consists of three basic components,
namely intrazone routing protocol (IARP), interzone routing protocol (IERP) and
bordercasting resolution protocol (BRP).

ZRP [5] divides the network into overlapping zones called routing zones. Each node
specifies a zone radius in terms of radio hops for its own routing zone. Intrazone
routing protocols, which can be any of the suitable proactive routing protocols with
slight modifications, are used to route the traffic inside the zone while interzone
routing protocols, which can be any of the suitable reactive routing protocols, are used
by nodes to discovery route to the destination node that lies outside the current routing
zone. Bordercasting mechanism is used in interzone routing to relay the query packet
across the overlapping zones by directing them towards the uncovered border nodes
of the routing zone as opposed to the usual broadcasting mechanism where packets
are routed from neighbor node to neighbor node. A node is considered as being
covered if the query packet has already been delivered to it. Bordercasting reduces the
traffic load caused by route queries.

2.2.4 A general comparison of proactive, reactive and hybrid routing
approaches

- With proactive routing protocols, routes from each node to every other node in
the network are always available. This will eliminate the initial delay in

 10

finding the route and ensure higher quality routes in a static topology. With
reactive routing protocols, on the other hand, routes are only created when
needed by the source node. When there is no route to the destination node the
application wants to communicate with, the delay caused by the route
discovery may be significant from an application’s point of view. Real time
communication will favor proactive routing protocols in this regard.

- Proactive routing protocols incur higher bandwidth and power consumption.

Substantial update messages triggered by frequent topological changes and
periodic control messages are flooded in network so as to keep the routing
tables consistent and up to date. This will consume a huge part of the already
scarce bandwidth. Some of the nodes may use most of their processing and
battery power to process and relay these routing updates instead of doing any
other constructive tasks. Many of these routes may not even be used.
Furthermore, routes to every other node in the network are cached in the
routing table, which might take up lots of node’s memory space if the network
is of great magnitude. Memory space is another scarce resource for many
mobile devices

- Proactive routing protocols, however, provide more often optimal routes. They

continually reevaluate the routes and adjust them according to the topological
changes. Reactive routing protocols, on the contrary, will generally stick to the
established routes until they can no longer be used even if some other more
optimal routes exist.

- In reactive routing protocols, the flooding of route discovery requests might

easily saturate a large network. Nodes that don't lie on the final established
route will still have to process and relay the route discovery requests, thus
wasting the limited processing energy for nothing.

- Proactive routing protocols favor random and sporadic communication

patterns while reactive routing protocols prefer relatively long communication
sessions between a small set of nodes at any one time. Proactive routing
protocols beat reactive protocols especially when the communicating source
and destination pairs are changing frequently, since in such case, a lot of
control messages (route requests, route replies, etc.) will be initiated so as to
find a route between the new source and destination if the reactive routing
protocol is used.

- Hybrid routing protocols distinguish themselves the most, yet they bring

additional complexities to the network and many factors remain to be
considered, e.g. the size of the zone, interplay between interzone and intrazone
routing protocols etc.

2.3 Service discovery
With the booming amount of disparate services available in the networks and the
increasing mobility they expose, a mechanism for service discovery should be
provided for devices to automatically and dynamically ''advertise'' the services they
provide and “discover” the existence, location and configuration of the desired

 11

services in the network. The goal of a service discovery is to allow service users to
search for services by names, types, attributes etc. instead of IP-addresses and port
numbers. In addition, service users usually wish to browse for services and to be freed
from the burden of manually reconfiguring the system upon accessing the services. In
short, the ultimate goal is to facilitate the task of finding and using the services for the
service users. With the proliferation of mobile devices, service discovery mechanisms
should support dynamic environments.

Service discovery mechanisms can be broadly classified into three categories:

- Services are registered at a central registry and clients search for services at
the registry.

- Servers advertise their services to potential clients through multicasting or
limited broadcasting.

- Clients multicast or broadcast service requests to the network. Servers with
matching services respond to the service requests usually with unicast service
replies.

Many service discovery protocols have been proposed. However, they are more or
less designed for fixed networks than for MANETs.

2.3.1 Service Location Protocol (SLP)
SLP [7] [8] is an IETF standard for service discovery and automatic configuration of
clients for IP-based networks. SLP [7] [8] has been designed with the intention to
enrich the primitive service matching mechanisms and improve the scalability of
some proprietary protocols. It allows users to request for services based on
characteristics as well as types. Version 2 of SLP [7] [8] has now replaced the first
version.

SLP [7] [8] presents a framework that consists of three types of agents, not all of
which are mandatory:
A User Agent (UA) is a process that requests for services on behalf of the client
applications.
A Service Agent (SA) is a process that advertises the service location and
characteristics on behalf of one or more services
A Directory Agent (DA) (optional) is a process that aggregates service information
into a central repository. The use of directory agents improves the scalability.

On starting up, UAs and SAs will first check for the presence of DAs. DA related
information could be distributed through either static configuration or DHCP service
location option (78) [9]. If none such information is configured through these methods,
UAs and SAs must initiate either active DA discovery or passive DA discovery. In
active DA discovery, UAs and SAs multicast service requests for DAs using multicast
convergence algorithm [8]. In multicast convergence algorithm, a service request is
attached with a responder list, which is an address list of all the agents that have
already responded to the request. The service request will be retransmitted several
times so as to collect as many responses as possible. Agents that are already listed in
the responder list will discard the service request. The responder list keeps the
network especially the requesting node from being inundated with duplicate responses
from the same node. In passive DA discovery, UAs and SAs wait for the unsolicited

 12

multicast DA advertisements generated once in a while by DAs. If some DAs are
present in the network, DA advertisements with DAs’ location information, scope
information, associated attributes etc. will be received be it an active or a passive
discovery approach.

Scope is a concept that improves the scalability. It is a null terminated text string,
which is used to group resources by location, network or administrative category [7].
A UA can only discover those services that are configured with at least one of the
scopes that are assigned to the UA. UAs configured with “NO SCOPE LIST” can
multicast service requests for DAs or SAs so as to retrieve all the available scope
information in the network and later to discover all the services within all the scopes.
A SA should register all its services with all the discovered DAs provided that the
conjunction set of the scope lists of the DA and the SA is not empty.

Service location information is expressed by a service URL, which contains all the
needed information (IP address, port number etc.) to contact the service. Legal
attributes and their default values for a specific service type are defined using a
service template. Service attributes are registered and queried using the same
definition as that specified in the service template. A service template defines a
common vocabulary between service requestors and service providers.

Figure 1: SLP’s two different operating modes with or without DAs present

SLP [7] [8] will operate in two modes depending on the existence of DAs. As Figure
1 above illustrates, with the presence of DAs, a SA will register with all the
discovered DAs in its scope all its advertised services. Upon successful registration,
an acknowledgement will be unicasted from the DA back to the registering SA.

 13

Services are registered with their service URLs, service types, lifetime (the time
period during which services are considered to be available), possibly associated
attributes and so forth. SAs should refresh their service registrations periodically
before their lifetime expire, otherwise service entries will be purged from DAs on
expiration. A UA initiates a service discovery by unicasting a service request to a
selected DA and the DA will unicast back a service reply if a match is found. Services
are matched by service types, scope information and possibly service attributes. A
service reply consists of service URLs to the matched services and their lifetime. In
the absence of DAs, UAs will query SAs directly by sending service requests using
multicast convergence algorithm [8], SAs with the matching services will unicast
service replies back to the requesting node.

All SLP [7] [8] messages are sent in UDP datagrams and truncated if they exceed the
maximum UDP packet size. However, a TCP connection might be opened when a
node receives a truncated service reply. In that case, the service request should be
retransmitted. There is no mention of the actual protocol for accessing the service in
the specification.

Evaluation: Multicast and DHCP are used in initialization. Neither is scalable as far
as Internet is concerned. As a result, SLP in its current form is not scalable either, thus
not suitable for MANETs.

2.3.2 Jini Technology
Jini [10] introduced by Sun Microsoft is a Java centered technology. It introduces the
concept of a federation, which is a collection of Jini technology-enabled services that
co-operate with each other to achieve the goal of resource sharing.

Jini [10] distributed system architecture is comprised of an infrastructure, a
programming model and many services. The central components of the infrastructure
are a lookup service and a trio of protocols called discovery, join and lookup.

Jini Lookup Service (JLS), which is the counterpart to the DA in the aforementioned
SLP [7], serves as a repository for up-to-date service information within the Jini
federation. A discovery protocol is used by a newly started service/device, referred to
as entity henceforth, to locate lookup services to register with. There are three related
discovery protocols, namely a multicast request protocol, a multicast announcement
protocol and a unicast discovery protocol. The unicast discovery protocol is used by
an entity to contact a lookup service on a known host and it is also used by the other
two discovery protocols in the final phase of a lookup service discovery. In unicast
discovery, a TCP connection must first be established between the entity and the
lookup service on the known host. Then a simple request/response mechanism is used.
A proxy of the lookup service through which en entity can invoke different methods
of the lookup service will be sent in response. However, if a new entity starts up
without any clue of the location of the lookup services, it simply multicasts a UDP
request using multicast request protocol in order to obtain one or more references to
the lookup services. This resembles the active DA discovery in SLP [7]. A lookup
service, upon accepting the request, establishes first a TCP connection with the entity
using the enclosed contact information in the request packet. Then the unicast
discovery is performed by the entity as described above to get a reference/proxy of the

 14

JLS. Another way to get a JLS proxy is to listen for multicast announcements sent out
regularly by the lookup services using multicast announcement protocol. Lookup
services will start sending out announcements the moment they start up. This way of
getting JLS proxy is similar to the passive DA discovery in SLP [7]. An interested
entity can then establish a TCP connection to a JLS using the enclosed contact
information in the announcements and followed by the unicast discovery.

After the acquisition of JLS references/proxies, the service joins the federation by
registering with the lookup services. It does so by uploading its service object
containing the Java programming language interfaces for the service along with other
descriptive attributes to the lookup service. This is accomplished by invoking the
register method of the received JLS proxy.

Lookup can occur when a Jini client after locating the lookup service through the
aforementioned discovery mechanism needs to discover a service that matches a
certain interface type and possibly some other descriptive attributes. The node is
doing so by invoking a lookup method on the received lookup service proxy. If a
match occurs at the lookup service, the service object to the matched service will be
downloaded to the client, such that the client can invoke different methods offered by
the remote service through the downloaded service object/proxy using Java RMI [37].
This kind of code mobility has simplified the Jini system.

Jini's [10] group concept is a counterpart to SLP’s [7] scope concept. A group is an
arbitrary string representing a name. Services can be configured with specific groups
to join in.

The programming model of Jini [10] technology comprises a set of interfaces that
support reliable service constructions. The leasing interface introduces the leasing
concept, so that access to many of the services in the Jini system environment is time
bounded. The requested leasing period is proposed by the requestor and negotiated
between the requestor and the service provider and finally granted by the service
provider. The resources will be freed when leasing period expires unless a renewal is
done. The event and notification interface enables an object in one Java Virtual
Machine (JVM) to register its interest in the occurrence of some events occurring in
another object in some other JVM and receive the notification when the events do
occur. The transaction interface allows for the atomicity of a transaction using the
two-phase commit protocol, which guarantees that the transaction will either succeed
or fail while leaving no inconsistent state in the network.

The Jini [10] specification also mentions that peer lookup can be employed in the lack
of lookup services, in such case clients function more or less like lookup services with
which services register. It is up to the clients to filter out the unwanted service
responses.

Evaluation: Participants of the Jini federation must host a functioning JVM, which
may not be feasible for some mobile devices with scarce memory spaces and low
processing power. The service proxy concept is tempting, yet it assumes standard
interfaces to be always available. Lookup services bear most of the burden in the
network and single failures may affect the network performance.

 15

2.3.3 Salutation Protocol
Salutation [11] developed by the Salutation Consortium is another approach to service
discovery. It distinguishes itself as opposed to Jini's [10] language dependency on
Java and SLP's [7] network transport dependency on TCP/IP. It aspires to solve the
problem of service discovery and service utilization among appliances and equipment
with dissimilar capabilities in an environment of widespread connectivity and
mobility.

The salutation architecture consists of:
Two major components
A Salutation Manager (SLM) serves as a service broker. It mediates among the
networked entities (i.e. devices, applications, service or functional units that have
access to or may be accessed from other applications, services or devices [11]) to
enable the discovering and utilization of the capability of one networked entity by
another. It is somewhat like a distributed Jini lookup service [10]. In short, salutation
managers let the services register their capabilities with them and they coordinate with
each other to locate the desired services for the clients.

A Transport Manager (TM) hides the heterogeneity of the underlying networks
from the salutation manager and ensures reliable communication channels to the
salutation manager that sits on top of it. It can also locate other remote SLMs that are
connected to the same network segment. In this way, the coordination among the
SLMs is realized.

Each device can host at most one SLM. If no local SLM (i.e. located on the same
device) exists, the device may use a remote SLM through remote procedure call (RPC)
[12] mechanism. Depending on the number of different networks physically
connected, a salutation manager may sit on more than one transport manager, each
responsible for one type of network transport.

A basic and essential building block
A Function unit is the minimal meaningful functionality of a client or a service (e.g.
[Print]) that can be expressed by a Function Unit Description Record. A Function
Unit Description Record is assigned a unique handle when being registered at a
salutation manager and it defines the type of a function unit. Each Function Unit
Description Record is further composed of a collection of Attributes Records, which
characterize the functionality. Services with several functionalities are described by
one or more Function Unit Description Records, all of which constitute the Service
Description Record.

Two important interfaces
The Salutation Manager Application Program Interface (SLM-API) provides the
server and client applications with a transport-independent interface that facilitates the
service registration, discovery and access.

A Salutation Manager Transport Interface (SLM-TI) provides transport-
independency to the salutation manager with the transport manager dealing with the
underlying network details.

 16

Four major service broker tasks
A Service Registry is maintained by a SLM. It is a repository for the information of
all the services locally or remotely connected. It is similar to the lookup service in Jini
[10] and the DA in SLP [7].

Service Discovery is performed through coordination among the salutation managers.
Client communicates with local SLM to request for a service, the local SLM contacts
the remote SLM. Required service type specified by the local SLM is matched against
the registered service description records at the remote SLM. A list of SLMs with the
matching service will be returned, eventually together with function unit handles.

Service Availability is a simplified eventing mechanism. It is especially useful when
a client makes a long-term request to a server, i.e. the time from a request is issued
until the response is received is significantly long. Then it is essential for the client
and the server to know whether the other part is still alive to respectively receive or
deliver the response. The client and the server can require their respective local SLMs
to perform the availability check by exchanging Remote Procedure Call [12]
messages with each other, such that either part will be informed of the unavailability
of the other by their respective local SLMs.

Service Session Management is handled by the SLM when the client wants to utilize
the discovered services. The local or nearby SLM is asked to establish a service
session between the client and the resolved server. There are three modes a
communication can take place in.

- Native Mode SLM is responsible for initiating the session, yet it will not be
involved in the data transferring between the client and the server.

- Emulated Mode The only difference between the emulated mode and the

native mode is that SLM will also take part in the data transferring i.e.
messages are sent in SLM packet, yet no inspection of content is performed.

- Salutation Mode In addition to the session initiation and the message

streaming mediating, SLM should also determine the data format. Again no
inspection of the content is performed.

Evaluation: Salutation protocol is platform, operating system and network
independent.

2.3.4 Universal Plug and Play (UPnP)
Universal Plug and Play (UPnP) [13] developed by a consortium of companies headed
by Microsoft, is an evolving standard that is designed to enable simple, ad hoc
communication among distributed devices and services from many different vendors.
UPnP builds on existing Internet protocols e.g. TCP/IP, HTTP, XML. Thereby it
ensures the interoperability among different vendors.

There are several fundamental building blocks in UPnP [13].
Control Point: The set of software modules that have the ability to discover and
control other controlled devices.

 17

Controlled Device: The set of software modules that respond to the control point, e.g.
responding to the discovery request, accepting controlling messages etc.

Device: It contains services and maybe other nested devices e.g. TV, VCR. A single
device can implement a control point and one or more controlled devices
simultaneously.

Service: It exposes actions that can be invoked on it and models its run time state by a
list of variables.

Following are the major steps involved in the UPnP [13] networking.
IP address configuration Before the whole UPnP network would work every device
should get an IP address. It is done by either contacting a DHCP [14] server in order
to be allocated an IP address or for the lack of DHCP server claiming randomly a link
local IP address in the range of 169.254/16 (The first and last 256 addresses are
reserved) using auto-configuration [15]. After using auto-configuration, DHCP server
should be intermittently searched and on discovering one, device should be assigned a
new IP address by DHCP server and relinquish the auto-configured one.

Discovery After successfully acquiring an IP address, the device/control point can
now participate in the discovery. A newly added device will send out a couple of
discovery messages to notify its capabilities (services and embedded devices) to the
network. Messages, often referred to as ssdp:alive, are multicasted to the reserved
multicast address and port using HTTP extended with Simple Service Discovery
Protocol (SSDP) [16] and General Event Notification Architecture (GENA) [18]. The
discovery messages provide the network with the information like, among other
things, device/service type, lifetime for the advertisement to remain valid and a
pointer to a detailed device description file expressed in XML [19]. Control points can
listen to the reserved multicast address for such advertisements or notifications. To
prevent a network from entering an unwanted state, every device should also
multicast several discovery messages (ssdp:bye bye) to revoke the not yet expired
advertisements on leaving the network. The same protocol stack is used for the
ssdp:bye bye messages. Similarly, a newly added control point can send out a couple
of search messages looking for services of interest. These messages (ssdp:discovery)
are also multicasted to the reserved address using HTTP extended with SSDP [16].
Any device with the matching services/embedded devices should unicast a response
back to the control point that is doing the discovering. The response would contain the
same information as the ssdp:alive messages. SSDP [16] is used in both service
announcements and discovery, thus it functions similarly to Jini's [10] trio of
protocols: discovery, join and lookup.

Description After having discovered the desired device, a control point knows only
what was conveyed through the discovery messages (i.e. ssdp:alive) or the unicasted
service response. Further detailed device description is provided in a device
description file which location is included in the discovery messages or the service
response. The most important content of the description file is a list of service types,
service names, URLs for service description files and URLs for sending control and
eventing messages to the services. If the device has embedded device, it will also
contain a description of them. A service description gives the list of actions and

 18

corresponding parameters that will trigger responses and the list of variables that
model the state of the service at runtime.

Control Given the necessary knowledge of a device and its services, a control point
can send control message to the aforementioned control URL of a service to invoke
device specific actions or to retrieve associated state variables. Results will be
returned by the service. All the messages, be it control messages or results, are
expressed in XML [19] and the interaction between the control point and the service
is handled by Simple Object Access Protocol (SOAP) [17] using XML and HTTP.

Eventing As mentioned before, each service contains a list of variables that models
the state of the service at run time. UPnP allows a service to publish updates
whenever there occurs a change in these variables and it allows interested control
points to subscribe for these events. A control point expresses its interest by sending a
subscription message to the eventing URL of the service. The subscription message
contains an event sink URL for receiving the notification. Granted subscription will
be assigned a duration (leasing), control points should renew the subscription
periodically to keep it valid. All these messages will be formatted in GENA [18].

Presentation If the device offers a presentation URL, control point can then provide a
user interface for the device by downloading the page from the presentation URL to
the local browser.

Evaluation: UPnP is multicast-based. There is usually no central registry around,
which may results in high traffic load. UPnP using SSDP in service discovering limits
the discovery to a single subnet. Queries are not aimed at the XML description. The
description is only scrutinized after the desired service is discovered.

2.3.5 Bluetooth Service Discovery Protocol (SDP)
Bluetooth [20] [21] is a new low-power, short-range (10M), omni-directional wireless
transmission technology operated in the 2.4GHZ ISM band. It contains in its protocol
stack a service discovery protocol (SDP). Bluetooth SDP is optimized to discover the
services provided by other Bluetooth devices in a dynamic environment.

Every SDP server maintains a repository of service information in the form of service
records, one for each service. Each service record is uniquely identified by a 32-bit
service record handle within the SDP server and is composed of a list of service
attributes which describe different aspects of the service. Each service is an instance
of a service class/type represented as a UUID1. The specific service class/type defines
the legal service attributes and their semantics for that service class.

Bluetooth SDP [20] [21] supports:
Three kinds of service inquiries

- Search for services by service class/type

1 The format of Universally Unique Identifiers (UUIDs) is defined by the
International Organization for Standardization in ISO/IEC 11578:1996. "Information
technology - Open Systems Interconnection - Remote Procedure Call (RPC)"

 19

- Search for services by service attributes (i.e. search pattern is a list of
UUIDs) Only attributes with values represented as UUIDs are qualified to be
searched/matched.

- Service browsing is useful for a SDP client when the client has no a priori
knowledge of the available services within range. Service browsing is based
on a common attribute called BrowseGroupList shared by all the service
classes. All the browse groups expressed in UUIDs that a service may be
associated with are listed as the value of the BrowseGroupList attribute.

To possible scenarios

- Search for services on a connected device
- Search for services on an unconnected device that happens to be in the vicinity

i.e. within radio range

Bluetooth SDP [20] [21] employs a request/reply model between a SDP client and a
SDP server. A SDP session is comprised of a request protocol data unit (PDU) from a
SDP client and the correspondent response PDU from a SDP server.

Before the SDP session can be established between a SDP client and a SDP server,
they should first be connected. Firstly, an asynchronous connectionless physical link
is established at the Baseband/Radio layer using a procedure called inquiry to
discover all the discoverable devices within range and followed by a procedure called
paging to actually establish the connection. Secondly, a link set-up is done at the
LMP level. Thirdly, a connection oriented logical channel is established at L2CAP
([20] [21]).

Service discovery is performed as follows: A SDP client issues a service request PDU
containing the search pattern. The search pattern can contain either a service class
UUID if the client wishes to search for a service by service class or it can contain a
list of attribute values also expressed in UDDIs if the client wishes to search for
service by attributes or it can contain both. A SDP server with the matching service
records (i.e. contains all the UUIDs in the search pattern) will respond with a service
response PDU containing, among other things, service record handles for the
matching services. The SDP client can use these service record handles to retrieve
certain attribute values of the service. These two steps can also be merged into one.

Bluetooth SDP [20] [21] only provides mechanisms to discover services and retrieve
diverse service discovery-related information, it doesn't provide any mechanism for
service selecting or accessing. However, it does define a standard service attribute
ProtocolDescriptorList that enumerates the appropriate protocols needed for
accessing the service. It doesn't support brokering of services, service advertisements,
service registrations or event notification.

Evaluation: Bluetooth SDP aims only at Bluetooth devices.

2.3.6 A comparison of the existing service discovery protocols
Though all the aforementioned protocols share much resemblance, they see things
from different angles and they aim at different audiences. All the protocols have their
respective pros and cons. A general comparison of these service discovery protocols

 20

can be found in [22]. Jini [10] and UPnP [13] emphasize on the pervasive computing
environment while Salutation [11] and SLP [7] [8] deal more with service discovering
problem. Finally, Bluetooth SDP [20] [21] aims more or less only at Bluetooth
enabled devices.

1. SLP, Saturation, UPnP and Bluetooth SDP are all language independent,
which means they can be implemented in any language as opposed to Jini,
which relies on Java to keep all the promises. Jini requires that all devices
should have a working JVM.

2. SLP is designed mainly for TCP/IP networks, so is UPnP that relies on an IP

based network and web technology. As to Jini, the current Jini implementation
is based on TCP and UDP (multicast), but other network protocols are also
possible as long as they provide reliable, stream-oriented communication and
multicast facility. Bluetooth SDP works only in the Bluetooth environment.
Salutation with the help of Traffic Manager makes it totally independent on
the network technology. Thus, saturation will distinguish itself when the non-
IP based network makes its way.

3. In a dynamic, distributed network, leasing is very helpful to deal with the

partial failure and maintenance problem of the network. SLP, Jini and UPnP
all support some kinds of leasing. In SLP, service advertisements either
registered at a DA or directly sent to a UA in the lack of DAs are assigned a
lifetime which require periodical renewals otherwise the services will be
considered unavailable and all the relevant information will be expunged. The
same happens in UPnP, there is a header in the service announcements
(ssdp:alive) and the service search response called CACHE-CONTROL that
dictates the lifetime of a device or a service. In Jini, both service registrations
at the Jini Lookup Service and access to the service are leased. Leasing period
can be negotiated between the requestor and the grantor or decided by the
grantor.

4. Jini, UPnP and Salutation all support eventing. In Jini, the event notification is

realized by allowing an object in one JVM to register interest in the
occurrence of some events in another object in some other JVM and receive
notification in the form of remote event object either directly or through a
third-party when an event occurs. Eventing in UPnP utilizes the subscription
and publishing mechanism as described in section 2.3.4 on page 18 under
UPnP eventing. Such subscription is leased (i.e. time-bounded) and should be
renewed to remain valid. Salutation offers a simplified eventing mechanism
termed service availability check which is one of the service broker tasks
performed by SLM, see section 2.3.3 on page 16 for SLM eventing.

5. UPnP is unique for its use of XML to describe device features and capabilities,

which provides a more sophisticated and powerful description compared to
SLP's service types and attributes, Jini's interface types and attributes,
Salutation's function units and SDP's service records. Yet as far as service
matching is concerned, UPnP doesn’t use XML. The XML description file is
not scrutinized until the requested device is found, i.e. query in UPnP is not
based on XML. In this regard, SLP provides a rather powerful matching, it

 21

supports substring, logical operators AND, OR etc. which allows for a more
precise service searching compared to equality check in Jini, UPnP and SDP.
In Salutation, certain well-defined comparison functions can be associated
with queries when searching for services and will be used in service matching.
UPnP is the only protocol that doesn't provide any mechanism for searching
by server attributes.

6. Service browsing is supported in SLP, Jini, Salutation and Bluetooth SDP. In

SLP, there are two kinds of messages that realize the idea of service browsing.
One is the Service Type Request (SrvTypeRqst) which can be sent by a UA to
discover all the available service types within the assigned scopes, the other is
Service Attribute Request (AttrRqst) which can be initiated by a UA to
retrieve all or a subset of attribute values associated either with a specific
service instance or a generic service type. In Jini, three methods, namely
getServiceTypes(), getEntryClasses() and getFieldValues(), enable the clients
to browse for services and attributes in the lookup service. While in Salutation,
there is a special function description record called “ALL CALL” that enables
the clients to discover all the registered services in another Salutation Manager.
Browsing in Bluetooth SDP is described in section 2.3.5 on page 19.

7. In SLP, a service can be contacted through the service URL contained in the

service reply, but the actual protocol for accessing the service is not mentioned.
In Jini, a service object/proxy of the remote service is downloaded from the
lookup service. A client can invoke methods through this downloaded service
proxy directly. In Salutation, a service session will be established between the
client and the server by the local SLM on the client side and the local SLM
will be involved in different degree in the communication depending on the
mode used. The different modes are described in section 2.3.3 on page 16. In
UPnP, control points can invoke commands by sending control messages to
the controlled URL of the service, see UPnP control in section 2.3.4 on page
18. Bluetooth SDP doesn't provide any mechanism for service accessing.
However it does define a standard service attribute ProtocolDescriptorList
that enumerates the appropriate protocols for accessing the service.

8. All the aforementioned service discovery protocols have their respective

salient features. Jini allows for code mobility. Salutation provides transport
independence. UPnP offers automatic configuration and distinguishes itself by
its use of XML. SLP has an authentication security feature.

2.4 Service discovery in middleware technologies

2.4.1 The importance of service discovery in Middleware
A middleware is a software layer that seeks to abstract the details of ad hoc
communication from applications and enable smooth interactions among the
applications regardless of their heterogeneities and the dynamic underlying network
topologies. In a MANET, any node may in principle operate as a server and provides
its services to other network nodes or as a client and requires services from other
network nodes. In this dynamic environment different nodes offering different
services may enter and leave the network at any time. In order to efficiently and

 22

timely locate the desired services, the middleware must provide some kind of service
discovery.

Mature middleware technologies, such as CORBA [23] and SOAP/XML Web
services [24] have been designed and used successfully with fixed networks.

2.4.2 CORBA
Common Object Request Broker Architecture (CORBA) [23] promoted by Object
Management Group (OMG) provides a flexible communication substrate and
platform neutral middleware for distributed, heterogeneous and object-oriented
computing environments. In CORBA, applications are modeled as a collection of
cooperative objects. These objects contain data and methods that can be invoked by
other objects. Services are delivered through these method invocations. Services
offered by an object are defined in Interface Definition Language (IDL). The major
component in CORBA is an Object Request Broker (ORB), which helps a client
object to invoke methods on other objects. An ORB hides the location,
implementation and communication details from the applications. In order to access a
service, i.e. invoke a method on an object, one has to first obtain an object reference.
Obtaining an object reference can be thought of as a kind of service discovery in
CORBA. It is realized by the use of naming and trading service. They are two of the
many generic services offered by CORBA.

- Naming services allow an object to be bound with a friendly name (i.e.
service registration) and later allow client to retrieve the object by this name.

- Trading services allow a client to find the object by its properties i.e. by its
service types and associated attributes.

2.4.3 XML Web Services
XML web service architecture [24] provides another platform neutral middleware for
disparate applications to interoperate with each other. A XML web service is an
application component that offers a special service to other applications. In CORBA
[23] applications are modeled as a collection of objects, while here applications are
modeled as a collection of loosely coupled XML web services. XML web service can
be best explained by the standards and protocols it leverages.

- SOAP [17] (Small Object Access Protocol) is used as the communication
protocol for XML web services.

- WSDL [25] (Web Services Description Language) is the counterpart to the
IDL in CORBA [23]. A WSDL document is a XML document that describes
the interfaces of a web service, the location of the service, the protocol needed
to access the service etc. In short, WSDL provides all the necessary
information to access the web service.

- UDDI [26] (Universal Discovery Description and Integration) is the
counterpart of CORBA’s trading service for XML web services. It allows a
service provider to publish his services to the UDDI registry and later allows
the service consumers to discover the published services and use them.

 23

 UDDI provides three kinds of search:
o White Page search by name
o Yellow Page search by categories based on standard taxonomies
o Green Page search by technical details of a service interface

2.4.4 Middleware challenges in mobile ad hoc networks
Conventional middleware platforms as mentioned above assume relative static
network topology, reliable channels and so forth. MANETs with their special
characteristics have, however, posed several new challenges to the middleware
technology [27].

- Current generation of middleware is, to a large extent, heavy weight and

inflexible, which are too bloated to be ported to the small, often resource-
constrained devices participating in MANETs.

- Due to the dynamic changing topology in MANETs, complete transparency of

the underlying network may not always be desirable. Many applications may
have to adapt to the fluctuation in network resources or the change in location.
However, no existing middleware facility has addressed the problem of
transparency degree.

- Due to the unpredictable and frequent disconnection in MANETs,

communications should be allowed to proceed even in the absence of
connection and allows for seamless reconnection. So event-based middleware
that support non-blocking/asynchronous communication and publish-subscribe
platform will be desired.

- Service discovery should not rely on central registries, since nodes function as

central registries might leave the network or become inaccessible due to a
sudden network partition. This is an issue addressed by this thesis.

2.5 Service discovery in MANETs
Most of the existing service discovery protocols mentioned above are not specially
tailored for MANETs. When designing service discovery protocols for MANETs, one
should take into consideration the special characteristics of the MANETs.

Infrastructure-less
Service discovery protocols for MANETs should not reply on any fixed infrastructure.
A central register is widely used in many of the aforementioned service discovery
protocols, like DAs in SLP [7], JLS in Jini [10] and SLM in Salutation [11]. If central
registers should be used in MANETs, they should provide only simple functions so
that almost every node with sufficient capacities (i.e. processing power, memory
space, battery life etc.) will be able to take on roles as central registers. However, if it
requires that nodes functioning as central registers should possess special functions
(e.g. the lookup server in Jini [10] has to manage the objects for accessing and the
SLM in Salutation [11] has to manage different communication media), it is hardly
possible to automatically relocate these functions to other MANET nodes. Thus these
nodes form a kind of infrastructure that is inappropriate for MANETs.

 24

Dynamic
MANETs are dynamic in nature. Nodes can join and leave the network at will. Nodes
might fail due to, for example, battery failure. Links between the nodes might break
due to nodes mobility. All these make the distributed service discovery architectures
more appealing to the MANETs.

Heterogeneous
Because of the heterogeneity of the nodes in a MANET, not all the nodes possess the
same processing capabilities, battery lives or memory storages. Service discovery
architectures should not require additional software to be implemented on every
MANET node. In Jini [10] technology, it assumes a running JVM on every network
device. Bluetooth SDP [20] [21] depends on a uniform radio technology. These will
render extreme difficulties for a MANET with hundreds of heterogeneous nodes.

All the aforementioned service discovery protocols have assumed a routed network.
In a MANET, service discoveries will cause extra control messages by the routing
protocols. Recent researches have moved towards finding ways to promote co-
operations between layers to reduce the overhead caused by repeating similar tasks at
various layers. There are for example a lot of similarities between the route discovery
in a reactive routing protocol and the service discovery. In this thesis, optimizations
are done between the service discovery mechanism and the reactive routing protocols
in order to reduce the overall routing overhead. In addition, nodes that function as
central registers do not require special functions to be implemented. They only need
enough memory spaces to hold the service information and a simple mechanism to
look up the information. The effect of having central registers in the network will be
discussed through simulations.

 25

Chapter 3
Related works

Several research efforts have been made to propose some suitable service discovery
mechanisms for mobile ad hoc networks; we briefly review some of them in this
chapter.

3.1 Service discovery architectures
C. K. Toh [28] has in his book Ad Hoc Mobile Wireless Networks outlined different
service discovery architectures for managing service information on MANETs,
namely service coordinator based, distributed query-based and hybrid service location
architectures.

Service coordinator based architecture: Certain nodes in the MANET are chosen to
be the service coordinators, a role quite similar to DA in SLP [7] or lookup service in
Jini [10]. SCs announce their presences to the network periodically by flooding SC
announcement messages. Service providers that receive SC announcements register
periodically their services and access information with SCs in their surroundings. A
service requestor will choose one service coordinator to be its affiliated SC among all
the heard SCs, and it will contact its affiliated SC for desired services.

Distributed query-based architecture: This architecture contains no SCs. Instead, a
service requestor floods the service requests throughout its surroundings in the
network. Each node that wants to provide services runs its own service discovery
server and responds to service requests for its own services.

Hybrid service location architecture: This architecture combines the above two
architectures. Service providers within the announcement scopes of SCs will register
with them their available services and access information. Service requestors with
affiliated SCs will query SCs for services, or simply broadcast the query in the
absence of affiliated SCs.

This thesis evaluates the performance of the latter two service discovery architectures
on reactively routed MANETs.

3.2 Group-based Service discovery Protocol for MANETs
D. Charkraborty et al. proposed a novel group-based service discover protocol (GSD)
[29] for MANETs. The protocol is based on peer-to-peer caching of the service
advertisements. Every service advertisement is associated with an advertising radius
in terms of hops. Thereby, every node will be able to maintain a cache of all the
services within the advertising radius. Services are described using service groups (e.g.

 26

Service/Hardware/IO-Service/Printer-Service). The local cache will be exploited first
when a service is requested at the application level in order to enhance efficiency for
service discovery. When no matching service is found in the local cache, a service
request will be broadcasted to the network.

D. Charkraborty et al. have also proposed a group-based selective forwarding concept
for such broadcasted service requests. A service request is only forwarded to those
nodes that have seen in their vicinity one or more of the service groups specified in
the request. This information about service groups in the vicinity is conveyed through
the periodic service advertisements. In this way, the network will not be inundated
with request messages, and the bandwidth usage will be spared.

The simulations done in GSD [29] have left out the centralized entities. Each node
instead maintains a service cache itself.

3.3 Name Resolution and Service Lookups in on-demand MANETs
A solution to name resolution in on-demand MANETs has been proposed in [32] [33].
The main idea is to streamline name resolution with the underlying reactive routing
protocol (e.g. AODV [3], DSR [4]). The objective is to obtain a bandwidth-efficient
scheme that reduces the number of broadcasted discovery messages to a minimum.

It has also been proposed to bundle simple service name lookups together with this
name resolution mechanism ([31]). This is parallel to DNS SRV lookups for simple
service discovery on the fixed Internet [35]. It allows a service name to be resolved
into an IP address and a transport protocol number to be used to initiate the service.
The transport protocol type is normally encoded into the service name.

3.4 SLP-based service discovery on MANETs
R. Koodli et al. has in their Internet draft [30] proposed a similar solution to service
discovery in on-demand MANETs. Here, service discovery requests and replies are
carried as an extension to route requests and replies in a similar way. The proposed
mechanism for service discovery specifies the message formats that are designed to
inter-operate with the Service Location Protocol (SLP) [7]. Thus, it has more
capabilities to accommodate advanced service discovery than the DNS-SRV-based
scheme for simple service name resolution proposed in [31] has. A drawback,
however, is that it requires additional software implemented on the MANET nodes,
which may increase complexity and slow deployment. The proposed scheme is a
distributed query-based architecture.

3.5 What lacks
Güichal [34] undertakes an analysis of different service discovery architectures based
on simulations. The work concludes that the hybrid architecture normally outperforms
both the service coordinator based and the distributed query-based approach. The
distributed query-based architecture is the second best choice, and yields less
messaging overhead. Despite this, the work concludes that the hybrid architecture
gives an overall better performance, because it yields higher service availability.

 27

A shortcoming of the simulations is that they do not take the importance of underlying
routing into consideration. This assumption might be appropriate when a proactive
routing protocol is being used, because with proactive routing the traffic patterns and
service discovery search patterns do not influence the amount of routing messages.
With a reactive routing protocol, on the contrary, this assumption does not hold, and
the simulation results are not applicable. Data traffic will trigger messaging by the
reactive routing protocol. Hence, service discovery messages will increase the routing
overhead.

The hypothesis of this thesis is that the routing overhead would be much higher with
the hybrid architecture than with the distributed query-based distributed, simply
because the hybrid architecture proved to require more messages on the network.
Since the service discovery mechanism have an influence on the reactive routing
protocol, this thesis use the optimization methods proposed in [30] and [31] to reduce
the overall routing overhead. A new comparison is made in this thesis between the
hybrid and the distributed query-based architecture on reactively routed MANETs in
terms of service availability, message overhead and latency.

 28

 29

Chapter 4
Service discovery architectures and
mechanisms on a reactively routed
MANET

This chapter discusses service discovery architectures, mechanisms and other related
issues specific to this research. However, they also apply generally.

4.1 Roles of nodes
In terms of service discovery, each MANET node may take one or several of the
following roles:

• A client (or Service requestor) is a node that wants to discover a type of
service.

• A Server (or Service provider) refers to a node that wants to make its
services discoverable by other nodes.

• A Service Coordinator (SC) is a node that assists with service discovery. It
holds a central repository for caching Service Bindings (A service binding
maps the service type to an IP address and a port number that can be used to
initiate the service.).

4.2 Service discovery architectures

Figure 2: Pure flooding service discovery architecture

The service discovery architectures mentioned in section 3.1 on page 25 apply
regardless of the underlying routing protocol, thus apply here too. The service
coordinator based architecture is not explored here, because Güichal [34] has showed
that it is inferior to both the hybrid architecture and the distributed query-based

 30

architecture. Our hypothesis is that the effect of a reactively routing protocol works in
favor of the distributed query-based architecture. Thus, in this thesis, we focus on the
distributed query-based architecture as shown in Figure 2 on the previous page,
referred to as pure flooding henceforth, and the hybrid architecture as shown in Figure
3 below.

Figure 3: Hybrid service discovery architecture

4.3 Message types
The service discovery mechanism includes the following messages:
Service Coordinator Announcements (exist only in the hybrid architecture):
Periodically, service coordinators will broadcast announcements to inform the
surroundings of their presences. Every service coordinator is associated with an
announcement diameter in terms of hops, referred to as SC announcement scope
henceforward. An SC will not relay other SC’s announcements unless they cover a
bigger range than it self does. Nodes within the announcement scope on hearing the
SC announcements will cache all the SC contact information encapsulated in the
messages. A service requestor will choose one among all the heard SCs as its
affiliated SC to which it will direct service requests and this choice is remade every
time SC announcements are received. The cached SC information entries are time
stamped and will be purged on expiration if no SC announcements are received for
the last two SC announcement interval.

Service Registrations (exist only in the hybrid architecture): Servers on hearing
the SC announcements will register their own services with ALL the heard SCs.
These registrations take place immediately after the receipt of the SC announcements.
Service bindings contained in the registration packets are also time stamped while

 31

being cached at SCs and will be purged on expiration if no service registrations are
received for the last two SC announcement period.

Service Request:
Pure flooding architecture: A client in search for a service will simply broadcast the
service request to the network. The broadcast scope is limited by a parameter called
flooding scope.

Hybrid architecture: A client in search for a service will direct its service request to
its affiliated service coordinator. If it so happens that the affiliated service coordinator
is beyond reach (left the network, power failure etc.), then the client will proceed with
the pure flooding scheme for the current service request i.e. broadcast the service
request. At the same time, client will choose, if exists, a new affiliated SC among all
the other heard SCs for future service requests. If service coordinator's reply is
negative i.e. there is no required service registered in its repository, then client will
also proceed with pure flooding scheme for the current service request but no new
affiliated SC will be chosen. The client will still stick to its old affiliated SC. If there
are no service coordinators heard by the client at all, the client will simply fall back
on the pure flooding approach for service discovering.

Service Reply:
Pure flooding architecture: Only servers that offer the desired service will initiate a
service reply to the requesting node. It is client’s responsibility to choose the best
among all the replied servers to contact with for the desired service.

Hybrid architecture: Both SCs and servers can respond to the broadcasted service
requests that are not directed to a specific SC if they can provide or have registered
matching services. An SC is obligatory to respond to a service request destined for it
from the client no matter whether there have been registered any matching services or
not. If no matching services exist, the SC will simply send back a negative service
reply. An SC will provide the client with all the matched service bindings, either its
own or registered by other servers. It is up to the client to decide with which server to
establish further contact.

4.4 Relation to reactive routing protocols
Figure 4 on the next page shows how service discovery can be streamlined with the
reactive routing protocol in the case where client 1 is affiliated with a service
coordinator, while client 2 is not. This is the model used for simulation in this thesis.

The underlying reactive routing protocol used in the simulation is AODV [3]. The
service discovery messages are carried by the routing protocol messages as extensions
in the form of a type and a type-specific value as being proposed in the AODV
specification [3]. Service requests and SC announcements are carried in RREQ
extensions, while service replies and service registrations are carried in RREP
extensions.

The type and type-specific value for all the four aforementioned messages are listed in
Table 1 on the next page.

 32

Figure 4: Service discovery model used in the simulation

(SC announcement scope: 1 hop, Service Request flooding scope: 1 hop)

Message type Type Type-specific value
Service request 5 Service description
Service reply 6 Service binding
SC announcement 7 SC announcement scope
Service registration 8 Service binding

Table 1: Message types and type-specific values used in simulations

The advantages of piggybacking service discovery on routing messages in this way
are as follows:

1. Reverse routes to the service requestor are established along with the service
request so that no additional route discovery is necessary to relay the service
reply back to the service requestor.

2. Forward routes to the SC are established along with the SC announcements so
that service requests and service registrations can be unicasted to the SC.

3. Forward routes towards the server will be built along with the service reply in
pure flooding architecture, thus no additional route discovery is needed for
further communication with the server (e.g. sending data etc.) In hybrid
architecture, forward routes towards the server from the SC will be built along
with the service registration so that SC might be able to reply to the route
request on behalf of the server itself, which helps in reducing the flooding
scope of route request.

One requirement for the nodes running this amended routing protocol is the ability to
process AODV message extensions.

 33

4.5 Service Coordinator placement
The placements of the clients, servers and service coordinators in a network can be
generally divided into four categories, see Figure 5 through Figure 8. These figures
will illustrate the relation between the placement of a service coordinator in the
network and its contribution to the network performance.

Figure 5: SC placement 1 (client – server – SC)

Figure 5 above illustrates the situation where the server is closer to the service
coordinator than the client is. With other words, the server is able to receive the SC
announcements but not the client. Figure 6 on the next page illustrates the situation
where the client is closer to the service coordinator than the server is. With other
words, the client is able to receive the SC announcements but not the server. In both
Figure 5 and Figure 6, using the hybrid service discovery architecture will be very
unreasonable. The service coordinator is totally superfluous since it is useless to the
client. In Figure 5 above, the client has to broadcast the service request since no SC is
heard by it. All the SC announcements and server registrations will be merely a waste
of the network bandwidth and nodes’ processing power for nothing. In Figure 6 on the
next page, though the client can unicast the service request to its affiliated SC, yet the
server cannot receive the announcements broadcasted by the service coordinator.
Accordingly, no service is registered at the SC and the client has to fall back on the
pure flooding approach by broadcasting the service request to the network upon
receiving the negative reply from its affiliated SC. Of course, it is possible to increase
the SC announcement scope in both Figure 5 and Figure 6, so that the client in Figure
5 and the server in Figure 6 can receive SC announcements and be able to unicast the
service request or the service registration to the service coordinator respectively. Yet,
doing so is not very attractive. Firstly, increasing the SC announcement scope will
increase message overhead significantly due to the fact that SC announcements are

 34

broadcasted periodically. Secondly, from the figures we can see that if the server is
resolved at the SC, no route to the server will be available upon receiving the service
reply. An extra route discovery will be needed. Simulation results presented in later
chapters will show the effect of increasing the SC announcement scope.

Figure 6: SC placement 2 (server – client – SC)

Figure 7 on the next page illustrates the “everyone sees everyone” situation. Both the
client and the server can receive the SC announcements. In addition, the client and the
server can reach each other by a route with no service coordinators involved and this
route is much shorter than the route with the service coordinator. Firstly, the hybrid
approach will not increase the service availability since the server can also be reached
through pure flooding. Secondly, if the hybrid approach is used, no route to the
resolved server will be available on receiving the service reply from the service
coordinator as opposed to the pure flooding approach where forward routes are
established along with the service reply from the server itself. Thirdly, since the route
between the client and the server with no SC involved is much shorter, it will be
easier simply to broadcast the service request and spare the periodic SC
announcements and service registrations.

 35

Figure 7: SC placement 3 (everyone sees everyone)

Figure 8 on the next page seems to be the only deployment that makes the service
coordinator appear useful. The upper part of the figure shows the situation where the
hybrid approach is used and the lower part shows the situation where the pure
flooding approach is used. The service coordinator in this deployment does allow
service requests to be unicasted instead of broadcasted. In addition, the hybrid
architecture may increase the service availability if the server is outside the client’s
service request flooding scope. For example, if the flooding scope for the service
request is set to three hops in Figure 8, then the client will not be able to find the
server using the pure flooding approach.

 36

Again we can see from the figure, in the pure flooding approach, after the discovery
of the server, the route to the server is also established, so no additional route request
is necessary to access the sever. While in the hybrid approach, no route is established
to the resolved server. Accordingly an extra route discovery is needed. In addition, if
the service requests are relative seldom, many of the network capacity will be wasted
in relaying SC announcements and server registrations. Even with a high service
requests frequency, we can go for other alternatives than using SCs, for example to
cache the service bindings at the client node or intermediate node in order to minimize
the overhead.

Figure 8: SC placement 4 (client – SC – server)

Discussion
The unpredictable and dynamic MANET topology makes least guarantee for the
actual placement of different nodes. As discussed above, only one category will
possibly show the benefit of adding service coordinators. The overall network
performance after adding service coordinators is very doubtful. The simulations done
in this thesis are based on random topologies, which might incorporate any of the
aforementioned placements. These simulations aim to find out whether implementing

 37

service coordinator functionalities to the network will yield a better network
performance over the pure flooding approach.

One possible solution to make service coordinators useful might be a dynamic SC
election mechanism. Instead of statically assigning the service coordinator role to
certain nodes, a lightweight, dynamic SC election mechanism can be implemented in
every node participating in the ad hoc network communication. Any node may take
on the role as a service coordinator based, for example, on its capacity (e.g. memory,
processing power, battery etc.) and its instant network environment (e.g. the number
of servers, service coordinators, potential clients etc.). However, SC election
mechanism is out of the scope of this thesis.

 38

 39

Chapter 5
Simulation Setup

The simulations were done on the well-known simulator GloMoSim [36], which is
shipped with an AODV module.

The simulated network contains 50 nodes randomly located in a 300x300m square. A
two ray propagation model for radio waves as well as omni-directional antennas were
used at the physical level. The radio range of the nodes is set to 50 meters. The mac
protocol used is IEEE 802.11. AODV and UDP are used as the underlying reactive
routing protocol and transport layer protocol respectively. There are two different
types of services in the network. A node is selected as a client, a server and/or a
service coordinator based on the density parameter fed in through the configuration
file (see Appendix B). The selection was generated using a random number generator
shipped with GloMoSim [36]. SC election mechanism is out of the scope of this thesis.

The mobility model used for the dynamic topology is random waypoint. In the
simulations, 20% of the nodes will function as clients and actively initiate service
requests every 20 seconds. The time for the first service request is randomly and
individually generated for every client node. Another alternative is to allow each
client to initiate exactly one service request in the whole simulation period. The
reason for not using this alternative is because it will definitely favor the pure
flooding architecture over the hybrid architecture. Since every client will only do one
service discovery, all control overhead generated by the service coordinators will not
be justified. The SC announcement interval is set to be the same as the route timeout
value (i.e. 10S) as recommended in AODV [3]. The reason for setting the SC
announcement interval alike the route timeout value will be revealed in the next
chapter.

The two service discovery architectures simulated are the pure flooding and the
hybrid service discovery architecture as shown in Figure 2 on page 29 and Figure 3 on
page 30. The architectures can be tuned with (at least) two parameters:

- SC announcement scope: This scope regulates the extent to which a service
coordinator announcement can reach in terms of hops. This parameter is only
used in the hybrid architecture.

- Flooding scope: This scope determines how far a service request will be
broadcasted in the network in terms of hops. This parameter is used in both
architectures. In the hybrid architecture, a service requestor will fall back to
use a pure flooding approach by broadcasting the service request based on this
flooding scope if no affiliated service coordinator is heard or when a negative
service reply has been returned from the affiliated service coordinator.

 40

The following metrics are defined to evaluate the simulation results:
- Request Satisfied Ratio (RSR):

networktheinclientsallbyissuedrequestsserviceofnumberTotal

repliesservicepositiveofNumber
RSR=

A positive service reply means not only the resolution of a service type to a
valid service binding (server address, port number), but also a successful
contact to this server via the given access information (i.e. a route to the
resolved server can be found).

- Message overhead: All the non-data messages that are transmitted in the
network by all the nodes at the network level. The overhead is counted as the
total number of packets over each hop (i.e. the total number of packets times
the average number of hops traversed by the packets)

- Broadcasted message overhead: All the non-data messages that are
broadcasted in the network by all the nodes at the network layer.

Simulations are done for both static and dynamic topologies. The simulation programs
are written in C (see Appendix C for part of the codes) and every simulation is
repeated 500 times with different seed values.

 41

Chapter 6
An initial simulation with five nodes

The purpose of this five nodes simulation is to:

- Illustrate the effect of variable SC announcement frequencies in terms of
broadcasted message overhead

- Illustrate the relation between the SC announcement frequency and the active
route timeout value

- Fix the SC announcement interval for further simulations

Figure 9: A simulation with five nodes

As illustrated in Figure 9 above, there are five nodes in this simulation, two clients,
two servers and one service coordinator. Client 1 and client 2 are supposed to discover
server 1 and server 2 respectively. Both clients and servers are within the transmission
range of service coordinator but not each other.

 42

As mentioned in section 4.4 on page 32, we choose to piggyback the service
discovery on routing messages in order to optimize the overall performance. In
addition, a successful service discovery is supposed to end up with a successful access
to the resolved server. Accordingly, after every success service discovery, forward
routes to the service coordinator and the server will be established if not already
existed or updated (AODV [3]). In the following simulations, the service request
interval is set to be slightly larger than the route timeout value so as to make sure that
all the established routes from the earlier service discovery will be invalidated if not
updated by other means. This is to focus on the effect of the SC announcement
interval as will be illustrated in the following sections. The simulation parameters are
illustrated in Table 2 below.

NET SIZE 100M x 100M
TRANSMISSION RANGE 10M
SIMULATOIN TIME 500S
MOBILITY NONE
SERVICE REQUEST INTERVAL 10S ~11S, 15S ~ 16S
SC ANNOUNCEMENT INTERVAL VARIABLE
ACTIVE ROUTE TIMEOUT 10S, 15S
ACTIVE SC TIMEOUT 2 * SC ANNOUNCEMENT

INTERVAL
SC ANNOUNCEMENT SCOPE 1
SERVICE REQUEST FLOODING SCOPE 2
ROUTING PROTOCOL AODV
NUMBER OF NODES 5

Table 2: Simulation parameters for a simulation with five nodes

6.1 Broadcasted Message Overhead vs. SC Announcements Interval
Figure 10 on the next page shows the relation between the broadcasted message
overhead and the SC announcements interval. The steep down slope in the beginning
of the curve is due to the reduction of announcement messages produced by the SC as
its announcement frequency decreases. However, there is a turning point at 10
seconds. Figure 11 and Figure 12 on page 44 further expose the details about what
actually happens around this turning point.

One of the reasons that caused this turn in the curve is because of the increase in
service requests that have to be broadcasted to the service coordinator. This is due to
the timeout of the route from the service requestor to its affiliated SC. As Figure 12 on
page 44 illustrates, there are three major message types that have contributed to this
variation in the curve, namely SC announcements, service requests broadcasted to the
SC from the clients and usual route requests (from the client to the resolved server
after the service discovery). As mentioned in section 4.4 on page 32 forward routes to
the SC are established and updated along with the SC announcements. Also routes
from the SC to the registering servers will be created and updated along with the
service registrations that take place immediately after the receipt of SC
announcements on the server side. The route timeout value is set to ten seconds (as
recommended in AODV [3]). Accordingly, if an SC sends out announcements every
ten seconds or less, all these aforementioned routes will be updated before their

 43

expirations. Thus, all the service requests from the clients can be unicasted to their
affiliated service coordinators. In addition, the service coordinator can also respond to
a route request on behalf of the server itself (service registration refreshes the route
between the SC and the server), thus reduces the flooding scope of the route request.
However, if the SC announcement interval is set to be larger than the route timeout
value, then there will exist a time gap between the timeout of the route and the receipt
of the next SC announcement or the next service registration. In the meantime, all
service requests to the affiliated SCs will have to be broadcasted instead of being
unicasted and the SC upon receiving a route request from the client for the resolved
server may have to rebroadcast it. The lower the SC announcements frequency, the
larger this time gap will be and the larger the risk of unavailable route to the affiliated
SC when a client initiates a service request and unavailable route to the server at SC
upon receiving a route request from the client for the resolved server will be. All these
broadcasted messages, are them service requests or route requests outweigh the
benefit of the reduction of SC announcements, thereby cause the curve to go upwards
again.

Broadcasted message overhead vs.
Service Coordinator Announcement interval

100

150

200

250

300

350

400

450

500

0 50 100 150 200

Servic Coordinator Annoucement interval (S)

B
ro

ad
ca

st
ed

 m
es

sa
ge

 o
ve

rh
ea

d

Figure 10: Broadcasted message overhead vs. SC announcement interval

 44

Broadcasted Message Overhead around 10s SC announcement interval

100

150

200

250

300

7 8 9 10 11 12 13

Service Coordinator Annoucement Interval (S)

B
ro

ad
ca

st
ed

 M
es

sa
ge

 o
ve

rh
ea

d

Figure 11: Broadcasted message overhead around 10s SC announcement interval

Broadcasted message breakdown by type

0

20

40

60

80

100

120

140

160

180

200

9 10 11

SC announcement interval (S)

B
ro

ad
ca

st
ed

 c
on

tr
ol

 m
es

sa
ge

s

SC announcements Service requests broadcasted to SC Usual route requests
Figure 12: Detail of overhead by message type for the simulation with five nodes

 45

6.2 Broadcasted Message Overhead relative to Active Route
Timeout

As Figure 13 below illustrates, when the active route timeout varies, so does the
turning point of the curve and at the turning point we get least message overhead per
service request. Thus for the further simulation, the SC announcements interval is
set to be the same as active route timeout (i.e. 10 seconds) in order to minimize
the overhead.

Broadcasted message overhead per service request
vs. Service Coordinator Announcement interval

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0 5 10 15 20 25

Service Coordinator Annoucement Interval (S)

B
ro

ad
ca

st
ed

 m
es

sa
ge

 o
ve

rh
ea

d
pe

r
se

rv
ic

e
re

qu
es

t

Active Route Timeout 10 Seconds Active Route Timeout 15 seconds

Figure 13: Broadcasted message overhead per service request vs. active route timeout

6.3 Discussion
The factor that is not considered when setting the SC announcement interval is the
effect of the service request frequency. At a relative low service request frequency
and static network topology, reducing the SC announcement frequency might reduce
the overall message overhead. Considering the fact that it is hard to predict the actual
service request frequency in a real ad hoc network communication, the extreme
scenarios (i.e. very high or very low service request frequency) are excluded for this
research. A dynamic topology might favor a higher SC announcement frequency in
order to reflect the network dynamics. Considering the fact that the route timeout
value of a reactive routing protocol is set taking the underlying network mobility into
consideration, setting the SC announcement interval to be the same as route timeout
value will be reasonable.

 46

 47

Chapter 7
Simulations with static network topologies

The purpose of the simulations in this chapter is to:

- Compare the performance between the pure flooding and the hybrid service
discovery architectures in terms of service availability (i.e. RSR), message
overhead and latency under the conditions of no node mobility

- Come to a conclusion about the preference of the two service discovery
architectures based on the simulation results under the conditions of no node
mobility

Simulation parameters are listed in Table 3 below.

NET SIZE 300M x 300M
TRANSMISSION RANGE 50M
SIMULATOIN TIME 500S
MOBILITY NONE
ACTIVE ROUTE TIMEOUT 10S
SERVICE REQUEST INTERVAL 20S
SC ANNOUNCEMENT INTERVAL 10S
SERVICE REQUEST FLOODING SCOPE 1, 2, 3 HOPS
SC ANNOUNCEMENT SCOPE 1, 2, 3 HOPS
ROUTING PROTOCOL AODV
NUMBER OF NODES 50
NODES POSITION RANDOM
TYPE OF SERVICES 2
CLIENT DENSITY 20%
SERVER DENSITY VARIABLE
SERVICE COORDINATOR DENSITY VARIABLE

Table 3: Simulation parameters for static simulations

7.1 Hybrid architecture

7.1.1 RSR relative to server density and SC density
As Figure 14 on the next page shows, the RSR increases as more and more nodes take
on roles as servers or (and) service coordinators. However, the increase in total
number of servers exhibits a higher impact on the RSR than the increase in total
number of service coordinators does.

The RSR is improved by approximately 0.5 in value when the server density increases
from 5% to 40% for all SC densities. As to the increase of SC density, for a server

 48

density of 20%, the improvement in RSR is 0.023 in value when the SC density
increases from 10% to 20%, 0.013 when the SC density increases from 20% to 30%
and 0.008 as the SC density increases from 30% to 40%, an overall improvement of
merely 0.044 in value. We can see from Figure 14 below that the curves for different
SC densities almost overlap with each other.

Request Satisfied Ratio
(SC announcement scope: 2 hops, Flooding scope: 2 hops)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45

Server density (%)

R
eq

ue
st

 S
at

is
fie

d
R

at
io

 (
R

S
R

)

SC density 10% SC density 20% SC density 30% SC density 40%

Figure 14: RSR relative to SC and server density for the static network topology
(Hybrid)

One of the reasons for this almost negligible improvement in the RSR as SC density
increases is that as more and more nodes take on roles as SCs, many may have their
impacts on overlapping areas. However, the client will still direct its service request to
its old affiliated SC unless either the new one is better compared to the old one based
on certain criterion (less hop count etc.) or the old one fails in one way or another.
This is better explained in Figure 15 on the next page. In Figure 15, SC 1 and SC 2
have overlapping effecting areas. Client 1 and client 2 will still direct their service
requests to their old affiliated service coordinator SC 1. In this case, the presence of
SC 2 is redundant. There may exist many such service coordinators, which are just
present in the network without actually participating in the service discovery process.
Hence they contribute nothing to the improvement in the RSR. However, these
service coordinators will still consume a lot of network bandwidth by periodically
broadcasting SC announcements and receiving service registrations.

This phenomenon, on the other hand, tells us again as already mentioned in section
4.5 on page 33 how essential the placement of service coordinators in the network
should be if they are meant to increase the network performance.

The flattening of the curves at higher server densities is due to a similar reason. As
more and more nodes take on roles as servers, nodes that offer the same type of
service will register with the same service coordinators or have the same influencing
area, which doesn’t necessarily improve the RSR.

 49

Figure 15: Two service coordinators with overlapping charging areas

7.1.2 Message overhead relative to server density and SC density
Usually, every thing good comes with the bad. The downside of the improved RSR is
the increased message overhead as shown in Figure 16 below. At a server density of
20%, the RSR is increased from 0.612 to 0.62 as the SC density increases from 30%
to 40%. Along with this negligible improvement in RSR, message overhead is
however increased from 5433 to 6118. Comparing the increase ratios, the increase
ratio of the message overhead is 11% higher than that of the RSR.

Message overhead
(SC announcement scope: 2 hops, flooding scope: 2 hops)

4000

4500

5000

5500

6000

6500

7000

7500

0 5 10 15 20 25 30 35 40 45

Server Density (%)

M
es

sa
ge

 O
ve

rh
ea

d

SC density: 30% SC density: 40%

Figure 16: Message overhead relative to SC and server density for the static network topology
(Hybrid)

 50

However, when the server density increases from 5% to 40%, the RSR is improved
from 0.305 to 0.82 and from 0.312 to 0.825 for an SC density of 30% and 40%,
respectively. With this 0.5 increase in the RSR value, the message overhead is
increased from 5007 to 6055 and from 5424 to 6995 for the two SC densities,
respectively. The increase ratio of the message overhead is, however, 55% and 51%
lower than that of the RSR for the two SC densities, respectively. Apparently, the
increase in the server density has a more positive effect on network performance than
the increase in the SC density. In addition, the broadcasted message overhead
decreases as more and more server deployed in the network as shown in Figure 17
below.

Broadcasted message overhead
(SC announcement scope: 2 hops, flooding scope: 2 hops)

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45

Server Density (%)

B
ro

ad
ca

st
ed

 m
es

sa
ge

 o
ve

rh
ea

d

SC density: 30% SC density: 40%

Figure 17: Broadcasted message overhead relative to SC and server density for the static network
topology (Hybrid)

The reason for this decrease in broadcasted message overhead, yet still increase in
total message overhead, is best illustrated in Figure 18 and Figure 19 on the next page.
The total message overhead is broken down according to several major message types.
As more and more nodes take on roles as servers, there will be more chances for
certain servers to be positioned closer to the client. This will reduce the hops needed
for a service request to be broadcasted when a client has to fall back on the pure
flooding approach in those cases when there are no service coordinators being heard
or a negative service reply has been received from its affiliated SC. Similarly, more
servers will register with the service coordinators. This increases the chance for a
positive service resolution at the SC. All this explains the decreasing “broadcasted
service request”. On the other hand, the service registrations increase in line with the
number of servers, which outweighs the benefit of the aforementioned decrease and
hence the explanation of the increased message overhead yet decreased broadcasted
message overhead.

 51

Broadcasted Message Overhead
(SC density: 30%, SC announcement scope: 2 hops, flooding scope: 2 hops)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5 10 20 30 40

Server Density (%)

B
ro

ad
ca

st
ed

 m
es

sa
ge

 o
ve

rh
ea

d

SC announcements Route Requests Broadcasted Service Requests

Figure 18: Detail of broadcasted message overhead by message type for the static
network topology (Hybrid)

Detailed message overhead analysis
(SC density: 30%, SC anouncement scope: 2 hops, flooding scope: 2 hops)

0

1000

2000

3000

4000

5000

6000

5 10 20 30 40

Server Density (%)

M
es

sa
ge

 O
ve

rh
ea

d

SC announcements Broadcasted service requests Service registrations

Figure 19: Detail of message overhead by message type for the static network
topology (Hybrid)

 52

7.1.3 RSR relative to different scope parameters
Figure 20 below shows the effect on the RSR by varying only the SC announcement
scope, the flooding scope or both.

Request Satisfied Ratio
(Server density 20%, SC density 20%)

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3

Hop Count (hop)

R
S

R

Vary flooding scope (fix SC announcement scope: 1 hop)

Vary SC announcement scope (fix flooding scope: 1 hop)

Vary SC announcement and flooding scope simultaneously

Figure 20: RSR relative to different scope parameters for the static network topology
(Hybrid)

Table 4 below lists the detailed increase in the RSR and the message overhead.

 From one hop

to two hops
(RSR
improvement
in value)

From two hops to
three hops (RSR
improvement in
value)

Overall RSR
improvement
(%)

Overall
Message
overhead
increase

Fix flooding scope,
vary sc
announcement
scope

0.1 0.06 38.8% 256%

Fix sc
announcement
scope, vary flooding
scope

0.15 0.085 56.5% 113%

Vary both scopes
simultaneously

0.18 0.087 65% 341%

Table 4: The effect of varying different scope parameters for the static network
topology (Hybrid)

From Table 4 above we can see that by varying the flooding scope and SC
announcement scope simultaneously, we can achieve a maximum overall RSR
improvement. Varying the flooding scope alone has more impact on the RSR than by
varying the SC announcement scope alone does. Table 4 also shows that the
improvement is greater when varying the scope whatever the scope is from one hop to

 53

two hops than from two hops to three hops. The reason for this is that in the simulated
network, the number of servers that can be discovered by the clients or the number of
clients that can affiliate to service coordinators become fewer and fewer as service
requests or SC announcements are broadcasted further away. In addition, possible
network partitions may hinder higher hop retransmissions to be carried out.

Though the improvement in the RSR is appealing, yet the increase in scope trades off
the network bandwidth for the increase in the RSR. The overall message overhead
increase is listed in the last column of Table 4. Two of the major contributors to this
increase are the increased SC announcements broadcasted in the network and the
triggered service registrations.

7.2 Pure flooding architecture

7.2.1 RSR relative to server density and flooding scope
Figure 21 below shows that the RSR increases in line with the server density and the
flooding scope, which correspond to the intuition. The improvement in the RSR when
we increase the flooding scope from two hops to three hops is less than that when we
increase the flooding scope from one hop to two hops. That is due to the same reason
as stated in section 7.1.3 above for varying the flooding scopes. As to the flattening of
the curves at a higher server density, it is the same reason as stated in section 7.1.1 on
page 48 for the hybrid architecture. As more and more servers are deployed in the
network, they will have overlapping influencing areas. One or more servers will offer
the same type of service to the same area, which doesn’t necessarily improve the RSR.

Request Satisfied Ratio for different flooding scopes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45

Server denstity (%)

R
S

R

flooding scope: 1 hop flooding scope: 2 hops flooding scope: 3 hops

Figure 21: RSR relative to server density and flooding scope for the static network
topology (Pure Flooding)

 54

7.2.2 Broadcasted message overhead relative to server density and flooding
scope

As Figure 22 below shows, broadcasted message overhead decreases as more and
more servers being deployed in the network. This is because as more and more nodes
take on roles as servers, there will be more chances for desired services to be located
on servers that are closer to the client, which reduces the flooding scope of the service
requests. However, the curve for one hop flooding scope is less steep than those for
two hops and three hops. This is because both the client density and the service
request interval are fixed for the simulations. Thus the number of service requests
generated by all the clients in the network would be almost the same regardless of the
server density. These service requests will be the only broadcasted messages in the
pure flooding architecture. For the flooding scope of one hop, total number of
broadcasted messages will stay the same (i.e. equals the total service requests
generated). The slight inclination is due to the fact that a node can be a client and a
server at the same time, which eliminates the need for broadcasting the service request.
As number of servers increases, so does the chance of the collocation of a client and a
server with the desired service type on the same node.

Broadcasted message overhead for various flooding scopes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45

Server Density (%)

B
ro

ad
ca

st
ed

 m
es

sa
ge

 o
ve

rh
ea

d

flooding scope: 1 hop flooding scope: 2 hops flooding scope: 3 hops

Figure 22: Broadcasted message overhead for different flooding scopes for the static
network topology (Pure Flooding)

7.3 Comparison between the pure flooding and the hybrid
architecture

7.3.1 RSR comparison
Figure 23 on the next page shows how the presences of service coordinators (i.e. for
the hybrid architecture) influence the RSR. As we can see from the figure, the
introduction of the service coordinators does improve the RSR. Depending on the

 55

announcement scope of the service coordinator, the RSR is improved by 8.3% and
20.8% respectively at a server density of 5%. This was listed in Table 5 below.

Request Satisfied Ratio Comparison

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25 30 35 40 45

Server density (%)

R
S

R

Pure flooding (flooding scope: 2 hops)
Hybrid (SC density: 20%, SC announcement scope: 1 hop, flooding scope: 2 hops)
Hybrid (SC density: 20%, SC announcement scope: 2 hops, flooding scope: 2 hops)

Figure 23: RSR comparison between the pure flooding and the hybrid architecture

for the static network topology

 Flooding

scope (hops)
SC
announcement
scope (hops)

Server
density
(%)

Service
Availability/
RSR

Pure
flooding

2 - 5% 0.24

Hybrid 2 1 5% 0.26
Hybrid 2 2 5% 0.29

Table 5: RSR comparison at a server density of 5% for the static network topology

The reason that SCs improve the RSR is revealed in Figure 24 and Figure 25 on the
next page. Figure 24 illustrates a scenario with a flooding scope of two hops and an
SC announcement scope of one hop. Without the service coordinator functionality
implemented on the black node in Figure 24, the server would be unreachable from
the client. However, with the SC functionality added on the black node, the server will
be able to register its service with the service coordinator. And the client’s service
request will be able to reach the service coordinator and the service coordinator will
respond to the client on behalf of the server.

Figure 25 on the next page shows a similar scenario, but the SC announcement scope
is expanded to two hops. Without the service coordinator functionality implemented
on the black node, neither client 1 nor client 2 will be able to find the server. But with
the help of service coordinator functionality implemented on the black node, both
clients can direct their service requests to their affiliated service coordinator i.e. the
black node, which has cached the server information.

 56

Figure 24: The effect of SC, scenario 1

Figure 25: The effect of SC, scenario 2

Our simulation in which the underlying routing overhead is taken into consideration
confirms the results obtained in previous work [34], i.e. service availability (RSR) is
indeed higher with the hybrid approach.

However, introducing service coordinators to the network also introduces extra
message overhead, such as service announcements, service registrations, not to
mention the extra route discovery needed to actually contact the server. Whether
these message overheads can be justified by the improving RSR will be analyzed in
later sections.

 57

7.3.2 Message overhead comparison
As pointed out in [34], the introduction of service coordinators introduces extra
message overhead to the network, in terms of service announcements, service
registrations and those related to service lookups. However, the routing overheads
triggered by these messages are not taken into account in [34]. The objective is to
optimize the benefits of additional service availability/RSR against the cost of
additional overhead. Here, our analysis differs from [34], as we also take routing
messages into account.

As we can see from Figure 26 below, though the introduction of the service
coordinators does increase the RSR, yet it also results in a much higher level of
messaging overhead. Service coordinators have introduced two proactive elements to
the network, namely SC announcements and service registrations. These messages
will take up a fixed bandwidth regardless of whether there exist service discoveries or
not. From the figure, we can also see that there is no message overhead caused by
route discoveries for the pure flooding architecture. This is because in the pure
flooding architecture, it is always the service provider itself that responds to the
service request and a forward route to the service provider is established along with
the service reply. Accordingly, no additional route discovery is needed for the client
to access the server. However, in the hybrid architecture, when service coordinators
respond to service requests, forward routes are only established towards the service
coordinators, not the service providers, so an extra round of route discovery is needed
in order to access the server after the resolution.

Message overhead comparison (server density: 20%)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Hybrid (sc: 2 hops, flooding: 2hops) Hybrid (sc: 1 hop, flooding: 2hops) Pure Flooding (flooding: 2 hops)

M
es

sa
ge

 o
ve

rh
ea

d

broad. sreq sreq u2sc route discovery overhead srep

 SC
announcements

 service
registrations

SC annoucements
service registrations

Figure 26: Detail comparison of message overhead by message type for the static

topology

The introduction of service coordinators is expected to minimize the need for
broadcasting the service requests. Yet from the simulation results, only after the
server density reaches a certain level (20%), will the presence of a service coordinator
begin to show its benefit as shown in Figure 27 on the next page. This again confirms
the importance of the placement of service coordinators relative to the servers and the
clients as mentioned in section 4.5 on page 33.

 58

Comparison of total number of service requests broadcasted

0

200

400

600

800

1000

1200

1400

1600

5 10 20 30 40

Server Density (%)

se
rv

ic
e

re
qu

es
ts

 b
ro

ad
ca

st
ed

Hybrid (SC: 2 hops, flooding: 2 hops) Hybrid (SC: 1 hop, flooding: 2 hops) Pure flooding (flooding: 2 hops)

Figure 27: Comparison of total number of service requests broadcasted

7.3.3 Latency comparison

Latency comparison

0

20

40

60

80

100

120

5 10 20 30 40

Server Density (%)

La
te

nc
y

(m
s)

Hybrid (flooding scope: 2 hops, sc announcement scope: 1 hop)

Pure flooding (flooding scope: 2 hops)

Figure 28: Latency comparison between the pure flooding and the hybrid architecture for the
static network toplogy

 59

Figure 28 on the previous page shows the comparison of service discovery latencies
between the pure flooding and the hybrid architecture. Service discovery latency is the
time from a node generates a service request until that node receives a positive service
binding. The introduction of the service coordinators does minimize the service
discovery latency. This is because many of the service requests can be satisfied at the
service coordinators that are often closer to the client than the server themselves. In
addition these service requests are unicasted to the service coordinator, thus no delay
is caused by the additional broadcast jitter. The increase in number of servers has
enhanced the chances for the client to find the matching service at the service
coordinator or at a closer server, which results in a decreasing latency for both
architectures.

7.4 Discussion

7.4.1 Latency
Service discovery is normally a step that users go through as part of the initial service
initiation. For example: user normally would accept a second of delay when retrieving
search results on the Internet (e.g. a Google lookup) or for setting up an IP Telephony
call.

Figure 28 on the previous page shows that the service discovery latency is
considerably lower than this. Furthermore, the differences in delays between the pure
flooding and the hybrid architecture are only in the order of a few milliseconds and
should be considered negligible in this context.

Conclusion: Delay is not a factor that distinguishes the one service discovery
architecture from the other.

7.4.2 Tradeoff between the service availability and the message overhead
Hypothesis I: The increase in service availability (i.e. RSR) by adding service
coordinators is negligible compared to the extra message overhead it caused.

Hypothesis II: There is always a pure flooding scheme that outperforms a hybrid
scheme with higher service availability (i.e. RSR) and less message overhead no
matter what the combination of tunable parameters (i.e. flooding scope and SC
announcement scope) is.

Hypothesis III: The former two hypotheses still hold for an increased SC density.

As demonstrated in earlier sections, the introduction of service coordinators with the
hybrid architecture increases the service availability (i.e. RSR) as well as the message
overhead, as compared to the pure flooding architecture. The simulations done in this
chapter are to verify the aforementioned hypotheses.

Table 6 through Table 8 list the RSR values and the message overhead for the two
architectures at three different server densities. Some of these results have already
been presented in graphs and tables above.

 60

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.144 263
Flooding 2 - 0.237 1178
Flooding 3 - 0.313 2001
Flooding 4 - 0.38 2799
Flooding 5 - 0.431 3526
Flooding 6 - 0.476 4164
Hybrid 1 1 0.166 1208
Hybrid 2 1 0.258 2456
Hybrid 3 1 0.33 3544
Hybrid 1 2 0.228 2921
Hybrid 2 2 0.287 4235
Hybrid 3 2 0.357 5413
Hybrid 1 3 0.288 4356
Hybrid 2 3 0.334 5609
Hybrid 3 3 0.382 6773

Table 6: Overall comparison between the pure flooding ("Flooding") and the hybrid architecture
("Hybrid") at a 5% server density for the static network topology

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.377 303
Flooding 2 - 0.543 1190
Flooding 3 - 0.638 1992
Flooding 4 - 0.70 2775
Flooding 5 - 0.736 3477
Flooding 6 - 0.756 4069
Hybrid 1 1 0.416 1544
Hybrid 2 1 0.566 2480
Hybrid 3 1 0.651 3281
Hybrid 1 2 0.516 3638
Hybrid 2 2 0.599 4421
Hybrid 3 2 0.668 5099
Hybrid 1 3 0.578 5500
Hybrid 2 3 0.639 6192
Hybrid 3 3 0.686 6802

Table 7: Overall comparison between the pure flooding ("Flooding") and the hybrid architecture
("Hybrid") at a 20% server density for the static network topology

 61

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.62 338
Flooding 2 - 0.785 1152
Flooding 3 - 0.85 1880
Flooding 4 - 0.878 2555
Flooding 5 - 0.89 3126
Flooding 6 - 0.895 3598
Hybrid 1 1 0.658 1824
Hybrid 2 1 0.80 2491
Hybrid 3 1 0.857 3039
Hybrid 1 2 0.742 4298
Hybrid 2 2 0.817 4746
Hybrid 3 2 0.862 5161
Hybrid 1 3 0.768 6660
Hybrid 2 3 0.833 7083
Hybrid 3 3 0.864 7445

Table 8: Overall comparison between the pure flooding ("Flooding") and the hybrid architecture
("Hybrid") at a 40% server density for the static network topology

7.4.2.1 Comparing the pure flooding and the hybrid architecture at a 20% SC
density

7.4.2.1.1 Considering single-hop SC announcement scope
For a server density of 5%, adding service coordinators with announcement scopes of
1 hop to the pure flooding architecture with various flooding scopes increases the
RSR. As we can see from Table 9 on the next page, the RSR is increased from 0.144
to 0.166 for a flooding scope of 1 hop (i.e. an increase ratio of 1.15), from 0.237 to
0.258 for a flooding scope of 2 hops (i.e. an increase ratio of 1.09) and from 0.313 to
0.33 for a flooding scope of 3 hops (i.e. an increase ratio of 1.05). However, with such
minimal increase ratios in the service availability, the message overhead of the hybrid
scheme is tremendous higher. The message overhead of the hybrid architecture with a
flooding scope of 1 hop is almost 5 times as much as that of the pure flooding
architecture with the same flooding scope. The message overhead of the other two
hybrid architectures is also doubled compared to the pure flooding architectures with
corresponding flooding scopes.

From Table 9, we can see that by expanding the flooding scope of the pure flooding
scheme from 1 hop to 2 hops; it will outperform the hybrid scheme that has a flooding
scope of 1 hop. The pure flooding scheme exhibits higher service availability, i.e.
0.237 as opposed to 0.166 and less message overhead, i.e. 1178 as opposed to 1208.
By further expanding the flooding scope of the pure flooding scheme, the hybrid
schemes with multi-hop flooding scopes will also be outperformed. We can see that
the hybrid architecture with a flooding scope of 2 hops is inferior to the pure flooding

 62

architecture with a flooding scope of 3 hops. Similarly, the hybrid scheme with a
flooding scope of 3 hops is inferior to pure flooding architecture with a flooding scope
of 4 hops (Table 9).

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.144 263
Flooding 2 - 0.237 1178
Flooding 3 - 0.313 2001
Flooding 4 - 0.38 2799
Hybrid 1 1 0.166 1208
Hybrid 2 1 0.258 2456
Hybrid 3 1 0.33 3544

Table 9: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with
server density of 5%, SC announcement scope of 1 hop. The values are extracted from Table 6.

We see that the same situation is also representative for other server densities. For
example, at a 20% server density (Table 10), the hybrid architecture increases the
RSR by 10.3%, 4.2% and 2% for the flooding scopes of one hop, two hops and three
hops, respectively, the increase in message overhead is, on the other hand, too large to
be justified by the minimal increase.

Again, the hybrid scheme with a flooding scope of 1 hop is outperformed by the pure
flooding scheme with a flooding scope of 2 hops, which has a higher RSR of 0.543
and less message overhead of 1190 (Table 10). The hybrid schemes with flooding
scopes of 2 hops and 3 hops are inferior to the pure flooding schemes with flooding
scopes of 3 hops and 4 hops, respectively.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.377 303
Flooding 2 - 0.543 1190
Flooding 3 - 0.638 1992
Flooding 4 - 0.70 2775
Hybrid 1 1 0.416 1544
Hybrid 2 1 0.566 2480
Hybrid 3 1 0.651 3281

Table 10: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with
server density of 20%, SC announcement scope of 1 hop. The values are extracted from Table 7.

As another example, we may look at a service density of 40% (Table 11). Here, we
see exactly the same pattern as we saw at lower service densities.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

 63

Flooding 1 - 0.62 338
Flooding 2 - 0.785 1152
Flooding 3 - 0.85 1880
Flooding 4 - 0.878 2555
Hybrid 1 1 0.658 1824
Hybrid 2 1 0.80 2491
Hybrid 3 1 0.857 3039

Table 11: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with a
server density of 40%, SC announcement scope of 1 hop. The values are extracted from Table 8.

Sub-conclusion I: The improvement in service availability (i.e. RSR) exhibited by a
hybrid scheme with a single-hop SC announcement scope and a single-hop or
multi-hop flooding scope over the pure flooding scheme with the same flooding
scope is negligible compared to the message overhead it increased.

Sub-conclusion II: There is always a pure flooding scheme that outperforms a
hybrid scheme that has a single-hop SC announcement scope.

7.4.2.1.2 Considering multi-hop SC announcement scope
In section 7.1.3 on page 52, we demonstrated that by increasing the SC announcement
scope of the hybrid architecture, the service availability was improved slightly. The
downside is a considerable degradation in message overhead.

Comparing with the pure flooding architectures, the hybrid architectures with an SC
announcement scope of 3 hops have increased the RSR by 100%, 41% and 22% for
flooding scopes of one, two and three hops, respectively as illustrated in Table 12
below. However, they also increase the message overhead by 1556%, 376% and
238%, respectively.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.144 263
Flooding 2 - 0.237 1178
Flooding 3 - 0.313 2001
 Hybrid 1 2 0.228 2921
Hybrid 2 2 0.287 4235
Hybrid 3 2 0.357 5413
 Hybrid 1 3 0.288 4356
Hybrid 2 3 0.334 5609
Hybrid 3 3 0.382 6773
 Flooding 4 - 0.38 2799
Flooding 5 - 0.431 3526

Table 12: Comparing pure flooding scheme (“Flooding”) and different hybrid schemes
("Hybrid") with increasing SC announcement scopes. The values are extracted from Table 6,

which covers a service density of 5%

 64

Since we showed that the pure flooding scheme was superior to the hybrid
architecture for a single-hop SC announcement scope, it comes at no surprise that the
same is the case when the SC announcement scope is of multiple hops. For example,
as we see in Table 12 on the previous page, a pure flooding scheme with a flooding
scope of 4 hops outperforms all the hybrid schemes with multi-hop SC announcement
scopes presented in the table. Though the hybrid scheme with an SC announcement of
3 hops and a flooding scope of 3 hops offers a higher RSR than that offered by the
pure flooding scheme with a 4-hop flooding scope, the increase in the RSR of 0.5% is
negligible compared to the increase in message overhead of 142%. Therefore, this
hybrid scheme is still inferior to the pure flooding scheme with a 4-hop flooding
scope. By further expanding the flooding scope of the pure flooding scheme to five
hops, it will then offer a higher RSR and less message overhead than the
aforementioned hybrid scheme.

The same conclusions are also drawn for other service densities, such as for a service
density of 20% shown in Table 7 on page 60 or a server density of 40% shown in
Table 8 on page 61. Both tables show that an increase in the SC announcement scope
increases the service availability slightly, while the message overhead increases
dramatically. Thus, it is easy to see that the flooding architecture outperforms the
hybrid architecture. For both service densities, the pure flooding architecture with a
flooding scope of 4 hops will outperform all the hybrid architectures with multi-hop
SC announcement scopes presented in the tables.

Sub-conclusion III: The improvement in service availability (i.e. RSR) exhibited by
a hybrid scheme with a multi-hop SC announcement scope and a single-hop or
multi-hop flooding scope over the pure flooding scheme with the same flooding
scope is negligible compared to the message overhead it increased.

Sub-conclusion IV: There is always a pure flooding scheme that outperforms the
hybrid scheme that has a multi-hop SC announcement scope.

7.4.2.2 Comparing the pure flooding and the hybrid architecture at a 30% SC
density

We showed that the pure flooding scheme was superior to the hybrid architecture
independent of the SC announcement scope at a SC density of 20%; it comes at no
surprise that the same is the case when the SC density is increased. We have shown in
Table 13 on the next page an example that covers a server density of 20% and an
increased SC density of 30%.

Increasing the SC density will slightly increase the RSR. Comparing, for example, the
hybrid schemes with single-hop SC announcement scopes in Table 13 on the next
page with those in Table 7 on page 60. The increase ratio in the message overhead is
25%, 18% and 14% more than that in the RSR for flooding scopes of one, two and
three hops, respectively.

As already shown in section 7.1.1 on page 48 and section 7.1.2 on page 49 that
increasing the SC density will barely increase the RSR, yet the increase in message

 65

overhead is rather noticeable. This is shown in Figure 29 below. Here we can see a
relatively vertical line, which indicates the increase in the SC density has a much less
influence on the RSR than on the message overhead. The reasons are already covered
in section 7.1.1 and 7.1.2.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.377 303
Flooding 2 - 0.543 1190
Flooding 3 - 0.638 1992
Flooding 4 - 0.70 2775
Flooding 5 - 0.736 3477
 Hybrid 1 1 0.432 2010
Hybrid 2 1 0.577 2969
Hybrid 3 1 0.658 3768
 Hybrid 1 2 0.525 4597
Hybrid 2 2 0.612 5433
Hybrid 3 2 0.678 6156
 Hybrid 1 3 0.579 6717
Hybrid 2 3 0.651 7474
Hybrid 3 3 0.695 8149

Table 13: Comparing pure flooding (“Flooding”) and different hybrid schemes ("Hybrid"),
which covers a service density of 20% and an increasing SC density of 30% for the static network

topology

RSR vs. Message overhead
at different SC densities

(SC annoucement scope: 2 hops, flooding scope: 2 hops)

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RSR

M
es

sa
ge

 O
ve

rh
ea

d

SC Density: 0%

SC Density: 10%

SC Density: 20%

SC Density: 30%

SC Density: 40%

Figure 29: The effects of increasing SC densities for the static network topology

It comes at no surprise that we can always find a pure flooding scheme that
outperforms the hybrid scheme with higher RSR and less message overhead. The pure
flooding scheme with a 2-hop flooding scope that offers a RSR of 0.543 and a
message overhead of 1190 outperforms the hybrid scheme with a single-hop SC

 66

announcement scope and a single-hop flooding scope which has a RSR of 0.432 and
message overhead of 2010. The pure flooding scheme with a 4-hop flooding scope
will outperform all the other hybrid schemes as presented in Table 13 in the previous
page. It will even outperform the hybrid scheme with the single-hop SC
announcement and the single-hop flooding scope in the sense that the increase in the
message overhead can be justified by the increase in the RSR. As RSR is increased
from 0.432 to 0.70, an improvement of 62%, the message overhead is increased from
2010 to 2775, an increase of only 38%.

Sub-conclusion V: All the sub-conclusions drawn above still hold for an increased
SC density.

7.4.2.3 Flooding scope vs. SC announcement scope in the hybrid scheme
Another phenomenon we can observe from all the simulation data above is that the
increase in the flooding scope of the hybrid service discovery architecture offers a
better performance than the increase in the SC announcement scope does. This is
already covered in section 7.1.3 on page 52. The client will fall back on the pure
flooding scheme if there are no service coordinators heard or the service reply from its
affiliated SC is negative. The flooding scope controls the performance of the pure
flooding part of the hybrid scheme. Since increasing the flooding scope of the hybrid
architecture exhibits a better network performance in terms of service availability (i.e.
RSR) and message overhead than increasing the SC announcement scope does, the
benefit of the pure flooding is again being proved.

Conclusion for the chapter: The pure flooding service discovery architecture is
more preferable to the hybrid service discovery architecture under the conditions of
no node mobility.

 67

Chapter 8
Simulations with dynamic network topologies

The purpose of the simulations in this chapter is to:

- Compare the performance between the pure flooding and the hybrid service
discovery architectures in terms of service availability (i.e. RSR) and message
overhead under the conditions of node mobility

- Come to a conclusion about the preference of the two service discovery
architectures based on the simulation results under the conditions of node
mobility

Simulation parameters are listed in the Table 14 below:

NET SIZE 300M x 300M
TRANSMISSION RANGE 50M
SIMULATOIN TIME 500S
MOBILITY Random Waypoint
MAX MOVING SPEED VARIABLE
MIN MOVING SPEED 0M/S
PAUSE TIME 10S
ACTIVE ROUTE TIMEOUT 10S
SERVICE REQUEST INTERVAL 20S
SC ANNOUNCEMENT INTERVAL 10S
SERVICE REQUEST FLOODING SCOPE 1, 2, 3 HOPS
ROUTING PROTOCOL AODV
NUMBER OF NODES 50
NODES POSITION RANDOM
TYPES OF SERVICES 2
SERVER DENSITY VARIABLE
SERVICE COORDINATOR DENSITY VARIABLE
SC ANNOUNCEMENT SCOPE 1, 2, 3 HOPS
CLIENT DENSITY 20%

Table 14: Simulation parameters for dynamic simulations

The original 300x300m network is partitioned into two areas as Figure 30 on the next
page shows in order to simulate the effect of nodes leaving the network.

Nodes are moving according to the mobility pattern of random waypoint within the
whole area i.e. 300x300m. The moment the node leaves the active network area, it is
considered as having left the network. It will neither initiate any service requests, nor
relay any kind of messages until it moves back into the active network area again. All
the routing information cached at the node will be invalidated.

 68

Figure 30: Network partitions for the dynamic network topology

8.1 Hybrid architecture

8.1.1 RSR relative to server density and sc density

Request Satisfied Ratio
SC Announcement Scope: 2 hops, Flooding Scope: 2 hops

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

Server Density (%)

R
S

R

SC: 10% SC: 20% SC: 30% SC: 40%

Figure 31: RSR relative to SC and server density for the dynamic network topology (Hybrid)

Figure 31 above shows that with the node mobility added to the network, the
conclusions drawn from the static case still hold. The RSR increases as server and
service coordinator functions being added to more and more nodes in the network. In
addition, the server density is more essential to the increase in the RSR than the SC
density. The RSR is improved by 101%, 84%, 74% and 68% when the server density
increases from 5% to 40% for SC densities of 10%, 20%, 30% and 40%, respectively.

 69

However, the improvement in the RSR is only 6% when the SC density increases
from 10% to 40% for a server density of 20%.

At a higher server density level, the increase by adding service coordinators is
negligible, there exhibits even a decrease in the RSR at a server density of 40% when
SC density increases from 20% to 40%. This is caused by the stale server information
passed out by the service coordinators, which is referred to as false positive replies
and will be further discussed in section 8.1.3 on page 70. The server information
cached at the service coordinator is considered to be stale if the server is outside the
service coordinator’s announcement scope or it is outside the active network area. The
stale server information still has a non-expired timestamp within the service
coordinator. At a higher server density level, increasing the SC density will make it
possible for more servers to register their services with the service coordinators and
more clients to affiliate themselves to them. Since more servers are registered with
one or more service coordinators, the chances for stale server information, which is
caused by the node mobility, cached at the service coordinators will increase. Since
more clients are affiliated to the service coordinators, service coordinators will be
exploited more often. Accordingly, there is more chance for the stale server
information to be passed out to the clients by their affiliated service coordinators. All
of these have caused the decrease in RSR at a server density of 40%.

8.1.2 Message overhead relative to server density and SC density

Message overhead
(SC annoucement scope: 2 hops, flooding scope : 2 hops)

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45

Server Density (%)

M
es

sa
ge

 O
ve

rh
ea

d

SC: 20% SC: 30% SC: 40%

Figure 32: Message overhead relative to SC and server density for the dynamic topology (Hybrid)

Again, the mobility doesn’t change the results obtained from the static case. The
message overhead increases along with the server and the SC density as shown in
Figure 32 above. As we can see from Figure 33 on the next page, the biggest

 70

contributors to the increase in message overhead are the service registrations. They
increase proportional to the number of servers.

Message overhead in details (SC density: 20%)

0

1000

2000

3000

4000

5000

6000

7000

5 10 20 30 40

Server Density (%)

M
es

sa
ge

 O
ve

rh
ea

d

Service requests broadcasted to SC Service requests unicasted to SC

Service Registrations

SC annoucements

Route requests

service requests broadcasted

Figure 33: Detail of message overhead by type for the dynamic network topology (Hybrid)

8.1.3 False positive replies from service coordinator
A service coordinator might pass out false positive service replies to the service
requestor. False positive service replies contain server information to those servers
that the service coordinator claims to be within its reach, but their actual positions are
out of the service coordinator’s announcement scope or out of the active network area.
As we can see from Figure 34 on the next page, the chance for a service coordinator
to pass out false positive replies increases as nodes move faster. As mentioned earlier,
the SC will invalidate the server information if there are no service registrations
received before the expiration. False positive service replies might be generated in the
period after the server node moves out of the reach of the SC and the expiration of the
cached server information. Figure 35 on the next page illustrates this time period. If a
service request for the server is received during that time period, the service reply will
be false positive. The faster the server node moves out, the longer this period might be
and the higher the possibility for the SC to give out stale server information. False
positive service replies do not always lead to bad consequences. If the server is still in
the active network area, as long as the network is not partitioned between the client
and the server, the client will still be able to access the server and the service
discovery is still considered to be successful. However, if the network is partitioned
between the client and the server or the server is outside the active network area, the
client will assume the destination unreachable and discard the packet. In the latter
case, the service discovery is considered to have failed, though there may exist some
other servers in the network that offer the same service and can be reached by the
client. This will cause a decrease in the service availability (i.e. RSR).

 71

False Positive replies from SC

0

5

10

15

20

25

30

35

40

45

50

3 6 9 12 15

Max moving speed (m/s)

F
al

se
 p

os
iti

ve
 r

ep
lie

s
pe

rc
en

ta
ge

flooding: 2 hops, SC announcement scope: 1 hop

Figure 34: False positive replies percentage

Figure 35: The period during which false positive replies are passed out

8.2 Pure flooding architecture

8.2.1 RSR relative to server density and flooding scopes
With no surprise, the adding of mobility to the network doesn’t change the fact that
the RSR increases along with the increase in flooding scope and server density as
shown in Figure 36 on the next page. The same arguments apply here as those stated
in section 7.2.1 on page 53 for the static network topology.

 72

RSR vs. various flooding scopes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

Server Density (%)

R
S

R

Floodiing: 1 hop Flooding: 2 hops Flooding: 3 hops

Figure 36: RSR relative to server density and flooding scope for the dynamic network
topology (Pure Flooding)

8.3 Comparison between the hybrid and the pure flooding
architecture

8.3.1 RSR comparison
Adding service coordinators to the dynamic network shows the same effect as with
the static network. The RSR is improved by introducing service coordinators to the
network as Figure 37 below shows. The reason for the increase is the same as that
stated in 7.3.1 on page 55. However, the increase is less significant at a higher server
density level.

The effect of adding service coordinators

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45
Server Density (%)

R
S

R

SC announcement scope: 2 hops, flooding scope: 2 hops
SC annoucement scope: 1 hop, flooding: 2 hops
pure flooding: 2 hops

Figure 37: RSR comparison between the pure flooding and the hybrid architecture
for the dynamic network topology

 73

Table 15 below lists the detailed RSR values for the two architectures at a 40% server
density. The hybrid scheme with a single-hop SC announcement scope has increased
the RSR by 1% over the pure flooding. At such a higher server density level, most of
the service requests can be satisfied with the predefined flooding scope in the pure
flooding architecture, which makes the adding of service coordinator unnecessary as
far as RSR is concerned. By further expand the SC announcement scope, the RSR
value is even decreased by 0.1% compared to the single-hop SC announcement scope.
The reason for the decrease is the same as that stated in section 8.1.1 on page 69
concerning the stale server information passed out by the service coordinator.

 Flooding

scope
(hops)

SC announcement
scope (hops)

Server density
(%)

Service
Availability/RSR

Pure flooding 2 - 40% 0.875
Hybrid 2 1 40% 0.885
Hybrid 2 2 40% 0.884

Table 15: RSR comparison at a server density of 40% for the dynamic network topology

Our simulation for the mobility case again confirms the results obtained in previous
work [34], i.e. service availability (RSR) is indeed higher with the hybrid approach.

8.3.2 Message overhead comparison

Message overhead comparison

0

1000

2000

3000

4000

5000

6000

7000

Hybrid(sc: 2 hops, flooding: 2hops) Hybrid(sc: 1 hop, flooding: 2hops) Pure flooding (2 hops)

broad. sreq sreq broadcasted or unicasted to SCs route discovery overhead srep

SC
annoucements

Service
Registrations

SC annoucements

service registrations

Figure 38: Message overhead comparison between the pure flooding and the hybrid

architecture for the dynamic network topology

As Figure 38 above shows, it comes at no surprise that adding service coordinators
also results in a higher messaging overhead under the conditions of node mobility.

 74

The proactive elements, namely SC announcements and service registrations, and the
extra route discovery messages, are introduced, just as the situation with the static
case.

8.3.3 RSR and message overhead relative to max moving speed
We can see from Figure 39 below that RSRs decrease as nodes move faster and faster
for both service discovery architectures. Higher mobility causes more frequent broken
routes, which decreases the RSR. Considering the way RSR is calculated, only
successful service resolution followed by a successful access to the resolved server
will be counted as a satisfied service request. Accordingly, even the desired service
can be found, later access to the server may fail because the server has moved out of
the active network area or the route to the server is broken because of one or more of
the intermediate nodes has left the network in the meantime or the network is
partitioned between the client and the server. For the hybrid architecture, the client
usually has to initiate a route discovery to find a route to the resolved server. All the
aforementioned cases might cause route replies to be dropped before reaching the
client. In addition, the route discovery mechanism may cause the client to flood the
route requests to the network up to several times before giving up. The increase in
total number of route requests and decrease in total number of route replies as shown
in Figure 41 on page 76 reflects this.

However, the pure flooding architecture appears to be more stable than the hybrid
architecture. This is because nodes in pure flooding architecture don’t have to worry
about getting any stale server information. It will always be the server itself that
responds to a service request. This is not the case in hybrid architecture where service
coordinators are involved. As stated in 8.1.3 on page 70, chances for a SC to give out
stale server information are bigger if the network becomes more and more dynamic.
The stale server information might decrease the RSR as stated in the end of section
8.1.3.

RSR at different max moving speed

0.64

0.66

0.68

0.7

0.72

0.74

0.76

3 6 9 12 15

Max moving speed (m/s)

R
S

R

hybrid (sc scope: 2 hops, flooding: 2 hops) pure flooding (flooding: 2 hops)

Figure 39: RSR relative to max moving speed

 75

Figure 40 on the next page shows that there is an increase in the message overhead for
the hybrid architecture as nodes moves faster and faster, while a slight decrease in the
overhead for the pure flooding architecture.

The increase in overhead with the hybrid architecture is caused by the increase in
route requests and service requests that have to be broadcasted to the SC as Figure 41
on the next page illustrates. One of the reasons for the increase in route requests has
already been explained earlier in this section. The other reason for the increase in
route requests is because of broken routes between the affiliated SC and the resolved
server, which is caused by high mobility. Accordingly, if the SC lies between the
client and the resolved server, the SC has to rebroadcast the route request from the
client instead of responding on behalf of the server. The increase in the number of
service requests that has to be broadcasted to the SC2 is due to the fact that high
mobility will cause the route between the client and its affiliated SC to be more easily
broken. So instead of unicasting the service request to its affiliated SC, the client has
to broadcast it.

The slight decrease in overhead with the pure flooding architecture is caused by the
decrease in total service requests broadcasted. The mobility model random way point
shipped with the GloMoSim [36] has a tendency to move nodes closer towards the
center of the region. Table 16 below lists the message overhead for the pure flooding
with a single-hop flooding scope under both static and dynamic topology. The
decrease in service requests is due to the fact that nodes outside the active routing area
are not allowed to initiate any service requests. Even with a decrease in total service
requests broadcasted, there is an increase in total number of service replies generated.
Since the flooding scope is one hop, only a node’s one-hop neighbors can generate
service replies. Mobility model in the simulator has caused nodes to move closer to
each other, thus more servers can respond to the service requests. The increase in
moving speed will speed up this process, which causes nodes to move closer to each
other faster towards the center. This increases chances for services to be found at a
closer server (i.e. services can be found in node’s one-hop neighborhood instead of
two-hop neighborhood), which leads to fewer retransmissions, thus fewer service
requests broadcasted. This is a flaw that needed to be corrected in GloMoSim [36],
which is out of the scope of this thesis. Another possible explanation could be that
high mobility may more easily cause network partition, which hinder the higher hop
(i.e. 2-hop) broadcasts to be done. This will also lead to fewer service requests being
broadcasted. More exact analysis requires a thorough study of the mobility model
shipped with the simulator, as well as a study of nodes’ behaviors under different
moving speed. These studies are considered to be one of the future work.

 flooding scope (hops) service requests
broadcasted

service replies
unicasted

Pure flooding
(without mobility)

1 223 80

Pure flooding
(with mobility)

1 213 109

Table 16: The effect of mobility

2 Another alternative would be to make the client fall back on the pure flooding
approach immediately if there is no valid route cached for the affiliated SC.

 76

Message overhead vs. Max moving speed

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 3 6 9 12 15 18

Max moving speed (m/s)

M
es

sa
ge

 O
ve

rh
ea

d

Hybrid Pure Flooding

95% confidence interval

Figure 40: Message overhead relative to max moving speed

Detailed message overhead analysis
(hybrid, SC announcement scope: 2 hops, flooding scope: 2 hops)

0

500

1000

1500

2000

2500

3 6 9 12 15
Max moving speed

Broadcasted service request Service requests broadcasted to SC RREQ RREP

Figure 41: Detail of message overhead by type for the hybrid architecture vs. max
moving speed

 77

8.4 Discussion

8.4.1 Tradeoff between the service availability and the message overhead
Hypothesis: The conclusions drawn in section 7.4 for the network with static
topology will still hold for the network with dynamic topology.

As stated earlier, with a static network topology, the introduction of service
coordinators with the hybrid architecture increases the service availability (i.e. RSR)
as well as the message overhead, as compared to the pure flooding architecture. The
dynamic network topology is no exception. The key question is still whether the
increased message overhead can be justified by the improved service availability
when mobility is added to the network.

We have come to a conclusion in section 7.4 that the pure flooding service discovery
is more preferable than the hybrid service discovery architecture when no mobility is
involved. We will in this section come to a conclusion for the dynamic topology.

Table 17 through Table 19 list the RSR values and the message overhead for the two
architectures under the conditions of node mobility at three different server densities.
Some of these results have already been presented in graphs and tables above.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.191 261
Flooding 2 - 0.348 1507
Flooding 3 - 0.49 2888
Flooding 4 - 0.6 4428
Flooding 5 - 0.68 5910
Hybrid 1 1 0.253 1634
Hybrid 2 1 0.402 3437
Hybrid 3 1 0.539 5362
Hybrid 1 2 0.372 4137
Hybrid 2 2 0.481 5973
Hybrid 3 2 0.596 7909
Hybrid 1 3 0.456 6617
Hybrid 2 3 0.548 8302
Hybrid 3 3 0.637 10176

Table 17: Overall comparison between the pure flooding ("Flooding") and the hybrid
architecture ("Hybrid") at a 5% server density for the dynamic network topology

 78

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.458 323
Flooding 2 - 0.67 1574
Flooding 3 - 0.786 3000
Flooding 4 - 0.844 4585
Flooding 5 - 0.872 6097
Hybrid 1 1 0.528 2046
Hybrid 2 1 0.706 3343
Hybrid 3 1 0.806 4684
Hybrid 1 2 0.61 4973
Hybrid 2 2 0.737 6136
Hybrid 3 2 0.819 7363
Hybrid 1 3 0.628 8106
Hybrid 2 3 0.75 9227
Hybrid 3 3 0.816 10400

Table 18: Overall comparison between the pure flooding ("Flooding") and the hybrid
architecture ("Hybrid") at a 20% server density for the dynamic network topology

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.715 383
Flooding 2 - 0.875 1574
Flooding 3 - 0.925 2950
Flooding 4 - 0.94 4434
Flooding 5 - 0.942 5850
Hybrid 1 1 0.757 2314
Hybrid 2 1 0.885 3190
Hybrid 3 1 0.927 4186
Hybrid 1 2 0.791 5939
Hybrid 2 2 0.884 6698
Hybrid 3 2 0.921 7578
Hybrid 1 3 0.763 10127
Hybrid 2 3 0.857 10979
Hybrid 3 3 0.893 12001

Table 19: Overall comparison between the pure flooding ("Flooding") and the hybrid
architecture ("Hybrid") at a 40% server density for the dynamic network topology

8.4.1.1 Comparing the pure flooding and the hybrid architecture at a 20% SC
density

8.4.1.1.1 Considering single-hop SC announcement scope
Again, we begin with the hybrid architectures with SC announcement scopes of one
hop. For a server density of 5%, adding service coordinators with a single-hop SC
announcement scope to the pure flooding architecture with various flooding scopes

 79

increases the service availability. As we can see from Table 20 below, the RSR is
increased from 0.191 to 0.253 for the flooding scope of 1 hop, from 0.348 to 0.402 for
the flooding scope of two hops and from 0.49 to 0.539 for a flooding scope of three
hops. Though RSRs are improved by 32%, 16% and 10%, respectively. The increase
in message overhead is much higher. For the single-hop flooding scope, the increase
is 526%. For the flooding scopes of 2 hops and 3 hops, the increases are 128% and
86%, respectively. The increase in the RSR can hardly be justified by the increase in
the message overhead.

From Table 20, we can also see that the pure flooding scheme with a flooding scope
of 2 hops will outperform the hybrid scheme that has a flooding scope of 1 hop in
terms of higher RSR value and lower message overhead. A pure flooding scheme of
3-hop (4-hop) flooding scope will be superior to the hybrid architecture that has a 2-
hop (3-hop) flooding scope.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.191 261
Flooding 2 - 0.348 1507
Flooding 3 - 0.49 2888
Flooding 4 - 0.6 4428
Hybrid 1 1 0.253 1634
Hybrid 2 1 0.402 3437
Hybrid 3 1 0.539 5362

Table 20: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with
server density of 5%, SC announcement scope of 1 hop. The values are extracted from Table 17.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.458 323
Flooding 2 - 0.67 1574
Flooding 3 - 0.786 3000
Flooding 4 - 0.844 4585
Hybrid 1 1 0.528 2046
Hybrid 2 1 0.706 3343
Hybrid 3 1 0.806 4684

Table 21: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with
server density of 20%, SC announcement scope of 1 hop. The values are extracted from Table 18.

It comes at no surprise that the same pattern can be seen for other server densities. For
example, with a server density of 20%, the increase in message overhead is too large
to be justified by the minimal increase in RSR (Table 21).

Again, the hybrid scheme with a flooding scope of 1 hop is outperformed by the pure
flooding scheme with a flooding scope of 2 hops, which has a higher RSR of 0.67 and
less message overhead of 1574. The hybrid schemes with flooding scopes of 2 hops

 80

and 3 hops are inferior to the pure flooding schemes with flooding scopes of 3 hops
and 4 hops respectively.

A service density as high as 40% (Table 22) does not change the superiority of the
pure flooding scheme over the hybrid scheme.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.715 383
Flooding 2 - 0.875 1574
Flooding 3 - 0.925 2950
Flooding 4 - 0.94 4434
Hybrid 1 1 0.757 2314
Hybrid 2 1 0.885 3190
Hybrid 3 1 0.927 4186

Table 22: Comparing pure flooding ("Flooding") and the hybrid architecture ("Hybrid") with a
server density of 40%, SC announcement scope of 1 hop. The values are extracted from Table 19.

Sub-conclusion I: The sub-conclusions drawn in section 7.4.2.1.1 on page 63 also
apply under the conditions of node mobility.

8.4.1.1.2 Considering multi-hop SC announcement scope
Comparing with the pure flooding schemes, the hybrid architectures with the 3-hop
SC announcement scope have increased the RSR by 139%, 57% and 30% for flooding
scopes of one, two and three hops, respectively as illustrated in Table 23 on the next
page. However, the message overhead of the hybrid schemes is increased by 2435%,
451% and 252% respectively, which is a tremendous degradation in message
overhead.

It comes at no surprise that the pure flooding scheme is still superior to the hybrid
scheme when the SC announcement scope is of multiple hops under the conditions of
node mobility. For example, as we see in Table 23, a pure flooding scheme with a
flooding scope of 4 hops outperforms all the hybrid architecture schemes with multi-
hop SC announcement scopes presented in the table with higher RSR and lower
message overhead except for two. Though the pure flooding with a flooding scope of
4 hops exhibits a higher message overhead than the hybrid scheme with a flooding
scope of 1 hop and an SC announcement scope of 2 hops, yet the increase in the
message overhead of 7% can be justified by the improvement in the RSR of 61%. The
hybrid architecture is thus still inferior. Actually, a pure flooding with a flooding
scope of 3 hops can already outperform this hybrid scheme. The hybrid scheme with
an SC announcement scope of 3 hops and a flooding scope of 3 hops offers a higher
RSR than the pure flooding scheme with a 4-hop flooding scope. However, the
increase in message overhead of 130% can hardly be adjusted by the improvement in
the RSR of 6%. Therefore, this hybrid scheme is still inferior to the pure flooding
scheme with a 4-hop flooding scope. We can also choose to further expand the
flooding scope of the pure flooding scheme to five hops, so that it will also beat the
hybrid scheme in the RSR.

 81

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.191 261
Flooding 2 - 0.348 1507
Flooding 3 - 0.490 2888
 Hybrid 1 2 0.372 4137
Hybrid 2 2 0.481 5973
Hybrid 3 2 0.596 7909
 Hybrid 1 3 0.456 6617
Hybrid 2 3 0.548 8302
Hybrid 3 3 0.637 10176
 Flooding 4 - 0.6 4428
Flooding 5 - 0.68 5910

Table 23: Comparing pure flooding scheme (“Flooding”) and different hybrid architecture
schemes ("Hybrid") with increasing SC announcement scopes. The values are extracted from

Table 17, which covers a service density of 5%

The same conclusions are drawn for other service densities as shown in Table 18 and
Table 19 on page 78. It is easy to see that the flooding architecture outperforms the
hybrid architecture. For both service densities, the pure flooding architecture with a 4-
hop flooding scope will outperform all hybrid architectures with multi-hop SC
announcement scopes presented in the tables.

A further observation made from Table 19 is that at a server density as high as 40%,
an increase in the SC announcement scope will result in a decrease in service
availability, an effect contrary to the initial purpose of adding the service coordinators.
The reason for this is quite similar as that stated in section 8.1.1 on page 69
concerning increasing the SC density at a high server density level. The decrease is
caused by the stale server information passed out by the service coordinators. The
increase in the SC announcement scope is somewhat similar to the increase in the SC
density. More servers will be registered with the SCs especially at a high server
density level. In addition, increasing the SC announcement scope will also cause more
clients to affiliate with service coordinators. Due to node mobility, an SC might hold
server information that is stale (i.e. the server is outside the SC announcement scope
or outside the active network area) yet still valid as far as the lifetime for the entry is
concerned. Since more clients will utilize the SCs for service discovery, chances for
passing out such stale server information will increase. The worst case for getting
such stale server information will be that the resolved server has left the active
network area or in a network partition that is beyond reach from the client. This will
then result in a failure in service discovery. This explains the decrease in service
availability along with the increase in SC announcement scope.

Sub-conclusion II: The sub-conclusions drawn in section 7.4.2.1.2 on page 64 also
apply for the network with dynamic topology.

 82

8.4.1.2 Comparing the pure flooding and the hybrid architecture at a 30% SC
density

We have shown in section 7.4.2.2 on page 64 that increasing the SC density doesn’t
change the fact that the pure flooding scheme is superior to the hybrid scheme for the
static case. The same applies for the mobility case too. We have shown in Table 24
below an example that covers a server density of 20% and an increased SC density of
30%.

Increasing the SC density will in most cases increase both the service availability and
the message overhead. Comparing, for example, the hybrid schemes with single-hop
flooding scopes in Table 24 with those in Table 18 on page 78. RSRs are increased by
3.9%, 1.7% and 0.7% for flooding scopes of one, two and three hops, respectively.
However, message overhead are increased by 24%, 15% and 10.5%, respectively. At
a higher SC announcement scope (i.e. 3 hops), the increased SC density even causes a
reduction in the RSR. The reasons are the same as stated in sections 8.1.1 on page 69
and 8.4.1.1.2 on page 81 about increasing the SC density or SC announcement scope
at a high server density.

Service
discovery
architecture

Flooding
scope
(hops)

SC
announcement
scope (hops)

Service
availability
(RSR)

Message
overhead

Flooding 1 - 0.458 323
Flooding 2 - 0.67 1574
Flooding 3 - 0.786 3000
Flooding 4 - 0.844 4585
 Hybrid 1 1 0.549 2531
Hybrid 2 1 0.718 3847
Hybrid 3 1 0.812 5176
 Hybrid 1 2 0.62 6102
Hybrid 2 2 0.748 7337
Hybrid 3 2 0.824 8566
 Hybrid 1 3 0.625 9803
Hybrid 2 3 0.748 10995
Hybrid 3 3 0.81 12488

Table 24: Comparing pure flooding (“Flooding”) and different hybrid architecture schemes
("Hybrid") under the conditions of node mobility, w hich covers a service density of 20% and an

increasing SC density of 30%

As for the static case, we can always find a pure flooding scheme that outperforms the
hybrid scheme with higher RSR and less message overhead. The pure flooding
scheme with a 2-hop flooding scope that offers a RSR of 0.67 and a message
overhead of 1574 outperforms the hybrid scheme with a single-hop SC announcement
scope and a single-hop flooding scope that has a RSR of 0.549 and message overhead
of 2531. Similarly, the pure flooding scheme with a 3-hop flooding scope is superior
to the hybrid scheme with a singe-hop SC announcement scope and a 2-hop flooding
scope. The pure flooding scheme with a 4-hop flooding scope will outperform all the
other hybrid schemes as presented in Table 24 above.

 83

The mobility does not change the fact that increasing the flooding scope of the hybrid
architecture offers a better performance than increasing the SC announcement scope
does. This confirms the benefit of the pure flooding scheme also under the conditions
of node mobility.

Conclusion: All the sub-conclusions drawn above still hold for an increased SC
density.

8.4.2 Comparing the static and the dynamic network topology

8.4.2.1 RSR comparison
After adding mobility to the network, we can see that service availability (i.e. RSR) is
higher than that of the static case. However, this does not argue for a preference for
mobility, simply because the increase in the RSR is caused by the following reasons.

- This is due to the way RSR is calculated. If all the servers that offer the
requested service are outside the active network area at the end of the service
request cycle, that particular service request is not taken into account for the
RSR calculation.

- The active network area is smaller than the original network used for the static
case. Accordingly, nodes are closer to each other, which leads to a higher
service availability.

- The mobility model random waypoint shipped with the GloMoSim [36] has a
tendency to move nodes towards the center of the region, thus making nodes
closer to each other and easier to discovery each other

8.4.2.2 Message overhead comparison
Table 25 on the next page shows that with the mobility added to the nodes in the
network, the total message overhead is increased for the hybrid architecture. The table
also shows the major message types that have contributed to the increase in message
overhead. Because of nodes mobility, the route between a client and its affiliated SC
might be broken at the time when the client triggered a service request. Accordingly,
the service request will have to be broadcasted to the SC as contrary to the static case
where service requests will always be unicasted by the client to its affiliated service
coordinator if the route is not broken by other means.

The increase in route requests is due to the following:

1. Since some service coordinators might give out stale server information for
servers that don’t exist (i.e. outside the active network area). When the client
tries to find a route to the resolved server, the route request mechanism causes
the client to flood the route request to the whole network up to several times
before giving up, thus increasing the total route requests.

2. If the SC lies on the route between the client and the resolved server, the SC
can usually reply the route request on behalf of the server itself, thus reducing
the flooding scope of the route request. However, in the mobility case, the
route between the SC and the registered server might be broken, so that route
request has to be re-broadcasted.

 84

There is no significant change in the message overhead for the pure flooding
architecture and the difference is mainly caused by the flaw in the mobility model
shipped with the simulator.

 SC
announcement
scope (hops)

Flooding
scope
(hops)

Total
message
overhead

Service
requests
broadcasted to
SC

Route
request

Hybrid
(with mobility)

1 2 3343 174 497

Hybrid
(static)

1 2 2480 0 195

Table 25: Overall message overhead comparison between static and mobility case at a server
density of 20%

8.4.2.3 Negative effects caused by the service coordinator under the conditions
of node mobility

There are several negative effects caused by service coordinators in a dynamic
network.

1. Stale server information will be passed out by the service coordinator, which
might decrease the service availability. The more dynamic the network is, the
big the risk is. This is shown in Figure 34 on page 71.

2. Due to node mobility, routes between the client and its affiliated SC break
easily. This forces the client to broadcast the service request to the affiliated
SC instead of unicasting. The benefit of using the SCs is thus reduced.

8.4.3 Considering service request interval
The trade-off between a hybrid and a pure flooding architecture is largely dependent
on the number and the pattern of service requests generated. For our simulations, 20%
of the nodes are actively doing service discoveries every twenty seconds. The
elements, namely SC announcements and service registrations, introduced by the
hybrid architecture will be justified by the increased number of service requests
generated. The client density of 20% and the service request interval of 20s are
relatively high values compared to the real life scenarios. Still, the simulation results
favor the pure flooding architecture to the hybrid architecture. In real life scenarios,
fewer nodes might engage in service discovery activities and clients may prefer longer
communication sessions with the resolved servers. This will favor the pure flooding
architecture even more, simply because for the first, the elements (i.e. SC
announcements and service registrations) introduced by the hybrid architecture will
consume a fixed amount of bandwidth, which can hardly be justified by the infrequent
service requests and for the second, a pure flooding architecture makes the service
discovery purely on-demand, which reduces the message overhead caused by service
discoveries to the minimum.

Conclusion for the chapter: The pure flooding service discovery architecture is still
preferable to the hybrid service discovery architecture under the conditions of node
mobility.

 85

Chapter 9
Conclusion and Future work

By means of simulations, we have shown that the increase in service availability (i.e.
RSR) by adding service coordinators is negligible compared to the extra message
overhead it caused. In addition, one can always find a pure flooding service discovery
scheme with a reasonable service request flooding scope that outperforms the hybrid
scheme with higher RSR and less message overhead. Accordingly, the pure flooding
service discovery architecture is preferable to the hybrid architecture on reactively
routed MANETs. The conclusion applies to both the static and the dynamic network
topology.

Even on a proactively routed MANET, a pure flooding architecture might still be
preferable, although the routing effects are lower. Firstly, it is considerably less
complex. Secondly, the hybrid approach may call for a separate complex mechanism
for electing service coordinators, which might require a substantial amount of network
resources.

There are several issues that deserve further investigation:

- An opportunity that has not been explored in this thesis is to allow caching of
service binding information on intermediate nodes that forwards service
replies and on the requestor nodes themselves. This seems to be a promising
compromise between the pure flooding and the hybrid architectures for on-
demand MANETs, and the issue deserves further investigation.

- As mentioned earlier, the placement of service coordinators relative to the
clients and the servers are critical to the network performance. Instead of
nodes taking on roles as service coordinators statically, a lightweight, dynamic
mechanism for election of service coordinators is desired.

- The flaw in the mobility model (i.e. random waypoint) shipped with
GloMoSim [36] should be fixed.

- Further studies about the effect of increasing the moving speed of nodes
should be carried out.

- Further evaluations of pure flooding and hybrid architectures under different
mobility patterns, server and client distribution patterns should be considered.

 86

 87

References

[1] G. Y. He, “Destination-Sequenced Distance Vector (DSDV) Protocol”,

Networking Laboratory, Helsinki University of Technology.
[2] T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum and L.

Viennot, “Optimized Link State Routing Protocol”, Internet Draft, IETF
MANET Working Group, draft-ietf-manet-olsr-07.txt, November 2002.

[3] C. Perkins, E. Royer, and S. Das, “Ad hoc On-Demand Distance Vector (AODV)
Routing”, IETF Internet Draft, draft-ietf-manet-aodv-12.txt, November 2002.

[4] J. Broch, D. B. Johnson, D. A. Maltz, “The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks”, IETF Internet Draft, draft-ietf-manet-dsr-01.txt,
December 1998.

[5] Z. J. Haas, M. R. Pearlman and P. Samar, “The Zone Routing Protocol (ZRP)
for Ad Hoc Networks”, IETF Internet Draft, draft-ietf-manet-zone-zrp-04.txt,
July 2002.

[6] E. M. Royer, “A review of Current Routing Protocols for Ad-Hoc Mobile
Wireless Networks”, IEEE Personal Communications, April 1999.

[7] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location Protocol,
Version 2”, IETF, RFC 2608, June 1999, available at http://www.rfc-
editor.org/rfc/rfc2608.txt.

[8] E. Guttman, “Service Location Protocol: Automatic Discovery of IP Network
Services”, IEEE Internet Computing, http://computer.org/internet, July 1999.

[9] C. Perkins and E. Guttman, “DHCP Options for Service Location Protocol”,
IETF, RFC 2610, June 1999, available at http://www.rfc-
editor.org/rfc/rfc2610.txt.

[10] Sun Microsoft, “Jini Network Technology”, http://www.jini.org.
[11] Salutation Consortium, “Salutation Architecture Specification v2.1 (Part-1)”,

http://www.salutation.org/specordr.htm.
[12] Sun Microsystems, “RPC: Remote Procedure Call Protocol Specification”,

Network Working Group-RFC 1050, April 1998, available at
http://www.faqs.org/rfcs/rfc1050.html.

[13] Microsoft Corporation, “Universal Plug-and-Play (UPnP) Forum”,
http://www.upnp.org.

[14] R. Droms, “Dynamic Host Configuration Protocol”, Network Working Group-
RFC 2131, March 1997.

[15] E. Guttman, S. Cheshire (chairs), “Zero Configuration Networking (zeroconf)”,
June 1999.

[16] Y. Goland, T. Cai, P. Leach, Y. Gu, S. Albright, “Simple Service Discovery
Protocol/1.0”, available at http://www.ietf.org/internet-drafts/draft-cai-ssdp-v1-
02.txt.

[17] W3N Note, “Simple Object Access Protocol (SOAP) 1.1”, available at
http://www.w3.org/TR/SOAP.

[18] J. Cohen, S. Aggarwal, Y. Goland, “General Event Notification Architecture
Base: Client to Arbiter”, draft-cohen-gena-p-base-01.txt.

[19] “Extensible Markup Language”, http://www.xml.com.

 88

[20] Bluetooth SIG, “Specification of the Bluetooth System - Core, Version 1.1
volume 1, 2001. Part E”.

[21] Bluetooth SIG, “Specification of the Bluetooth System - Profiles, Version 1.1
volume 1, 2001. Part K: 2”.

[22] C. Bettstetter and C. Renner, “A comparison of service discovery protocols and
implementation of the service location protocols”, TUM, Munich, Germany.

[23] S. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments”, IEEE Communication Magazine, Vol.14, No. 2,
February 1997.

[24] Web Service Basics,
http://msdn.microsoft.com/webservices/understanding/webservicebasics/.

[25] W3C Note, “Web Services Description Language (WSDL) 1.1”,
http://www.w3c.org/TR/wsdl.

[26] “UDDI Version 3 specification”, http://www.uddi.org.
[27] K. Geihs, “Middleware Challenges Ahead”, IEEE Computer, June 2001.
[28] C-K. Toh, “Ad Hoc Mobile Wireless Networks: Protocols and Systems”,

Prentice Hall, NJ 2002, pp. 231-242.
[29] D. Chakraborty, A. Joshi, Y. Yesha and T. Finin, “GSD: A Novel Group-based

Service Discovery Protocol for MANETS”, Computer Science And Electrical
Engineering, University of Maryland, Baltimore County.

[30] R. Koodli, C. E. Perkins, “Service Discovery in On-Demand Ad Hoc Networks.
Manet”, Working Group Internet Draft, draft-koodli-manet-servicediscovery-
00.txt, 02 October 2002.

[31] P. E. Engelstad et al., “Service Discovery and Name resolution Architectures in
On-Demand MANETs”, Proceedings of 2003 Workshop on Mobile Wireless
Networks (MWN), Providence, Rhode Island, May 19 – 22, 2003.

[32] P. E. Engelstad, G. Egeland, R. Koodli, C. Perkins, “Name Resolution in On
Demand MANETs and over External IP Networks”, IETF Internet draft, draft-
engelstad-manet-name-resolution-01.txt, February 2004 (Work in Progress)

[33] P. E. Engelstad, D. V. Thanh, G. Egeland, “Name Resolution in Mobile Ad-hoc
Networks”, Proceedings of IEEE 2003 International Conference on
Telecommunication, ICT’2003, Tahiti, February 23-28, 2003.

[34] G. E. Güichal, “Service Location Architectures for Mobile Ad-hoc Networks”,
Master Thesis, Georgia Institute of Technology, July 2001.

[35] A. Gulbrandsen, P. Vixie, L. Esibov, “A DNS RR for specifying the location of
services (DNS SRV)”, RFC 2782, Internet Engineering Task Force (IETF),
February 2000.

[36] M. Gerla, X, Zeng, R. Bagrodia, “GloMoSim: A library for parallel simulation
of large-scale wireless networks”, Proc. 12th Workshop on Parallel and
Distributed Simulations, 1998.

[37] Sun Microsoft, “Java Remote Method Invocation”,
http://java.sun.com/products/jdk/rmi/.

 89

Appendix A
Article submitted for review

Evaluation of Service Discovery Architectures on reactively routed MANETs

Yan Zheng, Paal Engelstad
University of Oslo (UniK) / Telenor R&D, 1331 Fornebu, Norway

yanz@ifi.uio.no, Paal.Engelstad@telenor.com

Abstract— Discovery of services and other named
resources is expected to be a crucial feature for the
usability of mobile ad-hoc networks (MANETs).
Different types of service discovery architectures
are distinguished by the extent that service
coordinators (SCs) are implemented in the
network. SCs are nodes that hold a central
repository for caching attributes and bindings of
services of servers located in its neighborhood. This
paper describes and evaluates the performance of
different architectures in terms of service
availability, messaging overhead and latency. The
paper shows that on a reactively routed MANET
where the service discovery mechanism has a direct
impact on the routing protocol, the routing effects
have a major impact on the evaluation result. The
paper also demonstrates the benefits of combining
the service discovery with route discovery,
especially in on-demand MANETs where reactive
routing protocols are being used.

Keywords - simulations, ad hoc networks, service
discovery architectures, cross-layer optimisations.

I. Introduction
Discovery of services and other named resources
is anticipated to be a crucial feature for the
usability of mobile ad-hoc networks (MANETs).
In this dynamic environment different nodes
offering different services may enter and leave
the network at any time. Efficient and timely
service discovery is a prerequisite for good
utilization of shared resources on the network.
On a MANET, any node may in principle operate
as a server and provide its services to other
MANET nodes or as a service requestor and uses
the service discovery protocol to discover
available services on the network and their
service attributes. This includes IP addresses,
port-numbers and protocols that enable the client
to initiate the selected service on the appropriate
server.

The Internet community has not yet reached a
consensus on one particular service discovery
protocol that is likely to be supported by most
Internet hosts. There are a number of proposed
service discovery mechanisms - such as Jini [1],
Service Location Protocol (SLP) [2], Salutation
Protocol [3] and UPnP/SSDP [4].
As a slight simplification, one may say that are
all these protocols are based on two baseline
mechanisms for management of service
discovery information:
1. Information about services offered on the

network is stored on one or a few centralized
nodes, referred to as Service Coordinators
(SCs) in this paper.

2. Information about each service is stored on
the node that is offering the service.

In this paper we define the service discovery
architectures with regard to these two
mechanisms. A solution only based on the first
mechanism is referred to as a service coordinator
based architecture, while a solution only based
on the second mechanism is referred to as a
distributed query-based architecture. Finally, a
solution based on a mixture of both the first and
the second mechanism is referred to as a hybrid
service location architecture.
Existing service discovery mechanisms are
normally designed with a fixed network in mind,
and might not fit well to MANETs. MANETs are
normally highly dynamic and without any
preexisting infrastructure. These characteristics
call for particular considerations. Hence, before a
service discovery mechanism for ad-hoc
networks can be designed or selected, one need
to evaluate what kind of service discovery
architectures are most suitable for ad-hoc
networks.
Güichal [5] undertakes an analysis of different
service discovery architectures based on

 90

simulations. The work concludes that the hybrid
architecture normally outperforms both the
service coordinator based and the distributed
query-based architecture. The distributed query-
based architecture is the second best choice, and
yields less messaging overhead. Despite this, the
work concludes that the hybrid architecture gives
an overall better performance, because it yields
higher service availability.
A shortcoming of the simulations from Güichal’s
work is that they do not take the importance of
underlying routing into consideration. This
assumption might be appropriate when a
proactive routing protocol is being used, because
with proactive routing the traffic patterns and
service discovery search patterns do not
influence the amount of routing messages.
With a reactive routing protocol, on the contrary,
this assumption does not hold, and the simulation
results are not applicable. Data traffic will trigger
messaging by the reactive routing protocol, and
service discovery messages will increase the
routing overhead. It is therefore anticipated that
the routing overhead would be higher with the
hybrid architecture than with the distributed
query-based architecture, simply because the
hybrid architecture proved to require more
messages on the network.
In this paper we make a new comparison
between the distributed query-based architecture
and the hybrid architecture, to determine if
Güichal's conclusion still holds in a reactively
routed network. Both the overhead of the service
discovery mechanism, as well as the additional
routing that is triggered by the mechanism, is
taken into account. To minimize the routing
overhead triggered by service discovery, we have
used the optimisation methods proposed in [6]
and [7].
When we evaluate the two architectures, we look
for a user-friendly solution that gives a high level
of service availability, low discovery delay, and
so forth. At the same time, we want a network-
friendly solution, i.e. with low messaging
overhead and with little additional complexity
added to the network. To a certain degree, it is
also possible to increase the user-friendliness at
the cost of introducing more messaging.
In section 2 we present relevant work related to
service discovery in ad-hoc networks. Section 3
presents the simulation setup. Section 4 presents
simulation results that compare the distributed
query-based and the hybrid service discovery
architecture. Discussion of the results is
presented in Section 5. Section 6 presents a
discussion for the dynamic network topology.
Conclusions are drawn in Section 7, and
directions for further work are discussed.

II. Related work

A. Service discovery architectures
C. K. Toh [8] has outlined different service
discovery architectures for managing service
information on MANETs. In terms of service
discovery, a MANET node may act as a Client
(or Service Requestor) that wants to discover a
type of service, a Server (or Service Provider)
that wants to make its services available to other
MANET nodes, or a Service Coordinator (SC)
that assists with service discovery. SCs are nodes
that hold a central repository for caching Service
Bindings, which maps a service name to an IP
address(es) and a port number(s) that can be used
to initiate the service.
Three possible service discovery architectures
are outlined in [8]:
- Service coordinator based architecture:

Certain nodes in the MANET are chosen to
be service coordinators, a role quite similar
to the DA in SLP [2] or the lookup service in
Jini [1]. SCs announce their presences to the
network periodically by flooding SC
announcement messages. The flooding is
limited to a certain number of hops,
determined by the SC announcement scope
parameter. A service provider (i.e. server)
that receives SC announcements unicasts
Service Registration messages to register
periodically its services and access
information with SCs in its surroundings. A
service requestor (i.e. client) that has
received SC announcement messages may
unicast a Service Request to a selected SC to
discover desired services. The SC responds
with a unicast Service Reply. The selected
SC is referred to as an affiliated SC.

- Distributed query-based architecture: This
architecture contains no SC. Instead, a
service requestor (i.e. client) floods the
Service Request throughout its
surroundings in the network. The flooding is
limited by the flooding scope parameter.
Each service provider responds to a Service
Request for its own services with a unicast
Service Reply.

- Hybrid service location architecture: This
architecture combines the above two
architectures. Service providers within the
announcement scope of one or more SCs
will register with them their available
services and access information, but must
also be ready to respond to flooded service
requests. When a service requestor unicasts a
Service Request to its affiliated SC in line
with the Service Coordinator based
architecture, the SC responds with a positive
or negative Service Reply. However, if there
is no SC in the service requestor’s
surroundings or if the affiliated SC returned
a negative Service Reply, the service

 91

requestor will simply fall back to the
Distributed Query based architecture. Both
SCs and servers may respond to a flooded
Service Request with a positive Service
Reply that matches the requested
service.

This paper evaluates the performance of
the two latter architectures in a reactively
routed MANET.

B. Group-based service discovery protocol
D. Charkraborty et al. proposed a novel group-
based service discover protocol (GSD) [9] for
MANET. The protocol is based on peer-to-peer
caching of the service advertisements, which are
associated with an advertising radius, i.e. every
node maintains a cache of all the services within
a certain number of hops (the advertising radius).
Services are described using service groups (e.g.
Service/Hardware/IO-Service/Printer-Service).
The local cache will be exploited first when a
service is requested at the application level in
order to enhance efficiency for service discovery.
When no matching service is found in the cache,
a service request will be broadcasted to the
network.
D. Charkraborty et al. have in [9] also proposed a
group-based selective forwarding concept for
such broadcasted service requests, i.e. the service
request is forwarded only to those nodes that
have seen one or more of the service groups to
which the request belongs. This information is
conveyed through the periodic service
advertisements. In this way, the network will not
be inundated with request messages, and the
bandwidth usage will be spared.

C. Name Resolution and Service Lookups
A solution to name resolution in on-demand
MANETs has been proposed in ([10], [11]). The
main idea is to streamline name resolution with
the underlying reactive routing protocol (e.g.
AODV [12], DSR [13] or TORA [14]). The
objective is to obtain a bandwidth-efficient
scheme that reduces the number of broadcasted
discovery messages to a minimum.
It has also been proposed to bundle simple
service name lookups together with this name
resolution mechanism ([6]). This is parallel to
DNS SRV lookups for simple service discovery
on the fixed Internet [15]. It allows a service
name to be resolved into an IP address and a
transport protocol number to be used to initiate
the service. The transport protocol type is
normally encoded into the service name.
Figure 1 shows how service discovery can be
streamlined with the reactive routing protocol in
the case where the client is affiliated with a
service coordinator based on the ideas from [6]

[10] [11]. This is the model used for simulation
in this paper.

Figure 1: Streamlining the service discovery
with the reactive routing.

Service discovery messages can be carried in
routing message extensions in the form of a type
and a type-specific value as proposed in the
AODV specification [12]. Service requests and
SC announcements are carried in RREQ
extensions, service replies and service
registrations, on the other hand, are carried in
RREP extensions.
The advantages of piggybacking service
discovery on routing messages in this way are:
1. Reverse routes to the service requestor are

established along with the service request so
that no additional route discovery is
necessary to relay the service reply back to
the requestor.

2. Forward routes to the SC are established
along with the SC announcements so that
service requests and service registrations can
be unicasted to the SC.

3. A forward route is established along
with the service reply so that no
additional route discovery is necessary
for further communication with the node
issuing the reply.

D. SLP-based service discovery
R. Koodli et al. have in their internet draft [7]
proposed a similar solution to service discovery
in on-demand MANETs, where service discovery
requests and replies are also carried as an
extension to RREQs and RREPs in (Figure 1).
The proposed mechanism for service discovery
specifies message formats that are designed to
inter-operate with the Service Location Protocol
(SLP) [2]. Thus, it has more capabilities to
accommodate advanced service discovery than
the DNS-SRV-based scheme for simple service
name resolution proposed in [11] has. A
drawback, however, is that it requires additional
software implemented on the MANET nodes,
which may increase complexity and slow
deployment.

 92

III. Simulation setup
Simulations were done on the well-known
simulator GloMoSim [16], which is shipped with
an AODV [12] module.
The simulated network contains 50 nodes
randomly located in a 300mx300m squire. A two
ray propagation model for radio waves as well as
omni-directional antennas were used at the
physical level. The radio range of the node is set
to be 50 meters. The MAC protocol used is IEEE
802.11. AODV and UDP are used as the
underlying reactive routing protocol and
transport layer protocol respectively. Every
simulation is repeated 500 times with different
seed values.
 There are two different types of services in the
network. A node is selected as a client, a server
and/or a service coordinator based on the density
parameter fed in through the configuration file.
The selection was done using a random number
generator shipped with GloMoSim [16]. SC
election mechanism is out of the scope of this
paper.
The two service discovery architectures
simulated are distributed query-based
architecture and hybrid architecture. The
architectures can be tuned with (at least) two
parameters:
- SC announcement scope: This scope

regulates the extent to which a service
coordinator announcement can propagate in
terms of hops. This parameter is used only in
the hybrid architecture.

- Flooding scope: This scope determines how
far a service request will be broadcasted in
the network in terms of hops. This parameter
is used in both architectures. In a hybrid
architecture, a service requestor will fall
back to use a distributed-query based
architecture by broadcasting the service
request based on this flooding scope if no
affiliated service coordinator is heard or
when a negative service reply is returned
from the affiliated service coordinator.

In the simulations, 20% of the nodes will
function as clients and actively initiate service
requests every twenty seconds. The time for the
first service request is randomly and individually
generated for every client node. The SC
announcement interval is set to be the same as
the route timeout value (i.e. 10S) recommended
by the ADOV [12] specification. The reason for
setting the SC announcement interval alike the
route timeout value is because it yields minimal
routing message overhead.

IV. Simulation results
A. Service availability (SA)
The service availability (SA) is defined as:

networktheinclientsallbyissuedrequestsserviceofnumberTotal

repliesservicepositiveofNumber
SA=

A positive service reply means not only the
resolution of a service type to a valid service
binding (server address, port number), but also a
successful contact to this server via the given
access information (i.e. A route to the resolved
server can be found).
Figure 2 shows how the presences of service
coordinators (i.e. for the hybrid architecture)
influence the service availability. As we can see
from the figure, the introduction of service
coordinators does improve the service
availability. Depending on the announcement
scope of the service coordinator, the service
availability is improved by 8,3% and 20,8%
respectively at a server density of 5%.

Service Availability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25 30 35 40 45

Server density (%)

S
er

vi
ce

 a
va

ila
bi

lit
y

Distributed query-based (flooding scope: 2 hops)
Hybrid (SC density: 20%, SC announcement scope: 1 hop, flooding scope: 2 hops)
Hybrid (SC density: 20%, SC announcement scope: 2 hops, flooding scope: 2 hops)

Figure 2: Service availability comparison between
the Distributed query-based and the Hybrid
architecture.

The reason that SCs improve the service
availability is revealed in Figure 3 and Figure 4.
Figure 3 illustrates a scenario with a flooding
scope of 2 hops and a SC announcement scope of
1 hop. Without service coordinator functionality
implemented on the black node in Figure 3, the
server would be unreachable from the client.
With SC functionality on the black node, on the
other hand, the server will be able to register its
service with the service coordinator and the
client’s service request will be able to reach the
service coordinator, which will respond on behalf
of the server.

 93

Figure 3: The effect of the SC. Scenario 1

Figure 4 shows a similar scenario, however, here
the SC announcement scope is 2 hops. Without
the service coordinator, neither client 1 nor client
2 will be able to find the server. But with the help
of service coordinator functionality implemented
on the black node, both clients can direct service
requests to their affiliated service coordinator i.e.
the black node, which has cached the server
information.

Figure 4: The effect of the SC. Scenario 2

As expected, our simulations confirm the results
obtained in previous work [5], i.e. service
availability is indeed higher with the hybrid
approach.

B. Message overhead
All the non-data messages that are transmitted in
the network by all the nodes at the network level
are considered to be message overhead. The
overhead is counted as the total number of
packets over each hop (i.e. the total number of
packets times the average number of hops
traversed by the packets).
As pointed out in [5], the introduction of service
coordinators introduces extra message overhead
to the network, in terms of service
announcements, service registrations and those
related to service lookups. However, routing
overheads triggered by these messages are not
taken into account in [5]. Here, our analysis
differs from [5], as we also take routing
messages into account.

Although the introduction of service coordinators
does increase the service availability, Figure 5
shows that it also results in a much higher level
of messaging overhead. Service coordinators
have introduced two proactive elements to the
network, namely SC announcements and service
registrations. These messages will take up a fixed
bandwidth regardless of whether there exist
service discoveries or not.
From Figure 5, we can also see that there is no
message overhead caused by route discoveries
for the distributed query-based architecture. This
is because in the distributed query-based
architecture, it is always the service provider
itself that responds to the service request and a
forward route to the service provider is
established along with the service reply [11].
Accordingly, no additional route discovery is
needed for the client to access the server after the
resolution. However, in the hybrid architecture,
service coordinators are expected to respond to
the service requests. Accordingly, forward routes
are only established towards the service
coordinators, not the service providers, so an
extra round of route discovery is needed in order
to access the server after the resolution.

Message overhead comparison (server density: 20%)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Hybrid(sc: 2 hops, flooding:
2hops)

Hybrid(sc: 1 hop, flooding:
2hops)

Distributed query-based
(flooding: 2hops)

M
es

sa
ge

 o
ve

rh
ea

d
(p

ac
ke

t)

broad. sreq sreq u2sc sc ann. u sreg rreq rrep grat. rrep srep

Figure 5: Detailed comparison of message overhead
by message type

C. Latency
Figure 6 shows the comparison of the service
discovery latency (i.e. from the moment a node
generates a service request until that node
receives a positive service binding) between the
distributed query-based architecture and the
hybrid architecture. The introduction of service
coordinators does minimize the latency, because
many of the service requests can be satisfied at
the service coordinators, which are often closer
to the client than servers themselves. In addition,
these service requests are unicasted to the service
coordinators, thus no delay is caused by any
additional broadcast jitter. The increase in
number of servers has enhanced the chances for
the client to find the matching service at the
service coordinator or at a closer server, which
results in a decreasing latency.

 94

Latency comparison

0

20

40

60

80

100

120

5 10 20 30 40

server density (%)

la
te

nc
y

(m
s)

Hybrid (flooding scope: 2 hops, sc announcement scope: 1 hop)
Distributed query-based (flooding scope: 2 hops)

Figure 6: Latency comparison between the
distributed query-based and the hybrid
architecture.

Service discovery is normally a step that users go
through as part of the initial service initiation.
For example: users would normally accept a
second of delay when retrieving search results on
the (e.g. a Google lookup) or for setting up an IP
Telephony call. Figure 6 shows that the service
discovery latency is considerably lower than this.
Furthermore, the differences in delays between
the two architectures are only in the order of a
few milliseconds and should be considered
negligible in this context. Thus, delay is not a
factor distinguishes the one service discovery
architecture from the other.

V. Discussion of results
Our objective is to optimize the benefits of
additional service availability against the cost of
additional overhead. The key question to be
answered is whether the increased service
availability can be justified by the increase in
message overhead.Table 1 below lists the service
availability values and the message overhead for
the two architectures at a 5% server density.

Service
discovery
architecture

Flooding
scope
(hops)

SC ann.
scope
(hops)

Service
avail-
ability

 Message
 overhead

Distributed 1 - 0.144 263
Distributed 2 - 0.237 1178
Distributed 3 - 0.313 2001
Distributed 4 - 0.38 2799
Distributed 5 - 0.431 3526
Distributed 6 - 0.476 4109
Hybrid 1 1 0.166 1208
Hybrid 2 1 0.258 2456
Hybrid 3 1 0.33 3544
Hybrid 1 2 0.228 2921
Hybrid 2 2 0.287 4235
Hybrid 3 2 0.357 5413
Hybrid 1 3 0.288 4356
Hybrid 2 3 0.334 5609
Hybrid 3 3 0.382 6773

Table 1: Overall comparison between the
distributed query-based (“Distributed”) and
the hybrid architecture (“Hybrid”) at a 5% server
density

A. Single-hop SC announcement scope
Adding service coordinators with 1-hop
announcement scopes to the distributed query
architecture with various flooding scopes
increases service availabilities. As we can see
from Table 1, service availabilities are increased
from 0.144 to 0.166 for a 1-hop flooding scope
(i.e. an increase ratio of 1.15), from 0.237 to
0.258 for a 2-hop flooding scope (i.e. an increase
ratio of 1.09) and from 0.313 to 0.33 for a 3-hop
flooding scope (i.e. an increase ratio of 1.05).
However, with such minimal increase ratios in
service availability, the message overhead of the
hybrid scheme is tremendous higher. The
message overhead of the hybrid architecture with
a flooding scope of one hop is almost 5 times as
much as that of the distributed query-based
architecture with the same flooding scope. The
message overhead of the other two hybrid
architectures is also doubled compared to the
pure flooding architectures with correspondent
flooding scopes.
From Table 1, we can see that by expanding the
flooding scope of the distributed query-based
scheme from 1 hop to 2 hops, it will outperform
the hybrid scheme with a 1-hop flooding scope
and a 1-hop SC announcement scope. The
distributed query-based scheme exhibits higher
service availability, i.e. 0.237 as opposed to
0.166, and less message overhead, i.e. 1178 as
opposed to 1208. By further expanding the
flooding scope of the distributed query-based
scheme, the hybrid scheme with multi-hop
flooding scope will also be outperformed. We
can see that the hybrid architecture with a 2-hop
flooding scope is inferior to the distributed
query-based architecture with a 3-hop flooding
scope. Similarly, the hybrid architecture with a 3-
hop flooding scope is inferior to the distributed
query-based architecture with a 4-hop flooding
scope.

B. Multi-hop SC announcement scopes
By increasing the SC announcement scope of the
hybrid architecture, the service availability will
be improved slightly. The downside is a
considerable degradation in message overhead.
Comparing with the distributed query-based
architectures, the hybrid architectures with the 3-
hop SC announcement scope have increased the
service availability by 100%, 41%% and 22% for
flooding scopes of one, two and three hops,
respectively as illustrated in Table 1. However, it
also increases the message overhead by 1556%,
376% and 238%, respectively.
Since we showed that the distributed query-based
architecture was superior to the hybrid
architecture for a SC announcement scope of one
hop, it comes at no surprise that the same is the
case when the SC announcement scope is of

 95

multiple hops. For example, as we see in Table 1,
a distributed query-based scheme with a 4-hop
flooding scope outperforms all the hybrid
architecture schemes with multi-hop SC
announcement scopes presented in the table.
Though the hybrid scheme with a 3-hop SC
announcement and 3-hop flooding scope offers a
higher service availability than that offered by
the distributed query-based scheme with a 4-hop
flooding scope. The increase in service
availability of 0,5% is negligible compared to the
increase in message overhead of 140%.
Therefore, this hybrid scheme is still inferior to
the distributed query-based scheme with 4-hop
flooding scope. By further expanding the
flooding scope of the distributed query-based
scheme to five hops, it will then offer higher
service availability and less message overhead
than the aforementioned hybrid scheme.

C. Higher server densities and higher SC
densities
The same patterns were shown for other service
densities and SC densities. More simulation
results are provided in [17].
Figure 7 shows how service availability and
message overhead are affected by the increase in
the SC density. The five points on the curve
represent, from the bottom up, SC densities of
0% (i.e. distributed query-based architecture),
10%, 20%, 30% and 40%, respectively. Here we
can see a relatively vertical line, which indicates
the increase in the SC density has a much less
influence on the service availability than on the
message overhead. One of the reasons for this
almost negligible improvement in service
availabilities as the SC density increases is that
as more and more nodes take on roles as service
coordinators, many may have their impacts on
overlapping areas. However, the client will still
direct its service request to its old affiliated
service coordinator unless either the new one is
better compared to the old one based on certain
criterion (less hop count etc.) or the old one fails
in one way or another. There may exist many
such service coordinators in the network, which
are just present without actually participating in
any service discovery process, hence not
improving the service availability. However,
these service coordinators are still consuming
lots of network bandwidth by periodically
broadcasting SC announcements and receiving
solicited service registrations, which explains the
noticeable increase in message overhead.

RSR vs. Message overhead
at different SC densities

(SC annoucement scope: 2 hops, flooding scope: 2 hops)

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RSR

M
es

sa
ge

 O
ve

rh
ea

d

SC Density: 0%

SC Density: 10%

SC Density: 20%

SC Density: 30%

SC Density: 40%

Figure 7: The effect of increasing the SC
density.

D. Considering SC announcement interval and
service request interval
The trade-off between a hybrid and a distributed
query-based architecture is largely dependent on
the number and the pattern of service requests
generated. For our simulations, 20% of the nodes
are actively doing service discoveries every
twenty seconds. The elements, namely SC
announcements and service registrations,
introduced by the hybrid architecture will be
justified by the increased number of service
requests generated. The client density of 20%
and the service request interval of 20s are
relatively high values compared to the real life
scenarios. Still, the simulation results favor the
distributed query-based architecture to the hybrid
architecture. In real life scenarios, fewer nodes
might engage in service discovery activities and
clients may prefer longer communication
sessions with the resolved servers. This will
favor the distributed query-based architecture
even more, simply because for the first, the
elements (i.e. SC announcements and service
registrations) introduced by the hybrid
architecture will consume a fixed amount of
bandwidth, which can hardly be justified by the
infrequent service requests and for the second, a
distributed query-based architecture makes the
service discovery purely on-demand, which
reduces the message overhead caused by service
discoveries to the minimum.

VI. Discussion for the dynamic network
topology

Our evaluation up till now has not considered
node mobility. When mobility is added in our
simulations, the original 300x300m network was
partitioned into two parts as Figure 8 shows.
Nodes that move outside the active network area
are considered to have left the network and will
not participate in any network activity. The
mobility model used for simulations is random
waypoint.

 96

Figure 8: Network partitions under the
conditions of mobility

Adding service coordinators to the dynamic
networks shows the same effect as with the static
networks. Service availability is indeed higher
with the hybrid architecture, but it also exhibits a
higher messaging overhead. The proactive
elements (SC announcements, service
registrations) and the extra route discovery
messages are introduced, just as the situation
with the static case. Due to the space limit,
figures and simulation data are not presented
here, but can be found in [17].
However, there are some negative effects caused
by service coordinators under the conditions of
mobility.
1. Stale server information will be passed out

by the service coordinator, which might
decrease the service availability. The more
dynamic the network is, the big the risk is.

2. Due to nodes mobility, routes between the
client and its affiliated service coordinator
break easily. This forces the client to
broadcast the service requests to the
affiliated service coordinator instead of
unicasting. The benefit of using service
coordinators is thus reduced.

VII. Conclusions and future work

By means of simulations, we have shown that the
increase in service availability by adding service
coordinators is negligible compared to the extra
message overhead it causes. In addition, one can
always find a distributed query-based service
discovery scheme with reasonable service
request flooding scope that outperforms the
hybrid scheme with higher service availability
and less message overhead. Accordingly, the
distributed query-based service discovery
architecture is preferable to the hybrid
architecture on reactively routed MANETs. The
conclusion applies to both the static and the
dynamic network topology.
It is also interesting to note that by taking into
account the additional routing protocol overhead

induced by the service discovery architecture, we
reach different conclusions than those of
previous work [5] where these important effects
have not been taken into consideration.
Even on a proactively routed MANET, a
distributed query-based architecture might still
be preferable, although the routing effects are
lower. Firstly, it is considerably less complex.
Secondly, the hybrid approach may call for a
separate complex mechanism for electing service
coordinators, which might require a substantial
amount of network resources.
An opportunity that has not been explored in this
paper is to allow caching of service binding
information on intermediate nodes that forward
service replies and on the requestor nodes
themselves. This seems to be a promising
compromise between the distributed query-based
and the hybrid architectures for on-demand
MANETs, and the issue deserves further
investigation. Another issue that worth further
research is the design of a lightweight, dynamic
mechanism for election of service coordinators
so as to fully exploit their benefits, which might
result in an improved performance of a hybrid
architecture.

[1] Jini Network Technology, Sun

Microsystems, http://www.jini.org.
[2] Guttman, E., Perkins, C., Veizades, J., Day,

M., "Service Location Protocol, version 2",
RFC 2608, Internet Engineering Task Force
(IETF), June 1999.

[3] Salutation Consortium, "Salutation
Architecture Specification Version 2.1",
1999.

[4] Universal Plug-and-Play (UPnP) Forum,
Microsoft Corporation,
http://www.upnp.org.

[5] Güichal, G.E., "Service Location
Architectures for Mobile Ad-hoc Networks",
Master Thesis, Georgia Institute of
Technology, July 2001.

[6] Engelstad et al. “Service Discovery and
Name resolution Architectures in On-
Demand MANETs”, Proceedings of 2003
Workshop on Mobile Wireless Networks
(MWN), Providence, Rhode Island, May 19
– 22, 2003.

[7] Koodli, R., and Perkins, C.E., "Service
Discovery in On Demand Ad Hoc
Networks", IETF Internet draft, draft-koodli-
manet-servicediscovery-00.txt, October 2002
(Work in Progress).

[8] Toh, C.-K., "Ad Hoc Mobile Wireless
Networks. Protocols and Systems", Prentice
Hall PTR, New Jersey, 2002, pp. 231-242.

[9] D. Chakraborty et al., “GSD: A Novel
Group-based Service Discovery Protocol for
MANETs”. Computer Science And
Electrical Engineering. University of
Maryland, Baltimore County.

[10] Engelstad, P.E., Egeland, G., Koodli, R.,
Perkins, C. "Name Resolution in On
Demand MANETs and over External IP
Networks", IETF Internet draft, draft-

 97

engelstad-manet-name-resolution-01.txt,
February 2004 (Work in Progress).

[11] Engelstad P.E., Thanh, D.V., Jønvik, T.E.,
"Name Resolution in Mobile Ad-hoc
Networks". Proceedings of IEEE 2003
International Conference on
Telecommunication, ICT'2003, Tahiti,
February 23 – 28, 2003.

[12] Perkins, C.E., Royer, E.M., Das, S.R., "Ad-
hoc On Demand Distance Vector (AODV)
Routing", IETF Internet draft, draft-ietf-
manet-aodv-13.txt, February 2003 (Work in
Progress).

[13] Johnson, D.B., Maltz, D.A., Hu, Y.C.., "The
Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (DSR)", IETF
Internet draft, draft-ietf-manet-dsr-09.txt,
April 2003 (Work in Progress).

[14] Park, V.D., and Corson, S.M., "Temporally-
Ordered Routing Algorithm (TORA) version
1: Functional Specification", IETF Internet
Draft, November 2000 (Work in progress).

[15] Gulbrandsen, A., Vixie, P., Esibov, L., "A
DNS RR for specifying the location of
services (DNS SRV)", RFC 2782, Internet
Engineering Task Force (IETF), February
2000.

[16] Gerla, M., Zeng, X. Bagrodia, R.,
“GloMoSim: A library for parallel
simulation of large-scale wireless networks”,
Proc. 12th Workshop on Parallel and
Distributed Simulations, 1998.

[17] Zheng, Y, “Service discovery in Mobile Ad
hoc Networks”, Master thesis, University of
Oslo, July 2004.

 98

 99

Appendix B
Sample configuration file for simulations

SIMULATION-TIME 500S
TERRAIN-DIMENTIONS (300,300)
NUMBER-OF-NODES 50
NODE-PLACEMENT RANDOM
MOBILITY NONE
MOBILITY RANDOM-WAYPOINT
MOBILITY-WP-PAUSE 10S
MOBILITY-WP-MIN-SPEED 0
MOBILITY-WP-MAX-SPEED 3
MOBILITY-POSITION-GRANULARITY 0.3333
PROPAGATION-LIMIT –111.0
PROPAGATION-PATHLOSS TWO-RAY
NOISE-FIGURE 10.0
TEMPERATURE 290.0
RADIO-TYPE RADIO-ACCNOISE
RADIO-FREQUENCY 2.4E9
RADIO-BANDWIDTH 2000000
RADIO-RX-TYPE SNR-BOUNDED
READIO-RX-SNR-THRESHOLD 9.1
RADIO-TX-POWER –6.974
RADIO-ANNTENNA-GAIN 0.0
RADIO-RX-SENSITIVITY –91.0
RADIO-RX-THRESHOLD –81.0
MAC-PROTOCOL 802.11
NETWORK-PROTOCOL IP
NETWORK-QUEUE-SIZE 100
ROUTING-PROTOCOL AODV

PRINT_CLIENT 20 20S 128 /* client, client density, service request interval, packet size*/
SERVICE_COORDINATOR 20 0 /* SC, SC density, SC announcement scope */
PRINT_SERVER 20 /* server, server density */

 100

 101

Appendix C
Partial implementation codes for service
discovery on reactively routed MANETs

A.1 Initiate RREQs with or without extensions
void RoutingAodvInitiateRREQ(GlomoNode *node,

 NODE_ADDR destAddr,
 NODE_ADDR nextHop,
 GlomoAppServiceDesc *serviceDesc)

{
 GlomoNetworkIp *ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
 GlomoRoutingAodv *aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
 Message *newMsg;
 AODV_RREQ_Packet *rreqPkt;
 char *pktPtr;
 int pktSize = sizeof(AODV_RREQ_Packet);
 int ttl;
 char clockStr[GLOMO_MAX_STRING_LENGTH];
 BOOL isSCAnn = destAddr == SC_ANN_ADDRESS;
 NewMsg = GLOMO_MsgAlloc(node,GLOMO_MAC_LAYER, 0, MSG_MAC_FromNetwork);
 GLOMO_MsgPacketAlloc(node, newMsg, pktSize);
 pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
 rreqPkt = (AODV_RREQ_Packet *) pktPtr;
 RoutingAodvIncreaseSeq(node);
 rreqPkt->pktType = AODV_RREQ;

 if (nextHop == ANY_DEST)
 {
 rreqPkt->bcastId = RoutingAodvGetBcastId(node);
 }
 else
 {
 rreqPkt->bcastId = -1;
 }
 rreqPkt->destAddr = destAddr;
 rreqPkt->destSeq = RoutingAodvGetSeq(destAddr, &aodv->routeTable);
 if (rreqPkt->destSeq == -1)
 {
 rreqPkt->unknownSeqNo=TRUE;
 }
 else
 {
 rreqPkt->unknownSeqNo=FALSE;
 }
 rreqPkt->srcAddr = node->nodeAddr;
 rreqPkt->srcSeq = RoutingAodvGetMySeq(node);
 rreqPkt->lastAddr = node->nodeAddr;
 rreqPkt->hopCount = 0;

 102

 if (serviceDesc == NULL)
 {
 if (!isSCAnn)
 {
 rreqPkt->numExtensions = 0;
 }
 else
 {
 rreqPkt->numExtensions = 1;
 rreqPkt->reqExt[0].extType = SERVICE_COORDINATOR_ANN;
 }
 }
 else
 {
 rreqPkt->numExtensions = 1;
 rreqPkt->reqExt[0].extType = SERVICE_REQUEST;
 memset(&rreqPkt->reqExt[0].ServDesc, 0, sizeof(GlomoAppServiceDesc));
 memcpy(&rreqPkt->reqExt[0].ServDesc, serviceDesc, sizeof(GlomoAppServiceDesc));
 }

 if (destAddr == SERVICE_RESOLUTION_ADDRESS)
 {
 ttl = FLOOD_SREQ_SCOPE;
 }
 else if (destAddr == SC_ANN_ADDRESS)
 {
 ttl = GLOMO_GetSCAnnDiameter(&node->affiliatedServiceCoordinator);
 }
 else if (nextHop == ANY_DEST)
 {
 if (RoutingAodvCheckSent(destAddr, &aodv->sent))
 {
 ttl = RoutingAodvGetTtl(destAddr, &aodv->sent);
 RoutingAodvIncreaseTtl(destAddr, &aodv->sent);
 }
 else
 {
 if (RoutingAodvCheckRouteEntryExist(destAddr,&aodv->routeTable))
 {
 ttl = RoutingAodvGetHopCount(destAddr, &aodv->routeTable);
 ttl += TTL_INCREMENT;
 }
 else
 {
 ttl = TTL_START;
 }
 RoutingAodvInsertSent(destAddr, ttl, &aodv->sent);
 RoutingAodvIncreaseTtl(destAddr, &aodv->sent);
 }
 }
 else
 {
 assert(serviceDesc != NULL && destAddr != SERVICE_RESOLUTION_ADDRESS
 && nextHop!=ANY_DEST);
 ttl = 1;
 }

 if (nextHop == ANY_DEST)
 {
 if (ttl > 0)

 103

 {
 NetworkIpSendRawGlomoMessage(node, newMsg, ANY_DEST,
 CONTROL, IPPROTO_AODV, ttl);
 }
 else
 {
 return;
 }
 RoutingAodvInsertSeenTable(node, node->nodeAddr,
 rreqPkt->bcastId, &aodv->seenTable);
 if (destAddr == SERVICE_RESOLUTION_ADDRESS)
 {
 RoutingAodvSetTimerForService(node, MSG_NETWORK_CheckServiceReplied,
 serviceDesc,
 (clocktype)RoutingAodvGetRingTraversalTime(ttl));
 aodv->stats.broadcastedServiceRequest++;
 }
 else if (destAddr == SC_ANN_ADDRESS)
 {
 aodv->stats.numSCAnnouncementSent++;
 }
 else
 {
 if (ttl==NET_DIAMETER)
 {
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckReplied, destAddr,
 (clocktype)NET_TRAVERSAL_TIME);
 RoutingAodvIncreaseTimes(destAddr,&aodv->sent);
 }
 else
 {
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckReplied, destAddr,
 (clocktype)RoutingAodvGetRingTraversalTime(ttl));
 }
 if (serviceDesc != NULL)
 {
 RoutingAodvInsertServer(node, destAddr, serviceDesc,&aodv->serverRoute);
 aodv->stats.broadcastedSC++;
 }
 else
 {
 aodv->stats.numRequestSent++;
 }
 }
 }
 else
 {
 NetworkIpSendRawGlomoMessageToMacLayer(node, newMsg, nextHop, CONTROL,
 IPPROTO_AODV, ttl,
 DEFAULT_INTERFACE, nextHop);
 aodv->stats.unicastedSC++;
 RoutingAodvSetTimerForService(node, MSG_NETWORK_CheckSCReplied, serviceDesc,
 (clocktype)RoutingAodvGetRingTraversalTime
 (RoutingAodvGetHopCount
 (destAddr, &aodv->routeTable)));
 }
}

 104

A.2 Initiate RREPs with or without extensions
void RoutingAodvInitiateRREP(GlomoNode *node, Message *msg,
 Service_BT_Node *binding, BOOL isSreq)
{
 GlomoNetworkIp *ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
 GlomoRoutingAodv *aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
 Message *newMsg;
 AODV_RREQ_Packet *rreqPkt;
 AODV_RREP_Packet *rrepPkt;
 char *pktPtr;
 int pktSize = sizeof(AODV_RREP_Packet);
 rreqPkt = (AODV_RREQ_Packet *) GLOMO_MsgReturnPacket(msg);
 newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0, MSG_MAC_FromNetwork);
 GLOMO_MsgPacketAlloc(node, newMsg, pktSize);
 pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
 rrepPkt = (AODV_RREP_Packet *) pktPtr;

 if ((rreqPkt->unknownSeqNo == FALSE)
 &&(rreqPkt>destSeq->RoutingAodvGetMySeq(node)))
 {
 aodv->seqNumber = rreqPkt->destSeq;
 }
 rrepPkt->pktType = AODV_RREP;
 rrepPkt->srcAddr = rreqPkt->srcAddr;
 rrepPkt->destAddr = node->nodeAddr;
 rrepPkt->destSeq = RoutingAodvGetMySeq(node);
 rrepPkt->hopCount = 0;
 rrepPkt->lifetime = (clocktype)MY_ROUTE_TO;

 if (binding == NULL)
 {
 rrepPkt->numExtensions = 0;
 }
 else
 {
 int i = 0;
 assert(binding != NULL);
 rrepPkt->numExtensions = 1;
 memset(rrepPkt->repExt, 0, sizeof(RREP_EXT));
 if (isSreq)
 {
 rrepPkt->repExt[0].extType = SERVICE_REPLY;
 }
 else
 {
 rrepPkt->repExt[0].extType = SERVICE_ADV;
 }
 while (binding != NULL && i < 5)
 {
 memcpy(&rrepPkt->repExt[0].ServBinding[i], &binding->binding,
 sizeof(GlomoAppServiceBinding));
 binding = binding->next;
 i++;
 }
 rrepPkt->repExt[0].numChoise = i;
 }

 NetworkIpSendRawGlomoMessageToMacLayer(node, newMsg, rreqPkt->lastAddr,
 CONTROL, IPPROTO_AODV, 1,

 105

 DEFAULT_INTERFACE,
 rreqPkt->lastAddr);
 if (rrepPkt->numExtensions == 0)
 {
 aodv->stats.numReplySent++;
 }
 else if (isSreq)
 {
 aodv->stats.numServiceReplySent++;
 }
 else
 {
 aodv->stats.numServiceRegistrationUnicasted ++;
 }
 GLOMO_MsgFree(node, msg);
}

A.3 Handle RREQs with or without extensions
void RoutingAodvHandleRequest(GlomoNode *node, Message *msg, int ttl)
{
 GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
 GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
 AODV_RREQ_Packet *rreqPkt = (AODV_RREQ_Packet *)
 GLOMO_MsgReturnPacket(msg);
 Message *newMsg;
 char serviceName[100];
 Service_BT_Node *binding1 = NULL;
 Service_BT_Node *binding2 = NULL;
 BOOL isSreq = rreqPkt->destAddr == SERVICE_RESOLUTION_ADDRESS ;
 BOOL isSCAnn = rreqPkt->destAddr == SC_ANN_ADDRESS;
 BOOL withExt = rreqPkt->numExtensions != 0;
 BOOL serviceFound = FALSE;

 RoutingAodvReplaceInsertRouteTable(node, rreqPkt->lastAddr, -1, FALSE, TRUE, 1,
 rreqPkt->lastAddr,
 simclock()+(clocktype)ACTIVE_ROUTE_TO);

 if(RoutingAodvLookupSeenTable(rreqPkt->srcAddr,rreqPkt->bcastId,&aodv->seenTable))
 {
 GLOMO_MsgFree(node,msg);
 return;
 }
 rreqPkt->hopCount++;
 if (rreqPkt->bcastId != -1)
 {
 RoutingAodvInsertSeenTable(node, rreqPkt->srcAddr, rreqPkt->bcastId,
 &aodv->seenTable);
 }

 if (!RoutingAodvCheckNbrExist(rreqPkt->lastAddr, &aodv->nbrTable))
 {
 RoutingAodvInsertNbrTable(rreqPkt->lastAddr, &aodv->nbrTable);
 RoutingAodvIncreaseSeq(node);
 }
 if (!RoutingAodvCheckRouteExist(rreqPkt->srcAddr,&aodv->routeTable))
 {
 clocktype lifetime = RoutingAodvGetMinimalLifetime(rreqPkt->hopCount);
 RoutingAodvReplaceInsertRouteTable(node, rreqPkt->srcAddr,rreqPkt->srcSeq, TRUE,
 TRUE, rreqPkt->hopCount,

 106

 rreqPkt->lastAddr,lifetime);

 }
 else
 {
 clocktype lifetime = max(RoutingAodvGetLifetime(rreqPkt->srcAddr,&aodv->routeTable),
 RoutingAodvGetMinimalLifetime
 (rreqPkt->hopCount));
 int seq = RoutingAodvGetSeq(rreqPkt->srcAddr,&aodv->routeTable);
 RoutingAodvReplaceInsertRouteTable(node, rreqPkt->srcAddr, max(seq,rreqPkt->srcSeq),
 TRUE, TRUE, rreqPkt->hopCount,
 rreqPkt->lastAddr, lifetime);
 }

 if (isSreq || isSCAnn || ((node->nodeAddr == rreqPkt->destAddr)
 && node->isServiceCoordinator && withExt))
 {
 int i;
 for (i = 0; i<rreqPkt->numExtensions; i++)
 {
 if (rreqPkt->reqExt[i].extType == SERVICE_REQUEST)
 {
 memcpy(serviceName, rreqPkt->reqExt[i].ServDesc.nameStr,
 rreqPkt->reqExt[i].ServDesc.nameLen+1);
 if (GLOMO_CheckBindingExist(&node->myService, serviceName))
 {
 binding1 = GLOMO_GetBinding(&node->myService, serviceName);
 }
 if (GLOMO_CheckBindingExist(&node->cachedService, serviceName))
 {
 binding2 = GLOMO_GetBinding(&node->cachedService, serviceName);
 }
 if (binding1 != NULL)
 {
 binding1->next = binding2;
 }
 else
 {
 binding1 = binding2;
 }
 if (binding1 != NULL)
 {
 serviceFound = TRUE;
 }
 break;
 }
 else if (rreqPkt->reqExt[i].extType == SERVICE_COORDINATOR_ANN)
 {
 RoutingAodvHandleSCAnn(node, msg, ttl);
 break;
 }
 }

 if (serviceFound)
 {
 if(node->nodeAddr == rreqPkt->destAddr && node->isServiceCoordinator)
 {
 Service_BT_Node *cu = binding1;
 while (cu!= NULL)

 107

 {
 aodv->stats.totalSCreplied ++;
 if (!RoutingAodvCheckServerWithinRange(node, cu->binding.serverAddr))
 {
 aodv->stats.falsePositive++;
 }
 cu = cu->next;
 }
 }
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 RoutingAodvInitiateRREP(node, msg, binding1, TRUE);
 }
 else if (isSCAnn)
 {
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 if (node->myService.size!=0)
 {
 RoutingAodvSetTimer(node, MSG_NETWORK_SendSregTimeout, rreqPkt->srcAddr,
 (clocktype)(1 * MICRO_SECOND));
 }
 if ((!node->isServiceCoordinator && ttl > 0)
 || (node->isServiceCoordinator
 && ttl > GLOMO_GetSCAnnDiameter(&node->affiliatedServiceCoordinator)))
 {
 RoutingAodvRelayRREQ(node, msg, ttl);
 }
 }
 else if (!isSreq)
 {
 assert(node->nodeAddr == rreqPkt->destAddr && node->isServiceCoordinator);
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 binding1 = (Service_BT_Node *)checked_pc_malloc(sizeof(Service_BT_Node));
 memcpy(binding1->binding.serviceName, serviceName, strlen(serviceName) + 1);
 binding1->binding.serverAddr = INVALID_ADDRESS;
 binding1->next = NULL;
 RoutingAodvInitiateRREP(node, msg, binding1, TRUE);
 }
 else if (ttl > 0)
 {
 RoutingAodvRelayRREQ(node, msg, ttl);
 }
 else
 {
 GLOMO_MsgFree(node, msg);
 }
 }
 else if (node->nodeAddr == rreqPkt->destAddr)
 {
 assert(!withExt);
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 RoutingAodvInitiateRREP(node, msg, NULL, FALSE);
 }

 108

 else if (rreqPkt->bcastId == -1)
 {
 NODE_ADDR nextHop = RoutingAodvGetNextHop(rreqPkt->destAddr,
 &aodv->routeTable);
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 if (nextHop != ANY_DEST)
 {
 rreqPkt->lastAddr = node->nodeAddr;
 NetworkIpSendRawGlomoMessageToMacLayer(node, msg, nextHop,
 CONTROL, IPPROTO_AODV, 1,
 DEFAULT_INTERFACE, nextHop);
 aodv->stats.unicastedSC++;
 }
 else
 {
 GLOMO_MsgFree(node,msg);
 }
 }
 else if ((RoutingAodvCheckRouteExist(rreqPkt->destAddr,&aodv->routeTable))
 &&(RoutingAodvIfSeqValid(rreqPkt->destAddr,&aodv->routeTable))
 &&(RoutingAodvGetSeq(rreqPkt->destAddr,&aodv->routeTable)
 >=rreqPkt->destSeq))
 {
 if (withExt)
 {
 NODE_ADDR nextHop = RoutingAodvGetNextHop(rreqPkt->destAddr,
 &aodv->routeTable);
 if (nextHop != ANY_DEST)
 {
 rreqPkt->lastAddr = node->nodeAddr;
 NetworkIpSendRawGlomoMessageToMacLayer(node, msg, nextHop,
 CONTROL, IPPROTO_AODV, ttl,
 DEFAULT_INTERFACE, nextHop);
 aodv->stats.unicastedSC++;
 }
 else
 {
 RoutingAodvRelayRREQ(node, msg, ttl);
 }
 }
 else
 {
 RoutingAodvActivateRoute(rreqPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rreqPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 RoutingAodvInitiateRREPbyIN(node, msg);
 RoutingAodvInitiateGratuitousRREP(node, msg);
 }
 }
 else
 {
 if(ttl==0)
 {
 GLOMO_MsgFree(node,msg);
 }
 else
 {
 RoutingAodvRelayRREQ(node,msg,ttl);

 109

 }
 }

 while(RoutingAodvLookupBuffer(rreqPkt->lastAddr, &aodv->buffer))
 {
 newMsg = RoutingAodvGetBufferedPacket(aodv, FALSE, rreqPkt->lastAddr,
 &aodv->buffer);
 RoutingAodvTransmitData(node, newMsg, rreqPkt->lastAddr);
 aodv->stats.numDataSent++;
 RoutingAodvDeleteBuffer(rreqPkt->lastAddr, &aodv->buffer);
 }
 while(RoutingAodvLookupBuffer(rreqPkt->srcAddr, &aodv->buffer))
 {
 newMsg = RoutingAodvGetBufferedPacket(aodv, FALSE, rreqPkt->srcAddr,
 &aodv->buffer);
 RoutingAodvTransmitData(node, newMsg, rreqPkt->srcAddr);
 aodv->stats.numDataSent++;
 RoutingAodvDeleteBuffer(rreqPkt->srcAddr, &aodv->buffer);
 }
}

A.4 Handle RREPs with or without extensions
void RoutingAodvHandleRep(GlomoNode *node, Message *msg,
 NODE_ADDR srcAddr, NODE_ADDR destAddr)
{
 GlomoNetworkIp *ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
 GlomoRoutingAodv *aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
 AODV_RREP_Packet*rrepPkt = (AODV_RREP_Packet *)GLOMO_MsgReturnPacket(msg);
 BOOL causedNewRoute = FALSE;
 clocktype lifetime;
 Message *newMsg;
 Message *serviceRequest;
 Message *serviceReply;
 char serviceName[100];
 BOOL isSrep, isSreg;
 IpHeaderType *sreqIpHeader;
 IpHeaderType *srepIpHeader;
 TransportUdpHeader *sreqUdpHdr;
 TransportUdpHeader *srepUdpHdr;
 GlomoAppServiceBinding *binding;
 GlomoAppServiceBinding *servreq;
 isSrep = (rrepPkt->numExtensions != 0)
 && (rrepPkt->repExt[0].extType == SERVICE_REPLY) ;
 isSreg = (rrepPkt->numExtensions != 0)
 && (rrepPkt->repExt[0].extType == SERVICE_ADV);
 memmove(&lifetime, &rrepPkt->lifetime, sizeof(clocktype));
 RoutingAodvReplaceInsertRouteTable(node, srcAddr, -1, FALSE, TRUE, 1,
 srcAddr, simclock() + lifetime);
 if (srcAddr == rrepPkt->destAddr && RoutingAodvIfSeqValid(srcAddr,&aodv->routeTable))
 {
 causedNewRoute = TRUE;
 }
 rrepPkt->hopCount++;
 if (!RoutingAodvCheckRouteEntryExist(rrepPkt->destAddr, &aodv->routeTable))
 {//Forward route does not exist. so creating new entry
 if (rrepPkt->destAddr != node->nodeAddr)
 {
 RoutingAodvReplaceInsertRouteTable(node, rrepPkt->destAddr,
 rrepPkt->destSeq, TRUE, TRUE,

 110

 rrepPkt->hopCount, srcAddr,
 simclock()+lifetime);
 causedNewRoute = TRUE;
 }
 else {return;}
 }
 else
 {
 BOOL seqInvalid = FALSE, seqGreater=FALSE,
 routeInactive=FALSE, smallerHopCount=FALSE;
 seqInvalid = !RoutingAodvIfSeqValid(rrepPkt->destAddr,&aodv->routeTable);

 if (!seqInvalid)
 {
 int seq = RoutingAodvGetSeq(rrepPkt->destAddr, &aodv->routeTable);
 if (seq < rrepPkt->destSeq)
 {
 seqGreater = TRUE;
 }
 if ((seq == rrepPkt->destSeq)
 && (RoutingAodvIfRouteInactive(rrepPkt->destAddr,&aodv->routeTable)))
 {
 routeInactive = TRUE;
 }
 if ((seq == rrepPkt->destSeq)
 &&(rrepPkt->hopCount
 <RoutingAodvGetHopCount(rrepPkt->destAddr,&aodv->routeTable)))
 {
 smallerHopCount = TRUE;
 }
 }

 if (seqInvalid || seqGreater || routeInactive || smallerHopCount)
 {
 RoutingAodvReplaceInsertRouteTable(node, rrepPkt->destAddr, rrepPkt->destSeq,
 TRUE, TRUE, rrepPkt->hopCount,
 srcAddr, simclock()+lifetime);
 causedNewRoute = TRUE;
 }
 }

 if (rrepPkt->srcAddr == node->nodeAddr)
 {
 if (isSrep)
 {
 aodv->stats.numSREPreceived++;
 }
 else if (isSreg)
 {
 aodv->stats.numSREGreceived++;
 }
 else
 {
 aodv->stats.numRREPreceived++;
 }

 if (causedNewRoute)
 {
 while (RoutingAodvCheckServer(rrepPkt->destAddr, aodv->serverRoute.head))

 111

 {
 GlomoAppServiceDesc *desc = RoutingAodvGetServerRouteNode
 (rrepPkt->destAddr, aodv->serverRoute.head)
 ->serviceDesc;
 RoutingAodvDeleteServer(rrepPkt->destAddr, desc->nameStr,&aodv->serverRoute);
 }
 RoutingAodvDeleteSent(rrepPkt->destAddr, &aodv->sent);
 while (RoutingAodvLookupBuffer(rrepPkt->destAddr, &aodv->buffer))
 {
 newMsg = RoutingAodvGetBufferedPacket(aodv, FALSE,
 rrepPkt->destAddr, &aodv->buffer);
 RoutingAodvTransmitData(node, newMsg, rrepPkt->destAddr);
 aodv->stats.numDataSent++;
 RoutingAodvDeleteBuffer(rrepPkt->destAddr, &aodv->buffer);
 }
 while (RoutingAodvLookupBuffer(srcAddr, &aodv->buffer))
 {
 newMsg = RoutingAodvGetBufferedPacket(aodv, FALSE, srcAddr, &aodv->buffer);
 RoutingAodvTransmitData(node, newMsg, srcAddr);
 aodv->stats.numDataSent++;
 RoutingAodvDeleteBuffer(srcAddr, &aodv->buffer);
 }
 }//if (causedNewRotue)

 if (isSrep || isSreg)
 {
 int i;
 for (i = 0; i<rrepPkt->numExtensions; i++)
 {
 if (rrepPkt->repExt[i].extType == SERVICE_REPLY)
 {
 memset(serviceName, 0, sizeof(serviceName));
 memcpy(serviceName, rrepPkt->repExt[i].ServBinding[0].serviceName,
 strlen(rrepPkt->repExt[i].ServBinding[0].serviceName)+1);
 if ((serviceRequest = RoutingAodvGetServiceRequest
 (serviceName, &aodv->serviceTable)) != NULL)
 {
 if ((rrepPkt->repExt[i].ServBinding[0].serverAddr != INVALID_ADDRESS))
 {
 Service_BT_Node *previous = NULL;
 Service_BT_Node *current = NULL;
 Service_BT_Node *head =NULL;
 int j;
 GlomoAppServiceBinding *bestBinding;

 for (j = 0; j < rrepPkt->repExt[i].numChoise; j++)
 {
 current = (Service_BT_Node *)checked_pc_malloc(sizeof(Service_BT_Node));
 current->binding = rrepPkt->repExt[i].ServBinding[j];
 if (previous == NULL)
 {
 head = current;
 }else
 {
 previous->next = current;
 }
 previous = current;
 }
 if (current != NULL)
 {

 112

 current->next = NULL;
 }

 if (RoutingAodvExistSrep(serviceName, &aodv->srepRecv))
 {
 Service_BT_Node *theNode = (Service_BT_Node *)
 checked_pc_malloc(sizeof(Service_BT_Node));
 theNode->binding = * (RoutingAodvGetServiceBindingFromSrep
 (serviceName, &aodv->srepRecv));
 theNode->next = head;
 head = theNode;
 bestBinding = RoutingAodvChooseBestBinding(node, head);
 RoutingAodvReplaceInsertSrepRecv(serviceName, bestBinding->serverAddr,
 *bestBinding, &aodv->srepRecv);
 }
 else
 {
 bestBinding = RoutingAodvChooseBestBinding(node, head);
 RoutingAodvReplaceInsertSrepRecv(serviceName, bestBinding->serverAddr,
 *bestBinding, &aodv->srepRecv);
 RoutingAodvSetTimerForSreq(node, MSG_NETWORK_SendSrepTimeout,
 bestBinding,
 (clocktype)SREP_SETTLE_TIME);
 }

 while (head!=NULL)
 {
 Service_BT_Node *toFree = head;
 head = head->next;
 pc_free(toFree);
 }
 }
 else
 {
 IpHeaderType *ipHeader = (IpHeaderType *)serviceRequest->packet;
 GlomoAppServiceDesc *servDesc = (GlomoAppServiceDesc *)
 (serviceRequest->packet
 + IpHeaderSize(ipHeader)
 + sizeof(TransportUdpHeader));
 }
 }
 break;
 }
 else if (rrepPkt->repExt[i].extType == SERVICE_ADV)
 {
 RoutingAodvHandleServiceReg(node, msg);
 break;
 }
 }
 }
 else
 {
 node->allowToMove = TRUE;
 }
 GLOMO_MsgFree(node, msg);
 }
 else
 {
 if (causedNewRoute)
 {

 113

 RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rrepPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 RoutingAodvRelayRREP(node, msg, srcAddr);
 }
 else if (isSrep || isSreg)
 {
 RoutingAodvActivateRoute(rrepPkt->srcAddr, &aodv->routeTable);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckRouteTimeout,
 rrepPkt->srcAddr, (clocktype)ACTIVE_ROUTE_TO);
 RoutingAodvRelayRREP(node, msg, srcAddr);
 }
 else
 {
 GLOMO_MsgFree(node, msg);
 }
 }
}

A.5 Hanlde SC annoucements
void RoutingAodvHandleSCAnn(GlomoNode *node, Message *msg, int ttl)
{
 GlomoNetworkIp *ipLaye;
 GlomoRoutingAodv *aodv;
 AODV_RREQ_Packet *rreqPkt;
 NODE_ADDR SC;
 clocktype bindingTime;

 ipLayer = (GlomoNetworkIp *)node->networkData.networkVar;
 aodv = (GlomoRoutingAodv *)ipLayer->routingProtocol;
 rreqPkt = (AODV_RREQ_Packet *)GLOMO_MsgReturnPacket(msg);
 SC = GLOMO_GetServiceCoordinator(&node->affiliatedServiceCoordinator);
 bindingTime = GLOMO_GetSCBindingTime(&node->affiliatedServiceCoordinator);

 if (SC == INVALID_ADDRESS)
 {
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 rreqPkt->srcAddr, rreqPkt->hopCount,
 simclock() + ACTIVE_SC_TO);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }
 else if (SC == node->nodeAddr)
 {
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr, rreqPkt->hopCount,
 simclock() + ACTIVE_SC_TO);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);

 }
 else if (SC == rreqPkt->srcAddr)
 {
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 rreqPkt->srcAddr, rreqPkt->hopCount,
 simclock() + ACTIVE_SC_TO);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }

 114

 else
 {
 if (!RoutingAodvCheckRouteExist(SC, &aodv->routeTable))
 {
 if (RoutingAodvCheckRouteExist(rreqPkt->srcAddr,&aodv->routeTable))
 {
 GLOMO_DeleteServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr,FALSE);
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 SC, GLOMO_GetSCAnnDiameter
 (&node->affiliatedServiceCoordinator),
 bindingTime);
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 rreqPkt->srcAddr,rreqPkt->hopCount,
 simclock() + ACTIVE_SC_TO);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr,ACTIVE_SC_TO);
 }
 else
 {
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr,rreqPkt->hopCount,
 ACTIVE_SC_TO + simclock());
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }
 }
 else
 {
 if (RoutingAodvCheckRouteExist(rreqPkt->srcAddr, &aodv->routeTable))
 {
 if (RoutingAodvGetHopCount(rreqPkt->srcAddr, &aodv->routeTable)
 < RoutingAodvGetHopCount(serviceCoordinator, &aodv->routeTable))
 {
 GLOMO_DeleteServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr,FALSE);
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 SC, GLOMO_GetSCAnnDiameter
 (&node->affiliatedServiceCoordinator),
 bindingTime);
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 rreqPkt->srcAddr,rreqPkt->hopCount,
 ACTIVE_SC_TO + simclock());
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }
 else if (RoutingAodvGetHopCount(rreqPkt->srcAddr, &aodv->routeTable)
 == RoutingAodvGetHopCount(SC, &aodv->routeTable)
 && RoutingAodvGetLifetime(serviceCoordinator, &aodv->routeTable)
 < RoutingAodvGetLifetime(rreqPkt->srcAddr, &aodv->routeTable))
 {
 GLOMO_DeleteServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr, FALSE);
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 SC, GLOMO_GetSCAnnDiameter
 (&node->affiliatedServiceCoordinator),
 bindingTime);
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 rreqPkt->srcAddr,rreqPkt->hopCount,
 ACTIVE_SC_TO + simclock());

 115

 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);

 }
 else
 {
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr, rreqPkt->hopCount,
 ACTIVE_SC_TO + simclock());
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }
 }
 else
 {
 GLOMO_ReplaceInsertServiceCoordinator(&node->heardServiceCoordinators,
 rreqPkt->srcAddr, rreqPkt->hopCount,
 ACTIVE_SC_TO + simclock());
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckSCTimeout,
 rreqPkt->srcAddr, ACTIVE_SC_TO);
 }
 }
 }
}

A.6 Handle Service registrations
void RoutingAodvHandleServiceReg(GlomoNode *node, Message *msg)
{
 GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->networkData.networkVar;
 GlomoRoutingAodv* aodv = (GlomoRoutingAodv *) ipLayer->routingProtocol;
 AODV_RREP_Packet* rrepPkt = (AODV_RREP_Packet*)GLOMO_MsgReturnPacket(msg);
 int i;
 GlomoAppServiceBinding *binding;
 NODE_ADDR serverAddr;
 short servicePort;
 clocktype bindingtime;

 assert(node->isServiceCoordinator);
 for(i = 0; i < rrepPkt->repExt[0].numChoise; i++)
 {
 serverAddr = rrepPkt->repExt[0].ServBinding[i].serverAddr;
 servicePort = rrepPkt->repExt[0].ServBinding[i].servicePort;
 bindingtime = min(rrepPkt->repExt[0].ServBinding[i].bindingtime,
 simclock() + ACTIVE_SERVICE_BINDING_TO);
 GLOMO_ReplaceInsertService(&node->cachedService,
 rrepPkt->repExt[0].ServBinding[i].serviceName,
 serverAddr,servicePort, bindingtime);
 RoutingAodvSetTimer(node, MSG_NETWORK_CheckServiceTimeout,
 serverAddr, bindingtime-simclock());
 }
}

A.7 Client, Server, Service Coordinator Selection
void GLOMO_AppInitApplications(GlomoNode *node, const GlomoNodeInput *nodeInput)
{
 GlomoNodeInput appInput;

 116

 char appStr[GLOMO_MAX_STRING_LENGTH];
 BOOL retVal;
 int i;

 retVal=GLOMO_ReadCachedFile(nodeInput,"APP-CONFIG-FILE", &appInput);
 if (retVal == FALSE)
 {
 fprintf(stderr, "Application: Needs APP-CONFIG-FILE.\n");
 assert(FALSE); abort();
 }
 node->appData.uniqueId = 0;
 for (i = 0; i < appInput.numLines; i++)
 {
 sscanf(appInput.inputStrings[i], "%s", appStr);
 if strcmp(appStr, "PRINT_CLIENT") == 0)
 {
 char type[GLOMO_MAX_STRING_LENGTH];
 char intervalStr[GLOMO_MAX_STRING_LENGTH];
 long itemSize;
 clocktype startTime,interval;
 int dd;
 double density;
 double probability;

 memset(type, 0, GLOMO_MAX_STRING_LENGTH);
 retVal = sscanf(appInput.inputStrings[i],
 "%s %d %s %ld",
 appStr, &dd, intervalStr, &itemSize);
 if (retVal != 4)
 {
 fprintf(stderr,
 "Wrong PRINT_CLIENT configuration format!\n"
 "PRINT_CLIENT <density> <interval> <itemSize>");
 assert(0); abort();
 }
 density = (double) dd / 100.0;
 probability = pc_erand(node->seed);
 memset(type, 0, GLOMO_MAX_STRING_LENGTH);
 if (probability < density)
 {
 int t = ((int)(pc_erand(node->seed) * 10))%2;
 switch (t)
 {
 case 0: memcpy(type, "INK_BW", strlen("INK_BW") +1); break;
 case 1:memcpy(type, "INK_COLOR", strlen("INK_COLOR") +1); break;
 }
 startTime = (clocktype)(pc_erand(node->seed) * SECOND);
 interval = GLOMO_ConvertToClock(intervalStr);
 AppPrintClientInit(node, type, startTime, interval, itemSize);
 }
 }
 else if (strcmp(appStr, "PRINT_SERVER") == 0)
 {
 char type[GLOMO_MAX_STRING_LENGTH];
 double probability, density;
 int dd;
 char *serviceName = (char *)checked_pc_malloc(sizeof(char));
 APP_TYPE port;

 retVal = sscanf(appInput.inputStrings[i], "%s %d",appStr, &dd);

 117

 if (retVal != 2)
 {
 fprintf(stderr,
 "Wrong PRINT_SERVER configuration format!\n"
 "PRINT_SERVER <density> ");
 assert(0); abort();
 }
 density = (double) dd / 100.0;
 probability = pc_erand(node->seed);
 if (probability < density)
 {
 int t = ((int)(pc_erand(node->seed) * 10))%2;
 switch (t)
 {
 case 0: memcpy(type, "INK_BW", strlen("INK_BW") +1);
 port = APP_PRINT_SERVER_INK_BW;
 node->partitionData->totalBW++;
 node->bwServer = TRUE;
 break;
 case 1: memcpy(type, "INK_COLOR", strlen("INK_COLOR") +1);
 port = APP_PRINT_SERVER_INK_COLOR;
 node->partitionData->totalCOLOR++;
 node->colorServer = TRUE;
 break;
 }
 AppPrintServerInit(node, type, port);
 strcpy(serviceName, "PRINT_SERVER_UDP_");
 strcat(serviceName, type);
 GLOMO_ReplaceInsertService(&node->myService,serviceName,
 node->nodeAddr,port,
 simclock()+SERVICE_BINDING_TIME);
 }
 }
 else if (strcmp(appStr, "SERVICE_COORDINATOR") == 0)
 {
 double probability, density;
 int dd;
 int annDiameter;

 retVal = sscanf(appInput.inputStrings[i],
 "%s %d %d",
 appStr, &dd, &annDiameter);
 if (retVal != 3)
 {
 fprintf(stderr,
 "Wrong SERVICE_COORDINATOR configuration format!\n"
 "SERVICE_COORDINATOR <density> <annDiameter>");
 assert(0); abort();
 }

 density = (double)dd / 100.0;
 probability = pc_erand(node->seed);
 if (probability < density)
 {
 node->isServiceCoordinator = TRUE;
 GLOMO_UpdateServiceCoordinator(&node->affiliatedServiceCoordinator,
 node->nodeAddr, annDiameter,
 simclock() + SC_BINDING_TIME);
 }
 }

 118

 else
 {
 printf("Application: Unknown application %s\n", appStr);
 assert(0); abort();
 }
 }
}

