
What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

What is the Foreign Function Interface
of the Coq Programming Language ?

July 2018

Sylvain.Boulme@univ-grenoble-alpes.fr

1/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Contents

Introduction to the quest of a sound FFI for Coq

Foreign Functions as Non-Deterministic Functions

Coq “Theorems for Free” about Polymorphic Foreign Functions

Applications to Certify UNSAT Answers from Oracles

Introduction to the quest of a sound FFI for Coq 2/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Several kinds of Foreign Functions in Coq programs

1. Extend Coq with I/O, exceptions & threads.
Already possible with http://coq.io/
⇒ provides support to reason about I/O effects in Coq.
⇒ efficiently extracted to OCaml.

2. Introduce external oracles in complex computations
e.g. “register allocation” of CompCert (see next slides).
No reasoning on their effects, only on returned values !

3. More generally : interoperability with external systems.
What do we need : oracles + axioms on oracles ?
or, something more specific to each external system ?

This talk = kind 2 : “foreign functions” as “untrusted oracles”

Introduction to the quest of a sound FFI for Coq 3/29

http://coq.io/

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Foreign Functions in Coq : an Unsound Example
Standard method to declare a foreign function in Coq
“Use an axiom declaring its type ; replace this axiom at extraction”

Definition one: nat := (S O).

Axiom oracle : nat → bool.

Lemma congr : oracle one = oracle (S O).
auto.

Qed.

With the OCaml implementation “let oracle x = (x == one)”
Unsound ! Because at runtime, (oracle one) returns true
whereas (oracle (S O)) returns false.

Reason OCaml “functions” are not functions in the math sense.
They are rather “non-deterministic functions” (ie “relations”)
NB P(A× B) ' A→ P(B) where “P(B)” is “B → Prop”

Introduction to the quest of a sound FFI for Coq 4/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Oracles in success of CompCert [Leroy et al., 2006-2018]

Success story of software certification in Coq :
the safest C optimizing compiler [Yang et al., 2011]
commercially available since 2015
compile critical software for airplanes & power plants.

Uses “untrusted oracles” invoked from the certified code.
Example of register allocation – a NP-complete problem
• finding a correct and efficient allocation is difficult
• verifying the correctness of an allocation is easy
⇒ Only “allocation checking” is certified in Coq

Benefits of untrusted oracles
simplicity + efficiency + modularity

Introduction to the quest of a sound FFI for Coq 5/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Issues of oracles in CompCert

Oracles are declared as pure functions.
Example of register allocation :
Axiom regalloc : RTL.func → option LTL.func.

Not a real issue because
their purity is not used in the compiler proof !

This talk proposes an approach to ensure such a claim...

Introduction to the quest of a sound FFI for Coq 6/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

The quest proposed in this talk
Define a class “permissive” of Coq types and a class “safe” of
OCaml constants such that

a Coq type T is “permissive” iff
any “safe” constant compatible with the extraction of T
is soundly axiomatized in Coq with type T
(for partial correctness)

with “being permissive” and “being safe” automatically checkable
and as expressive as possible !

This could lead to a Coq “Import Constant” construct
Import Constant ident: permissive_type

:= " safe_ocaml_constant ".

that acts like “Axiom ident : permissive_type”,
but with additional checks during Coq and OCaml typechecking.

Introduction to the quest of a sound FFI for Coq 7/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Contents

Introduction to the quest of a sound FFI for Coq

Foreign Functions as Non-Deterministic Functions

Coq “Theorems for Free” about Polymorphic Foreign Functions

Applications to Certify UNSAT Answers from Oracles

Foreign Functions as Non-Deterministic Functions 8/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

May-Return Monads [Fouilhé, Boulmé’14]
Axiomatize “P(A)” as type “ ??A”

to represent “impure computations of type A”
and “a ∈ k” as proposition “k a”

read “computation k may return value a”
with formal type A: ??A→ A→ Prop

Formal operators and axioms
I retA : A→ ??A (interpretable as identity relation)

(ret a1) a2 → a1 =a2
I �=A,B: ??A→ (A→ ??B)→ ??B

(interpretable as the image of a predicate by a relation)
(k1 �= k2) b → ∃a, k1 a ∧ k2 a b

encodes OCaml “let x = k1 in k2” as “k1 �= (fun x ⇒ k2)”

NB another interpretation is “ ??A := A” used for extraction !

Foreign Functions as Non-Deterministic Functions 9/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Usage of May-Return Monads

Used to declare oracles in the Verified Polyhedra Library
[Fouilhé, Maréchal et. al, 2013-2018]

However, soundness of VPL design is currently only a conjecture !

Example of Conjecture
“nat→ ?? bool” is permissive for any welltyped OCaml constant

NB For oracle : nat→ ?? bool the below property is not provable
∀ b b’, (oracle one) b → (oracle (S O)) b’ → b=b ’.

Foreign Functions as Non-Deterministic Functions 10/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

The issue of cyclic values

Consider the following Coq type
Inductive empty : Type := Absurd : empty → empty .

This type is proved to be empty. (Thm : empty → False).

Then, a function of unit→ ?? empty is proved to never return.

Thus, unit→ ?? empty is not permissive in presence of OCaml
cyclic values like

let rec loop: empty = Absurd loop

My proposal
Add an optional tag on OCaml type definitions to forbid cyclic
values (typically, for inductive types extracted from Coq).

Foreign Functions as Non-Deterministic Functions 11/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Axioms of phys. equality also forbids cyclic values

In presence of the following axioms
Axiom phys_eq : ∀ {A}, A*A → ?? bool.
Axiom phys_eq_true : ∀ A (x y: A),

phys_eq (x,y) true → x=y.

where phys_eq (x , y) is extracted on x==y,
the following OCaml value is unsound...

let rec fuel: nat = S fuel

since at runtime “pred fuel == fuel”,
whereas it is easy to prove the following Coq goal
Goal ∀ (n:nat), pred n = n → n = O.

and to write a Coq function distinguishing fuel from O.

Foreign Functions as Non-Deterministic Functions 12/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Counter-Examples and Conjectures of “being permissive”

Here “safe” OCaml functions correspond to
“well-typed” functions (without “obj.magic” tricks)
and without cyclic-values on extracted types.

Counter-Examples the following types are not permissive
nat → bool (* extracted as nat → bool *)
nat → ??{ n:nat | n ≤ 10} (* nat → nat *)
nat → ??(nat → nat) (* nat → (nat → nat) *)

Conjecture the following types are permissive
nat → ??(nat → ?? nat) (* nat → (nat → nat) *)
{ n:nat | n ≤ 10} → ?? nat (* nat → nat *)
(nat → ?? nat) → ?? nat (* (nat → nat) → nat *)
(nat → nat) → ?? nat (* (nat → nat) → nat *)
∀ A, A*A → ??(list A) (* ’a*’a → (’a list) *)

Foreign Functions as Non-Deterministic Functions 13/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Contents

Introduction to the quest of a sound FFI for Coq

Foreign Functions as Non-Deterministic Functions

Coq “Theorems for Free” about Polymorphic Foreign Functions

Applications to Certify UNSAT Answers from Oracles

Coq “Theorems for Free” about Polymorphic Foreign Functions 14/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

A first “Theorem for Free” in Coq

Conjecturing that “∀ A , A→ ??A” is permissive,
we prove that any safe OCaml “pid:’a -> ’a” satisfies

when (pid x) returns normally some y then y = x.

Proof
Axiom pid: ∀ A, A→ ??A.

(* We define below cpid : ∀ {B}, B → ? B *)
Program Definition cpid {B} (x:B): ?? B :=

(pid { y | y = x } x) >>= (fun z ⇒ ret (proj1_sig z)).

Lemma cpid_correct A (x y:A): (cpid x) y → y=x.

At extraction, we get “let cpid x = pid x”.

Coq “Theorems for Free” about Polymorphic Foreign Functions 15/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Permissiveness of Polymorphism ⇒ Parametric Invariance

Permissiveness of
“∀ A , (A→A→A) → ??(A → ??(list A)) ” implies that
any safe OCaml

foo: (’a -> ’a -> ’a) -> ’a -> (’a list)
preserves any invariant (like 7N) attached to type variable ’a.

Example : “(foo (+) 7)” can only return lists of 7N.

A property of polymorphism sometimes called “unary parametricity”
or “parametricity over unary logical relations”

I prefer “parametric invariance”.

NB “theorems for free” from the type of polymorphic oracles !

Coq “Theorems for Free” about Polymorphic Foreign Functions 16/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Parametric Invariance for ML
I Comes intuitively from the type-erasure semantics : types are

removed from runtime code (hence polymorphic functions
must uniformly treat polymorphic values).

I Even hard to formally define :
What are “invariants” about a higher-order reference
(which can thus refer to itself) ?

I Has been proved for a variant of system F with references by
[Birkedal’11] (from the works of [Ahmed’02] and [Appel’07]).

I Requires some restrictions on polymorphic references
parametric invariance is unsound on function calls
creating some alias on an effective argument !

Example on type “int ref -> ’a ref -> ’a”
let f x y = (x:=0; !y)

Unsound Parametric Reasoning on “f x x” (returning 0).
⇒ forbids to “import” polymorphic references in Coq ? ? ?

Coq “Theorems for Free” about Polymorphic Foreign Functions 17/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Contents

Introduction to the quest of a sound FFI for Coq

Foreign Functions as Non-Deterministic Functions

Coq “Theorems for Free” about Polymorphic Foreign Functions

Applications to Certify UNSAT Answers from Oracles

Applications to Certify UNSAT Answers from Oracles 18/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Certifying UNSAT Answers from Oracles

Examples UNSAT on Boolean CNF or in linear arithmetic ; no
valid register allocation ; etc...

Usually reduced to check some certificate (e.g. a resolution proof)
from the oracle.

Alternatively might be done with Polymorphic LCF style :
Oracles computes directly “correct-by-construction” results

through an API certified from Coq
where type abstraction comes from polymorphism

Applications to Certify UNSAT Answers from Oracles 19/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Examples

• Since 2017, VPL fully rewritten in Polymorphic LCF style.
Benefits :
I Code size on the interface Coq/OCaml divided by 2 :

shallow versus deep embedding (of certificates).
I Interleaved execution of untrusted and certified computations :

Oracles debugging much easier.
See [Maréchal, Phd’17] or [Boulmé, Maréchal, preprint’17].

• In this talk : a tiny UNSAT prover on Boolean CNF
On the top of state-of-the-art CDCL SAT solvers + drat-trim
Based on verification of “Backward Resolution Chains”

(introduced as “Restricted RUP” by [Cruz-Filipe et al, 2016])
(work in progress with Thomas Vandendorpe)

Applications to Certify UNSAT Answers from Oracles 20/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Specification of the Refutation Prover

(Boolean) variable x (encoded as a positive).

Literal ` , x or ¬x .

Clause C , a finite disjunction of literals
(encoded as a finite set of literals).

CNF F , a finite conjunction of clauses
(encoded as a list of clauses).

unsat : list clause → ?? bool.
Lemma unsat_correct : ∀ F, (unsat F) true → ∀ m, ¬JFK m.

Applications to Certify UNSAT Answers from Oracles 21/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Background on Backward Resolution
Thm (Resolution proof system) F is UNSATISFIABLE

iff clause ∅ is derivable from

Axiom
C

C ∈ F Resol
{`} ∪ C ′1 {¬`} ∪ C ′2

C ′1 ∪ C ′2

Rule Resol equivalently split in two rules for backward checking

BckRsl
{`} ∪ C ′1 {¬`} ∪ C

C
C ′1 ⊆ C Trivial

C ′2
C

C ′2 ⊆ C

equivalently rewritten in

BckRsl
C1 {¬`} ∪ C

C
C1\C = {`} Trivial

C1

C
C1\C = ∅

Applications to Certify UNSAT Answers from Oracles 22/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Resolution Chains & Conflict-Driven Clause Learning DPLL
A Backward Resolution Chain (BRC) w.r.t a list of axioms F

= specialization of BckRsl and Trivial when C1 ∈ F

Unit
C1 {¬`} ∪ C

C
{

C1 ∈ F
C1\C = {`} Conflict

C1

C
{

C1 ∈ F
C1\C = ∅

Other interpretation : two DPLL steps (read backward) where
C is assumed FALSE (while F is assumed TRUE).

On Conflict, DPLL backtracks : it learns some clause C from F

=

it proves “F ⇒ C” from

Unit
C1

Unit
Cn−1

Conflict
Cn

. . .

. . .

C
and then adds C in F

CDCL “minimizes” C before learning !

Applications to Certify UNSAT Answers from Oracles 23/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

UNSAT Certificates from Learned Clauses

I UNSAT answer when clause ∅ is learned

I UNSAT certificates for CDCL in DRUP format
:= a sequence of learned clauses until ∅

(We also support RAT clauses : out the scope of this talk)

I The DRAT-trim tool of [Heule et al, 2013-2017] outputs
a backward resolution chain [C1; . . . ; Cn] for each learned
clause C (LRAT format).

Applications to Certify UNSAT Answers from Oracles 24/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Learning Clauses in Coq from Backward Resolution Chains
On F : (list clause) , define type ccJF K of “consequences” of F .
Record cc(s:model→ Prop): Type :=

{ rep: clause ; rep_sat : ∀ m, s m → JrepK m }.

Then, we define emptiness test :
Definition isEmpty : ∀ {s}, cc s → boolean := . . .
Lemma isEmpty_correct :
∀ s (c: cc s), isEmpty c=true → ∀ m, ¬(s m).

Learning a clause (from a BRC) is defined by
learn: ∀{s}, list(cc s) → clause → option (cc s)

such that (learn l c) returns
I (Some c’) with (rep c’)=c on a correct BRC.
I None otherwise.

Applications to Certify UNSAT Answers from Oracles 25/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Toward “Logical Consequence Factories” (LCF)

Idea our oracle (≈ a LRAT parser) computes directly “certified
learned clauses” through a certified API (called a LCF).
⇒ No need of an explicit “proof object” !

For the following benefits

I Backward Resolution Chains are verified “on-the-fly”, in the
oracle (much easier to debug)

I very low memory footprint : deletion of “learned clauses” in
memory directly & only managed by the oracle.

I very simple & small Coq code

Applications to Certify UNSAT Answers from Oracles 26/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Polymorphic LCF Style Oracle

I Data-abstraction is provided by polymorphism !
type A is abstract type of “learned clause”
here, lcf = abstraction of certified clause learning

I In input, each clause both given as a concrete value of
clause and an abstract “axiom” of type A.

I On an UNSAT input, the oracle returns some learned clause
(built from inputs and lcf operations)
and we only check its emptiness.

Definition lcf A := (list A) → clause → option A.
Axiom oracle : ∀ {A}, (lcf A)* list(clause *A) → ??(option A).

Applications to Certify UNSAT Answers from Oracles 27/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

Using the Polymorphic Oracle in Coq

Implementation of unsat

Definition mkInput (f: list clause):
lcf(ccJfK) * list(clause *(ccJfK))

:= . . .

Definition unsat f :=
oracle (mkInput f) >>= (fun o ⇒
ret (match o with

| Some c ⇒ isEmpty c
| None ⇒ false end)).

Good results from our first experiments on some “large” examples
(from SAT-competition 2017)
Verifying Backward Resolution Chains with certified code from Coq
is faster than the corresponding SAT-solver run...

Applications to Certify UNSAT Answers from Oracles 28/29

What is the FFI of Coq ? S. Boulmé (Verimag, Grenoble, France) Coq Workshop @ FLoC 2018

(Partial) Conclusion

I Study of “Foreign Functions” in Coq
 new proof paradigms, combining Coq and other tools

I I propose to combine Coq and OCaml typecheckers to get
“Theorems for free !” almost for free !

I Only need to understand the meta-theory of this proposal
Is there any interested type-theorist in the room ?

Applications to Certify UNSAT Answers from Oracles 29/29

	Introduction to the quest of a sound FFI for Coq
	Foreign Functions as Non-Deterministic Functions
	Coq ``Theorems for Free'' about Polymorphic Foreign Functions
	Applications to Certify UNSAT Answers from Oracles

