
www.embedded-world.eu

QtRVSim – RISC-V Simulator for Computer

Architectures Classes

Pavel Pisa, Jakub Dupak, Karel Koci

Department of Control Engineering, FEL

Czech Technical University in Prague

Prague, Czech Republic

pisa@cmp.felk.cvut.cz, dev@jakubdupak.com,

cynerd@email.com

Michal Stepanovsky

Department of Computer Science, FIT

 Czech Technical University in Prague

Prague, Czech Republic

michal.stepanovsky@fit.cvut.cz

Abstract—This paper presents a RISC-V based computer

system simulator, QtRVSim (https://github.com/cvut/qtrvsim),

designed for teaching and learning computer systems principles.

The simulator allows students to run assembly programs and

observe the instruction execution on single-cycle and pipelined

microarchitectures. The simulator graphically displays the major

components in the datapath, including the register file, the

arithmetic-logic unit, memory caches, peripherals, and the control

unit with control signals. QtRVSim is free and open-source

software available on GitHub and as a WebAssembly application

online. For additional materials and related computer

architecture projects, see https://comparch.edu.cvut.cz/.

Keywords—Computer science education; RISC-V simulator;

instruction cycle; single-cycle microarchitecture; pipelined

microarchitecture; memory subsystem; cache memory; peripherals;

assembly language

I. INTRODUCTION

Computer architecture and organization courses play a vital
role in understanding modern computer systems. Students
should understand fundamental concepts of the design and
organization of the central processing unit, memory subsystem,
input/output subsystem, and their integration into a computer
system to be able to use the computer resources effectively.
Many students can easily understand programming languages
like C, C++, Java, and C#. However, our experience shows that
they encounter difficulties understanding the instruction cycle
implementation and its consequences for the low-level
optimization of their programs. Additionally, many students
could not bridge the gap between low-level hardware and a high-
level programming language. Students often understood how to
add two integer numbers in hardware, but they could hardly
imagine how to use this knowledge to implement actual
instructions. To solve this problem, we have tried using several
different simulators over the last decade that are capable of
visualizing simple microarchitectures. Students positively
responded to the incorporation of graphical presentation and
animation in the simulators, saying it significantly increased

their understanding of all concepts. We found that the simulator
must meet certain criteria to be beneficial to students:

• Instruction set architecture (ISA). There are obvious
choices such as x86 and x64. However, these ISAs are
complicated and unsuitable for students without prior
knowledge of computer architectures. We have a positive
teaching experience with MIPS32 because of its
simplicity. However, MIPS32 is proprietary and
becoming outdated. The next option would be ARM ISA
though it is also proprietary. RISC-V ISA is open,
simple, and currently receiving much attention.

• Graphical User Interface (GUI). The simulator should
provide a GUI for student interaction.

• Computer system components visualization. The
simulator should go beyond the components defined in
ISA (register file, main memory, program counter) and
show at least a control unit and control signals,
arithmetic-logic unit, cache memories, and ideally
peripherals.

• Instruction cycle visualization. The simulator should
provide information about the instruction fetched from
memory and its execution in each simulated microar-
chitecture.

• User-friendliness. The simulator should be user-friendly
with a minimal learning curve.

• Portability. The simulator should run on major
platforms, such as Linux, Microsoft Windows, and
macOS. A web application is also a significant benefit.

mailto:pisa@cmp.felk.cvut.cz
mailto:dev@jakubdupak.com
mailto:cynerd@email.com
mailto:michal.stepanovsky@fit.cvut.cz
https://github.com/cvut/qtrvsim
https://comparch.edu.cvut.cz/

II. FEATURES OF QTRVSIM

 Fig. 1 illustrates the graphical design of the simulator.
It is composed of multiple panels/windows, each displaying a
specific part of the simulator, e.g., code editor, register file,
microarchitecture datapath, and peripherals. The user can
change the position and the size of individual panels or close
them. In this section, we briefly describe the main features of the
QtRVSim simulator.

A. Integrated Assembler

QtRVSim includes a built-in assembler and a basic program
editor so students can easily write, debug, and assemble
programs without third-party programs. QtRVSim recognizes a
small subset of GNU assembler directives and some custom
directives. For example, the assembler supports directives to
show particular tabs/windows to ensure students get the same
starting point while working with provided source codes.
Unknown directives are ignored to allow for code that both an
integrated and a standalone assembler can compile.

B. Datapath and Instruction Cycle Visualization

The simulator shows the main components in the datapath,
including their inputs and outputs. For instance, students can
explore ALU inputs and outputs for each instruction, where
these inputs are coming from, and where they are leading.
Students can execute instructions step-by-step, run an animation
of the execution at the rate of 1, 2, 5, or 10 instructions per
second, or execute the program at maximal speed. The simulator
provides the relevant information about the instruction

processing so that the student easily understands how these
instructions are implemented in hardware.

C. Various processor microarchitectures

The QtRVSim supports multiple microarchitecture variants.
Specifically, the following microarchitectures are currently
predefined:

• M1: Single-cycle microarchitecture without pipeline and
cache memories

• M2: Single-cycle microarchitecture without pipeline, but
with cache memories

• M3: 5-stage pipelined microarchitecture without hazard
unit (no hazard resolving) and without cache memories

• M4: 5-stage pipelined microarchitecture with hazard unit
and with cache memories

Microarchitecture M1 can be used as the introductory micro-
architecture. Many students often understand the base CPU
building blocks; however, they have difficulty realizing how to
interconnect them to support a given ISA. Microarchitecture M2
is a slightly extended microarchitecture that includes cache
memories, thus, giving valuable insights when learning memory
hierarchy concepts. Microarchitecture M3 introduces a 5-stage
integer pipeline without hazard resolving, thus allowing students
to investigate the behavior of such processors in the presence of
inter-instruction dependencies. Finally, microarchitecture M4
concludes the basic concepts of pipelined instruction processing.

Fig. 1. QtRVSim simulator, showing a five-stage pipelined microarchitecture

www.embedded-world.eu

As shown in Fig. 1, each instruction is colored depending on the
pipeline stage where it is currently processed.

D. Instruction and Data Cache Simulation

The simulator allows students to study the computer system
without and with memory caches (i.e., instruction cache and data
cache) to learn the fundamental concepts of the memory
hierarchy. In addition, they can study the cache behavior for
various cache organizations (block size, cache size,
associativity) and under various writeback and replacement
policies (write-through no-write-allocate, write-through write-
allocate, writeback, least recently used (LRU), least frequently
used (LFU), and random replacement). Fig. 2 illustrates the
behavior of an instruction cache for given parameters and
programs. The instruction cache window shows the total number
of hits and misses, the number of reads and writes, memory stall
cycles, hit rate, and improved speed.

E. Peripherals

The QtRVSim simulator also offers several simple
peripherals mapped to the memory address space, allowing
students to learn about the memory-mapped I/O (MMIO)
concepts. The first peripheral is a simple serial port (UART)
connected to the terminal window. Thus, students can
experiment with two basic character devices – a keyboard as the
input device and a character display as the output device. The
next implemented peripheral is a 480x320 LCD with a simple
16-bit per pixel (RGB565) frame buffer mapped into the
memory address space. Moreover, as shown in Fig. 3, the
QtRVSim supports more advanced I/O devices — three
independent knobs (red, green, and blue) with buttons and two
RGB LEDs.

F. Operating System Emulation

QtRVSim supports an operating system (OS) emulation
feature, allowing students to enable system services, stop on
known/unknown system calls, stop on interrupt entry, and stop
and step over exceptions. Currently, the emulator supports a few
Linux kernel system calls (exit, read, write, close, openat, brk,
ftruncate, readv, writev). Although a very small subset of system
calls is implemented, it is sufficient to demonstrate and explain

the principles of interaction between user programs and the
operating system.

III. BUILT-IN EXAMPLES

 Currently, QtRVSim provides three built-in examples:

A. Simple-lw-sw-ia.s

This example is used to illustrate how to access the main
memory. A user-defined constant is stored at the user-defined
address in the main memory. The program uses LW instruction
to load the value from the main memory into a specified register.
Then, by using the SW instruction, the register content is written
back to the memory at the adjacent position. This example can
be used as a starting point to learn the QtRVSim interface and
learn cache memory principles.

B. Template-os.s

This example shows how the user program interacts with the
operating system. Specifically, it uses the system call WRITE to
print out the text string “Hello world!” on the terminal. Then
terminates by calling the system call EXIT. The received output
is illustrated in Fig. 4.

C. Template.s

Finally, to illustrate polled I/O (or software-driven I/O), the
last example accesses the peripheral directly from the user
program. Like the previous example, it prints out the predefined
text string “Hello world!” on the terminal.

 Fig. 2. Instruction cache window Fig. 3. Dedicated peripheral with two RGB LEDs and three knobs

Fig. 4. Output message from the build-in example “Template-os.s”
printed out on the Terminal window

IV. IMPLEMENTATION

When designing the internal structure of the simulator, we
paid close attention to extensibility and maintainability. Here we
provide some examples of our design. Further details can be
found in theses of the involved students [1-3].

A. Instruction Decoding

All supported instructions are described in a declarative
manner, which makes adding new instructions straightforward.
A single table is used for decoding, encoding (integrated
assembler), and simple syntax highlighting (integrated editor).

B. Memory Model

The memory model can support a large variety of
configurations. We divide the memory subsystem vertically into
two parts. At the upper level is the cache hierarchy, which can
be almost arbitrarily structured – from no or single unified cache
to complicated multilevel structures with separate ports for data
and program memory accesses. In the lower level, various
memory-mapped devices can be connected to the memory bus –
theoretically, even during simulation. Peripheries and memory
modules can be either emulated or mapped from the host system
(e.g., RAM can be allocated using the host OS memory mapping
functionality). The memory model data structures provide the
functionality to support all combinations of the endianness of the
simulated machine, the host machine, and the periphery.

C. Visualization of the Core

The visualization is designed as SVG files with special
annotation for dynamic content (register and wire values, multi-
plexers, and links to other simulator parts). The simulator creates
native Qt GUI components from the SVG files and connects the
components to the simulated machine’s API.

V. TEACHING

The simulator is typically used during labs, where students
construct assembly programs satisfying specific criteria. For
example, students are tasked with writing and optimizing the
bubble sort program to minimize the number of no-ops, given
that the hazard unit is unavailable. In addition to GUI, the
simulator is shipped with a headless CLI, which can be used for
automated evaluation.

Students are expected to understand the purpose of
individual components as visualized by the simulator. A typical
exam task is to analyze the execution of a specific program under
special conditions – such that a selected wire or signal is “stuck”
on a specific value.

The simulator can save the core visualization as a vector PDF
at any time of execution. We use this functionality to create
comprehensive teaching materials with the visualization
students are already familiar with.

VI. FUTURE WORK

We plan to extend the simulator to cover more advanced
CPU features, including branch prediction, multilevel cache
memories, simple virtual memory management support with
TLB visualization, and multicore instruction processing with
visualized MESI protocol. We will continue to extend examples,
documentation, and teaching materials (see resources).

The project is mainly extended by students in final projects,
theses, and following work. We kindly invite students from
other universities to participate.

VII. CONCLUSION

This paper has introduced the QtRVSim, the RISC-V ISA-
based simulator to support computer architecture courses. It
supports single-cycle and pipelined microarchitectures,
graphically visualizes the datapath, allows students to analyze
both data and instruction cache memories, and emulates
communication with peripherals (directly or via OS system
calls). QtRVSim is also available as a WebAssembly application
online, so no installation is required. QtRVSim is an open-
source project; thus, the open-source community is welcome to
develop this simulator further.

ACKNOWLEDGEMENT

We want to thank Czech Technical University and The
Ministry of Education, Youth and Sports of the Czech Republic
for supporting our work from “SP2021+ The Strategic Plan of
the Ministry for Higher Education for the period from
2021”. We would like to also acknowledge the help of
volunteers from the open-source community, especially Tomas
Chvatal (SUSE Linux s.r.o.) and David Heidelberg, for their
contributions and help with project packaging.

RESOURCES

• Project source code and releases
https://github.com/cvut/qtrvsim

• Computer architectures projects at CTU
https://comparch.edu.cvut.cz/

• Undergraduate Computer Architectures course
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/start

• Graduate Advanced Computer Architectures course
https://cw.fel.cvut.cz/b211/courses/b4m35pap/start

REFERENCES

[1] J. Dupak, “Graphical RISC-V architecture simulator - memory model and
project management,” CTU Prague, 2021

[2] M. Hollmann, “Graphical RISC-V architecture simulator - instructions
decode and execution and os emulation,” CTU Prague, 2021

[3] K. Koci, “Graphical CPU Simulator with Cache Visualization,” CTU
Prague, 2018

[4] M. B. Petersen, “Ripes: A Visual Computer Architecture Simulator,”
2021 ACM/IEEE Workshop on Computer Architecture Education
(WCAE), 2021, pp. 1-8, doi: 10.1109/WCAE53984.2021.9707149.

[5] Giorgi, Roberto and Mariotti, Gianfranco. “WebRISC-V: a Web-Based
Education-Oriented RISC-V Pipeline Simulation Environment “. ACM
Workshop on Computer Architecture Education (WCAE-19), 2019, pp.
1-6, doi: 10.1145/3338698.3338894.

[6] B. Nova, J. C. Ferreira and A. Araújo, “Tool to support computer
architecture teaching and learning,” 2013 1st International Conference of
the Portuguese Society for Engineering Education (CISPEE), 2013, pp. 1-
8, doi: 10.1109/CISPEE.2013.6701965.

[7] J. Djordjevic, B. Nikolic and A. Milenkovic, “Flexible web-based
educational system for teaching computer architecture and organization,”
in IEEE Transactions on Education, vol. 48, no. 2, pp. 264-273, May
2005, doi: 10.1109/TE.2004.842918.

[8] RISC-V. (n.d.). Retrieved May 4, 2022, from https://riscv.org/

https://github.com/cvut/qtrvsim
https://comparch.edu.cvut.cz/
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/start
https://cw.fel.cvut.cz/b211/courses/b4m35pap/start

	I. Introduction
	II. Features of QtRVSim
	A. Integrated Assembler
	B. Datapath and Instruction Cycle Visualization
	C. Various processor microarchitectures
	D. Instruction and Data Cache Simulation
	E. Peripherals
	F. Operating System Emulation

	III. Built-in Examples
	A. Simple-lw-sw-ia.s
	B. Template-os.s
	C. Template.s

	Fig. 4. Output message from the build-in example “Template-os.s” printed out on the Terminal window
	IV. Implementation
	A. Instruction Decoding
	B. Memory Model
	C. Visualization of the Core

	V. Teaching
	VI. Future Work
	VII. Conclusion
	Acknowledgement
	Resources
	References

