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Abstract—This paper presents a RISC-V based computer 

system simulator, QtRVSim (https://github.com/cvut/qtrvsim), 

designed for teaching and learning computer systems principles. 

The simulator allows students to run assembly programs and 

observe the instruction execution on single-cycle and pipelined 

microarchitectures. The simulator graphically displays the major 

components in the datapath, including the register file, the 

arithmetic-logic unit, memory caches, peripherals, and the control 

unit with control signals. QtRVSim is free and open-source 

software available on GitHub and as a WebAssembly application 

online. For additional materials and related computer 

architecture projects, see https://comparch.edu.cvut.cz/. 
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I.  INTRODUCTION  

Computer architecture and organization courses play a vital 
role in understanding modern computer systems. Students 
should understand fundamental concepts of the design and 
organization of the central processing unit, memory subsystem, 
input/output subsystem, and their integration into a computer 
system to be able to use the computer resources effectively. 
Many students can easily understand programming languages 
like C, C++, Java, and C#. However, our experience shows that 
they encounter difficulties understanding the instruction cycle 
implementation and its consequences for the low-level 
optimization of their programs. Additionally, many students 
could not bridge the gap between low-level hardware and a high-
level programming language. Students often understood how to 
add two integer numbers in hardware, but they could hardly 
imagine how to use this knowledge to implement actual 
instructions. To solve this problem, we have tried using several 
different simulators over the last decade that are capable of 
visualizing simple microarchitectures. Students positively 
responded to the incorporation of graphical presentation and 
animation in the simulators, saying it significantly increased 

their understanding of all concepts. We found that the simulator 
must meet certain criteria to be beneficial to students: 

• Instruction set architecture (ISA). There are obvious 
choices such as x86 and x64. However, these ISAs are 
complicated and unsuitable for students without prior 
knowledge of computer architectures. We have a positive 
teaching experience with MIPS32 because of its 
simplicity. However, MIPS32 is proprietary and 
becoming outdated. The next option would be ARM ISA 
though it is also proprietary. RISC-V ISA is open, 
simple, and currently receiving much attention. 

• Graphical User Interface (GUI). The simulator should 
provide a GUI for student interaction.  

• Computer system components visualization. The 
simulator should go beyond the components defined in 
ISA (register file, main memory, program counter) and 
show at least a control unit and control signals, 
arithmetic-logic unit, cache memories, and ideally 
peripherals. 

• Instruction cycle visualization. The simulator should 
provide information about the instruction fetched from 
memory and its execution in each simulated microar-
chitecture.  

• User-friendliness. The simulator should be user-friendly 
with a minimal learning curve.  

• Portability. The simulator should run on major 
platforms, such as Linux, Microsoft Windows, and 
macOS. A web application is also a significant benefit. 
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II. FEATURES OF QTRVSIM 

 Fig. 1 illustrates the graphical design of the simulator. 
It is composed of multiple panels/windows, each displaying a 
specific part of the simulator, e.g., code editor, register file, 
microarchitecture datapath, and peripherals. The user can 
change the position and the size of individual panels or close 
them. In this section, we briefly describe the main features of the 
QtRVSim simulator.  

A. Integrated Assembler 

QtRVSim includes a built-in assembler and a basic program 
editor so students can easily write, debug, and assemble 
programs without third-party programs. QtRVSim recognizes a 
small subset of GNU assembler directives and some custom 
directives. For example, the assembler supports directives to 
show particular tabs/windows to ensure students get the same 
starting point while working with provided source codes. 
Unknown directives are ignored to allow for code that both an 
integrated and a standalone assembler can compile. 

B. Datapath and Instruction Cycle Visualization 

The simulator shows the main components in the datapath, 
including their inputs and outputs. For instance, students can 
explore ALU inputs and outputs for each instruction, where 
these inputs are coming from, and where they are leading. 
Students can execute instructions step-by-step, run an animation 
of the execution at the rate of 1, 2, 5, or 10 instructions per 
second, or execute the program at maximal speed. The simulator 
provides the relevant information about the instruction 

processing so that the student easily understands how these 
instructions are implemented in hardware. 

C. Various processor microarchitectures 

The QtRVSim supports multiple microarchitecture variants. 
Specifically, the following microarchitectures are currently 
predefined: 

• M1: Single-cycle microarchitecture without pipeline and 
cache memories 

• M2: Single-cycle microarchitecture without pipeline, but 
with cache memories 

• M3: 5-stage pipelined microarchitecture without hazard 
unit (no hazard resolving) and without cache memories 

• M4: 5-stage pipelined microarchitecture with hazard unit 
and with cache memories 

Microarchitecture M1 can be used as the introductory micro-
architecture. Many students often understand the base CPU 
building blocks; however, they have difficulty realizing how to 
interconnect them to support a given ISA. Microarchitecture M2 
is a slightly extended microarchitecture that includes cache 
memories, thus, giving valuable insights when learning memory 
hierarchy concepts. Microarchitecture M3 introduces a 5-stage 
integer pipeline without hazard resolving, thus allowing students 
to investigate the behavior of such processors in the presence of 
inter-instruction dependencies. Finally, microarchitecture M4 
concludes the basic concepts of pipelined instruction processing. 

 

Fig. 1.  QtRVSim simulator, showing a five-stage pipelined microarchitecture 
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As shown in Fig. 1, each instruction is colored depending on the 
pipeline stage where it is currently processed. 

D. Instruction and Data Cache Simulation  

The simulator allows students to study the computer system 
without and with memory caches (i.e., instruction cache and data 
cache) to learn the fundamental concepts of the memory 
hierarchy. In addition, they can study the cache behavior for 
various cache organizations (block size, cache size, 
associativity) and under various writeback and replacement 
policies (write-through no-write-allocate, write-through write-
allocate, writeback, least recently used (LRU), least frequently 
used (LFU), and random replacement). Fig. 2 illustrates the 
behavior of an instruction cache for given parameters and 
programs. The instruction cache window shows the total number 
of hits and misses, the number of reads and writes, memory stall 
cycles, hit rate, and improved speed. 

E. Peripherals 

The QtRVSim simulator also offers several simple 
peripherals mapped to the memory address space, allowing 
students to learn about the memory-mapped I/O (MMIO) 
concepts. The first peripheral is a simple serial port (UART) 
connected to the terminal window. Thus, students can 
experiment with two basic character devices – a keyboard as the 
input device and a character display as the output device. The 
next implemented peripheral is a 480x320 LCD with a simple 
16-bit per pixel (RGB565) frame buffer mapped into the 
memory address space. Moreover, as shown in Fig. 3, the 
QtRVSim supports more advanced I/O devices — three 
independent knobs (red, green, and blue) with buttons and two 
RGB LEDs. 

F. Operating System Emulation 

QtRVSim supports an operating system (OS) emulation 
feature, allowing students to enable system services, stop on 
known/unknown system calls, stop on interrupt entry, and stop 
and step over exceptions. Currently, the emulator supports a few 
Linux kernel system calls (exit, read, write, close, openat, brk, 
ftruncate, readv, writev). Although a very small subset of system 
calls is implemented, it is sufficient to demonstrate and explain 

the principles of interaction between user programs and the 
operating system. 

III. BUILT-IN EXAMPLES 

 Currently, QtRVSim provides three built-in examples:   

A. Simple-lw-sw-ia.s 

This example is used to illustrate how to access the main 
memory. A user-defined constant is stored at the user-defined 
address in the main memory. The program uses LW instruction 
to load the value from the main memory into a specified register. 
Then, by using the SW instruction, the register content is written 
back to the memory at the adjacent position. This example can 
be used as a starting point to learn the QtRVSim interface and 
learn cache memory principles. 

B. Template-os.s 

This example shows how the user program interacts with the 
operating system. Specifically, it uses the system call WRITE to 
print out the text string “Hello world!” on the terminal. Then 
terminates by calling the system call EXIT. The received output 
is illustrated in Fig. 4.  

C. Template.s 

Finally, to illustrate polled I/O (or software-driven I/O), the 
last example accesses the peripheral directly from the user 
program. Like the previous example, it prints out the predefined 
text string “Hello world!” on the terminal. 

 

 Fig. 2. Instruction cache window Fig. 3. Dedicated peripheral with two RGB LEDs  and three knobs 

 

 

Fig. 4. Output message from the build-in example “Template-os.s”  
printed out on the Terminal window 



IV. IMPLEMENTATION 

When designing the internal structure of the simulator, we 
paid close attention to extensibility and maintainability. Here we 
provide some examples of our design. Further details can be 
found in theses of the involved students [1-3]. 

A. Instruction Decoding 

All supported instructions are described in a declarative 
manner, which makes adding new instructions straightforward. 
A single table is used for decoding, encoding (integrated 
assembler), and simple syntax highlighting (integrated editor). 

B. Memory Model 

The memory model can support a large variety of 
configurations. We divide the memory subsystem vertically into 
two parts. At the upper level is the cache hierarchy, which can 
be almost arbitrarily structured – from no or single unified cache 
to complicated multilevel structures with separate ports for data 
and program memory accesses. In the lower level, various 
memory-mapped devices can be connected to the memory bus – 
theoretically, even during simulation. Peripheries and memory 
modules can be either emulated or mapped from the host system 
(e.g., RAM can be allocated using the host OS memory mapping 
functionality). The memory model data structures provide the 
functionality to support all combinations of the endianness of the 
simulated machine, the host machine, and the periphery. 

C. Visualization of the Core 

The visualization is designed as SVG files with special 
annotation for dynamic content (register and wire values, multi-
plexers, and links to other simulator parts). The simulator creates 
native Qt GUI components from the SVG files and connects the 
components to the simulated machine’s API. 

V. TEACHING 

The simulator is typically used during labs, where students 
construct assembly programs satisfying specific criteria. For 
example, students are tasked with writing and optimizing the 
bubble sort program to minimize the number of no-ops, given 
that the hazard unit is unavailable. In addition to GUI, the 
simulator is shipped with a headless CLI, which can be used for 
automated evaluation. 

Students are expected to understand the purpose of 
individual components as visualized by the simulator. A typical 
exam task is to analyze the execution of a specific program under 
special conditions – such that a selected wire or signal is “stuck” 
on a specific value. 

The simulator can save the core visualization as a vector PDF 
at any time of execution. We use this functionality to create 
comprehensive teaching materials with the visualization 
students are already familiar with.  

VI. FUTURE WORK 

We plan to extend the simulator to cover more advanced 
CPU features, including branch prediction, multilevel cache 
memories, simple virtual memory management support with 
TLB visualization, and multicore instruction processing with 
visualized MESI protocol. We will continue to extend examples, 
documentation, and teaching materials (see resources). 

The project is mainly extended by students in final projects, 
theses, and following work. We kindly invite students from 
other universities to participate. 

VII. CONCLUSION 

This paper has introduced the QtRVSim, the RISC-V ISA-
based simulator to support computer architecture courses. It 
supports single-cycle and pipelined microarchitectures, 
graphically visualizes the datapath, allows students to analyze 
both data and instruction cache memories, and emulates 
communication with peripherals (directly or via OS system 
calls). QtRVSim is also available as a WebAssembly application 
online, so no installation is required. QtRVSim is an open-
source project; thus, the open-source community is welcome to 
develop this simulator further. 

ACKNOWLEDGEMENT 

We want to thank Czech Technical University and The 
Ministry of Education, Youth and Sports of the Czech Republic 
for supporting our work from “SP2021+ The Strategic Plan of 
the Ministry for Higher Education for the period from  
2021”. We would like to also acknowledge the help of 
volunteers from the open-source community, especially Tomas 
Chvatal  (SUSE Linux s.r.o.) and David Heidelberg, for their 
contributions and help with project packaging. 

RESOURCES 

• Project source code and releases 
https://github.com/cvut/qtrvsim 

• Computer architectures projects at CTU 
https://comparch.edu.cvut.cz/ 

• Undergraduate Computer Architectures course 
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/start 

• Graduate Advanced Computer Architectures course 
https://cw.fel.cvut.cz/b211/courses/b4m35pap/start 
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