
API Best Practices
Managing the API Lifecycle:

Design, Delivery, and Everything In Between

API Best Practices© CC BY-SA

Table of Contents

Executive Summary | 04

APIs in a Modern Software Development Context | 05

	 Enforce consistent security and governance

	 Drive end-to-end visibility

	 Make services easily discoverable and reusable

	 Co-exist with microservices orchestration framework

	 Don’t adopt cloud-specific gateways

Managing the API Lifecycle | 09

API Design | 10

	 Adopt a layered API strategy

	 Design easy-to-consume APIs

	 Pick the right API versioning approach

API Security | 16

	 Mitigate OWASP threats

	 Prevent volumetric attacks

	 Protect against adaptive threats

	 Don’t rely on WAFs for API security

API Testing and Development | 19

	 Align the API lifecycle with the SDLC

	 Test APIs using TDD and BDD approaches

	 Deploy APIs depending on type of workload

	 Automate your testing and development lifecycle

Developer Portal | 23

	 Publish automated, interactive documentation

	 Package your APIs for consumption

	 Automate developer onboarding

	 Tie user identities to existing enterprise IDMs

API Best Practices© CC BY-SA

API Analytics | 26

	 Optimize API functionality by tracing API calls

	 Monitor peak performance and availability

	 Measure API program success with the right metrics

	 Empower App developers with usage and perfomance data

API Operations | 31

	 Deploy API management in the cloud or on-premises

	 Integrate with existing monitoring infrastructure

	 Scale API platform infrastructure

Conclusion | 36

© CC BY-SA 4API Best Practices

APIs

Secure Transform Publish
Analyze Scale Monetize

Cloud Apps

Legacy Apps

Internet
of Things

Partner Apps

Consumer
Apps

Employee
Apps

Executive Summary

Digital is disrupting every industry. From drug store chains to banks to telcos, businesses are

becoming software companies and adopting modern software practices. Why? If they don’t

adapt to a new market reality they will fail.

As the business context is changing so is the technology stack. Enterprise application

architectures are evolving from integration-centric enterprise service bus (ESB) architectures

to application-centric, microservices, platform-as-a-service (PaaS), multi-cloud, and API-driven

architectures.

APIs are the lynchpin to the success of these digital businesses.

All applications use APIs to access application services and data through APIs. These services

can be microservices or cloud workloads or legacy SOAP services or IoT.

To ensure that applications and developers can effectively use these services to build partner,

consumer, and internal apps, companies need to deliver secure, scalable, easy-to-use modern

APIs.

Over the last few years, we’ve participated in hundreds of enterprises’ API-led digital

transformation initiatives. This guide distills our learnings from these customer engagements

and shares best practices about managing APIs across the lifecycle.

© CC BY-SA 5API Best Practices

Private cloud

Public Clouds

Microservices

Private Cloud

Platform-as-a-Service

µService

µService

µService

µService

µServiceµService

APIs

App Workloads

Microservices

APIs in a Modern Software Development Context

Gartner found that 77% of app development supporting digital business will occur in-house.

Seventy percent of organizations claim to be either using or investigating microservices, and

nearly one-third currently use them in production, according to a report from NGINX. Multi-

cloud strategies will jump from just 10% in 2015 to more than 70% in three years, according to

Gartner.

Why? Because microservices, cloud, and platform-as-a-service (PaaS) technologies enable

organizations to innovate fast: development teams can independently develop, deploy,

and scale applications. The adoption of the cloud, containers, and continuous integration/

continuous deployment (CI/CD) tools has made new apps implementation easier, leading to

more modern software being built as microservices in the cloud.

Moreover, because different workloads have different needs that may be best delivered by a

particular cloud vendor (or with a private cloud deployment), organizations are adopting multi-

cloud strategies. App development teams implement microservices using a variety of stacks

like Kubernetes, Netflix OSS, and Mesos, depending on their needs. All these microservices

and cloud workloads use web APIs as the mechanism to communicate with one another.

https://www.nginx.com/resources/library/app-dev-survey/

6© CC BY-SA API Best Practices

APIs in a Modern Software Development Context

How to:
Eliminate silos created with inconsistencies in security,
visibility, and discoverability

There’s a challenging side effect, however. As app development teams rush to implement

microservices across multiple clouds or in a PaaS, they inadvertently create silos with

inconsistencies in security, visibility, documentation, and governance. For example, many APIs

are not secured, or are secured inconsistently, across organizations.

They might not be accompanied by standardized documentation, or access control

mechanisms. These microservices and cloud APIs are often difficult to reuse, analyze, or even

to discover for use by other teams.

Enforce consistent security and governance

In the world of microservices and public clouds, there should be no distinction between

internal and external APIs.

Developers are building APIs and microservices without the kind of centralized oversight

that once existed. They are deploying them more widely than ever before. They implement

inconsistent and varying levels of security—or no security at all.

When developers deploy microservices in the public cloud and neglect to deploy common

API security standards or consistent global policies, they expose the enterprise to potential

security breaches. A microservice could be used by another app in the cloud today and by an

external partner tomorrow.

Companies must assume a zero-trust environment. An API platform enables enterprises to

implement security and governance policies like OAuth2 across all of their microservices APIs.

Drive end-to-end visibility

Without usage and performance data about your microservices and cloud workloads,

it’s difficult to understand the extent to which these services are reused, or potential

performance bottlenecks. The problem is more acute when these APIs are used by multiple

teams in a large enterprise or as external APIs for partners and customers.

© CC BY-SA 7API Best Practices

APIs in a Modern Software Development Context

API platforms provide fine-grained analytics and reporting capabilities to measure API

usage, developer and partner engagement, microservices adoption, and traffic composition.

Organizations use API analytics to monitor API performance by analyzing total traffic,

throughput, latency, and errors.

Make services easily discoverable and reusable

As enterprises employ multiple and disparate microservices stacks, clouds, and PaaS

environments, it can be difficult for teams to discover and reuse microservices and APIs.

Internal and external app developers use developer portals to discover services, register to

use APIs, access interactive and community documentation, register their apps, and view data

about their app usage on a dashboard.

Co-exist with microservices orchestration frameworks

App teams are adopting a variety of microservices orchestration tools including Kubernetes,

Docker, and Mesos. Although there is some overlap in the gateway functionality between

the microservices stack and API management, most organizations colocate their API

management with their microservices and PaaS gateway/routers to ensure consistent visibility

and discoverability across the organization.

Microservices
Stack

API Management
Stack

Auto-Scaling

Circuit Breaker

Service Discovery

Federated
Infrastructure

& Deployments

Logging

Spike Arrest

Caching

TLS/SSL

Routing

Load Balancing

Service Discovery

Circuit Breaker

Monitoring /
Alerting

Gateway

API Services

Management Services

Analytics Dev Mgmt

8© CC BY-SA API Best Practices

APIs in a Modern Software Development Context

Don’t adopt cloud-specific gateways

All public cloud providers offer their own captive API gateways (AWS API gateway, for

example) that provide basic functionality like traffic management, simple meditation, and

caching. For the needs of most enterprises, the functionality of these cloud-specific gateways

is too limited; they don’t solve the problem of silos across the various clouds that many

organizations employ.

Companies like Autodesk have adopted an enterprise API platform to support its application

workloads, including serverless apps being built on AWS. Instead of using the AWS gateway,

they realized the value of having a single pane of glass for all APIs across their organizations,

regardless of which cloud these APIs might operate in.

“A central unified API platform across the company

has been a game changer for us.”

- Alan Williams, Autodesk

© CC BY-SA 9API Best Practices

OPERATE

DESIGN

SECURE

ANALYZE DEPLOY

PUBLISH

Managing the API Lifecycle

As organizations adopt modern software practices, holistic API management has become

critical. Enterprises put in place people, processes, and technologies to manage APIs across

the entire API lifecycle—from design through to analysis and operation. By adopting best

practices in each stage of the API lifecycle, teams become more agile and can deliver on the

promise of digital transformation.

Different organizations have slightly different API lifecycles, but for simplicity’s sake we’re

using the API lifecycle below to share best practices.

© CC BY-SA 10API Best Practices

API Design

A well-crafted API should make an app developer as successful as possible. When building

APIs, it’s critical to think about design choices from the app developer’s perspective.

Why? Look at the value chain below. The app developer is the linchpin of the entire API

strategy. The primary design principle when building an API should be to maximize app

developer productivity and success.

Modern organizations use the API-first strategy, in which they start by documenting the API

using the Open API specification before implementing code. Documenting and mocking the

API straight away enables greater collaboration and accelerates overall software delivery.

With the app developer in mind, there are several best practices to ensure agility and ease of

consumption of APIs.

How to:
Design and build your APIs to ensure ease-of-
consumption and fast delivery for developers

Adopt a layered API strategy

Organizations are embracing a layered API approach to make it easier for developers to

consume SOAP and other legacy services from systems of record. This approach enables

developers to deliver new software faster across a plethora of mobile devices and

form factors.

© CC BY-SA 11API Best Practices

API Design

In a layered API approach, you have various flavors of APIs:

Exposure APIs, which are RESTful, cached, secure modern APIs to your legacy SOAP

services (/crm/catalog , /cms/item, for example). These are tied closely to your backend

systems.

Business or domain APIs, which are abstractions of business entities as consumable

resources for app developers. An API-first design approach focuses on delivering these

consumable resources and hides implementation details from developers by providing a

consistent interaction across disparate backends (/catalog, for example).

Experience APIs are tightly coupled to a particular set of consuming applications/devices.

Specializing to a particular UI, API developers provide an optimized experience to the app

developer focusing on things like aggregation and optimizing payload for performance

(/android/catalog, for example).

This layered API approach abstracts the underlying complexities and dependencies of APIs

and systems below and accelerates delivery of new apps. Organizations use the concept of

proxy chaining (connecting one or more proxies to connect to a remote host) available in API

management platforms to build layered APIs.

Experience APIs

Business APIs

Exposure APIs

CRM Financials Inventory HR Supply Chain

Highly consumable APIs,
specific for set a of
devices or apps
/android/customer

Consumable and
reusable APIs–the
core set of developer-
friendly APIs
/customer

Highly reusable
APIs that mimic
underlying data
models & resources
/cms/catalogue/
oms/item

https://community.apigee.com/topics/proxy-chaining.html

12© CC BY-SA API Best Practices

API Design

Design easy-to-consume APIs

A good API design makes the API easy to consume by the app developer. Below are a set of

design best practices that have enabled many API designers with SOAP design experience to

build the right set of easy-to-consume RESTful APIs.

Using a data-centric model

APIs should focus on the underlying entities/resources they expose, rather than a set of

functions that manipulate those entities. In other words, the URLs should have nouns, not

verbs. For example, a collection of dogs could have a URL https://dogtracker.com/dogs. And,

individual dogs would each have a unique URL like http://dogtracker.com/dogs/9876543. With

this approach, you can retrieve the details of the dog using the GET method, delete the dog

using the DELETE method, and modify properties of the dog using the PATCH or

PUT methods.

By contrast, in a function-oriented API, there is much more variability, and much more detail

a developer has to learn. And there is no clear structure or pattern you can use to help them

with the next API.

Building simple JSON

Due to its simplicity, JavaScript Object Notation (JSON) has become the de facto standard

for web APIs. When JSON is used well, it is simple and intuitive. If your JSON doesn’t look as

straightforward as the example below, you may be doing something wrong.

{ “kind”: “Dog”
 “name”: “Lassie”,
 “furColor”: “brown”,
 ...

}

Your JSON API will be simpler and easier to understand if you stick to the principle that the

names in your JSON are always property names, and the JSON objects always correspond to

entities in your API’s data model.

http://www.json.org/

© CC BY-SA 13API Best Practices

API Design

Expressing relationships as links

If your web APIs do not include links today, a first step is simply to add some links without

making other changes, like this:

{ “id”: “12345678”,
 “kind”: “Dog”
 “name”: “Lassie”,
 “furColor”: “brown”,
 “ownerID”: “98765432”,
 “ownerLink”: “https://dogtracker.com/persons/98765432”
}

Using links makes it easier for app developers to consume resources, with less to learn and no

need to hunt for documentation. Moreover, links can be plugged into templates to produce

the right URL.

Designing URLs

A good way to make APIs human-friendly involves the creation of entity URLs that have the

entity type in them when fetching a specific resource. Thus, instead of https://dogtracker.

com/ZG9n;a8098c1a, it is more desirable to have https://dogtracker.com/dogs/a8098c1a.

Also, it is not recommended to code a hierarchy of entities into an URL. Hierarchies are not as

stable as they might seem; encoding them in your URLs could prevent you from reorganizing

your hierarchies in the future.

For query URLs, it is recommended to use the format

https://dogtracker.com/persons/{personId}/dogs rather than https://dogtracker.com/

search?type=Dog&owner={personId}

Many app developer prefer the first format because it is more readable, more intuitive, and

easier for API developers to implement.

Handling errors

A good error design is important for API designers, as it provides context and visibility into

how app developers use APIs. Developers learn to write code through errors and they depend

on well-designed errors for troubleshooting, and resolving issues after the applications

they’ve built using your API are in the hands of their users.

https://dogtracker.com/persons/{personId}/dogs rather than https://dogtracker.com/search?type=Dog&ow
https://dogtracker.com/persons/{personId}/dogs rather than https://dogtracker.com/search?type=Dog&ow

14© CC BY-SA API Best Practices

Mediation

Requests & responses

processed to deliver as

expected to both

backend and clients

Routing

Backend versions are

transparent. Requests

routed based on header,

payload, user, etc.

Error Handling

Returns errors

gracefully for old API

version requests

Pass-Through

Forwards all incoming

requests to the right

backend version

H
IG

H
LO

W

Multiple API VersionsSingle API Version

A
P

I T
IE

R
 L

O
G

IC

BACKEND SUPPORTS

API Design

Thus, it is important to use standard HTTP status codes and complete HTTP response

messages to communicate with app developers. For example, the 201 Created status code

should always be paired with a Location header that provides the URL of the

newly-created resource.

HTTP/1.1 201 Created
Location: https://dogtracker.com/dogs/1234567

Use plain language in the payload messages, as there usually is a programmatic user agent

between the user and the message.

For further details on the above recommendations and many more best practices in API

Design, refer to the eBook, Web API Design: The Missing Link.

Pick the right API versioning approach

A common problem in managing APIs is versioning. When APIs are used by many developers

and partners, getting everyone to upgrade to the latest API version is challenging, if

not impossible.

https://pages.apigee.com/eBook-Web-API-Design-The-Missing-Link-reg.html?utm_source=sr&utm_campaign=ebook&utm_content=web-api-design-missing-link

© CC BY-SA 15API Best Practices

API Design

Organizations take different approaches to versioning, depending on their willingness to add

business logic in the API tier and the limitations of maintaining multiple versions on backend

systems. On the northbound side, most organizations typically include version numbers in the

base path of the the API call (for example, api.company.com/v1/… , api.company.com/v2/…).

Error handling

If the backend systems can support only one API version and an organization wants to limit

business logic in the API proxy layer, the API proxy can send an error for older versions. It can

be gradually phased out by adding an error message to inform the developer, followed by the

addition of strict rate limits on older API versions and, finally, blocking requests and

sending errors.

Pass-through

If the backend supports multiple API versions, the API proxy layer can be kept lean and simply

enable the northbound requests to pass through to the right soundbound APIs. Organizations

use analytics in API platforms to understand the usage of API versions, deprecate low-traffic

versions, and communicate with targeted developers using older versions.

Routing

Many organizations use an API platform to decouple the northbound and southbound APIs

for agility and maintenance purposes. In these cases, depending on the variety of parameters

like request path, query parameters, or payload, the API platform can route the request to the

right backend versions based on business logic in the API proxy layer.

Mediation

If the backend system can’t support multiple API versions, organizations can add business

logic in the API proxy layer to mediate the request/response of various northbound API

versions. The API platform will process the incoming requests and create a southbound

request that’s supported by the backend. It does the same on the response by processing the

backend response and sending the response in the right format/data back to the client. As

long as the mediation rules are relatively simple, this option is attractive.

“An API-first vision and approach is what is needed to take advantage of social,

mobile, analytics, and cloud. It’s the perfect storm for innovative CIOs.“

- Brian Lillie, Equinix

© CC BY-SA 16API Best Practices

API Security

Three-quarters of mobile apps fail standard security tests—and most cyber attacks target the

app layer, according to Gartner.

Organizations have used web application firewalls and DDoS (distributed denial of service)

protection solutions to secure their web apps. However, in the world of mobile, cloud, and

microservices, where enterprise data is accessed with APIs in a zero-trust environment, what’s

needed is security at all points of engagement. After all, hundreds of thousands of sensitive

customer records or millions of dollars are at risk.

There are known threats. The Open Web Application Security Project (OWASP), an online

community of application security researchers, publishes an annual list of the top 10 security

threats enterprises face. But there are also potential attacks from “unknown” threats—

software that constantly scans for vulnerabilities in application infrastructures.

For protection against all kinds of external threats, organizations should create proxies in

front of their APIs with an API management platform and enforce a set of consistent security

policies at the API proxy layer.

How to:
Enforce a consistent set of security
policies across all APIs

Mitigate OWASP threats

OWASP threats include XML/JSON injection threats, cross-site scripting attacks, broken

authentication, insecure direct object reference, and several others. Seventy-two percent of

organizations using an API management platform employ out-of-the-box security policies to

protect their external-facing APIs from these threats.

To prevent data leakage in transit, organizations also implement out-of-the-box OAuth2

and two-way TLS on all critical APIs. Using OAuth2 with the right set of scopes ensures

minimization of the attack surface available for threats. Using a PCI- and HIPAA-compliant

API platform, organizations can create secure proxies and ensure APIs keys are stored in

encrypted mode.

© CC BY-SA 17API Best Practices

API MANAGEMENT

Portal Analytics Management
Server

API Security

Prevent volumetric attacks

Application layer volumetric attacks comprise 17% of all reported DDoS attacks. In these

attacks, an application is flooded with HTTP requests, tying up application servers. Eighty

percent of organizations use API management platforms with out-of-the-box spike arrest and

rate limiting policies to mitigate risk from such attacks. Applying quota and rate limits to APIs

provides protection from sophisticated DDoS attacks that mimic human behavior.

Protect against adaptive threats

Unlike web apps, APIs are programmable, making it easier for attackers to target APIs using

bots. Bot traffic can probe for weaknesses in APIs, abuse guest accounts with brute force

attacks, use customer API keys to access private APIs, abuse loyalty programs, or scrape

pricing data for competitors via APIs. Bad bots comprise 10% to 15% of internet traffic today.

An advanced API platform uses sophisticated machine learning algorithms on data

aggregated across multiple customers. Because it analyzes billions of API calls, it can

distinguish legitimate human traffic more effectively than it would from a single data source.

When the API platform identifies a bot-like signature in an call pattern, it flags that signature.

An organization can then specify the action to take for each such identified bot signature.

The API platform then automatically takes appropriate actions like blocking, throttling, or

honeypotting.

Identity
Management

and Governance
RBAC Management

IDM Integration

Global Policies

User Provisioning

AD / LDAP Groups

Data Security
Org Boundaries

Encryption

SOC 2, PCI-DSS, HIPAA

Data Security
Two-Way TLS

API Key

OAuth2

Threat Protection
Quota/Spike Arrest

SQL Threat Protection

JSON Bomb Protection

IP Based Restrictions

Regular Expression Validation

Access Control
OAuth2

API Key Verfication

IP Access Control

Logging & Auditing

Data Security
Two-Way TLS

Southbound VPN

IP Access Control

Logging & Auditing

BackendApps

18© CC BY-SA API Best Practices

1 2 3

WAF

WAF

EDGE

EDGEEDGE

Application /
Microservice

API Security

Don’t rely on WAFs for API security

Many organizations use web application firewalls (WAF) to secure their web apps. But how

does an API platform, with its API security capabilities, fit with WAFs?

Typically, WAFs treat applications as black boxes and apply IP-based (or some light content-

based traffic blocking). However, API platforms have the ability to fully inspect API calls—and,

as a consequence, can do a better job of API security than a WAF. API platforms are “smarter,”

as they have an execution engine built right into the proxy layer. Data persistence in API

platforms enables you to do more (stop bots, for example) than stateless operations.

In the potential options above, as the sophistication of API platforms continue, most

organizations’ application security needs would be covered by API platforms (option 1 above).

It has the benefit of lower overall latencies and consistent management of security policies.

If your existing WAF is built into your CDN, option 2 might be the right approach. The API

platform sits behind the WAF/CDN. In situations where applications can only be accessed

through a WAF gateway, option 3 might the right approach.

“We wanted to secure our APIs, as we don’t distinguish between internal

or external use.”

- Ole Dallerup, TrustPilot

© CC BY-SA 19API Best Practices

API Testing and Deployment

Once API proxies are designed and built, they need to be tested and deployed into

production. But these API proxies don’t live in isolation. They’re closely linked to the target

APIs/backend applications they front. Thus, one needs to coordinate the API lifecycle and the

software development lifecycle (SDLC) of these applications.

One of the critical phases of the API lifecycle is testing. Organizations have adopted test-

driven development (TDD) and behavior-driven development (BDD) approaches to application

testing; they’re also using TDD and BDD to test their APIs. Organizations can also leverage

their application testing framework and tools to automate API testing and reduce the

maintenance costs of their API catalog.

How to:
Sync the API lifecycle with the SDLC and automate
testing and deployment of APIs.

Align the API lifecycle with the SDLC

Every organization has its own SDLC with various stages (dev, test, and prod, for example).

The API lifecycle should be aligned with the SDLC process.

To ensure separation of concerns between production and non-production API usage,

organizations use the concept of organization available in an API management platform to

keep users, APIs, and API traffic distinct from one another.

API management platforms also employ the concept of environment, which provides

the runtime execution context for the API proxies (target endpoints, for example). It is

recommended to have two organizations (production and non-production) and six different

environments for your API proxies in an API platform as shown below. Typically, the pre and

prod environments are setup in a production organization, while the rest of the environments

are setup in a separate, non-production organization.

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development

20© CC BY-SA API Best Practices

API Lifecycle

Target Backend
App SDLC

API Target

DEV INTG PERF UAT PRE PROD

MOCK

DEV TEST PERF UAT PROD PROD

API Lifecycle

API Lifecycle

API Target

Target
Backend
App SDLC

API Testing and Deployment

In the example above, if the target backend app has fewer stages, you can either reduce the

number of API lifecycle stages/environments or point a number of different API environments

to the same target environment (API PERF and API UAT point to APP PERF, for example).

As the API proxy goes from one stage to another, different types of testing and target

backends are used. An API lifecycle can be automated by employing the same continuous

integration (CI) framework and tools used for applications.

Apart from the target app SDLC above, the apps consuming the APIs will have their own SDLC

and the API lifecycle needs to be in-sync with that SDLC. Typically, there is also a sandbox

environment provided for app developers to test their apps with a mock backend. After the

initial app development, developers typically use prod APIs for the rest of their SDLC.

Test APIs using TDD and BDD approaches

Organizations use TDD or BDD approaches to create the right set of tests to validate the API

being built. In the dev environment, API proxies are created from Open API specifications;

alternatively, template patterns are used to generate proxies with yeoman generators or

common proxy templates. The API proxies are then attached a set of out-of-the-box policies

like XML/JSON threat protection or OAuth2. Most organizations store the API proxies in the

same repository as their application code (typically GitHub).

Organizations do behavioral testing of their APIs in this stage, using mock targets to ensure

wide testing coverage. Static code analysis can be run on custom policies (Java or JavaScript

policies) with tools like JSLint and CheckStyle, followed by unit testing and code coverage.

Typically, organizations use tools like Junit and Mocha for unit testing and Istanbul and

Cobertura for code coverage.

In the INTEGRATION (INTG) phase, the APIs use a real TEST target. You can use tools like

apickli for functional and integration testing. In the PERF stage, performance is tested using

a non-production southbound target to determine performance degradation and volume

capacity limits.

http://yeoman.io/authoring/
https://github.com/apickli/apickli

© CC BY-SA 21API Best Practices

API Testing and Deployment

In UAT, PRE and PROD, a smaller subset of tests are run to test basic API setup and

functionality. The PRE environment is a mirror of prod and is used for final testing before

deployment of production APIs. When moving an API proxy into production, an organization

should also publish the specifications and associated documentation to the developer portal.

Once an API proxy is ready for production deployment, an organization needs to decide

where to deploy it.

Deploy APIs depending on type of workload

The target backends of API proxies can be microservices, legacy SOAP services, cloud

workloads, or services in a PaaS. Several attributes of the target application/service

determine where and how API proxies should be deployed. They include:

•	Type of service Microservices or a serverless or monolith app

•	Existing interface RESTful API or legacy API, such as a SOAP API

•	Application environment On premises, in the public cloud, or in a PaaS

•	Use case Internal consumption only or for external use (partners, for example)

An organization can either deploy production proxies into a centralized runtime environment

or deploy proxies in a distributed mode.

Centralized deployment

In this mode, the API is deployed to a central set of gateways that are either hosted in

the public cloud or in an organization’s private data centers, depending on where the API

management solution is deployed. Typically, for external use cases or monolith apps running

in the public cloud, this is the preferred approach to minimize operational overhead. For

applications with legacy interfaces that require complex transformations and processing,

centralized API deployment may be the only option.

Distributed deployment

For internal use cases, microservices, or serverless apps, it’s best to have the API closer to

the application environment to minimize latency. In these cases, the API is deployed to a

lightweight API gateway that is collocated with the app or microservices, while the rest of API

management services like analytics and developer services are centrally located.

22© CC BY-SA API Best Practices

API Testing and Deployment

Automate your testing and deployment lifecycle

In many organizations, for compliance reasons and to reduce manual errors, the deployment

lifecycle is automated. Most organizations use continuous integration (CI) methodology and

tools to automate their software development lifecycle. The API testing and deployment

lifecycle can be automated using the same set of tools. Using the management APIs of your

API platform, organizations can programmatically migrate API proxies from one environment

to another.

Automating the testing and deployment of APIs speeds up finding and fixing proxy code and

integration errors, enabling more frequent and successful API proxy releases.

A typical approach entails writing scripts that programmatically deploy proxies into an

environment, as part of a larger SDLC automated process that also deploys or migrates the

application code. Organizations might use tools like Apache Grunt or Maven to automate their

SDLC. By using API management plugins, such as the Apigee deploy maven plugin, to these

popular devOps tools, it’s easier to automate the API testing and deployment lifecycle and fit

into an organization’s SDLC environment.

“Moving to a platform-based approach, where APIs wrap our core services, allows

us more business agility.”

- Paul Clark, ITV

https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/apigee/apigee-deploy-maven-plugin

© CC BY-SA 23API Best Practices

Developer Portal

A key aim for API providers should be the prolific adoption of APIs by app developers. As

organizations build developer portals, the key questions to answer include:

•	How do we make APIs easily discoverable and what API-related content and packaging do

we need to make app developers successful?

•	How do we manage app developer onboarding?

•	How do we manage identities and access permissions of our API team members, internal

app developers, and partner app developers for the developer portal?

How to:
Publish easy-to-use APIs with interactive
documentation and self-service capabilities

Publish automated, interactive documentation

A big part of making APIs easy to use for developers is making them easily discoverable.

Interactive API documentation, sample request/response patterns, and easy tracking of API

usage help, too.

Most organizations use the Open API specification to create interactive API documentation.

It enables developers to not only understand the API specifications, but also try, test, and

debug API calls.

API management platforms enable the automatic generation of API documentation and

publishing to the developer portal. The automatically generated, up-to-date documentation

ensures app developers can easily discover the right APIs and get started.

Enabling a vibrant developer community also entails providing feedback, making it easy to

request support and features, and enabling the submission of content that can be accessed

by other developers.

24© CC BY-SA API Best Practices

API

API

/store

/catalog

Location Details Inventory

Item_ID Promotions Sales

Product 1 Product 2
Price Free
Quota 10 requests
 per sec

Price .0001 per request
Quota 100 requests
 per sec

Developer Portal

Package your APIs for consumption

Organizations also simplify API consumption and enforce API best practices by promoting

the concept of an API product, which is a way to package APIs and associated resources

into bundles and attach rate limits and pricing. Using the API product feature available in API

platforms, organizations can create different tiers of offerings for different sets of users using

the same set of APIs and resources.

An API product enables organizations to achieve two objectives: differentiated access to APIs

to various groups of users, and the ability to quickly try out new API-based business models.

In terms of differentiated access, organizations can configure API products to provide access

to APIs only to API developers, or for certain group of registered app developers like partner

developers, or to all registered app developers (in the case of public APIs).

Organizations can also easily experiment with different out-of-the-box business models for

their APIs, including usage-based pricing ($0.00005 per API call, for example), a flat fee ($100

per month) or a revenue-sharing model (2% of API-related revenue).

Automate developer onboarding

There are several ways to onboard app developers to a developer program and get them

started building apps using an organization’s APIs. The appropriate mode depends on the

business model, target developers, and a company’s compliance policies.

Fully self-service

Here, app developers can sign up, register their app, get their app keys, and get started—all

without any approvals from the portal administrator. Most internal developer portals are set

up in this mode, and they’re typically integrated with corporate active directory systems.

© CC BY-SA 25API Best Practices

Developer Portal

Organizations that have public APIs and want to engage large developer communities use

this method as well. In most cases, the administrator is notified by email about the signups to

track usage.

Admin-approved

In this mode, app developers register on their own, but there’s an admin approval step in the

process. Upon admin approval, the app developer can register apps, get keys, and access all

the documentation. Organizations that want to expose APIs to strategic partners tend to use

this method.

Admin-led

Here, the portal administrator signs up the app developers. This is an uncommon approach,

but in certain, highly sensitive cases, organizations will use this method to restrict access

to APIs.

Tie user identities to existing enterprise IDMs

Several types of developers use a developer portal, including an organization’s API

developers, as well as internal and external app developers. For each type of user, an

organization chooses one of two approaches to manage users’ identities in the

developer portal.

Built-in directory

Most developer portals provided by API management vendors have a built-in module to store

and manage user identities. Typically, organizations use this capability to store external app

developers’ information.

Single sign-on integration

Most enterprises have an active directory (AD) and use an active directory federated service

(ADFS) provider like Okta, CA Siteminder, or Ping Identity. To enable single sign-on using

ADFS, API management developer portals enable easy integration with an enterprise ADFS

through SAML protocol. This is the most common implementation for internal app developers

and API team members.

“APIs are hugely important for today’s business … we see APIs as critical to our

ability to keep pace with customers.”

- Charlotte Yarkoni, Telstra

© CC BY-SA 26API Best Practices

API Consumers API Producers Product Owners Operations Admin

Secure API Runtime API Analytics
Apps Backend

API Analytics

API providers need to measure, analyze, and act on metrics associated with their APIs and API

programs. API programs typically involve four types of users with unique needs when it comes

to analyzing API metrics.

API consumers

App developers want to understand the volume of API traffic and the quality of service

(success rates, response times, and response codes, for example) for the APIs that they build

their apps against. App developers also need to track business metrics (including money

exchanged with the API producer), based on the API product pricing plans.

API producers

API developers care about building APIs using best practices based on learnings derived from

other API developers who are doing similar things (such as applying specific types of policies

to their API proxies). In addition, API developers need visibility into the step-by-step behavior

of all the APIs they build in order to diagnose latency problems and improve performance of

those APIs.

Product owners

Product managers are responsible for the success of API programs; they need to measure

the adoption and usage of the published APIs across various dimensions including products,

developers, apps, channels, and locations. Product managers also want to measure the

business impact and financial value of those APIs by capturing transaction or business

metrics related to them.

© CC BY-SA 27API Best Practices

API Analytics

How to:
Use analytics to gain better insights
into your APIs and API program

Operations admins

Operations teams care about maintaining peak performance and availability of their APIs.

They want to see the throughput, latency, and errors associated with those APIs. In addition,

they expect to get alerted in near real-time to quickly identify and resolve any issues that

affect the quality of service of their APIs. The same teams also care about protecting their

APIs against malicious bots that may compromise their data and services.

Analytics in API management platforms solves different problems for each of these user types

and leverages data related to APIs, app developers, applications, and end users.

Optimize API functionality by tracing API calls

API developers apply a set of policies on APIs to ensure seamless and robust app functionality

while protecting their backend systems. API developers must ensure that once implemented,

their APIs are functioning as expected and performing with minimal latencies. This is enabled

by visibility into the step-by-step flow with timing information for each API request as it flows

through the API proxy.

Here’s an example of a real-time trace capability that can help API developers diagnose

their APIs.

28© CC BY-SA API Best Practices

API Analytics

Implement the wrong policy, and the API will never get used by app developers. For example,

putting an OAuth policy in a product catalog API will force a user to log in to the mobile

app before getting generic information about a company’s products. This adds friction to

that API’s adoption. By anonymously analyzing APIs across a wide population of customers,

the analytics platform can provide API developers insights into best practices on the most

common policies implemented across a cross-section of APIs.

Monitor peak performance and availability

Once deployed, APIs become the conduit—and potentially the gating factor—for all user

experience that depends on information exchanged via those APIs. Operations teams need

the ability to monitor various traffic metrics in near real-time. In addition to keeping track of

total traffic volume and throughput for each of the APIs, the following metrics serve as first-

level indicators for the overall health of the published APIs:

•	Response times for both the API proxy as well as the backend systems at multiple call

distribution levels (median, TP95, and TP99, for example)

•	Availability measurements based on error rates at each of the various tiers (client tier,

API proxy, and the backend systems)

•	Cache performance for measuring response times and hit rates for each API enabled with

local cache

The diagram below shows the benefit of using a caching policy as part of the API where over

90% of the API calls were addressed from that cache. This resulted in a net improvement of

over 3.5x in response time.

© CC BY-SA 29API Best Practices

API Analytics

Another concern is identifying and blocking malicious users (typically automated bots)

from hitting APIs to either steal valuable information or consume resources. Analyzing

incoming traffic for patterns associated with API call frequency, location, and sequences

can give operations teams the power to maintain optimal operation of their APIs for all their

consumers.

Measure API program success with the right metrics

To measure the success of any API program, product managers must be able to analyze the

following types of metrics and reports:

•	API traffic trends broken down by products, app developers, and apps

•	Trends in signups of new app developers and apps registered for each of their products

•	Revenue or business value delivered for each of their published APIs

•	Revenue generated from app developers for subscribing to their published APIs

•	Most prolific or highest-value developers

•	Developers who are consistently exceeding their quotas

•	Developers who use APIs for free and are candidates for paid offering

Empower app developers with usage and performance data

The organizations that best engage developers provide them with insight into their specific

API usage, performance metrics, and revenue measures.

App developers who subscribe to API products through the company’s developer portal get

visibility into their usage and quality of service for each of those APIs. Some of the metrics

that app developers care about include:

•	Traffic volume, response times, and errors for each of the APIs called over time

•	Breakdown of API calls by the various registered apps

•	Distribution of clients (location, device type, OS platform) making those API calls

•	Overall availability for each of the APIs for valid calls that don’t contain client-side errors

30© CC BY-SA API Best Practices

API Analytics

In addition, if the app developer has subscribed to specific pricing plans for using those APIs,

then it’s necessary to provide some of the following reports for those developers as part of

the developer portal:

•	Traffic volume that applies to each of the various pricing tiers

•	Monthly payment breakdown and overage charges (if applicable) per pricing tier

•	Revenue shared (if applicable) by the API publisher for calls made by the API

subscriber’s apps

“Analytics helps us identify partner applications that aren’t delivering the best

GoToMeeting experience for our users so we can help those

developers improve their apps.“

- API program manager, Citrix

© CC BY-SA 31API Best Practices

API Operations

So you’ve decided to purchase an API management platform. Now you need to decide where

you deploy your API management solution: in the public cloud or in your own private cloud?

Or is there a hybrid approach that’s appropriate?

Organizations need to have a plan to integrate API management into their existing

infrastructure, including monitoring and logging systems. For on-premises deployments,

there should be process in place to scale up and scale down the API management

infrastructure as the business needs change.

How to:
Integrate API management into
your enterprise operations

Deploy API management in the cloud or on premises

When evaluating deployment alternatives, there are several considerations: time to success,

total cost of ownership, security, performance, scalability, and reliability.

Time to success

Deploying API management in a private cloud requires time to acquire, provision, and deploy

hardware; configure software; and train employees to manage the software. Typically, cloud

deployment is the fastest way to launch your API program. For example, the Dutch consumer

review site, TrustPilot, went live in production on Apigee’s API platform in only four hours.

With readily accessible infrastructure and the right people, however, a private cloud is a viable

alternative, as it grants more control over an organization’s infrastructure.

Total cost of ownership

Typically, private cloud deployments tend to have lower software license costs compared

to API management cloud subscription fees. To do an apples-to-apples comparison,

organizations typically look at the total cost of ownership of each option over three years.

32© CC BY-SA API Best Practices

API MANAGEMENT SERVICES

PRIVATE CLOUD

Federated Gateway

API Traffic

API Management

API Operations

After factoring in infrastructure and people costs to deploy, manage, monitor, and support

the API management infrastructure around the clock, the cloud option typically carries a lower

total cost of ownership than the private cloud option. API management vendors can distribute

infrastructure and operational costs across a large set of customers—and pass the

savings on.

Performance

In most use cases, performance doesn’t differ much between private or public cloud options.

There can be an exception, however. In internal use cases, where the target backends and API

users are both in the private cloud, public cloud deployment can sometimes add additional

round-trip latency to the API call. In this instance, one can pursue either the private cloud or a

hybrid cloud solution.

In the hybrid approach, federated gateways are co-located with the application environment,

while the rest of API management is in the public cloud.

© CC BY-SA 33API Best Practices

API Operations

Security and compliance

Depending on an organization’s specific security and compliance requirements, private cloud

deployment might be the only option. In some organizations, certain workloads like payment

transactions cannot be on the public network. In these cases, organizations pursue a hybrid

API management deployment, where some workloads remain on-premises while the rest are

in the public cloud.

API management vendors have put in place many security processes, and have employed

third parties to audit, certify, and enhance the security of their public cloud offerings.

Scale and reliability

An organization’s peak API traffic volume and uptime requirements can also help determine

the right deployment option, as the public cloud option might or might not be available

from your API management vendor. For example, Apigee in the public cloud processes over

300 billion API calls per year and hit a peak traffic of over 50,000 requests per second over

Thanksgiving weekend 2015. Apigee also delivered 99.99% availability to its customers over

the past year.

Integrate with existing monitoring infrastructure

Once an organization has deployed API management, the API operations team will want to

monitor various types of data.

Built-in mesage logging policies in an API platform enable organizations to generate logs and

process messages in an API proxy. Organizations then use logging tools like Splunk to collect

and analyze log data. One can inject a correlation ID in the API tier to correlate events in the

logging platform.

Typically, API platforms enable the collection of runtime data (including API response time,

error rates, and target latency data) using JMX MBeans. Organizations can then use any JMX

compliant APM tool to access runtime data using JMX for on-premises installations.

The loose coupling of an API platform and the APM tool using JMX grants the flexibility to

easily switch APM platform in the future, if needed.

34© CC BY-SA API Best Practices

API Operations

API monitoring Many API platforms provide this capability to do stress testing of APIs and

target systems. It enables organizations to deploy health check APIs that hit target systems

through the API platform and monitor the performance of these APIs.

Component monitoring Organizations can conduct system level checks (e.g., CPU,

memory, network, Disk) and JVM checks (e.g., Thread statistics, heap, GC) by invoking API

platform APIs and using existing monitoring tools.

API analytics Get visibility into variety of usage (developer, API traffic) and performance data

(response time, error rate) data. API platforms provide out-of-the-box API analytics that can

be used to track this data.

If API management is in the public cloud, the infrastructure is maintained by the vendor so

organizations typically have access to only API monitoring and API analytics data.

Scale API platform infrastructure

Organizations that deploy API management in the public cloud take advantage of

auto-scaling and blue-green deployments; both are available out-of-the-box from API

platform vendors.

edge

ANALYTICS

LOG MONITORING

RUNTIME DATA
(METRICS / JMX)

COMPONENT MONITORING API MONITORING

http://apigee.com/about/blog/engineering/why-apigee-auto-scaling-matters
https://community.apigee.com/articles/26974/blue-green-release-rollout-and-auto-scaling.html

© CC BY-SA 35API Best Practices

Provisioned for Peak

Auto Scaled

Traffic

Traffic

Capacity Saved

Infrastructure Capacity: Auto scaled Manual

API Operations

Scaling private cloud deployments

There are two aspects of infrastructure scaling: API gateways (routers and message

processors) and distributed databases that store API keys, users, and policies.

Most vendors provide a private cloud estimator (PCE) that automates sizing and topology

requirements analysis and the creation of topology design. The tools take as input a collection

of requirements, and perform analysis based on the vendor’s recommended topology design

patterns and practices. PCE is typically available in two interfaces: a Web UI that makes it

simple to submit requirements and visualize results as well as a REST API, which supports all

available functionality on the Web UI.

An API gateway typically has a router and a message processor that processes and

routes incoming API requests and outgoing API responses. There’s a variety of factors

that determine how the API gateways should be scaled up or down, including the average

transactions per second, peak transactions per second, complexity of the proxies (processing

done by message processors), geographic distribution, and resiliency requirements.

Most API platforms use distributed databases to store API proxy bundles, API keys, and app

developer profiles. An organization might need to scale up its distributed database if its data

outgrows the capacity of a cluster or node, or to improve latency when API traffic increases.

In distributed databases like Cassandra, capacity can be added to an existing cluster by

adding one node at a time or doubling the capacity.

Generally, automating the scaling of the infrastructure to eliminate manual provisioning errors

is recommended.

http://54.224.244.242/

© CC BY-SA 36API Best Practices

Conclusion

APIs play an increasingly critical role in evolving application architectures, with organizations

adopting modern software development practices like microservices, multiple clouds, and

PaaS. APIs are the connecting tissue.

But as APIs pervade enterprises, a host of new challenges arise, requiring a holistic approach

to managing APIs across the organization.

A sophisticated API management platform is the answer; it provides consistent security,

visibility, discovery, and reuse of all an organization’s APIs. An API management platform

facilitates operational agility, enabling companies to treat monolithic legacy systems as

modular microservices that can be modified without impacting overall system health.

It enables the speedy delivery of APIs that are easy for developers to consume, thanks

to interactive documentation and self-service capabilities. It provides insights into an

organization’s APIs and API program, thanks to advanced analytics dashboards. It enables the

management of APIs to be tightly integrated with enterprise operations, thanks to public and

private cloud deployment options.

And an API management platform provides enterprises a single pane of glass to securely

manage all APIs across the organization.

In today’s digital economy, organizations must either adopt best practices in each stage of

the API lifecycle—or risk becoming cautionary tales. Enterprises increasingly are relying on

API management platforms to meet this challenge.

API Best Practices

Apigee is a registered trademark in the U.S. Other product or
company names mentioned may be trademarks or trade names
of their respective companies. 37

About Apigee

Apigee® powers the APIs that make every business a digital business. Apigee provides a

leading API platform that helps companies—from disruptive start-ups to the Fortune 100—

rapidly adapt to the business and technology requirements of the connected, digital world.

Many of the world’s largest organizations select Apigee to enable their digital business,

including over 30 percent of the Fortune 100, four of the top five Global 2000 retail companies,

and five of the top 10 global telecommunications companies.

For more information, visit apigee.com

Share this eBook

http://www.apigee.com
https://twitter.com/intent/tweet?text=Learn%20how%20to%20manage%20the%20%23API%20lifecycle%2C%20from%20design%20to%20delivery%2C%20and%20everything%20in%20between%2E%20Download%20API%20Best%20Practices%2E%20http://bit.ly/2hY8Htp
https://www.linkedin.com/shareArticle?mini=true&url=https://pages.apigee.com/ebook-api-best-pratices-managing-the-api-lifecycle-reg.html?utm_source=sr&utm_campaign=ebook&utm_content=api-best-practices&title=Apigee%20Best%20Practices%20&summary=Apigee%20Survival%20Guide&source=LinkedIn
http://www.facebook.com/sharer/sharer.php?u=https://pages.apigee.com/ebook-api-best-pratices-managing-the-api-lifecycle-reg.html?utm_source=sr&utm_campaign=ebook&utm_content=api-best-practices

