Higher Categories and
Homotopical Algebra

DENIS-CHARLES CISINSKI

Universitdt Regensburg

September 15, 2023

This material has been be published by Cambridge University Press. This pre-publication version is free to view and download for personal use only

Not for re-distribution, re-sale or use in derivative works. ©Denis-Charles Cisinski 2018






For Isaac and Noé






Contents

Preface

Prelude

1.1 Presheaves

1.2 The category of simplicial sets

1.3 Cellular filtrations

1.4 Nerves

1.5  Definition of co-categories

1.6 The Boardman-Vogt construction

Basic homotopical algebra

2.1 Factorisation systems

2.2 Model Categories

2.3 Derived functors

2.4 Model structures ex nihilo

2.5  Absolute weak equivalences

The homotopy theory of co-categories

3.1  Kan fibrations and the Kan-Quillen model structure
3.2 Inner anodyne extensions

3.3 The Joyal model category structure

3.4  Left or right fibrations, joins and slices

3.5 Invertible natural transformations

3.6  co-categories as fibrant objects

3.7  The Boardman-Vogt construction, revisited
3.8  Serre’s long exact sequence

3.9  Fully faithful and essentially surjective functors
Presheaves: externally

4.1  Catégories fibrées en co-groupoides

4.2 Mapping spaces as fibres of slices

page vii
1

1

7

9

14

19

21

27
28
33
41
50
68

72
73
88
92
98
106
112
116
120
130

136
136
144



Vi

Contents

4.3  Final objects

4.4  Grothendieck base change formulas and Quillen’s
Theorem A

4.5  Fully faithful and essentially surjective functors, revisited

4.6  Locally constant functors and Quillen’s Theorem B

Presheaves: internally

5.1  Minimal fibrations

5.2 The universal left fibration

5.3  Homotopy classification of left fibrations
5.4  Rectification of morphisms

5.5  Bivariant model category structures

5.6  The twisted diagonal

5.7  Locally small co-categories

5.8  The Yoneda Lemma

Adjoints, limits and Kan extensions
6.1  Adjoints

6.2  Limits and colimits

6.3  Extensions of functors by colimits
6.4  Kan extensions

6.5  The Cartesian product

6.6  Fibre products

6.7  Duality

Homotopical algebra

7.1  Localisation

7.2 Calculus of fractions

7.3 Constructions of limits

7.4 Finite direct diagrams

7.5  Derived functors

7.6  Equivalences of co-categories with finite limits
7.7  Homotopy completeness

7.8  The homotopy hypothesis

7.9  Homotopy limits as limits

7.10 Mapping spaces in locally small localisations
7.11 Presentable co-categories

Bibliography

Notations

Index

149

155
172
175

184
185
196
204
217
226
238
243
249

261
262
275
283
291
298
305
313

318
321
330
340
356
368
384
393
398
403
410
415
423
428
430



Preface

A couple of perspectives and a tribute

The aim of this book is to introduce the basic aspects of the theory of co-catego-
ries: ahomotopy theoretic variation on Category Theory, designed to implement
the methods of Algebraic Topology in broader contexts, such as Algebraic Ge-
ometry [TVO05, TVOS, Lur09, Lurl7] or Logic [Unil3, KL16, Kapl7]. The
theory of co-categories is not only a new approach to the foundations of math-
ematics: it appears in many spectacular advances, such as the proof of Weil’s
conjecture on Tamagawa numbers over function fields by Lurie and Gaitsgory,
or the modern approach to p-adic Hodge Theory by Bhatt, Morrow and Scholze,
for instance.

For pedagogical reasons, but also for conceptual reasons, a strong emphasis
is placed on the following fact: the theory of co-categories is a semantic in-
terpretation of the formal language of category theory.! This means that one
can systematically make sense of any statement formulated in the language of
category theory in the setting of co-categories.”

We also would like to emphasise that the presence of Homotopical Algebra
in this book is not as an illustration, nor as a source of technical devices: it is at

1 To be precise, the language of Category Theory is the one provided by a Cartesian closed
category endowed with an involution X +— X7, called the ‘opposite category functor’, a
monoidal structure defined by a ‘join operation’ * , whose unit is the initial object, and which
is symmetric up to the opposite operation: X =Y = (Y x X°P)°P. Furthermore, for each
object Y, we have the slice functor, obtained as a right adjoint of the functor

X — (Y — X +Y). Finally, there is a final object A®, and we get simplices by iterating the
join operation with it: A” = A9 + A"~ Category Theory is obtained by requiring properties
expressed in this kind of language.

There is, more generally, a theory of (oo, n)-categories: a semantic interpretation of the
language of (strict) n-categories (for various ordinals n). The theory of co-categories as above
is thus the theory of (oo, 1)-categories. Although we shall not say more on these higher
versions here, the interested reader might enjoy to have a look at Baez’s lectures [BS10] on
these topics.

vii
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the core of basic Category Theory. In classical Category Theory, Homotopical
Algebra seems peculiar, because classical homotopy categories do not have
(co)limits and are not concrete (i.e. cannot be embedded in the category of
sets in a nice way), as the fundamental case of the homotopy category of
CW-complexes shows [Fre70]. This is partly why some traditions seem to put
classical Category Theory and classical Homotopy Theory apart. The story that
we want to tell here is that the theory of co-categories involves a reunion: with
this new semantic interpretation, homotopy theories define co-categories with
(co)limits, and the classical methods of Category Theory do apply to them (and
the problem of concreteness disappears because co-groupoids take the role of
sets, not by choice, but under the rule of universal properties). In particular,
in this book, model categories will eventually be allowed to be co-categories
themselves, and we shall observe that the localisation of a model category is
also a model category, where the weak equivalences are the invertible maps
and the fibrations are all maps (for the reader who might not be familiar with
such a language, the present text aims at explaining what such a sentence is
about). This means that homotopy theories and their models do live in the same
world, which changes dramatically our perspective on them. Finally, one may
see Homotopical Algebra as the study of the compatibility of localisations with
(co)limits. And the semantics of co-categories makes this a little more savory
because it provides much more powerful and flexible statements. Moreover,
the fact that the free completion of a small category by small colimits can be
described as the homotopy theory of presheaves of spaces on this category
puts Homotopical Algebra at the very heart of the theory of Kan extensions,
and thus of Category Theory itself. This enlightens many classical results
of the heroic days of Algebraic Topology, such as Eilenberg and Steenrod’s
characterisation of singular homology, for instance. In some sense, this is the
natural outcome of a historical process. Indeed Category Theory was born as
a convenient language to express the constructions of Algebraic Topology, and
the fact that these two fields were separated is a kind of historical accident whose
effects only started to fade in the late 1990’s, with the rise of co-categories as
we know them today, after the contributions of André Joyal, Carlos Simpson,
Charles Rezk, Bertrand Toén and Gabriele Vezzosi, and of course Jacob Lurie.
A pioneer of Higher Category Theory such as Daniel M. Kan was aware of
the very fact that Category Theory should extend to Homotopy Theory already
in the 1950’s, and his contributions, all along his mathematical life, through
the theory of simplicial categories, with William Dwyer, and, more recently,
through the theory of relative categories, with Clark Barwick, for instance, are
there to testify to this. The title of this book is less about putting Higher Category
Theory an Homotopy Theory side by side, than observing that Higher Category
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Theory and Homotopical Algebra are essentially the same thing. However, a
better tribute to Daniel M. Kan might have been to call it Category Theory,
plain and simple.

A glimpse at the narrative

As we already wrote above, this text emphasises the fact that the theory of
oco-categories is a semantic interpretation of the language of Category Theory.
But, when it comes to language, there is syntax. And, if Category Theory is
full of identifications which are not strict, such as isomorphisms, equivalences
of categories, or even wider notions of weak equivalences, this does not get
better with the theory of co-categories, which has an even greater homotopy-
theoretic flavour. While the only identification known by syntax is the identity. In
practice, this means that we have to introduce various rectification tools, in order
to bring back categorical constructions into our favourite language. In Lurie’s
book [Lur09], which is the standard reference on the subject, by its quality
and its scope, this rectification appears early in the text, in several disguises,
in the form of Quillen equivalences relating various model structures (e.g., to
compare Joyal’s model category structure, which encodes the homotopy theory
of co-categories, with Bergner’s model category structure, which expresses
Dwyer and Kan’s homotopy theory of simplicial categories). These Quillen
equivalences consist in introducing several languages together with tools to
translate statements from one language to another (for instance, the language
provided by the category of simplicial sets, which is used to describe the
Joyal model structure, and the language of simplicial categories). This is all
good, since one can then extract the most convenient part of each language to
express ourselves. But these Quillen equivalences are highly non-trivial: they
are complex and non-canonical. And since they introduce new languages, they
make unclear which aspects of a statement are independent of the theory we
chose to express ourselves.

There are many models to describe co-categories, in the same way that there
are many ways to describe homotopy types of CW-complexes (such as Kan
complexes, or sheaves of sets on the category of smooth manifolds). All these
models can be shown to be equivalent. For instance, as already mentioned above,
in Lurie’s book [Lur(9], the equivalence between Kan’s simplicial categories
and Joyal’s quasi-categories is proved and used all along the text, but there
are plenty of other possibilities, such as Simpson’s Segal categories [Sim12],
or Rezk’s complete Segal spaces [Rez01]. A reference where to find all these
comparison results is Bergner’s monograph [Ber18], to which we should add
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the beautiful description of co-categories in terms of sheaves on an appropriate
category of stratified manifolds by Ayala, Francis and Rozenblyum [AFR17].
Riehl and Verity’s ongoing series of articles [RV16, RV17a, RV17b] aims at
expressing what part of this theory is model independent.

In the present book, we choose to work with Joyal’s model category structure
only. This means that our basic language is the one of simplicial sets. In fact, the
first half of the book consists in following Joyal’s journey [Joy08a, Joy08b], step
by step: we literally interpret the language of category theory in the category
of simplicial sets, and observe, with care and wonder, that, although it might
look naive at first glance, this defines canonically a homotopy theory such that
all the constructions of interest are homotopy invariant in a suitable sense.
After some work, it makes perfect sense to speak of the co-category of functors
between two oco-categories, to see homotopy types (under the form of Kan
complexes) as co-groupoids, or to see that fully faithful and essentially surjective
functors are exactly equivalences of co-categories, for instance. Still in the same
vein, one then starts to speak of right fibrations and of left fibrations (i.e.,
discrete fibrations and discrete op-fibrations, respectively). This is an approach
to the theory of presheaves which is interesting by itself, since it involves
(generalisations of) Quillen’s theorems A and B, revisited with Grothendieck’s
insights on homotopy Kan extensions (in terms of smooth base change formulas
and proper base change formulas). This is were the elementary part ends, in
the precise sense that, to go further, some forms of rectification procedure are
necessary.

In classical Category Theory, rectification procedures are most of the time
provided by (a variation on) the Yoneda Lemma. In Lurie’s work as well: the
rectification (straightening) of Cartesian fibrations into simplicial contravari-
ant functors is widely used, and this is strongly related to a homotopy theoretic
version of the Yoneda Lemma for 2-categories.” Rectification is a kind of
internalisation: we want to go from co-groupoids (or co-categories), seen as
objects of the theory of co-categories, to objects of a suitable ‘co-category of
co-groupoids’ (or ‘of co-categories’). This step is non trivial, but it is the only
way we can see how objects defined up to homotopy are uniquely (and thus
coherently) determined in a suitable sense. For instance, externally, the compo-
sition of two maps in an co-category C is only well defined up to homotopy (i.e.

3 There is no need to understand this to go through this book, but for the sake of completness, let
us explain what we mean here. From a Grothendieck fibration p : X — A, we can produce a
presheaf of categories F on A by defining F (a) as the category of Cartesian functors from the
slice category A/a to X (over A) for all a. The fact that p and F determine each other is
strongly related to the 2-categorical Yoneda Lemma, which identifies F'(a) with the category
of natural transformation from the presheaf represented by a to F, and to its fibred counterpart:
there is a canonical equivalence of categories from F (a) to the fibre X, of p at a.
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there is a contractible space of choices) in the sense that, given three objects x,
y and z in C there is a canonical homotopy equivalence

C(x,y) xC(y,z) « C(x,y,2)

relating the co-groupoid C(x, y, z) of pairs of maps of the form x — y — z,
equipped with a choice of composition x — z, with the product of the co-
groupoid C(x, y) of maps of the form x — y with the co-groupoid C(y, z) of
maps of the form y — z, and there is a tautological composition law

C(x,y,z) » C(x,2).

Composing maps in C consists in choosing an inverse of the homotopy equiv-
alence above and then applying the tautological composition law. In the case
where C is an ordinary category, i.e. when C(x, y) is a set of maps, the compo-
sition law is well defined because there really is a unique inverse of a bijective
map. The fact that the composition law is well defined and associative in
such an ordinary category C implies that the assignment (x,y) — C(x,y)
is actually a functor from C° x C to the category of sets. But, when C is
a genuine co-category, such an assignment is not a functor anymore. This is
due to the fact that the above is expressed in the language of the category of
oo-categories (as opposed to the co-category of co-categories), so that the as-
signment (x, y) — C(x, y) remains a functional from the set of pairs of objects
of C to the collection of co-groupoids, seen as objects of the category of co-
categories. Asking for functoriality is then essentially meaningless. However,
internally, such compositions all are perfectly well defined in the sense that
there is a genuine Hom functor with values in the co-category of co-groupoids:
there is an appropriately defined co-category 8 of oco-groupoids and a functor

Homec : C? xC — 8.

Of course, for the latter construction to be useful, we need to make a precise
link between co-groupoids, and the objects of 8, so that C(x, y) corresponds to
Homc¢ (x, y) in a suitable way. And there is no easy way to do this.

Another example: the (homotopy) pull-back of Kan fibrations becomes a
strictly associative operation once interpreted as composition with functors
with values in the co-category of co-groupoids. And using the Yoneda Lemma
(expressed with the functor Hom¢ above), this provides coherence results
for pull-backs in general. More precisely, given a small co-groupoid X with
corresponding object in 8§ denoted by x, there is a canonical equivalence of
co-groupoids between the co-category of functors Hom(X, §) and the slice co-
category 8/x (this extends the well known fact that the slice category of sets
over a given small set X is equivalent to the category of X-indexed families of
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sets). Given a functor between small co-groupoids F : X — Y corresponding
toamap f : x — yin 8, the pull-back functor

Sly = 8/x, (1t = y) = (x Xyt —x)
corresponds to the functor
Hom(Y,8) —» Hom(X,S), ® + ®F.

The associativity of composition of functors in the very ordinary category of
oco-categories thus explains how the correspondence

Hom(X,S8) = 8/x

is a way to rectify the associativity of pull-backs of co-groupoids which only
holds up to a canonical invertible map.

Rectification thus involves a procedure to construct and compute functors
with values in the co-category of co-groupoids, together with the construction
of a Hom functor (i.e., of the Yoneda embedding). In this book, we avoid
non-trivial straightening/unstraightening correspondences which consist in de-
scribing co-categories through more rigid models. Instead, we observe that
there is a purely syntactic version of this correspondence, quite tautological
by nature, which can be interpreted homotopy-theoretically. Indeed, inspired
by Voevodsky’s construction of a semantic interpretation of Homotopy Type
Theory with a univalent universe within the homotopy theory of Kan comp-
lexes [KL16], we consider the universal left fibration. The codomain of this
universal left fibration, denoted by S, has the property that there is an essen-
tially tautological correspondence between maps X — S and left fibrations
with small fibres ¥ — X. In particular, the objects of S are nothing else than
small co-groupoids (or, equivalently, small Kan complexes). In the context of
ordinary Category Theory, such a category & would be the category of sets.
In this book, we prove that, as conjectured by Nichols-Barrer [NBO7], § is an
oo-category which is canonically equivalent to the localisation of the category
of simplicial sets by the class of weak homotopy equivalences (hence encodes
the homotopy theory of CW-complexes). Furthermore, the tautological corre-
spondence alluded to above can be promoted to an equivalence of co-categories,
functorially in any co-category X: an equivalence between an appropriate co-
category of left fibrations of codomain X and the co-category of functors from
X to 8. Even better, the co-category of functors from (the nerve of) a small
category I to § is the localisation of the category of functors from 7 to simplicial
sets by the class of levelwise weak homotopy equivalences. This description of
the co-category of co-groupoids is highly non-trivial, and subsumes the result
of Voevodsky alluded to above, about the construction of univalent universes
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within the homotopy theory of Kan complexes. But it has the advantage that
the rectification of left fibrations is done without using the introduction of an
extra language, and thus may be used at a rather early stage of the development
of the theory of co-categories, while keeping an elementary level of expression.

In order to promote the correspondence between left fibrations ¥ — X and
functors X — § to an equivalence of co-categories, we need several tools. First,
we extend this correspondence to a homotopy-theoretic level: we prove an
equivalence of moduli spaces, i.e. we prove that equivalent left fibrations corre-
spond to equivalent functors with values in 8 in a coherent way.* Subsequently,
to reach an equivalence of co-categories, we need a series of results which
are of interest themselves. We provide an ad hoc construction of the Yoneda
embedding; this can be done quite explicitely, but the proof that it satisfies the
very minimal properties we expect involves non-obvious computations, which
we could only explain to ourselves by introducing a bivariant version of left
fibrations. Then we develop, in the context of co-categories, all of classical Ca-
tegory Theory (the Yoneda Lemma, the theory of adjoint functors, extensions
of functors by colimits, the theory of Kan extensions) as well as all of classical
Homotopical Algebra (localisations, calculus of fractions, co-categories with
weak equivalences and fibrations, Reedy model structures, derived functors,
homotopy limits). All these aspects are carried over essentially in the same way
as in ordinary Category Theory (this is what internalisation is good for). The
only difference is that inverting weak equivalences in complete co-categories
gives, under suitable assumptions (e.g. axioms for complete model categories)
oo-categories with small limits. Furthermore, we have the following coherence
property: the process of localisation for these commutes with the formation
of functor categories (indexed by small 1-categories). This means that in the
context of co-categories, the notions of homotopy limit and of limit are not
only analogous concepts: they do coincide (in particular, homotopy limits, as
usually considered in Algebraic Topology, really are limits in an appropriate
oco-category). Similarly, there are coherence results for finite diagrams. For
instance, inverting maps appropriately in co-categories with finite limits com-
mutes with the formation of slices. From all this knowledge comes easily the
oco-categorical correspondence between left fibrations ¥ — X and functors
X — 8. Furthermore, in the case where X is the nerve of a small category
A, we observe immediately that the co-category of functors X — § is the lo-
calisation of the category of simplicial presheaves on A by the fibrewise weak
homotopy equivalences, which puts classical Homotopy Theory in perspective
within co-Category Theory.

4 Another way to put it, for type theorists, is that we prove Voevodsky’s univalence axiom for the
universal left fibration.
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A few words on the ways we may read this book

Although they present an alternative approach to the basics of the theory of
co-categories, and even contain a few new results which might make them of
interest to some readers already familiar with higher categories after Joyal and
Lurie, these notes are really meant to be an introduction to the subject. They
are written linearly, that is, following the logical order, which also corresponds
to what was actually taught in a two semesters long lecture series, at least for
most of it. We have aimed at providing complete constructions and proofs,
starting from scratch. However, a solid background in Algebraic Topology or
in Category Theory would certainly help the reader: the few examples only
appear at the very end, and, when we introduce a concept, we usually do not
give any historical background nor pedestrian justification. We have tried to
make clear why such concepts are natural generalisations of siblings from
Category Theory, though. Despite this, apart from a few elementary facts from
standard Category Theory, such as the contents of Leinster’s book [Leil4]
or parts of Riehl’s [Riel7], there are no formal prerequisites for reading this
text. A very few technical results, generally with an elementary set-theoretic
flavour, are left as exercises, but always with a precise reference where to find a
complete proof. In particular, we do not even require any previous knowledge
of the classical homotopy theory of simplicial sets, nor of Quillen’s model
category structures. In fact, even the Kan-Quillen model category structure,
corresponding to the homotopy theory of Kan complexes, is constructed in
detail, as a warm up to construct the Joyal model category structure, which
corresponds to the homotopy theory of co-categories. We also revisit several
classical results of Algebraic Topology, such as Serre’s long exact sequence of
higher homotopy groups, as well as Quillen’s famous Theorem A and Theorem
B. These well known results are proven in full because they appear in this
book in a rather central way. For instance, in order to prove that a functor is
an equivalence of co-categories if and only if it is fully faithful and essentially
surjective, one may observe that the particular case of functors between higher
groupoids (i.e. Kan complexes) is a corollary of Serre’s long exact sequence.
Interestingly enough, the general case follows from this groupoidal version.
Similarly, the account we give of Quillen’s Theorem A is in fact a preparation
of the theory of Kan extension, and Quillen’s Theorem B is a way to understand
locally constant functors (which will be a technical but fundamental topic in
the computation of localisations).

For the readers who already know the basics of co-category theory (e.g.
the five first chapters of [Lur09]), parts of Chapters 4, 5 and 6 might still
be of interest, since they give an account of the basics which differs from
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Lurie’s treatment. But such readers may go directly to Chapter 7, which deals
with the general interpretation of Homotopical Algebra within the theory of
higher categories. The treatment we give of homotopical techniques in this last
chapter gives robust and rather optimal tools to implement classical homotopy
theories in higher categories. This is a nice example which shows that apparently
abstract concepts, such as the one of Kan extensions, can be used intrinsically
(without apparently more explicit tools, such a homotopy coherent nerves) to
organise a theory (e.g. the localisation of higher categories) both conceptually
and effectively (i.e. producing computational tools).

One of the interests of using a single formalism which is a literal semantic
interpretation of the language of Category Theory is that, although the proofs
can be rather intricate, most of the statements made in this book are easy enough
to understand, at least for any reader with some knowledge of Category Theory.
This hopefully should help the reader, whether she or he wants to read only
parts of the book, or to follow it step by step. Furthermore, each chapter starts
with a detailed description about its purposes and contents. This is aimed at
helping the reader to follow the narrative as well as to facilitate the use of the
book for reference.

Finally, as all introductions, this book ends when everything begins. The
reader is then encouraged to go right away to Lurie’s realm. And beyond.
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Prelude

This short chapter is meant to introduce the definition of co-categories. How-
ever, it starts with a recollection on presheaves of sets on a small category,
on the Yoneda Lemma, as well as on the ramifications of the latter through
extensions of functors by colimits (a particular case of left Kan extensions).
This recollection is important because the main language we will use in this
book is the one of presheaves of sets, since co-categories will be defined as
simplicial sets with certain properties, and since simplicial sets are presheaves.
On the other hand, extending functors by colimits via presheaves in the setting
of co-categories may be seen as one of our main goals. In fact, it is probably
what underlies the narrative all along in this book.

The rest of the chapter tells the basic features which allow to understand the
cellular structure of simplicial sets, as well as Grothendieck’s description of
nerves of small categories within simplicial sets. Then comes the definitions
of co-categories and of co-groupoids. We see that all Kan complexes are oco-
groupoids (the converse is true but non-trivial and will only be proved in the
next chapter), and therefore see that the algebra of paths in topological spaces
define co-groupoids. The proof of the theorem of Boardmann and Vogt, which
describes the category associated to an co-category rather explicitely, is quite
enlightening, as it is also a first test which strongly indicates that interpreting
the language of Category Theory within the category of simplicial sets is sound.

1.1 Presheaves

Presheaves will come back in these notes many times, and with many disguises.
This is the way we express ourselves, at least whenever we use the language of
category theory, because of the ubiquitous use of the Yoneda Lemma (which
will be recalled below). However, the more we will go into homotopical algebra,
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the more we will see that this apparently innocent and rather formal looking
result, the more we will see how the Yoneda Lemma ramifies into many refine-
ments. We will recall here the basic results needed about presheaves (of sets).
These will be used as tools right away, but they also will be revisited with the
lenses of homotopical algebra, over and over again. The historical references for
this part are D. M. Kan’s paper [Kan58] (in which the notion of adjoint functor
is introduced for the first time), as well as Grothendieck’s [SGA72, Exposé I]
(the presentation we give here is rather close to the latter).
We write Set for the category of sets.

Definition 1.1.1. Let A be a category. A presheaf over A is a functor of the
form

X : A? — Set
For an object a of A, we will denote by
Xa = X(a)

the evaluation of X at a. The set X, will sometimes be called the fibre of the
presheaf X at a, and the elements of X, thus deserve the name of sections of X
over a. For a morphism u : a — b in A, the induced map from Xj, to X, often
will be written

u =X :Xp - X,

If X and Y are two presheaves over A, a morphism of presheaves f : X — Y
simply is a natural transformation from X to Y. In other words, such a morphism
f is determined by a collection of maps f, : X, — Y,, such that, for any
morphism u : a — b in A, the following square commutes.

XQLYQ

g ] =

XbL)Yb

Presheaves naturally form a category. This category will be written A.

Remark 1.1.2. One checks that a morphism of presheaves f : X — Y is an
isomorphism (a monomorphism, an epimorphism) if and only if, for any object
a of A, the induced map f, : X, — Y, is bijective (injective, surjective,
respectively). Moreover, the evaluation functors X +— X, preserve both limits
and colimits (exercise: deduce this latter property by exhibiting a left adjoint
and a right adjoint). As a consequence, if F : [ — Aisa diagram of presheaves
and if X is a presheaf, the property that a cone from X to F (a cocone from
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F to X) exhibits X as a limit (colimit) of F is local in the sense that it can be
tested fibrewise. In other words, X is a limit (a colimit) of F if and only if,
for any object a of A, the set X, is a limit (a colimit) of the induced diagram
F, : I — Set, respectively.

Definition 1.1.3. The Yoneda embedding is the functor
(1.1.3.1) h:iA— A

whose value at an object a of A is the presheaf
(1.1.3.2) hg = Homg(—,a).

In other words, the evaluation of the presheaf %, at an object ¢ of A is the set
of maps from c to a.

Theorem 1.1.4 (Yoneda Lemma). For any presheaf X over A, there is a natural
bijection of the form

Hom 7(ha, X) > X,
(ha 5 X) = uq(ly)

Proof We only define the map in the other direction: given a section s of X
over a, we define a collection of morphisms

fe : Homu(c,a) — X,

(indexed by objects of A) as follows: for each morphism u : ¢ — a, the section
fe(u) is the element f,. (1) = u™(s). One then checks that this collection defines
amorphism f : h, — X, and that the assignment s — f is a two-sided inverse
of the Yoneda embedding. O

Corollary 1.1.5. The Yoneda embedding h : A — Aisa Sfully faithful functor.

Notation 1.1.6. The author of these notes prefers to write the isomorphism of
the Yoneda embedding as an equality; we will often make an abuse of notations
by writing again f : a — X for the morphism of presheaves associated to a
section f € X, (via the Yoneda Lemma).

Definition 1.1.7. Let X be a presheaf on a category A. The category of elements
of X (we also call it the Grothendieck construction of X) is the category whose
objects are couples (a, s), where a is an object of A, while s is a section of X
over a, and whose morphisms u : (a,s) — (b,t) are morphisms # : a — b in
A, such that u*(t) = s. If we adopt the abuse of notations of paragraph 1.1.6, this
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latter condition corresponds, through the Yoneda Lemma, to the commutativity
of the triangle below.

ha#hb

N

The category of elements of X is denoted by A/X. It comes equipped with a
faithful functor

(1.1.7.1) ox A/X > A

defined on objects by ¢x(a, s) = h,, and on morphisms, by ¢x (#) = u. There
is an obvious cocone from ¢x to X defined by the following collection of maps:

(1.1.7.2) s:he— X, (a,s)€Ob(A/X).
A variation on the Yoneda Lemma is the next statement.

Proposition 1.1.8. The collection of maps (1.1.7.2) exhibits the presheaf X as
the colimit of the functor (1.1.7.1).

Proof LetY be an other presheaf on the category A. We have to show that
the operation of composing maps from X to Y with the maps (1.1.7.2) defines
a (natural) bijection between morphisms from X to Y and cocones from the
functor px to Y in the category of presheaves over A. By virtue of the Yoneda
Lemma, a cocone from ¢x to Y can be seen as a collection of sections

fs €Yy, (a,s)€ Ob(A/X)

such that, for any morphism u : (a,s) — (b,t) in A/X, we have the relation
u*(f;) = fs. This precisely means that the collection of maps

X, - Y,, aecOb(A)

s f

is a morphism of presheaves. One then checks that this operation is a two sided
inverse of the operation of composition with the family (1.1.7.2). O

Remark 1.1.9. Until this very moment, we did not mention size (smallness)
problems. Well, this is because there were not many. We will come back to
size issues little by little. But, whenever we start to be careful with smallness,
it is hard to stop. First, when we defined the Yoneda embedding (1.1.3.1) a
first problem arose: for this construction to make sense, we need to work with
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locally small categories* . We might say: well, maybe that we did not formulate
things properly, since, for instance, even if their formulations seem to need the
property that the category A is locally small, the proofs of the Yoneda Lemma
(1.1.4) and of its avatar (1.1.8) obviously are valid for possibly large categories.
Or we could say: let us restrict ourselves to locally small categories, since,
after all, most authors actually require the property of local smallness in the
very definition of a category. But Definition 1.1.1 actually provides examples
of categories which are not locally small: for a general locally small category
A, the category of presheaves over A may not be locally small (exercise: find
many examples). And there are other (less trivial but at least as fundamental)
categorical constructions which do not preserve the property of being locally
small (e.g. localisation). All this means that it might be wiser not to require that
categories all are locally small, but, instead, to understand how and why, under
appropriate assumptions, certain categorical constructions preserve properties
of smallness, or of being locally small. For instance, we can see that, if ever the
category A is small?, the category of presheaves Alis locally small. Moreover,
the preceding theorem has the following consequence.

Theorem 1.1.10 (Kan). Let A be a small category, together with a locally
small category C which has small colimits. For any functor u : A — C, the
functor of evaluation at u

(1.1.10.1) W :C— A, Y u*(Y)=(ar Home(u(a),Y))
has a left adjoint
(1.1.10.2) u:A—QC.
Moreover, there is a unique natural isomorphism
(1.1.10.3) u(a) =u(hy), aecOb(A),
such that, for any object Y of C, the induced bijection
Home (u1(h4),Y) = Home(u(a),Y)

L A category is locally small if, for any ordered pair of its objects @ and b, morphisms from a to
b do form a small set (depending on the set-theoretic foundations the reader will prefer, a
small set must either be a set, as opposed to a proper class, or a set which is (in bijection with)
an element of a fixed Grothendieck universe). Until we mention universes explicitly (which
will happen in the second half of the book), we can be agnostic, at least as far as Set Theory is
concerned. We refer to [Shu0S8] for an excellent account on the possible set-theoretic
frameworks for Category Theory.

We remind the reader that this means that it is locally small and that its objects also form a
small set.
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is the inverse of the composition of the Yoneda bijection
Home (u(a),Y) =u"(Y)q = Homz(hy, u*(Y))
with the adjunction formula
Hom 7(hg,u*(Y)) =~ Home (u1(hq),Y) .

Proof We shall prove that the functor u* has a left adjoint (the second part of
the statement is a direct consequence of the Yoneda Lemma). For each presheaf
X over A, we choose a colimit of the functor

A/X - C, (a,s) u(a),

which we denote by u;(X). When X = h, for some object a of A, we have a
canonical isomorphism u(a) =~ uy(h,) since (a, 1,) is a final object of A/h,.
Therefore, for any presheaf X over A, and any object ¥ of C, we have the
following identifications.

Home (u:(X).¥) = Home(lim u(a). )
(a,s)
~ @ Home (u(a),Y)
(a,s)
~ @ Hom 7(hg4,u"(Y)) by the Yoneda Lemma
(a,s)
=~ Hom z( h_r)n ha,u”(Y))
(a,s)
=~ Hom z(X,u"(Y)) by Proposition 1.1.8

In other words, the object u)(X) (co)represents the functor Hom (X, u*(-)).
O

Remark 1.1.11. The functor u, will be called the extension of u by colimits. In
fact, any colimit preserving functor F : A > Cis isomorphic to a functor of the
form u, as above. More precisely, for any such a colimit preserving functor F,
if we put u(a) = F(hg), there is a unique natural isomorphism u(X) = F(X)
which is the identity whenever the presheaf X is representable (exercise). For
instance, for ¢ = X, the identity of Ais (canonically isomorphic to) A, for h
the Yoneda embedding.

Corollary 1.1.12. Any colimit preserving functor A— Chasa right adjoint.

Proof 1tis sufficient to consider functors of the form u;, for a suitable functor
u : A — C (see the preceding remark). Therefore, by virtue of Theorem 1.1.10,
it has a right adjoint, namely u*. O
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Notation 1.1.13. Let A be a small category. Then the category of presheaves
over A is cartesian closed: for any presheaves X and Y, there is an internal
Hom, that is a presheaf Hom (X, Y) together with natural bijections

Hom #(7, Hom(X,Y)) =~ Hom (T X X,Y) .
As can be seen from Theorem 1.1.10 and Remark 1.1.11, this object is defined
by the formula
Hom(X,Y), = Homz(hs X X, Y) .
Remark 1.1.14. Given a presheaf X, it is equivalent to study maps of codomain
X or to study presheaves on the category A/X. To be more precise, one checks

that the extension by colimit of the composed functor A/X — A — A sends
the final object of A/X to the presheaf X, and the induced functor

(1.1.14.1) A/X = A/X

is an equivalence of categories. For this reason, even though we will mainly fo-
cus on presheaves on a particular category (simplicial sets), it will be convenient
to axiomatize our constructions in order to apply them to various categories of
presheaves. Equivalence (1.1.14.1) will be at the heart of the construction of
the co-category of small co-groupoids: this will appear in Section 5.2 below,
and will be implicitly at the heart of meany reasoning all along the second half
of this book.

1.2 The category of simplicial sets
We shall write A for the category whose objects are the finite sets
[n]={ieZ|0<i<n}=A{0,...,n}, n=0,

endowed with their natural order, and whose maps are the (non strictly) order-
preserving maps.

Definition 1.2.1. A simplicial set is a presheaf over the category A. We shall
write sSet = A for the category of simplicial sets.

Notation 1.2.2. For n > 0, we denote by A" = h(, the standard n simplex
(i.e. the presheaf on A represented by [n]).
For a simplicial set X and an integer n > 0, we write

(1.2.2.1) X, = X([n]) =~ Homgg,; (A", X)

for the set of n-simplices of X. A simplex of X is an element of X,, for some
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non-negative integer n. In agreement with the abuse of notations introduced
at the number 1.1.6, an n-simplex x of X can also be seen as a morphism of
simplicial sets x : A" — X.

For integers n > 1 and 0 < i < n, we let

(1.2.2.2) o' AT A"

be the map corresponding to the unique strictly order-preserving map from
[n — 1] to [r] which does not take the value i.
For integers n > 0 and 0 < i < n, the map

(1.2.2.3) ol P AT A"

corresponds to the unique surjective map from [n + 1] to [r] which takes the
value i twice.

Proposition 1.2.3. The following identities hold.

(1.2.3.1) ooy =orttor, i<

(1.23.2) oot =ofoltl] i<j
oplon? i<

(1.2.3.3) o7 = { L ie{j,j+1}

oot i>j+1

The proof is straightforward.

Remark 1.2.4. One can prove that the category A is completely determined by
the relations above: more precisely, it is isomorphic to the quotient by these
relations of the free category generated by the oriented graph which consists of
the collection of maps ;' and 0" (with the [r]’s as vertices). In other words, a
simplicial set can be described as a collection of sets X,,, n > 0, together with
face operators d’, = (0")" : Xp — Xp-1 for n > 1, and degeneracy operators
sy = ()" + X, — X,y satisfying the dual version of the identities above.
This pedestrian point of view is often the one taken in historical references.

Notation 1.2.5. For a simplicial set X, we shall write

d, =" Xy, — Xy-1 and s\ = ()" : Xy — Xpa

for the maps induced by the operators ;" and o', respectively.

Although it follows right away from the notion of image of a map of sets, the
following property is the source of many good combinatorial behaviours of the
category A.
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Proposition 1.2.6. Any morphism f : A™ — A" in A admits a unique fac-
torisation f = in, into a split epimorphism © : A"™ — AP followed by a
monomorphism (i.e. a strictly order-preserving map)i : AP — A™.

Example 1.2.7. A good supply of simplicial sets comes from the category
Top of topological spaces (with continous maps as morphisms). For this, one
defines, for each non-negative integer n > 0 the topological simplex

(12.7.1) |A"| = {(xl,...,xn) €RL,| D x < 1}.
i=1

Given a morphism f : [m] — [n] in A, we get an associated continuous
(because affine) map

|f1+ 1A — A"
defined by

F1Gor- o) = (Gouovt). wherey; = > x,.
ief=1(j)
This defines a functor from A to Top. Therefore, by virtue of Theorem 1.1.10,
we have the singular complex functor

(1.2.7.2) Top — sSet, Y  Sing(Y) = ([n] — Homp,,(|A"],Y))
and its left adjoint, the realisation functor
(1.2.7.3) sSet —» Top, X |X|.

This example already gives an indication on the possible semantics we can
apply to simplicial sets. For instance, a 0-simplex x : A° — X can be interpreted
as a point of X, and a 1-simplex f : A’ — X, as a path in X, from the point
x = di(f), to the point y = d¥(f). This is already good, but we shall take
into account that the orientation of paths can be remembered. And doing so
literally, this will give a semantic, in the category of simplicial sets, of the very
language of category theory.

1.3 Cellular filtrations

In this chapter, we shall review the combinatorial properties of simplicial sets
which will be used many times to reduce general statements to the manipu-
lation of finitely many operations on standard simplices. However, we shall
present an axiomatised version (mainly to deal with simplicial sets over a given
simplicial set X, or with bisimplicial sets, for instance). A standard source on
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this, in the case of simplicial sets themselves is the appropriate chapter in the
book of Gabriel and Zisman [GZ67]. What follows consist to axiomatise the
constructions and proofs of loc. cit. For a nice axiomatic treatment of this kind
of properties, an excellent reference is Bergner and Rezk’s paper [BR13].

Definition 1.3.1. An Eilenberg-Zilber category is a quadruple (A, A;, A_,d),
where A is a small category, while A, and A_ are subcategories of A, and
d : Ob(A) — N is a function with values in the set of non-negative integers,
such that the following properties are verified:

EZ0. anyisomorphism of A isin both A, and A_. Moreover, for any isomorphic
objects a and b in A, we have d(a) = d(b);

EZ1. if a — a’ is a morphism in A, (in A_) that is not an identity, then we
have d(a) < d(a’) (we have d(a) > d(a’), respectively);

EZ2. any morphism u : a — b in A has a unique factorisation of the form
u=ip,withp:a ->cinA_andi:c— bin A;;

EZ3. if a morphism m© : a — b belongs to A_ there exists a morphism
o : b — ain A such that 7o = 1,; moreover, for any two morphisms in
A_ of the form 7, #’ : a — b, if 7 and n’ have the same sets of sections,
then they are equal.

We shall say that an object a of A is of dimension n if d(a) = n.

Example 1.3.2. The category A is an Eilenberg-Zilber category, with A, the
subcategory of monomorphisms, and A_ the subcategory of epimorphisms,
and d([n]) = n.

Example 1.3.3. If A is an Eilenberg-Zilber category, then, for any presheaf X,
the category A/X is an Eilenberg-Zilber category: one defines the subcategory
(A/X), (the subcategory (A/X)_) as the subcategory of maps whose image in
A belongs to A, (to A_, respectively), and one puts d(a, s) = d(a).

Example 1.3.4. If A and B are two Eilenberg-Zilber categories, their product
is one as well: one defines (A X B), = A, X B for € € {+, -}, and one puts
d(a,b) =d(a) +d(b).

Let us fix an Eilenberg-Zilber category A.

Definition 1.3.5. Let X be a presheaf over A. A section x of X over some object
a of A is degenerate, if there exists amap o : @ — b in A, with d(b) < d(a),
and a section y of X over b, such that o*(y) = x. Such a couple will be called
a decomposition of x. A section of X is non-degenerate if it is not degenerate.

For any integer n > 0, we denote by Sk, (X) the maximal subpresheaf of X
with the property that, for any integer m > n, any section of Sk, (X) over an
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object a of dimension m is degenerate. In other words, for any object a of A,
the sections of Sk, (X) over a coincide with those of X for d(a) < n, and are
those which are degenerations of sections of X over some b with d(b) < n
for d(a) > n. This construction if functorial: for any morphism of presheaves
f: X — Y, there is a unique morphism Sk, (f) : Sk,,(X) — Sk, (Y) such that
the following square commutes.

Sky(X) —— X

Skn (f)l lf

Sk,(Y) —— Y

Lemma 1.3.6 (Eilenberg-Zilber). Let x € X, be a section of a presheaf X over
A. There exists a unique decomposition (o, y) of x, such that o is a morphism
of A_, while y is non-degenerate.

Proof There are integers m such that there exists a decomposition (o, y) of x,
where o : a — bisin A_ and d(b) = m (e.g. a = b and o = 1,,). Therefore,
there exists such a couple (o, y) with d(b) = m minimal. If y was degenerate,
this would contradict the minimality of m, hence the section y must be non-
degenerate. On the other hand, if we have another decomposition (¢, y") of x,
with 0’ : a — b’ isin A_, and d(b’) = m, since any morphism of A_ has a
section in A, we can find a section ¢ of o7, and we getamapu =o't : b — b’,
such that u*(y’) = y. Moreover, by virtue of axiom EZ2, the morphism u has a
unique factorisation u# = ip with i in A, and p in A_. But axiom EZ1, together
with the minimality of m, imply that p is an identity, and so must be i as well.
Since axioms EZ0 and EZ1 also force the isomorphisms to be identities, we
deduce that b = b” and y = y’. We deduce from this that the two morphisms o
and o’ have the same set of sections, which implies, by virtue of axiom EZ3,
that they are equal. O

Notation 1.3.7. For an object a of A, we put
Ohy = Skd(a)—l(ha) .
This subobject is called the boundary of the representable presheaf &, .

Theorem 1.3.8. Let X C Y be presheaves over A. For any non-negative integer
n, there is a canonical push-out square

U yes 0ha —— X U Sky-1(Y)

[ [

I_Iye): ha ——— X U Sk, (Y)
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where X denotes the set of non-degenerate sections of Y of the formy : hy — Y
which do not belong to X, and such that d(a) = n.

The proof is left as an exercise: the main ingredients are the preceding lemma
and the excluded middle principle.

Definition 1.3.9. A class C of presheaves over A is saturated by monomorpisms
if it has the following stability properties.

(a) For any small family of presheaves (X;);, if each X; belongs to €, so does
the coproduct [[; X;.
(b) For any push-out square of presheaves

X —X

[

Y — Y

in which the vertical maps are monomorphisms, if X, X" and Y all are in
C,soisY’.

(c) For any sequence of monomorphisms of presheaves

Xo « X1 < X Xn+1 €

in which each of the X,,’s is in C, their reunion h_H)ln X, belongs to C as
well.

Corollary 1.3.10. If a class of presheaves over A is saturated by monomor-
phisms and contains all representable presheaves, then it contains all pre-
sheaves over A.

Proof Let C be such a class. We apply Theorem 1.3.8 with X empty. We thus
have push-out squares of the form

Hyez Ohg —— Sky-1(Y)

[ |

I_[yeZ hqy —— Sk, (Y)

We prove by induction on n that each presheaf of the form Sk, (Y) is in C.
For n = 0, we see that Skq(Y) is a small sum of representable presheaves,
and therefore is in C. For n > 0, the induction hypothesis means that both
the domain and the codomain of the upper horizontal map of the commutative
square above are in C. Hence, using properties (a) and (b) of the definition of
a saturated class by monomorphisms, we deduce that any presheaf of the form



1.3 Cellular filtrations 13

Sk, (Y) is in C. Since the union of the Sk, (Y)’s for n > 0 is Y itself, condition
(c) above shows that any presheaf Y belongs to C. O

Remark 1.3.11. Theorem 1.3.8 also implies that, for any simplicial set X, the
realisation | X| has a natural structure of CW-complex: this comes from the fact
that the realisation functor preserves colimits (being a left adjoint) and that
|0A™| = §"~1 is the boundary of the topological simplex |A"|.

Corollary 1.3.12. Let A be a small Eilenberg-Zilber category such that each
representable presheaf only has finitely many non-degenerate sections. For any
presheaf X on A with finitely many non-degenerate sections, the functor

Hom 7(X,-) : A — Set
commutes with filtered colimits.

Proof Let C be the class of presheaves Y such that the functor Hom (Y, -)
commutes with filtered colimits. Then the class € is stable under finite colimits.
Indeed, since, in the category of sets, filtered colimits commute with finite limits
(see for instance [Riel7, Theorem 3.8.9]), if I is a finite category, and if i — X;
is an /-indexed diagram of elements of C, for any filtered diagram j +— Y; of
presheaves on A, the canonical map
h_r)niiLnHomZ(Xi, Y;) — liLnli_r)nHomZ(Xi, Y;)

Joi [

is bijective. Since we have a canonical bijection
Homg(h_rr} Xi,Yj) = ££n HomA‘(Xi, Y;)
i i

for all j, and since the canonical map

lim Hom A(X;,Y;) — Homz(X;, lim ;)

J J
is invertible for all i (because X; belongs to C), this prove that the colimit of
the X;’s is an element of C as well. Let us prove that X is an element of C.
It follows right away from Theorem 1.3.8 that there is an integer n such that
X = Sk, (X). We proceed by induction on n. If n < 0, then X = @, and the
assertion follows from the fact that a filtered colimit of sets with one element
is a set with one element. If n > 0, then, by virtue of Theorem 1.3.8, there is a
coCartesian square of the form

Hyes 0hy — Sky—1(X)

l [

Hyes by ——— X
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in which X is a finite set and all a’s are of dimension n. It is clear that | [ ..y 0l
and Sk,,_1(X) are in C, by induction on n. Therefore, it is sufficient to prove
that [ ] ¢y 4 belongs to C. Since X is finite, it is sufficient to prove that each
representable presheaf /1, belongs to C. But the Yoneda Lemma identifies
Hom 7(hg, —) with the evaluation functor at a, and the latter is known to
commute with all colimits. O

1.4 Nerves

1.4.1. Any partially ordered set E gives rise to a category: the objects are the
elements of E, and, for any couple of such elements (x, y), the set of morphisms
from x to y has at most one element:
Hom(x. 5) = {{@} ifx <y,
%) else.

The letter E can safely be used to represent this category, since, for two partially
ordered sets E and F there is a natural identification between the set of non-strict
order preserving maps from E to F and the set of functors from the category
associated to E to the one associated to F. In other words, it is a rather natural
thing to see the category of partially ordered sets as a full subcategory of the
category Cat of small categories (whose objects are small categories, while its
morphisms are the functors between these).

In particular, we can restrict our attention to non-empty finite totally ordered
sets, and we obtain a fully faithful inclusion functor

(1.4.1.1) i:A— Cat
The nerve functor is defined as the evaluation at i:
(1.4.1.2) N=i":Cat — sSet, C+— N(C)=([n] » Homcu([n],C)).

Hence an n-simplex of the nerve of a category C is a string of arrows of length
nin C:
(14.13) xo Loy B I

By virtue of Theorem 1.1.10, the nerve functor has a left adjoint

(14.1.4) T=1 :s5Set — Cat.

The nerve of a category will serve as a paradigm to interpret the structure of
a simplicial set.
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Definition 1.4.2. Let X be a simplicial set.

An object of X is a O-simplex of X, or equivalently, amap x : A — X.

An arrow of X (we shall also say a morphism of X, or even a map of X)is a
1-simplex of X, that is a map f : A' — X. Such an arrow has a source and a
target, namely f0; and fd;, respectively.

o1 o
A0S ar L x o a0 At L

Notation 1.4.3. A diagram of the form
xX—y
in a simplicial set X will mean that f is an arrow of X and that x = f611 is

its source, while y = fa(} is its target. In other words, this corresponds to a
commutative diagram of simplicial sets of the following shape.

X

AO

Al 25 X

[}
O
\ /5:

3

AO

Example 1.4.4. Given an object x in a simplicial set X, the identity of x is the
morphism of X corresponding to this composition of maps of simplicial sets:

0
(1.4.4.1) Le=xol At 25 A0 2
1.4.5. Given a finite non-empty totally ordered set E, we will write
(1.4.5.1) AF = N(E)

for its nerve. We have Al"l = A{0--n} = A" for any integer n > 0. Any
enumeration of E thus gives an isomorphism? of simplicial sets A¥ ~ A", and
inclusions of finite non-empty totally ordered sets £ C F induce inclusions of
simplicial sets AE ¢ AF". For any integer n > 0, we define the boundary of the
standard n-simplex to be

(145.2) OA" = Oy = | ) AF cA™.
Ec[n]
Similarly, for integers n, k, withn > 1 and 0 < k < n, the k-th horn of A" is
(1.4.5.3) A = U AE c A",
keEC([n]

3 Remark that the simplicial sets of the form AE do not have non-trivial automorphisms, so that
the existence of an isomorphism between such objects (as opposed to the specification of such
an isomorphism) is already meaningful.
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Finally, for an integer n > 1, the spine of A" is

(1.4.5.4) Sp't = U ALY c AT

0<i<n
We will interpret these constructions in dimension n = 2, using the intuition
provided by the nerve of small categories. First, note that Af = Sp>.

1.4.6. Let X be a simplicial set.

A triangle in X is amap ¢ : A% — X. This can be seen as a triple (f, g, k)
of morphisms in X, such that the target of f and the source of g coincide,
while f and & have the same source x, and g and /& have the same target z:
since the boundary dA? is the union of three copies of A', namely At-/}, for
i,j € {0,1,2}, with i < j, the morphism f corresponds to the map Al =
A1} ¢ 9A? — X, while g corresponds to the map A' =~ A2} ¢ A2 — X,
and 4 to the map Al ~ A102} <« HAZ 5 X In other words, if we let y be
the source of g, the triangle ¢ can be faithfully represented as a diagram of the
following shape.

!
(1.4.6.1) /hy

Similarly, a map A% = Sp? — X can be seen as a couple (f, g) of morphisms
in X, such that the target of f and the source of g coincide. Indeed, Sp? is the
union of two copies of A', namely A{%!} and A{1-2} which intersect at the
point A? =~ A1} 5o that f corresponds to the map A! =~ A1O1} ¢ §p? — X,
while ¢ corresponds to the map A' =~ A{L2} ¢ §p? — X. Such a map (£, g)
thus can be represented as a diagram of the form below.

y
(1.4.6.2) f g
x/ \/Z

Definition 1.4.7. A triangle (f, g, k) in X, as in diagram (1.4.6.1), is com-
mutative (or simply commutes), if there exists a morphism of simplicial sets
¢ : A — X whose restriction to the boundary coincides with ( f, g, h):

ap2 Lo 5

l / cloaz = (f,9,h).

A2

Given a pair (f,g) of composable morphisms of X, as in diagram (1.4.6.2),
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a composition of f and g is a morphism % in X such that the triple (f, g, h)
defines a commutative triangle in X.

Remark 1.4.8. If X = N(C) is the nerve of a small category, the objects and
arrows of X exactly are the objects and arrows of C, respectively. Furthermore,
the commutative triangles of X precisely are the commutative triangles in the
category C in the usual sense. A way to reformulate (and prove) this, is to
say that the operation of restriction along the inclusion Sp? ¢ A? induces a
bijective map

(1.4.8.1) Hom (A%, N(C)) — Hom(Sp?, N(C)).

This bijection means that, in (the nerve of) a category, any couple of composable
arrows has a unique composition. More generally, the description of the n-
simplices of N(C) as strings of arrows of the form (1.4.1.3) in C means that,
for all integers n > 2, the restriction along the inclusion Sp" c A" induces a
bijective map

(1.4.8.2) Hom(A", N(C)) = Hom(Sp", N(C)) .

These bijections express the associativity of the composition law in a category
(we shall be more explicit later). This implies that one can understand maps
to nerves of small categories as follows. For any simplicial set X and any
small category C, a map from X to N(C) is completely determined by a map
u : X1 — Arr(C), such that the two conditions below are satisfied:

(i) for all objects x of X, u(1y) is an identity;
(ii) for any commutative triangle (f, g, &) in X, we have u(h) = u(g) ou(f).

This implies that, in particular, we have the following property.

Proposition 1.4.9. For any simplicial set X, the inclusion Sko(X) C X induces
an isomorphism of categories T(Sko (X)) =~ 7(X).

1.4.10. The preceding remark is a description, in the language of simplicial
sets, of (small) categories. To be more precise, we shall say that a simplicial
set X satisfies the Grothendieck-Segal condition if the restriction along the
inclusion map Sp™ c A" induces a bijective map

(1.4.10.1) Hom(A", X) — Hom(Sp", X), for all integers n > 2.

Proposition 1.4.11. The nerve functor is fully faithful: given two small cate-
gories C and D, the nerve functor defines a bijection

HOHlCa[(C, D) = HomsSel(N(C)7 N(D)) .
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Moreover, the essential image of the nerve functor precisely consists of the
simplicial set which satisfies the Grothendieck-Segal condition. In other words,
given a simplicial set X, the following conditions are equivalent.

(i) There exists a small category C as well as an isomorphism of simplicial
sets X ~ N(C).
(ii) The unit map X — N(v(X)) is invertible.
(iii) The simplicial set X satisfies the Grothendieck-Segal conditions.

Proof The fully faithfulness of the nerve functor is a corollary of bijection
(1.4.8.2) (see the description of maps toward a nerve after loc. cit.). Condition
(ii) is a reformulation of the property of fully faithfulness. Therefore, general
facts about adjoint functors imply that conditions (i) and (ii) are equivalent. We
already know that condition (i) implies condition (iii). It is thus sufficient to
prove that the Grothendieck-Segal condition implies (ii). We thus have to check
if the Grothendieck-Segal conditions ensure that, for any non-negative integer
n, the maps

Xpn = N(1(X))n

are bijective. But, for n < 1, one checks that this map is always the identity
whenever condition (iii) holds, from which one deduces, using the Grothendieck-
Segal condition for 7(X), that, for n > 2, these map coincide with (1.4.8.2). O

Remark 1.4.12. Let X be a topological space. A morphism in the simplicial set
Sing(X) is then a path in the space X, i.e. a continuous map from |A'| = (0, 1)
to X. Given two composable paths y and y’, a composition of these in Sing(X)
precisely is a path A whose starting point coincides with the one of y, and with
the same end-point as y’, such that there exists an homotopy deformation of
paths between A and the concatenation of the paths y and y’. Therefore, the
notion of composition of morphisms in a simplicial set encompasses both the
notion of composition of morphisms in a category and the notion of composition
of paths in a topological space.

A variation on the preceding proposition is the following.
Proposition 1.4.13. A simplicial set X satisfies the Grothendieck-Segal condi-

tions if and only, for any integers n > 2 and 0 < k < n, the restriction along
the inclusion Ay, C A" induces a bijection

(1.4.13.1) Hom(A", X) — Hom(A?, X)

We will only need to know that any simplicial set satisfying the Grothendieck-
Segal condition has this property. Therefore, we will prove this fact, and let
the other direction as an exercise for the reader (although Proposition 3.7.4
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below could be seen as a pedantic formulation of the solution). If X satisfies
the Grothendieck-Segal condition, it is isomorphic to N(C) for some small
category C. Hence morphisms ¥ — X always factor through N(7(Y)), and
thus, by virtue of Proposition 1.4.9, only depends on their restriction to Sko(Y).
One checks that Ska(A}) = Ska(A™) whenever n > 4 because of dimension
reasons. Since A7 = Sp?, it remains to check that T(A¥) = 7(A%) for k = 1,2.
This is done directly, using the explicit description of 7 at the end of Remark
1.4.8 (for a hint, see the proof of Lemma 1.6.2 below, in the case where
X = N(C) is the nerve of a small category).

1.5 Definition of co-categories

Definition 1.5.1. An co-category is a simplicial set X such that, for any integers
n > 2and 0 < k < n, any morphism of the form A} — X extends to A". In
other words, the operation of restriction along the inclusion A} ¢ A" induces
a surjection

(15.1.1) Hom(A", X) — Hom(Af, X) .

A morphism f : x — y in an co-category X is invertible if there exists two
morphisms g : y — x and & : y — x such that 1, is a composition of f and g,
and that 1, is a composition of /4 and f. In other words: both triangles

y X
f/ Y and V Y
1x Ly
X — X y—™1Y

commute in X.

An oco-groupoid is an co-category in which any morphism is invertible.

A Kan complex is a simplicial set X such that, for any integers n > 1 and
0 < k < n, any morphism of the form A} — X extends to A".

Remark 1.5.2. The surjectivity of the map (1.5.1.1) for n = 2 means that
any composable pair of maps has a composition in any oco-category. These
compositions are not strictly unique, but, we shall see in many ways that the
surjectivity of the map (1.5.1.1) forn > 2 gives enough coherence to circumvent
this apparent flaw, so that we shall have uniqueness of compositions up to
homotopy, in a suitable sense.

Example 1.5.3. For any small category C, the nerve N(C) is an co-category.

Proposition 1.5.4. Any Kan complex is an co-groupoid.
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Proof 1t is clear that any Kan complex is an co-category. If f : x — yis a
morphism in a Kan complex X, there is a unique morphism

A2 — X

which sends the non-degenerate 1-simplex of A{%1} to f and the non-degenerate
1-simplex of A1%-2} to 1,. Its extension to A? shows the existence of a commu-
tative triangle

y
/N
1y
X —> X

in X. The existence of the other commutative triangle is proved similarly. O

Example 1.5.5. For any topological space X, the singular complex Sing(X) is
both a Kan complex (hence an co-category) and an co-groupoid. To prove this,
one checks that, if we identify |A"| with the hypercube [0, 1]", the topological
realisation of A} correspond to [0, 1]"~! x {0} (up to an affine automorphism
of [0, 1]™). Using the adjunction formula

Hom(|K|, X) ~ Hom(K, Sing(X))
this implies that the restriction along the inclusion A} C A" induces a surjection
Hom(A", Sing(X)) — Hom(A7, Sing(X))

for any integers n > 1 and 0 < k < n. Explicit inverses of paths come from the
re-parametrisation of the interval given by the function t — 1 — 1.

It was proved by Milnor that the homotopy theory of CW-complexes and
the homotopy theory of Kan complexes essentially are the same. We shall see
later that the converse of the preceding proposition is true: any co-groupoid
is a Kan complex (see Theorem 3.5.1 below). Therefore, homotopy types (of
CW-complexes) will play a central role in higher category theory. See Remark
7.8.11.

Remark 1.5.6. The notion of co-category as in definition 1.5.1 was discovered
and introduced by Boardman and Vogt in order to understand the theory of
algebraic structures up to (coherent) homotopies, under the name of weak Kan
complexes. They were developed by Joyal under the name of quasi-categories,
and then by Lurie under the name of co-categories. Milnor’s theorem alluded
to above suggests that there are many different presentations (models) of ho-
motopy types (of CW-complexes), and this is indeed the case, with no way to
consider one of them as better then the others (see Grothendieck’s theory of
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test categories [Mal0O5a, Cis06], for instance). The same thing happens with
oo-categories (see [Ber18] and [AFR17]).

1.5.7. Let p : A — A be the functor defined as the identity on objects and by
the formula

p(N@) =n—f(m—i)

for any map f : [m] — [n], with 0 < i < m. One has p? = 15 (one can check
that p is the only non-trivial automorphism of the category A). Composing with
p defines an automorphism of the category of simplicial sets

*

p" o sSet — sSet .

For a simplicial set X, one defines his opposite simplicial set as X7 = p*(X).
Given a morphism of simplicial sets f : X — Y, we also get, by functoriality,
a morphism f = p*(f) : X% — Y.

Proposition 1.5.8. For any small category C, we have a canonical identifica-
tion

N(C)? = N(C?).
Moreover, for any co-category X, its opposite X°P also is an co-category.

(The proof is left as an exercise.)

1.6 The Boardman-Vogt construction

1.6.1. Let X be an co-category. The end of this chapter will be devoted to give
an explicit description of the associated category 7(X).
For this purpose, we will have to study maps of the form

x: Sk (A% - X.

Since, by definition, the non-degenerate simplices of Sk; (A%) are of dimension
< 1, such a map precisely corresponds to a diagram in X of the form

/>x2

N

(in which none of the triangles is required to commute). There are four triangles
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d'x : dA®> — X, corresponding to the restrictions of x to each of the subcom-
plexes Sk; (AF), for each of the sets with three elements E; = {0, 1,2, 3} — {i},
fori =0,1,2,3.

SN SN

X1 — X3 Xo — X3
X1 X1
/ \ d3x : / \
Xg — X3 Xg — X2

Lemma 1.6.2 (Joyal’s Coherence Lemma). Assume that in a diagram x :
Ski(A3) — X as above, the two triangles d°x and d>x commute. Then the
triangle d'x commutes if and only if the triangle d*x commutes.

Proof Since both triangles d°x and d®x commute, we may assume that two
commutative triangles of the following form are given in the category of sim-
plicial sets:

0N 25 x N 25 X
and
~[ % [ Y3
A? A?

Let us assume that d'x commutes as well. There exists a commutative
diagram

A2 41X,

[/

and the data of yg, y1, y3 defines a morphism (yg, y1, y3) : Ag — X. The latter
extends to a 3-simplex y : A*> — X.If we put yo = yd3, we see that the triangle
of simplicial sets

PYCPRIER

[/

commutes, and, therefore, that the triangle d 2x commutes in X.
If d?x commutes, then applying what precedes to the opposite co-category
X gives the commutativity of d'x. O
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1.6.3. Given three morphisms f, g and h in X, we shall write gf ~ h to
mean that the triple (f, g, &) is a commutative diagram in X (i.e. a morphism
OA% — X which can be extended to A?).

Let us fix two objects x and y of X. One defines four relations on the set of
morphisms of X with source x and target y:

o f~1gif flx ~g;
o fr~aygiflyf ~g;
o f~3gifgly~f;
° f~4gif1yg~f.

Lemma 1.6.4. The four relations ~;, i = 1,2, 3,4, are equal. Moreover, they
are equivalence relations on the set of morphisms from x to y in X.

Proof For any two morphisms f, g : x — yin X, we have these two diagrams
in X below.

/ \\

B

{

Since any triangle of the form
X Y
1*/‘ \f, or f/ \1/U
X f Yy X T) y

commutes (they are restrictions of 2-simplices of the form o*( f), for appropri-
ate surjective maps o : A2 — A'), we may apply the coherence lemma (1.6.2)
and conclude that1,f ~ g & f1, ~gandthatl,f ~ g = gl ~ f. The same
argument in the opposite co-category thus implies that these four relations are
equal. Let us put =~ for this relation. It remains to prove that this is an equiva-
lence relation. It is clear that f ~; f and that f ~o g © g ~4 f. Therefore,
it remains to prove the property of transitivity. Assume that f ~ g and g ~ h.
Then we have g1, ~ f, 1,9 ~ h and hl, ~ h. Applying the coherence lemma
to the diagram

Yy
1y

—

Y

f
S



24 Prelude
thus shows that 1, f ~ h. O

1.6.5. For two objects x and y, we define the set Homy,,(x) (x, ) as the quotient
of the set of morphisms from x to y in X by the equivalence relation ~; given
by Lemma 1.6.4 above. Given a morphism f : x — yin X, we write [ f] for its
class in Homy,(x) (x, y). Finally, we define a composition law

Homy(x) (x, y)xHomyo(x) (y, 2) = Homypo(x) (x,2),  (Lf], [9]) ¥ [glol[f]
by putting [g] o [ f] = [h] whenever & is a composition of f and g.

Theorem 1.6.6 (Boardman & Vogt). The composition law constructed above is
well defined, and this produces a category ho(X). There is a unique morphism
of simplicial sets X — N (ho(X)) which is the identity on objects and which
sends a morphism f : x — yin X toits class [ f] in Homp,(x) (x, y). Moreover,
this morphism induces an isomorphism of categories

7(X) ~ ho(X) .

Proof 1If ever we have the relations gf ~ h and gf ~ h’, applying the
coherence lemma to the diagram

}}
£y

(

=

we see that we must have the relation 1,4 ~ &’. Similarly, if g ~ ¢’ and gf ~ h,
applying the coherence lemma to the diagram

y

=
S
Q
«—
—
n

{

gives that ¢’ f ~ h. The same argument in the opposite co-category shows that,
if f~f andif gf ~ h, then gf’ ~ h. Therefore, the relation gf ~ h only
depends on the classes [ f], [¢g] and [k]. This does prove, in particular, that
the composition law is well defined. To check the associativity, we see that, for
a triple of composable arrows ( f, g, ), since compositions always exist in an
oco-category, one can complete the following diagram as follows: one chooses a
composition a of (f, g), a composition b of (g, &), and, finally, a composition
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c of (f,b).

One then deduces from the coherence lemma that c is also a composition of
(a, h). In other words, this composition law is associative:

([A] o [gD) o [f] = [b] o [f] = [c] = [h] o [a] = [h] o ([g] o [fD).

The reflexivity of the equivalence relation ~;=~5 (1.6.4) means in particular
that it is unital as well, with units the 1,’s. The last assertions follows right
away from the end of Remark 1.4.8: there is a unique map X — N(ho(X)) as
described in the statement of the theorem, and any map from X to the nerve
of a small category factors uniquely through it. Hence ho(X) and 7(X) are
canonically isomorphic, because they represent the same functor. O

Corollary 1.6.7. An co-category X is an co-groupoid if and only if the associ-
ated category 7(X) =~ ho(X) is a groupoid.

Corollary 1.6.8. A morphism f : x — y in an co-category X is invertible if
and only if there exists a morphism g : y — x such that 1 is a composition of
[ and g, and that 1, is a composition of g and f.

Example 1.6.9. For any topological space X, the co-groupoid Sing(X) thus
defines a groupoid 71(X) = ho(Sing(X)), which is nothing else than the
Poincaré groupoid: the objects are the points of X, and the morphims are the
homotopy classes of continuous paths in X. In particular, for each point x of X,
we have the fundamental group 1 (X, x) = Homy(sing(x)) (X, X).

Definition 1.6.10. A functor between oco-categories simply is a morphism of
simplicial sets.

If X and Y are co-categories, and if f, g : X — Y are two functors, a natural
transformation from f to g is a morphism 4 : X x A’ — Y such that

h(x,0) = f(x) and h(x,1)=g(x)
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or, more formally, if the following diagram commutes.

f
_ 0
X—XXA\b(xall
XxAl Sy
/ 1
X=XxA0 X%

g

Such a natural transformation is invertible if, for any object x of X, the
induced morphism f(x) — g(x) (corresponding to the restriction of & to
A! = {x} x A') is invertible in Y.

A functor f : X — Y is an equivalence of oo-categories if there exists a
functor g : Y — X as well as invertible natural transformations from fg to 1y
as well as from 1x to gf.

Remark 1.6.11. All these notions extend the usual ones for ordinary categories:
the ordered set [1] represents the set of morphisms in the category of small
categories, and the nerve of the associated category N([1]) is canonically
isomorphic to A', hence a natural transformation between ordinary functors
is essentially the same thing as a natural transformation between their nerves.
Since the nerve functor is fully faithful, we see that a functor between small
categories is an equivalence of categories if and only if its nerve has the same
property.

In order to work with co-categories, as above, we would like to have usual
categorical constructions: cartesian products, limits and colimits, the co-cate-
gory of functors between two oco-categories... If the latter exists, we would
like natural transformations to be its morphisms, and the invertible natural
transformations to be its invertible morphisms. This would imply that invertible
natural transformations have inverses (hence their name). This is true, but
non-trivial. Furthermore, we would like these categorical constructions to be
compatible with equivalences of co-categories. As we will see in details later,
all these properties (and many more) will hold, but it comes with a cost:
we must develop the homotopy theory of co-categories, in Quillen’s setting
of model categories (and we really must do it, since many of the properties
we seek are equivalent to the verification of Quillen’s axioms, at least in this
particular context). The next chapter will be about the general theory of model
categories, and about their constructions in the particular context of categories
of presheaves.
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Basic homotopical algebra

This chapter introduces Quillen’s theory of model category structures. It starts
with a recollection on factorisation systems: this level of generality will cer-
tainly help to understand many reasonings within Quillen’s theory, but also to
understand specific features of the theory of co-categories itself. We then give
an exposition of all the basic constructions, such as the homotopy category,
derived functors, or homotopy pull-backs. We give precise statements, often
with the greatest level of generality we are aware of, but we sometimes give
proofs which assume mild extra assumptions (which are always verified in the
examples we will consider in this book), in which case we give a precise refer-
ence in the literature, pointing at a fully general proof (most of the time, such a
reference is provided by Quillen’s original monograph on Homotopical Alge-
bra, the lecture of which we highly recommend). This part contains no original
contribution, and only aims at introducing and producing the concepts needed
to manipulate co-categories. However, the last chapter of this book will consist
in including Homotopical Algebra within the theory of co-category theories,
hopefully enlightening and generalising this classical theory.

The second half of the chapter introduces a method to construct model
category structures from scratch on categories of presheaves, when we choose
to define the cofibrations to be the monomorphisms. This latter part is extracted
right away from a little portion of [CisO6]; we only give an account of the
constructions and proofs which are relevant for the present text, though. The
model category structures defining the homotopy theory of co-categories will
be constructed as a particular case in the next chapter. The last section of
this chapter consists in observing that the data used to construct a given model
category structure of that type can be used in fact to produce non-trivial families
of model category structures. The class of absolute weak equivalences, i.e., of
maps which can be interpreted as weak equivalences in the entire family, is an
interesting subject of study. This apparently technical observation will not be

27
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used at first, when we will use these constructions to study co-groupoids and
oo-categories, but will be a the heart of our understanding of the homotopy
theory of presheaves on an co-category, in Chapter 4: the class of final functors
is an instance of a class of absolute weak equivalences.

2.1 Factorisation systems
Let us cope with some definitions.

Definition 2.1.1. Leti : A — Band p : X — Y be two morphisms in a
category C.

We say that i has the left lifting property with respect to p, or, equivalently,
that p has the right lifting property with respect to 7, if any commutative square
of the form

o o— 2
lm

|

has a diagonal filler

l

X

T
Y

a

o o— >
=

@I

(i.e. a morphism % such that hi = a and ph = b).

Let F be a class of morphisms in C. A morphism has the left (right) lifting
property with respect to F if it has the left (right) lifting property with respect
to any element of F'.

One denotes by [(F) (by r(F)) the class of morphisms which has the left
(right) lifting property with respect to F.

Definition 2.1.2. An object X is a retract of another object U if there exists a
commutative diagram of the following form

1x
xtsuyu-L3x.
We say that a morphism f : X — Y is aretract of amorphismg: U — Vifit
is so in the category of morphisms: in other words, if there exists a commutative
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diagram of the form below.

1x
S

X —U—70X
fl ly lf
y —L-v -2,y

\_/’
1y
A class of morphisms F' is stable under retracts if any morphism which is a
retract of an element of F belongs to F.
A class of morphisms F is stable under push-outs if, for any push-out square
of the form

if fisin F,sois f'.

A class of morphisms F, in a category C, is stable under transfinite com-
positions if, for any well ordered set I, with initial element 0, for any functor
X : I — C such that, for any element i € I, i # 0, the colimit li_rr)qu X(j) is
representable and the induced map

lim X (7) — X(7)

j<i
belongs to the class F, the colimit 11_1())(11,E X (i) exists and the canonical mor-
phism X (0) — h—r>niel X (i) belongs to F as well.

A class of morphisms is saturated if it is stable under retracts, under push-
outs, and under transfinite compositions.

Remark 2.1.3. 1If a class F of morphisms contains all the identities and is stable
under push-outs as well as by transfinite compositions, then it is stable under
small sums: for any small set / and any family of maps u; : X; — Y; in &,
indexed by i € I, the induced map

U Xi g U Yi
i€l iel
isin J.
The following proposition follows straight away from the definitions.

Proposition 2.1.4. Let C a category, together with two classes of morphisms
F and F’. We have the following properties.
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a) Fcr(F') s F' Cl(F).
b) FC F' = I(F') Cc l(F).
¢c) FCF' =r(F) cr(F).
d) r(F) =r((r(F))).

e) I(F) = I(r(I(F))).

f) The class I(F) is saturated.

g) The class r(F) is co-saturated, i.e. is saturated as a class of morphisms
of C%.

And here is a useful trick.

Proposition 2.1.5 (Retract Lemma). Assume that a morphism f : X — Y can
be factored into f = pi.

X%Y
N
T

If f has the right (left) lifting property with respect to i (to p), then f is a retract
of p (of i, respectively).

Proof 1If f € r(i), then the diagonal of the solid commutative square

X
i
T -

p

f

~e— X

|

gives rise to a commutative diagram of the form

and thus turns f into a retract of p. The respective case follows by considering
what precedes in the opposite category of C. O

Example 2.1.6. For C = Set, and i : @ — {point}, the class (i) is the class of
surjective maps, while a reformulation of the axiom of choice is the assertion
that the class /(r(i)) is the class of injective maps. Since any small set is a
small sum of sets with one element, the excluded middle principle means that
the smallest saturated class of maps in Set which contains i is the class I(r(7)).
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Definition 2.1.7. A weak factorisation system in a category C is a couple (A, B)
of classes of morphisms satisfying the following properties:

(a) both A and B are stable under retracts;

(b) AcI(B) (e Bcr(A)),

(¢) any morphism f : X — Y of C admits a factorisation of the form f = pi,
withi e Aand p € B.

Remark 2.1.8. 1t follows from the Retract Lemma that we must have A = [(B)
as well as B =r(A).

We recall the following general facts (for proofs, see [Hov99, Theorem
2.1.14] or [Riel4, Theorem 12.2.2], where more general assumptions will also
be found). Given a cardinal «, a non-empty partially ordered set E is «-filtered
if, for any family of its elements x;, j € J, indexed through a set J of cardinal
< k, there exists an element x in £ such that x; < x holds for each j € J.

Proposition 2.1.9 (small object argument). Let C be a locally small category
with small colimits, endowed with a small set of morphisms I. Assume that
there exists a cardinal k such that, for any elementi : K — L of I, the functor

Home(K,—) : € — Set

commutes with colimits indexed by k-filtered well ordered sets. Then the cou-
ple (L(r(I)),r(1)) is a weak factorisation system. Furthermore, [(r(I)) is the
smallest saturated class containing I.

Corollary 2.1.10. Let A be a small category, and I a small set of morphisms
of presheaves over A. Then the couple (I(r(I)),r(I)) is a weak factorisation
system in A.

Proof We only need to check that the small object argument may be used
here. Let « be a regular cardinal. We want to prove that, for any presheaf
of sets X on A, if «x is big enough, then the functor Hom(X, —) commutes
with colimits indexed by «-filtered well ordered sets. If there is an object
a of A such that X is isomorphic to the presheaf represented by a, then,
by the Yoneda Lemma, the functor Hom(X, —) is isomorphic to the functor
of evaluation at a, which obviously commutes with all limits. If J is a set
of cardinal < «, the functor (X;);e; + [ljes X; commutes with colimits
indexed by «-filtered well ordered sets (we leave the proof of this assertion to
the reader). Therefore, if X is a isomorphic to a J-indexed sum of representable
presheaves, the functor Hom (X, —) is isomorphic to a J-indexed product of
evaluation functors, and thus commutes with colimits indexed by «-filtered
well ordered sets. In general, X is a small colimit of representable presheaves,
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hence a coequaliser of maps between sums of representable presheaves. Since
filtered colimits commute with finite limits [Rie17, Theorem 3.8.9], we observe
that the functor Hom (X, —) commutes with colimits indexed by «-filtered well
ordered sets, for « big enough. |

Example 2.1.11. In any category of presheaves over a small category A (or,
more generally, in any Grothendieck topos), the class of monomorphisms is
part of a weak factorisation system. Let us call trivial fibrations the morphisms
of presheaves which have the right lifting property with respect to monomor-
phisms. We may prove that any morphism of presheaves over A can be factored
as a monomorphism i : X — Y followed by a trivial fibration p : ¥ — Z in
two ways.

First method. We have the subobject classifyer Q (also called the Lawvere
object in Grothendieck’s Pursuing Stacks). In other words, for any object a
in A, the set Q, is the set of subobjects of the representable presheaf &, (the
structure of presheaf is given by pull-backs of subobjects). One checks that, for
any presheaf X over A, there is a canonical bijection

Hom(X, Q) ~ {subobjects of X}.
We put P(X) = Hom(X, Q). There is then a canonical embedding
{}: X > P(X)

which corresponds to the diagonal of X X X (seen as a subobject). We see
that P(X) is an injective object (i.e. that the map from P(X) to the point is a
trivial fibration): this is a reformulation of the fact that, for any monomorphism
K — L, any subobject of the cartesian product K x X induces a subobject
of L X X. In other words, we have factored the map from X to the point into
a monomorphism followed by a trivial fibration. The general case follows by
applying the previous construction to the category of presheaves over A/Y,
using the equivalence of categories A /Y =~ Z/\Y , discussed in Remark 1.1.14.

Second method. One checks (using the axiom of choice) that the class of
monomorphisms is equal to the class [(r(1)), for I the set of monomorphisms
of presheaves of the form K — L, with L a quotient of some representable
presheaf over A. One can then apply the small object argument.

A basic, although extremely useful, recognition of lifting properties is the
following one.

Proposition 2.1.12. Let F : C 2 € : G be an adjunction. Assume that
C and C' are endowed with weak factorisation systems (A, B) and (A’, B’),
respectively. Then we have F(A) C A’ if and only if G(B’) C B.
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Proof We have, by adjunction, a natural correspondance of the form:

F(K) 2, x K 25 G(X)
, A -
F<i)l h lp “©> ll h"’ lG(P) [m}
F(L) —— Y L T> G(Y)

2.2 Model Categories

The notion of model category was introduced by Quillen in [Qui67]. All the
results of the next two chapters are already in loc. cit.

Definition 2.2.1. A model category is a locally small category € endowed
with three classes of morphisms W, Fib, and Cof, such that the following three
properties are verified.

1. The category C has finite limits and finite colimits.
2. The class W has the 2-out-of-3 property: for any commutative triangle of
the form

x —L Ly
N
Z
if two, among f, g and A, are in W, so is the third.

3. Both couples (Cof, Fib N W) and (Cof N W, Fib) are weak factorisation
systems.

Here is the standard terminology in the presence of such a structure.

An element of W (of Fib, of Cof) is called a weak equivalence (a fibration, a
cofibration, respectively). A morphism which is both a weak equivalence and
a fibration (and a cofibration) is called a zrivial fibration (a trivial cofibration,
respectively).

We shall often write @ and e for the initial and final objects of C, respectively.
An object X of Cis fibrant (cofibrant) if the unique morphism X — e (@ — X)
is a fibration (a cofibration, respectively).

Remark 2.2.2. These axioms imply that any isomorphism is both a trivial
fibration and a trivial cofibration (in particular, a weak equivalence).

Remark 2.2.3. This definition is (equivalent to) the notion of closed model
category introduced by Quillen in [Qui67]. Axiom 3 implies in particular that
any morphism f has a factorisation of the form f = pi where i is a cofibration,
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and p a trivial fibration, as well as a factorisation of the form f = ¢gj, where j
is a trivial cofibrations, and ¢ a fibration.

In some modern introductions to the theory of model categories, the under-
lying category is assumed to have small limits and small colimits (as opposed
to finite ones), and the factorisations are required to exist functorially. All the
examples we will consider here will be of this sort. There are many reasons not
to rely on functorial factorisations, though. In a model category, the meaningful
part is the class of weak equivalences. Fibrations and cofibrations really are
intermediate tools (in particular, we should always feel free to replace these at
will, as far as this makes sense, of course).

Example2.2.4. For any category with finite limits and colimits, we have a model
category structure for which the weak equivalences are the isomorphisms, any
morphism being a cofibration as well as a fibration.

Example 2.2.5. 1t follows from Example 2.1.11 that, for any small category A,
the category of presheaves over A has a model category structure whose class
of weak equivalences is the class of all morphisms, while the cofibrations are
the monomorphisms.

Proposition 2.2.6. The notion of model category structure is stable under the
following categorical constructions.

(a) If C is a model category, so is CP: the weak equivalences are those
of C, while its fibrations (cofibrations) are the cofibrations (fibrations,
respectively) of C.

(b) For any object X in a model category C, the slice category C/X has a
natural structure of model category: the weak equivalences (fibrations,
cofibrations) are the morphisms whose image in C are weak equivalences
(the fibrations, the cofibrations, respectively).

(c) We can put the preceding two constructions together: the category of
objects under X has a natural structure of model category.

Proposition 2.2.7 (Ken Brown’s Lemma). Let C be a model category, together
with a functor F : C — D. Assume that the category D is endowed with a class
of weak equivalences, by which we mean a class of morphisms which contains
all isomorphisms and which has the 2-out-of-3 property. If ever the functor F
sends trivial cofibrations between cofibrant objects to weak equivalences, then
it sends weak equivalences between cofibrant objects to weak equivalences.

Proof Let f: X — Y be a weak equivalence between cofibrant objects. We
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may form the push-out square

2 —— Y

Lol

X s xuy

and see that, since both X and Y are cofibrant, the canonical maps from X and
Y to the coproduct X 11 Y are cofibrations. We may factor the map (f, 1y) :
X1IY — Y into a cofibration k : X I1 Y — T followed by a weak equivalence
(a trivial fibration) p : T — Y. We thus have the following two commutative
triangles.

x —k 7 y — X 7
f\ A A A
Y Y
Since the map F(p) has a section which is the image of a trivial cofibration
between cofibrant objects, it is a weak equivalence. On the other hand the map
ki is a trivial cofibration between cofibrant objects, and therefore, its image

F (ki) is a weak equivalence. The 2-out-of-3 property for weak equivalences in
D implies that F( f) is a weak equivalence. O

Definition 2.2.8. Let C be a category endowed with a class of morphisms W.
A localisation of C (by W) is a functor

(2.2.8.1) v: € — ho(C)

that sends the elements of W to isomorphisms, and which is universal for this
latter property. In other words, we ask that, for any category D, if we denote
by Hom,(C, D) the full subcategory of the category of functors Hom(€, D)
which consists of functors sending elements of W to isomorphisms, then the
operation of composing with y

(2.2.8.2) y* : Hom(ho(€), D) — Hom,, (€, D)

is an equivalence of categories. By abuse of terminology, we shall say that
ho(C) is the localisation of C.

Proposition 2.2.9. There always exists a localisation of C by W. Moreover, one
can choose a localisation y : C — ho(C) in such a way that the map (2.2.8.2)
is an isomorphism of categories. Under this more rigid constraint, the functor
v is a bijection on objects.

One defines the category ho(C) as follows. The objects are those of C, and
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the set of morphisms from X to Y is an appropriate quotient of the class of
diagrams of the form

X=Xpo— X1 —mXo¢— - —X).1—X,, m X1 =Y

where n > 0 is an integer, and where the maps of the form «— all are in W
or are identities.! The equivalence relation we put means that we can always
replace such a diagram by a bigger one by adding identities anywhere we want
(and in any direction we want), any two such diagrams of the same length are
equivalent whenever they can be connected through a commutative diagram in
C of the form below.

/ X X5 Xpo1 — X, \
| I

X
Xi X5 X —— X,

Remark 2.2.10. There is no reason, in general, why the sets Homy,(e)(X,Y)
would be small. Therefore, for the moment, this construction only makes sense
for non-necessarily locally small categories. We shall review first how to com-
pute these sets of morphisms, and see in particular that, if W is the class of
weak equivalences of a model category structure on €, they are small sets.

From now on, let us consider a fixed model category C.
Definition 2.2.11. A cylinder of an object A is a factorisation of the codiagonal

of A into a cofibration followed by a weak equivalence, i.e. a commutative
diagram of the form

(1a,14)

2.2.11.1) ALTA % 14 o3 4

in which (g, 01) is a cofibration, and o~ a weak equivalence. Dually, a cocylin-
der (we also say a path object) of an object X is a cylinder in the opposite
category, i.e. a commutative diagram of the form

(1x,1x)
m
(2.2.112) x o xt Yl x v x

in which the map s is a weak equivalence, and the map (d°, d*) is a fibration.
Let us consider two morphisms fp, f1 : A — X.

L Or one can also assume that W contains all isomorphisms, since this does not affect the
categories of the form Hom, (€, D).
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A left homotopy (a right homotopy) from f; to fi is given by a cylinder of A
of the form (2.2.11.1) (a cocylinder of X of the form (2.2.11.2)), together with
amorphism 4 : IA — X (amorphismk : A — X1, such that, fori = 0, 1, we
have hd; = f; (we have d'k = f;, respectively).

Lemma 2.2.12. Let A and X be a cofibrant object and a fibrant object, respec-
tively. For a pair of morphisms f; : A — X, i = 0,1, the following conditions
are equivalent.

a) There exists a left homotopy from fy to fi.

b) There exists a right homotopy from fy to fi.

¢) For any cylinder of A of the form (2.2.11.1), there existsamap h : [A —
X such that ho; = f; fori =0, 1.

d) For any cocylinder of X of the form (2.2.11.2), there exists a map k :
A — X! such that d'k = f; fori =0, 1.

Proof Since we can replace the underlying category by its opposite C?, it is
clearly sufficient to prove that a) implies d). Let us assume that there is a left
homotopy from fj to f1 given by a cylinder of A of the form (2.2.11.1), together
withamap i : IA — X, and let us consider an arbitrary cocylinder of X, of the
form (2.2.11.2). Since the map d; : A — [IA is a trivial cofibration (because
this is a weak equivalence, and since A is cofibrant, this is also a cofibration, for
each canonical map A — A I A is a push-out of the cofibration @ — A), and
since the map (d®, d') is a fibration, the following solid commutative square

admits a filling K. Let us put k = Kdp. We then have:
d'k =d'Kdy = ficdy = fila=fi and d°% =d°Kdy =hdy = fp.
In other words, condition d) is verified. O

Lemma 2.2.13. Let A and X be a cofibrant object and a fibrant object, respec-
tively. We define an equivalence relation ~ on the set of morphisms from A to
X, by defining fy ~ f1 whenever there exists a left (or right) homotopy from fy
to fi.

Proof The reflexivity is clear: for any cylinder of the form (2.2.11.1), and for
any map f : A — X, the morphism fo defines a left homotopy from f to itself.
The equivalence between conditions a) and ¢) of Lemma 2.2.12 implies that the



38 Basic homotopical algebra

relation ~ is symmetric: indeed, for any cylinder of A of the form (2.2.11.1),
the diagram

(01,00) o
—

AITA — IA A

is a cylinder of A as well. Assume that we have three maps u, v and w from A
to X, as well as cylinders

(00,01) o
—

), ’
ADA — IA Go-01) <

A AITA — T'A A

and homotopies i : IA — X and i’ : I'A — X satisfying hdy = u, hd; = v =
h’d;, and h’d] = w. We form the push-out square

A—2 14

a;]l l

I'A —<5 1A

There is a unique map o’ : I’A — A such that 0"’ ¢ = o and 0”’¢’ = ¢’, and
we get a cylinder of the form

6//’61/ (TN
ALLA %% I"A A

by defining 8]’ = edy and d;" = ¢’0] . Indeed, itis clear that the map o’ is a weak
equivalence (because e is a trivial cofibration and o~ a weak equivalence). One
thus only has to show that the map (4], 8;') is a cofibration. In the commutative
diagram

A—— s ATTA 102, 14

% 14112 | e

(8.
I'A —— AUTI'A —> A
the left hand square is the obvious push-out square, while the composed square
is the previous push-out square, hence the right hand square is coCartesian.
In particular, the map (9, e’) is a cofibration. Composing the latter with
the cofibration 14 II 4] thus gives a cofibration which is nothing else than
(8], 07'). Finally, we define a morphism 4"’ : I’ A — X as the unique one such
that h”’e = h and h"e’ = h’. Itis clear that /’’0) = u and h"’3]" = w. O

Notation 2.2.14. Under the assumptions of the preceding lemma, we write
(2.2.14.1) [A, X] = Home (A, X)/~

for the quotient of the set of morphisms from A to X by the relation of left (or
right) homotopy ~. It is clear that the relation of left homotopy is compatible
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with composition on the left, while the relation of right homotopy is compatible
with composition on the right. In other words, we have defined a functor

(2.2.14.2) [-.—]: CP xCp — Set,

where €. and Cy denote the full subcategories of C spanned by cofibrant objects
and by fibrant objects, respectively.

Theorem 2.2.15. The inclusion C. — C induces an equivalence of categories
of the form ho(C.) =~ ho(C) (where ho(C.) denotes the localisation of C. by
the class of weak equivalences between cofibrant objects).

Dually, the inclusion Cy — C induces an equivalence of categories of the

form ho(Cr) ~ ho(C).

This theorem is a triviality whenever the factorisations of the model structure
can be obtained functorially (which will be the case in all the examples in this
book). The general case is proven in [Qui67, Chap. I, 1.13, Thm. 1]; in Chapter 7,
using an enhanced version of the theory of derived functors, we shall improve
this statement a lot (Theorem 7.5.18).

Proposition 2.2.16. The functor (2.2.14.2) is compatible with weak equiva-
lences in C. and in Cy (i.e. sends such weak equivalences to invertible natural
transformations) and thus defines a functor

[_’ _] . ho(ec)OP X ho(ef) g Set.

Proof Leti: A — B be a weak equivalence between cofibrant objects, and
X a fibrant object. We shall prove that the induced map

i*: [B,X] > [A, X]

is bijective. By virtue of Ken Brown’s Lemma (2.2.7), it is sufficient to con-
sider the case where i is a trivial cofibration between cofibrant objects. The
surjectivity is easy: for any morphism f : A — X, the solid commutative
square

f

A ——

B ——

admits a filler g whose homotopy class is sent by i* to the homotopy class of
f. As for the injectivity, let us consider two morphisms f, g : B — X such that
fi and gi are homotopic (i.e. their classes are equal in [A, X]). Then we may
choose a right homotopy from fi to gi, defined by a cocylinder of the form
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(2.2.11.2), together with a map k : A — X! such that d°k = fi and d*k = gi.
The following solid commutative square

Ak  xI

B

B G XxX
admits a filler: the left hand vertical map is a trivial cofibration, and the map
(d°, d") is a fibration. Therefore, f and g are homotopic.
Applying what precedes to €, we see that, for any cofibrant object A and
any weak equivalence between fibrant objects p : X — Y, the induced map

P« [A, X] = [AY]
is bijective. o

Theorem 2.2.17. For any cofibrant object A and any fibrant object X, there is
a canonical bijection

[A, X] = Homho(e) (A, X)
which is natural with respect to morphisms of ho(C.)" X ho(Cy).

Corollary 2.2.18. Let C.r be the full subcategory of objects which are both
fibrant and cofibrant. The relation of homotopy of Lemma 2.2.13 defines an
equivalence relation which is compatible with composition on C.y. The re-
sulting quotient category m(Cey) thus has the fibrant-cofibrant objects of C as
objects, while we have

Homg e, (A, X) =[A,X].

(‘f)

The inclusion functor C.y C C induces a canonical equivalence of categories
m(Cer) = ho(C).

Theorem 2.2.17 is in fact a consequence of the corollary (using Theorem
2.2.15, we see that this is because any fibrant object X is isomorphic in 40(C) to
an object A which is both fibrant and cofibrant: simply consider a factorisation
of the map @ — X into a cofibration followed by a trivial fibration A — X).

Let us assume that the inclusion functor €.y C C induces a canonical
equivalence of categories ho(C.r) =~ ho(C), where ho(C.r) stands for the
localisation of C.s by the class of weak equivalences (this is easy to check
when the factorisations can be obtained functorially). We can then directly
prove Corollary 2.2.18 as follows.

First, one checks that if two maps f,g: A — X in C.y are homotopic, then
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v(f) =y(g9)inho(C).Let [Abeacylinderof Aasin(2.2.11.1),andh: A —» X
be a map such that hdy = f and hd, = g¢. Since 070; = 1x does not depend on
i, and since o becomes invertible in #0(C), we must have y(dy) = y(d1) in
ho(C). Therefore, the mophism y(g) must be equal to y(f).

As a consequence, any homotopy equivalence (i.e. any map of C.r which
becomes an isomorphism in 71(C r)) induces an isomorphism in 40(C). On the
other hand, Proposition 2.2.16 implies that any weak equivalenceu : A — B in
Cc s must induce bijections [B, X] =~ [A, X] for any object X in €., and thus,
by virtue of the Yoneda Lemma for 71(C ), must become invertible in 7 (C¢ f).
In other words, a morphism of C.r is a weak equivalence if and only if it is
a homotopy equivalence. Since the category 7 (C.s) is the localisation of C, s
by the class of homotopy equivalences, this shows that 7(C.s) = ho(C). This
implies the following property (see Quillen’s original proof [Qui67, Chapter I,
§5, Prop. 1]).

Corollary 2.2.19. Let C be a model category endowed with a localisation
Sunctory : € — ho(C). If C is locally small, then so is the homotopy category
ho(C). Furthermore, a morphism f of C is a weak equivalence if and only if its
image y(f) is an isomorphism in ho(C).

2.3 Derived functors

Definition 2.3.1. Let C be a model category, together with a localisation functor
v:C — ho(C), as well as a functor F : € — D.

A left derived functor of F is a functor LF : ho(C) — D together with a
functorial morphism ax : LF(y(X)) — F(X) which turns LF into a right Kan
extension of F along the localisation functor y. In other words, for any functor
@ : ho(C) — D and any natural morphism ax : ®(y(X)) — F(X), there is a
unique natural morphism fy : ®(Y) — LF(Y) such that ax = ax f, (x) for all
objects X of C.

A right derived functor of F is a functor RF : ho(C) — D together with
a functorial morphism by : F(X) — RF(y(X)) which turns RF into a left
Kan extension of F along the localisation functor y (i.e. RF? and b form a
left derived functor of F : G — DP),

2.3.2. Let F : € — D be a functor which sends trivial cofibrations between
cofibrant objects to isomorphisms. By virtue of Ken Brown’s Lemma, the
functor F sends weak equivalences between cofibrant objects to isomorphisms.
Therefore, there is a unique functor F. : ho(C.) — D whose composition with
the localisation functor €. — ho(C,) coincides with the restriction of F. Let
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us choose, for each object X of €, a weak equivalence a} : QX — X with
QX cofibrant. If we write i : ho(C.) — ho(C) for the canonical equivalence of
categories induced by the inclusion C. C C, there is a unique way to promote
the collection of these choices to a functor

Q : ho(C) — ho(C,)

endowed with natural isomorphisms i (Q (X)) =~ X and Q(i(X)) ~ X defined as
the images of the maps a’,.. One defines a functor LF" by the formula LF (Y) =
F.(Q(Y)). There is a unique natural morphism ay : LF(y(X)) — F(X) which
coincides with the image of a’.

Proposition 2.3.3. For any functor F : C — D which sends trivial cofibrations
between cofibrant objects to isomorphisms, the pair (LF,a) is a left derived
functor of F.

Proof Let @ : ho(C) — D be a functor, together with a natural morphism
ax : O(y(X)) — F(X). By definition of localisations (applied to C.), and by
virtue of the canonical equivalence of categories ho(C.) =~ ho(C), there is a
unique natural morphism fy : ®(Y) — LF(Y) such that ax = axf,(x) for
all objects X of C.. The latter property remains true for X running over the
class of all objects of C, simply because a, @ and f are natural transformations,
and because, for each object X, there exists a weak equivalence with cofibrant
domain Y — X. O

Corollary 2.3.4. Under the hypothesis of the previous proposition, for any
functor G : D — &, the pair (GLF, Ga) is a left derived functor of GF.

Definition 2.3.5. Let C and €’ be two model categories endowed with two
localisation functors y : € — ho(C) and y’ : €’ — ho(C’), respectively.

If a functor F : € — €’ preserves trivial cofibrations, then the composed
functor y’F sends trivial cofibrations between cofibrant objects to isomor-
phisms, and therefore, by virtue of the preceding proposition, admits a left
derived functor. We also denote by

LF : ho(C) — ho(€")

the left derived functor of v’ F, which we call the total left derived functor of
F.
Similarly, if a functor F : € — €’ preserves trivial fibrations, we denote by

RF : ho(C) — ho(€)

the right derived functor of y’F, which we call the fotal right derived functor
of F.
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Proposition 2.3.6. IfF : C — C" and F' : C" — C” both are functors between
model categories which preserve cofibrant objects (fibrant objects) and trivial
cofibrations (trivial fibrations), then at the level of total left derived functors
(of total right derived functors), the canonical comparison map

(LF' oLF)(X) » L(F' o F)(X) (R(F' o F)(X) — (RF' o RF)(X), resp.)
is an isomorphism for all objects X of ho(C).

Proof Ttis sufficient to consider the case of total left derived functor. One can
prove this assertion using Corollary 2.3.4, but a very simple argument consists
in remembering how we constructed the total left derived functors: for a given
object X of €, we choose a weak equivalence with cofibrant domain p : X — X
and ¢ : X” — F(X’). We then have LF(X) = F(X’), L(F' o F)(X) =
F'(F(X’)), and (LF’ o LF)(X) = F’(X""). The comparison map we want to
understand is then the image in ho(C””) of the map F’(g). Since ¢ is a weak
equivalence between cofibrant objects, by virtue of Ken Brown’s Lemma, such
amap F’(q) is a weak equivalence. O

Definition 2.3.7. Let C and C’ be two model categories.
A Quillen adjunction is a pair of adjoint functors

F:C2C:G

such that F preserves cofibrations and G preserves fibrations. A left Quillen
functor (a right Quillen functor) is a functor F (G, respectively) with a right
adjoint G (a left adjoint F) such that (F, G) is a Quillen adjunction.

Remark 2.3.8. By virtue of Remark 2.1.8 and of Proposition 2.1.12, for a pair
of adjoint functors F and G as above, the following conditions are equivalent.

(1) The pair (F, G) is a Quillen adjunction.
(i) The functor F preserves cofibrations as well as trivial cofibrations.
(iii) The functor G preserves fibrations as well as trivial fibrations.

In particular, for any Quillen adjunction (F, G), the functor F' admits a total
left derived functor, and the functor G a total right derived functor.

Theorem 2.3.9. Any Quillen adjunction F : C 2 €’ : G naturally induces an
adjunction

LF : ho(C) 2 ho(€’) : RG

Proof 1t follows from Ken Brown’s Lemma that, for any cofibrant object A of
C, the functor F sends cylinders of A to cylinders of F(A). Since the functor
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G preserves fibrant objects, it follows that, for any cofibrant object A of € and
any fibrant object X of €’, the bijection

Home (A, G(X)) ~ Home (F(A), X)

is compatible with the relation of homotopy, and thus, by virtue of Proposition
2.2.16, induces a natural bijection

[A,G(X)] = [F(A), X]

as functors from ho(C. )% xho(@}) to the category of sets. Therefore, Theorems
2.2.15 and 2.2.17, together with the very construction of the functors LF and
RG, end the proof. O

Examples of useful derived functors consist in considering total derived
functor of basic categorical operations, such as limits and colimits. Although
we will not consider the general case here, we will need special cases which
can be understood at a rather elementary level.

2.3.10. Let C be a model category.

Given a small category I, let us consider the category G/ = Hom(Z, C). We
define the weak equivalences of G as the morphisms F — G such that, for any
object i of I, the evaluation at i is a weak equivalence F; — G; in C.

We want to define a model structure on G/ by defining the class of fibrations
as the one which consists of morphims F — G such that, for any object i of 1,
the evaluation ati is a fibration F; — G; in C (the cofibrations are defined by the
condition of left lifting property with respect to trivial fibrations). The problem
is that there is no known result asserting the existence of such a model structure,
unless we make further assumptions on either / or C. However, when such a
model category structure exists, it is called the projective model structure.
We will consider several basic examples of small categories / such that the
projective model structure always exists (for any model category C).

For instance, if 7 is a small discrete category, then the projective model
structure exists: the cofibrations simply are the morphisms ' — G such that,
for any object i of I, the evaluation at i is a cofibration F; — G; in C; all the
axioms are simply verified level-wise. Here are slightly less trivial examples.

Proposition 2.3.11. If I is the free category generated by the oriented graph
0 — 1 (so that the category C! simply is the category of arrows Xo — X, in G,
with commutative squares as morphisms), then the projective model structure
exists.

Proof We shall adopt the convention that, when an object of G is denoted
by an uppercase letter such as X, for instance, the corresponding arrow Xy —
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X; will be denoted by the corresponding lowercase letter x : Xy — Xj. A
morphism f : X — Y in C! thus corresponds to a commutative square in € of
the form below.

XOL)YO

b

X Sy 1
One defines cofibrations (trivial cofibrations) as follows: a morphism f : X —
Y is a (trivial) cofibration if the map fj is a (trivial) cofibration and if the canon-
ical map (fi,y) : Xi lx, Yo — Y; is a (trivial) cofibration. One checks that
trivial cofibrations precisely are the cofibrations which are weak equivalences.
The verification of the lifting properties is straightforward. To obtain factori-
sation into a cofibration followed by a trivial fibration, we proceed as follows
(the case of a trivial cofibration followed by a fibration is similar). Given a map
f: X — Yin C!, we factor f, as a cofibration iy : Xg — T, followed by a
trivial fibration pg : Ty — Y. We then form the push-out square

XOL)TO

ol

X1—1>T1’

and we choose a factorisation of the map ( f1, ypo) : T; — Y1 into a cofibration
J : T{ — T, followed by a trivial fibration p; : T — Y;. We put iy = jij.
We thus have factored the map f into a cofibration i : X — T followed by a
fibrationp : T — Y. O

Proposition 2.3.12. In the case of the free category I generated by the oriented
graph (0,1) « (0,0) — (1,0) (so that the category C! simply is the category of
diagrams of the form Xy 1 < Xo,0 — X1.0 in C), the projective model structure
exists. The cofibrant objects are the diagrams of the form X1 «— Xo,0 — X1,0
in which all the objects are cofibrant and all the maps are cofibrations.

Proposition 2.3.13. If C has small colimits, then, for any small well ordered
set I with initial element 0, the projective model structure exists. The cofibrant
objects are the functors X : I — C such that, for any element i € I, the map

H_r)n i X; — X, is a cofibration (in particular, all the X;’s must be cofibrant).
J<i

The proofs of propositions 2.3.12 and 2.3.13 are left as exercises.”

2 These are special cases of a more general fact: if I is a direct category, the projective model
structure exists. We refer to [Hov99, Theorem 5.1.3] for the proof (which involves some
knowledge of the special cases above anyway).
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2.3.14. Whenever the projective model category structure exists, we then have
a Quillen adjunction

(2.3.14.1) lim: ' =2¢:6

T
where 6 (X) = X; denotes the constant diagram indexed by / with value X. This
means that, for any functor F : I — C and any object X, there is an adjunction
of the form

(2.3.14.2) Homy,ery (F, X;) = Homho(@)(Lli_I)nF, X)

1
Proposition 2.3.15. Assume that the projective model category structure exists
on C! and that @ has I-indexed colimits. Any natural transformation f : X — Y
between cofibrant functors from I to C, which is a weak equivalence f; : X; — Y;
at each object i of I, induces a weak equivalence li_r)n[ X — li_r}nl Y.

Proof Such a map X — Y is an isomorphism in 40(C’) and therefore, its
image by the functor L h_n)l is an isomorphism of 40(C). But, by construction of
the derived functor L h_r)nl (see 2.3.2), this isomorphism is the image of the map
h_r)n, X - li_r)nl Y. Since any map inducing an isomorphism in the homotopy
category is a weak equivalence (2.2.19), this proves the proposition. O

Taking the case of a discrete category, as well as the examples provided by
propositions 2.3.12 and 2.3.13, the preceding proposition takes the following
explicit forms, respectively.

Corollary 2.3.16. Let I be a small set such that I-indexed sums exist, and
fi + Xi = Y; afamily of weak equivalences between cofibrant objects. Then the

induced map
U fl : U Xi - U Yi
iel iel iel

is a weak equivalence.

Corollary 2.3.17. Consider the following commutative diagram in which all
the horizontal maps are cofibrations between cofibrant objects.

x' x”
Xl — X LN X//

R

Y/ L Y 7 Y/I
If the three vertical maps are weak equivalences, then the induced morphism

X’ Hxx” —>Y' Hy Y”
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is a weak equivalence.

Corollary 2.3.18. Assume that C has small colimits. Let I be a small well
ordered set, and X — Y be a natural transformation between functors from I
to C. Assume that, for any element i of I, the maps
limX; - X; and limY; —Y;
Jj<i Jj<i
are cofibrations, and the map X; — Y; is a weak equivalence. Then the induced
morphism
limX; — limY;
— —
iel iel

is a weak equivalence.

In the case where [ is the smallest infinite ordinal, the preceding corollary
takes an even more concrete form.

Corollary 2.3.19. Assume that C has small colimits. Consider the following
commutative diagram, which consists of a morphism f of sequences of cofibra-
tions between cofibrant objects indexed by non-negative integers.

Xo X1 X e X, X1
lfo lfl lf2 lﬁl lfn+1
Yy n Y, N Y, Yo

If the vertical maps all are weak equivalences, then the induced map

h_rr)lX,, — h_rr)lYn
n n

is a weak equivalence as well.

Definition 2.3.20. Let F : I — C be a functor, and X an object of the model
category C. A co-cone F — Xj (i.e. a map in C!) exhibits the object X as the
homotopy colimit of F if the induced map L h_r)nl F — X is an isomorphism in
ho(C).

Homotopy limits are defined similarly (as homotopy colimits in C7).

Example 2.3.21. Assuming that € has /-indexed colimits, for any functor F :
I — @ which is cofibrant in the projective model category structure on G/
(and provided that the latter exists), the colimit co-cone exhibits li_r)nl F asa
homotopy colimit of F. In fact, provided that the projective model category
structure exists on G/, we can characterise homotopy colimits as follows: given
a functor F from I to €, a co-cone F — Xj exhibits X as a homotopy colimit
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of F if and only if there exists a weak equivalence F’ — F, with cofibrant
domain in the projective model category structure, such that the induced map
lim F’ — X is a weak equivalence.

—I

Definition 2.3.22. A commutative square

X 25 x

N

y <> v
is homotopy coCartesian, if it exhibits Y’ as the homotopy push-out (i.e. the
homotopy colimit), of the diagram ¥ «— X — X’.
Dually, such a square is said to be homotopy Cartesian if it exhibits X as the
homotopy pull-back of the diagram ¥ — Y’ « X’ (or, equivalently, if it is a
homotopy coCartesian square in the opposite category).

Example 2.3.23. Any coCartesian square in which all maps are cofibrations
between cofibrant objects is homotopy coCartesian.

Remark 2.3.24. Let 0 = [1] X [1], so that functors from O to C precisely
are the commutative squares in C. We then have a projective model category
structure on C7 (because €7 =~ (€[I1)[ 5o that we may apply Proposition
2.3.11 twice). A commutative square of € is homotopy coCartesian if and only
if it is isomorphic in 2o (C™) to a commutative square of € which is coCartesian
and in which all the maps are cofibrations between cofibrant objects. The next
two statements are direct consequences of this characterisation.

Proposition 2.3.25. One of the two squares

f

X X5 x X ——Y
I O N
y —4 5y x Ly

is homotopy coCartesian if and only if the other one has the same property.
Proposition 2.3.26. Any commutative square of the form
X = X’

e

y -4 Ly

in which both x and y are weak equivalences is homotopy coCartesian.
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Proposition 2.3.27. Consider a coCartesian square of the form below.
X X

(2.3.27.1) lf lf/

y Y Ly

Assume that the morphism f is a cofibration and that both X and X' are
cofibrant. If moreover the map x is a weak equivalence, so is y.

Proof Given any map x : X — X’, there is an adjunction of the form
xn:X\C2 X'\C:x'
where x' denotes the functor induced by composition with x:
X(f X -sY)=(fx: X Y.

The left adjoint x; is the functor which associates to any map f : X — Y its
push-out along the map x, so that we get a push-out of the form (2.3.27.1). The
functor x' obviously preserves fibrations and cofibrations, so that we have a
Quillen adjunction, and therefore, a derived adjunction

Lx; : ho(X\C) 2 ho(X'\€) : Rx'.

The cofibrant objects of X\C precisely are the cofibrations f : X — Y, so
that the unit of the derived adjunction evaluated at such a cofibration f is the
image of the map y in the coCartesian square (2.3.27.1). Therefore, if, for any
cofibration f : X — Y, the map y, in diagram (2.3.27.1), is a weak equivalence,
then the functor Lx; is fully faithful. By virtue of Corollary 2.2.19, the reverse
is true: if this functor is fully faithful, then the map y is a weak equivalence
for any cofibration f : X — Y. On the other hand, the functor Rx' is always
conservative: it is sufficient to check this property for maps between objects
which are both fibrant and cofibrant in X”\C, in which case this follows from
the fact that, by definition, a map in X"\ C is a weak equivalence if an only if its
image in C has the same property. Therefore, the functor Lx; is an equivalence
of categories if and only if it is fully faithful.® Finally, we conclude that the
functor Rx' is an equivalence of categories if and only if, for any cofibration
f: X — Y, theassociated map y : Y — Y’ is a weak equivalence. For instance,
this is the case whenever the map x is a trivial cofibration (since the class
of trivial cofibrations is stable under push-outs). It is time to remark that the
3 Given an adjunction u : A 2 B : v, if the left adjoint u is fully faithful (or, equivalently, if the

unit map a — v(u(a)) is invertible for any object a of A), then the functor v is a localisation

of B by the class of maps whose image by v is invertible. Therefore, if « is fully faithful and if

v is conservative, both u and v are equivalences of categories and are quasi-inverses to each
other.
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functor x' preserves weak equivalence, from which one checks that the functors
Rx' turn the map

X — ho(X\C)

into a functor from € to the opposite of the category of locally small categories.
Since the class of equivalences of categories satisfies the ‘two-out-of-three’
property, by virtue of Ken Brown’s lemma (2.2.7), we conclude that any weak
equivalence between cofibrant objects x : X — X’ induces an equivalence of
categories Rx', and this achieves the proof. O

Corollary 2.3.28. Consider a coCartesian square of the form (2.3.27.1). If the
morphism f is a cofibration and if both X and X' are cofibrant, then this is a
homotopy coCartesian square.

Proof We choose a factorisation of the map x into a cofibrationi : X — X"
followed by a weak equivalence p : X"’ — X’. The commutative square above
now is the composition of two coCartesian squares of the form below.

X L xr 2, x

A

y Ly L,y

The left hand commutative square is homotopy coCartesian (2.3.23), and,
therefore, as explained in Remark 2.3.24, it is sufficient to prove that the induced
map ¢ is a weak equivalence. In other words, we may assume that, furthermore,
the map x is a weak equivalence, and it is sufficient to prove that, under this
additional assumption, the map y is a weak equivalence, which follows from
the preceding proposition. O

Corollary 2.3.29. In Corollary 2.3.17, one may only assume that all objects
are cofibrant and that x' and y' are cofibrations, and still get to the same
conclusion.

2.4 Model structures ex nihilo

2.4.1. As we have mentioned in Proposition 2.1.9, the small object argument
is one of the possible tools to construct weak factorisation systems. When, in
a model category structure, the weak factorisation systems (Cof, W N Fib) and
(W N Cof, Fib) can be constructed out of the small object argument, we say
that the model category is cofibrantly generated. In that case, we thus have the
existence of a small set I of cofibrations, as well as of a small set J of trivial
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cofibrations, such that /(r(7)) = Cof and I(r(J)) = W N Cof. We then say that
I and J generate the class of cofibrations and the class of trivial cofibrations,
respectively.

Example2.4.2. Let Abearing, and C = Comp(A) be the category of (possibly
unbounded) cochain complexes of (left) A-modules. This category has a struc-
ture of cofibrantly generated model category, for which the weak equivalences
are the quasi-isomorphisms and the fibrations are the epimorphims (i.e. the
maps which are surjective in each degree); see the second chapter of [Hov99],
for instance. A generic set of cofibrations is given by all the shifts of the in-
clusion of the ring A (seen as a complex of A-modules concentrated in degree
zero) into the mapping cone of the identity of A. A generating set of trivial
cofibration is given by all shifts of inclusion of 0 into the mapping cone of the
identity of A. (This example will not be used in these notes.)

2.4.3. The purpose of this chapter is to explain a general procedure to construct
cofibrantly generated model category structures on categories of presheaves of
sets over a fixed small category, following a previous work [Cis06] of the author
of these notes. The idea is simple: it consists in following step by step most
of the book of Gabriel and Zisman [GZ67] on the homotopy theory of Kan
complexes, and to see that significant part of it makes sense in a wide generality.
The idea of promoting the book of Gabriel and Zisman into a general way to
define homotopy theories ex nihilo comes from the early work of Fabien Morel
on homotopy theory of schemes [Mor06].

From now on, we fix a small category A. In this chapter, all presheaves are
presheaves of sets over A.

Definition 2.4.4. A cellular model is a small set M of monomorphisms of
presheaves such that the class [(r(M)) is the class of all monomorphisms of
presheaves.

Cellular models always exist: for instance, the set of monomorphisms of the
form K — L, where L run over the quotients of representable presheaves, is a
cellular model; see Example 2.1.11.

But some cellular models are nicer than others.

Example 2.4.5. If A is an Eilenberg-Zilber category (e.g. A = A), it follows
right away from Theorem 1.3.8 that the boundary inclusions dh, — hg,
a € Ob(A), do form a cellular model: indeed, this theorem shows that any
monomorphism belongs to the smallest saturated class containing boundary
inclusions, and conversely, since the class of monomorphisms or presheaves of
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sets is saturated, it contains the smallest saturated class containing boundary
inclusions; we conclude with the last assertion of Proposition 2.1.9.

Definition 2.4.6. A cylinder of a presheaf X is a commutative diagram
(1x,1x)

(80,01) o
—

(2.4.6.1) XX 2% 1x X

in which the map (d, d;) is a monomorphism.*

Remark 2.4.7. Given a category C, we have the category End(C) of endo-
functors of C. This is a monoidal category whose tensor product is defined by
composition of functors. Of course, the category End(C) acts on the left on C:

(F.X)— F®X = F(X)

With this convention, any natural transformation u : F — G in End(C) and
any morphism p : X — Y in € induce a morphism

up: FeX-GoY.
If we write 1 for the identity of €, we also have 1 ® X = X.

Definition 2.4.8. A functorial cylinder is an endofunctor / of the category
of presheaves endowed with a morphism (dp,d;) : 1111 — [ as well as a
morphism o : I — 1 such that, for any presheaf X, the diagram

2.48.1) x 11 x DEAC) g x IO ¢
is a cylinder of X.

An exact cylinder is such a functorial cylinder satisfying the following prop-
erties.

DHI. The functor I commutes with small colimits and preserves monomor-
phisms.

DH2. For any monomorphism of presheaves j : K — L, the commutative
square

K—71

68®1Kl las®1L

1ok 2L 1L

is Cartesian for € = 0, 1.

4 This means that both maps d; : X — IX are monomorphisms and that the intersection of the
image of dp and of the image of 9 is empty.



2.4 Model structures ex nihilo 53

Remark 2.4.9. Given a Cartesian square of presheaves

X —Y

|l

Z — T

in which all maps are monomorphisms, the induced morphism ¥ lly Z — T is
a monomorphism, whose image is denoted by Y U Z. We thus have an inclusion

YuzcrT.

We will write {¢} for the subobject of I determined by the monomorphism
O0¢ : 1 — I. We thus have canonical inclusions

K~{e}®KcCcI®K
for € = 0, 1. The axiom DH2 now means that we have inclusions
I®KU{e}®LCI®L

fore =0, 1.
We shall also write

oI ={0} I {1}.
Since colimits are universal in any category of presheaves (i.e. pulling back
along a morphism of presheaves defines a functor which preserves small col-

imits), the inclusion 01 — I, together with any monomorphism of presheaves
j : K — L, gives a Cartesian square made of monomorphisms

0I®K — I®K
iwer  ues
0IQL —— I®L
and, therefore, induces a canonical inclusion
I®KUJI®LCI®L.

Example 2.4.10. If ] is an interval (i.e. a cylinder object of the final presheaf),
the functor X +— I X X is an exact cylinder. For instance, one may always take
the subobject classifier I = Q; see 2.1.11.

Definition 2.4.11. Given a exact cylinder /, a class of morphisms of presheaves
An is a class of [-anodyne extension if it satisfies the following properties.

AnQ. There exists a small set of monomorphisms of presheaves A such that
An = [(r(A)) (in particular, the class An is saturated and is a subclass of
the class of monomorphisms).
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Anl. For any monomorphism of presheaves K — L, the induced morphism
I®KU{e}®L —>I®LisinAnfore =0,1.

An2. For any map K — L in An, the induced map /I @ KUJIQ L — I ® L is
in An.

A homotopical structure is the data of an exact cylinder /, together with a class
of I-anodyne extensions.

Example 2.4.12. The class of monomorphisms is a class of /-anodyne exten-
sions (for any 7).

Example 2.4.13. Given an exact cylinder I, together with a small set of mono-
morphisms of presheaves S, one can construct the smallest class of /-anodyne
extensions containing S as follows. First, we choose a cellular model M, and
we define the set AY(S, M) as:

(2.4.13.1) AY(S,M) = SU{I®KU{e}®L — I®L|K - Le M, &=0,1}.
For n > 0, we put

(24.132) AJ*N(S,M)={I® KUJI®L—>I®L|K— LeN(S,M)},
and finally:

(2.4.13.3) Ar(S, M) = U NS, M).

n>0

Then the class An;(S) = [(r(A;(S, M))) (i.e. the smallest saturated class of
maps containing Ay (S, M))) is the smallest class of /-anodyne extensions con-
taining S. Indeed, it is clear that any class of /-anodyne extensions containing
S also contains Az(S, M)), and thus the smallest saturated class of maps con-
taining the latter, which is Anj(S). Therefore, it is sufficient to check that the
class Anjy(S) itself is a class of /-anodyne extensions. Axiom AnO is true by
construction. For this we note that, since it preserves small colimits, the functor
I has a right adjoint X + X’. The inclusion {&} c I induces a natural map
x! — x{e} = X Henceforth, any morphism of presheaves X — Y defines a
commutative square

XI R YI

|

X —Y

and thus a canonical map X! — Y’ xy X. For any monomorphism K — L we
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get a correspondence of the form:

I®KU{e}® L —“— X K—% 5 x!
(2.4.13.4) l o l @~ l o l
IeL ———— L— Y xy X

In the case where the map X — Y has the right lifting property with respect
to elements of Aj(S, M)), we see from formula (2.4.13.1) and from correspon-
dence (2.4.13.4) that the map X! — Y’ xy X has the right lifting property
with respect to any element of the cellular model M, and thus, with respect to
any monomorphism (since M generates the class of monomorphisms). Using
correspondence (2.4.13.4) again, this proves Axiom Anl. The proof of axiom
An?2 is similar (replacing (2.4.13.1) by (2.4.13.2), M by A;(S, M)), and {e} by
al).

From now on, we assume that a homotopical structure is given: an exact
cylinder I together with a class An of I-anodyne extensions.

Definition 2.4.14. Let fj, fi : K — X be two morphisms of presheaves. An
I-homotopy from fy to fyisamap h: I ® K — X such that #(d,; ® 1g) = fe
fore =0,1.

We denote by [K, X] the quotient of the set Hom(K, X) by the smallest
equivalence relation generated by the relation of being connected by an /-
homotopy. Two maps fy, f1 : K — X are said to be I-homotopic if they have
the same class in [K, X]; equivalently, this means that there is a finite sequence
of maps h; : I® K — X, 1 < i < n, such that h;(dy ® 1x) = fp and
h, (01 ® 1) = f1, and such that, for each i, 1 < i < n, there exists € and 1 in
{0, 1} such that hi_l((?,, ®1k) = hi (9, ® 1g).

The functoriality of the cylinder I ensures that this equivalence relation is
compatible with composition. There is thus a well defined category of pre-
sheaves up to I-homotopy (whose objects are presheaves, and whose sets of
morphisms are the quotients of the form [K, X]).

A morphism of presheaves is an I-homotopy equivalence if it defines an
isomorphism in the category of presheaves up to /-homotopy.

The Yoneda Lemma applied to the category of presheaves up to /-homotopy
gives the following characterisation of /-homotopy equivalences.

Proposition 2.4.15. For a morphism of presheaves f : X — Y, the following
conditions are equivalent.

(a) The map f is an I-homotopy equivalence.
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(b) There exists a morphism g : Y — X such that gf is I-homotopic to 1x
and fg is I-homotopic to ly.

(c) For any presheaf K, the induced map f. : [K,X] — [K,Y] is bijective.

(d) Forany presheaf W, the induced map f* : [Y,W] — [X, W] is bijective.

Definition 2.4.16. A morphism of presheaves f : X — Y is a strong deforma-
tion retract (the dual of a strong deformation retract ) if there exists a morphism
g:Y — X as well as a morphism 2 : I ® Y — Y (as well as a morphism
k:1®X — X, respectively) such that:

(i) gf =1x (fg = ly, respectively);
(i) h(a()@ly) = ly and h((91®1y) = fg(k((90®1x) =1x andk(81®1x) =
gf, respectively);
Gii)) h(1; @ f) =0 ® f (fk = o Q f, respectively).

Recall from Example 2.1.11 that we call trivial fibrations the morphisms
of presheaves which have the right lifting property with respect to monomor-
phisms.

Proposition 2.4.17. Any trivial fibration is the dual of a strong deformation
retract, and any section of a trivial fibration is a strong deformation retract. In
particular, any trivial fibration has a section, and is an I-homotopy equivalence.

Proof Let p : X — Y be a trivial fibration. Since the map from the empty
presheaf to any presheaf is a monomorphism, the following solid commutative
square admits a filler.

Hence the existence of sections. Let us assume that such a section s is provided.
Since s must be a monomorphism, the expression / ® Y U 91 ® X makes sense.
We thus have a solid commutative diagram

TeYudlex S0,y
[ k lp
I1®X e Y
which admits a filler k. |

Definition 2.4.18. A naive fibration is a morphism with the right lifting prop-
erty with respect to the given class An of I-anodyne extensions. A presheaf X
is fibrant if the map from X to the final presheaf is a naive fibration.
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A morphism of presheaves is a cofibration if it is a monomorphism.
A morphism of presheaves f : X — Y is a weak equivalence if, for any
fibrant presheaf W, the induced map

[T W] - [X W]
is bijective.

Theorem 2.4.19. With this definition of weak equivalences and of cofibrations,
we have a cofibrantly generated model category structure on the category of
presheaves over A. Moreover, a presheaf is fibrant precisely when its map to
the final presheaf is a naive fibration, and a morphism between fibrant objects
is a fibration if and only if it is a naive fibration.

Remark 2.4.20. Any cofibrantly generated model category structure on the ca-
tegory of presheaves over A in which the cofibrations are the monomorphisms
can be obtained in this way: if J is a generating set of the class of trivial cofi-
brations (i.e. such that [(r(J)) is the class of trivial cofibrations), we can take
as exact cylinder the one defined as the cartesian product with the subobject
classifier € (2.4.10), and consider the smallest class of Q-anodyne maps gen-
erated by J (2.4.13). Using the fact that the projections Q X X — X are trivial
fibrations, we see that the model category structure obtained by the theorem
above is the one we started from.

The proof of Theorem 2.4.19 will require quite a few steps, and is the goal
of the remaining part of this chapter.

Remark 2.4.21. By virtue of the characterisation of /-homotopy equivalences
given by condition (d) of Proposition 2.4.15, the class of weak equivalences
contains the class of /-homotopy equivalences. Furthermore, it is clear that
the class of weak equivalences has the two-out-of-three property and is stable
under retracts. Proposition 2.4.17 tells us that any trivial fibration is a weak
equivalence. As explained in Example 2.1.11, any morphism can be factored
into a cofibration followed by a trivial fibration (possibly using the small object
argument).

Remark 2.4.22. For any generating set A of the class of /-anodyne maps, one
can apply the small object argument (2.1.9). In particular, any morphism of
presheaves f admits a (functorial) factorisation of the form f = pi with i an
I-anodyne map and p a naive fibration.

Lemma 2.4.23. A morphism of presheaves is a trivial fibration if and only if it
has both properties of being a weak equivalence and of having the right lifting
property with respect to trivial cofibrations.
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Proof Since any trivial cofibration is a monomorphism and since we already
know that any trivial fibration is a weak equivalence, this is certainly a nec-
essary condition. Conversely, let p : X — Y be a morphism which is a weak
equivalence and has the right lifting property with respect to trivial cofibra-
tions. We may choose a factorisation p = ¢j where j is a cofibration and ¢ is a
trivial fibration. The morphism j must be a weak equivalence, and, therefore,
by virtue of the Retract Lemma (2.1.5), the morphism p is a retract of g. Hence
it is a trivial fibration. O

Lemma 2.4.24. Let X and W be two presheaves, with W fibrant. Then the
relation defined by the existence of an I-homotopy is an equivalence relation
on the set Hom(X, W).

In particular, for any pair of morphisms u,v : X — W, if u = v in the
category of presheaves up to I-homotopy equivalence, then there exists an
I-homotopy from u to v.

Proof 1t is clear that, for any map u from X to W, there is an /-homotopy
from u to itself (e.g. h = o ® u). Let us prove that, for three morphisms
u,v,w : X — W, if there is an /-homotopy 4 from u to v as well as an /-
homotopy k from u to w, then there exists an /-homotopy from v to w. Taking
into account the identifications

I®0I®X~I®XUI®X and {0}®@I®X=IQX,
we have a map
((h,k),cQu): IAIXU{0}®I®X - W,
and the inclusion
I®AI®XVU{0}®I®X - I®I®X

is an /-anodyne extension. Therefore, since W is fibrant, there exists a morphism
H:1®I1®X — W whose restrictionto / ® X =~ I ® {0} ® X coincides with
h, whose restriction to I ® X ~ I ® {1} ® X coincides with k, and whose
restrictionto / ® X ~ {0} ® I ® X is the constant homotopy o ® u. Let us define
the morphism 7 : I ® X — W by the equality n = H(01 ® 1; ® 1x). We then
have

(0 ® 1x) = H(6, ® 11 ® 1x)(9p ® 1x)
=H(1; ® 0p ® 1x)(01 ® 1x)
=h(01®1x)=v

Similarly, one checks that n(d; ® 1x) = w.
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For w = u and k = o ® u the constant /-homotopy from u to itself, this shows
that the relation of /-homotopy is symmetric. The general case, together with
the property of symmetry, proves the property of transitivity. |

Proposition 2.4.25. Any I-anodyne map is a weak equivalence.

Proof Letj:X — Y be an I-anodyne map (i.e. an element of the class An),
and W a fibrant presheaf. We must prove that the induced map

J YWl - (X, W]

is bijective. The surjectivity is clear (W being fibrant and j an /-anodyne
extension, it is already true at the level of morphisms of presheaves). Let
Yo,y1 : ¥ — W be two morphisms of presheaves such that yqj is /-homotopic
to y1j. Then, by virtue of the preceding lemma, there exists an /-homotopy
h:1®X — W from ygj to y; j. This defines a morphism

(h, (Yo, 1)) : I®XUIIQRY — W.
On the other hand, since j is an /-anodyne extension, the induced map
I®XUJIRQY - IQY

is I-anodyne. Therefore, since W is fibrant, there existsamap H : I Y —» W
which is an /-homotopy from yq to y; . m}

Proposition 2.4.26. A morphism between fibrant presheaves is a weak equiv-
alence if and only if it is an I-homotopy equivalence.

Proof This follows right away from the Yoneda Lemma applied to the category
of fibrant presheaves up to /-homotopy. O

Lemma 2.4.27. A naive fibration is a trivial fibration if and only if it is the
dual of a strong deformation retract.

Proof We already know that this is a necessary condition (2.4.17). Let p :
X — Y be a naive fibration which is the dual of a strong deformation retract.
We may assume that we have morphisms s : ¥ — X aswellask : [ ® X — X
such that ps = 1y, k(dp ® 1x) = 1x, k(01 ® 1x) = sp, and pk = o ® p. We
must prove that any commutative square of the form

K %5 X

i |7

Lty
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in which i is a monomorphism has a filler / : L — X. We have a morphism
u=(k(l;®a),sb) : IQKU{1} L — X.
And the monomorphism 7 induces an /-anodyne extension
JiI®KU{1}QL —-I®L.
Therefore, the commutative square

I®KU{1}®L —— X

]®LLM’>

admits a filler . We put [ = h(dy ® 11). We then have

pl=ph(6o®1L) =(c®b)(Go®1L) =b
li=h(0y®1.)i=h(1l;®i)(dy® 1k)
=k(1;®a)(0g® 1) =k(0g® 1x)a=a

and this achieves the proof. O

Lemma 2.4.28. A naive fibration with fibrant codomain is a weak equivalence
if and only if it is a trivial fibration.

Proof Letp: X — Y be anaive fibration, with Y fibrant, and assume that p
is a weak equivalence as well. By virtue of Proposition 2.4.26, the map p is an
I-homotopy equivalence. Furthermore, Lemma 2.4.24 ensures that there exists
morphism ¢ : ¥ — X as well as an /-homotopy &k : I ® Y — Y from 1y to pt.
In particular, we have the following commutative square.

y — 5 x

K 7
31®1yl J/P

19y %5y

Let us put s = k" (dp ® 1y). We then have:
ps=pk'(Go®1ly) =k(dh® ly) =1y .

Since p is an I-homotopy equivalence, using Lemma 2.4.24 once more, there
is an /-homotopy /4 from the identity of X to the map sp. In particular, under
the identifications

I X~{1}®I®X and I®XUI®X~I®JII®X,
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this defines a morphism
(c®@sp,(h,sph)) : {1} @IQXUI®I®X — X.

Finally we have a commutative square

(o®sp,(h,sph))

{1} @I XUl®dl®X — X

I®I®X T o00lx I®X o

which has a filler H. We define K = H(Jy ® 1;¢x). The identities

K(0p ® 1x) =H (9o ® 11ex)(0o ® 1x) = h(0p ® 1x) = 1x
K(0, ® 1x) =H(0p ® 119x)(01 ® 1x) = sph(dy ® 1x) = sp
pK =pH(p ® liex) = ph(0o ® 0 ® 1x) = p(0 ® 1x)

show that p is the dual of a strong deformation retract. We conclude with
Lemma 2.4.27. The converse follows from Proposition 2.4.17. O

Corollary 2.4.29. A cofibration with fibrant codomain is a weak equivalence
if and only if it is an I-anodyne extension.

Proof We already know that any /-anodyne extension is a weak equivalence
(see Proposition 2.4.25). Let i be a cofibration with fibrant codomain. There
exists a factorisation of the form i = gj with j an /-anodyne map and ¢ a naive
fibration. Since j is a weak equivalence, if ever i is a weak equivalence, so will
be g, and therefore, by virtue of Lemma 2.4.28, the morphism ¢ is a trivial
fibration. It thus follows from the Retract Lemma (2.1.5) that i is a retract of j
and thus is /-anodyne. O

Proposition 2.4.30. A cofibration is a weak equivalence if and only if it has
the left lifting property with respect to the class of naive fibrations with fibrant
codomain.

Proof Leti: K — L be a cofibration. Let us choose an /-anodyne extension
with fibrant codomain j : L — L’.
Assume that 7 is a trivial cofibration. For any commutative square

K25 X

i| lr

L2,y

with p a naive fibration with fibrant codomain, we may assume that there is a
map b’ : L’ — Y such that »’j = b. Since ji is a trivial cofibration with fibrant
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codomain, the previous corollary tells us that there exists amap !’ : L’ — X
such that pl” = b’ and I’ ji = a. Therefore, the map [ = I’j is a filler of the
square above.

Conversely, if i has the left lifting property with respect to the class of naive
fibrations with fibrant codomain, we may choose a factorisation of the map
Jji into an I-anodyne extension k followed by a naive fibration (with fibrant
codomain) p. The Retract Lemma implies that ji is a retract of k, hence is
I-anodyne. In particular, the map ji is a trivial cofibration. Since j has the
same property, the map i itself must be a trivial cofibration as well. O

Corollary 2.4.31. The class of trivial cofibrations is saturated.

Proof Any class of maps defined by left lifting property with respect to a
given class of maps is saturated. O

The last part of the proof of Theorem 2.4.19 consists in exhibiting a small
set of generating trivial cofibrations. This requires a few more steps, includ-
ing a closer look at the proof of the small object argument in the case of
monomorphisms of presheaves.

Lemma 2.4.32. Any strong deformation retract is an [-anodyne extension.

Proof Leti: K — Lbeastrong deformation retract. Then there is a morphism
r : L — K such that ri = 1k, as well as an /-homotopy & from 1 to ir, such
that 2(1; ®i) = (0 ®1.)(1;®i) = o ®i. Let us consider a commutative square
of the following form

K 25X

]

L2,y

with p a naive fibration. We want to prove the existence of a filler / : L — X.
The solid commutative square below has a filler k.

(o®a,ar)

I KU{0}®L —'X

IeL —2 vy

We define [ = k(d; ® 1) and check that /i = a and pl = b. O

Lemma 2.4.33. Any [-anodyne extension between fibrant presheaves is a
strong deformation retract.
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Proof Leti: K — L be an I-anodyne extension, with both K and L fibrant.
There exists a retraction r of i. The filler % in the diagram

(o®i,(1L,ir))
R

I®KUJI®L

I®L

L

turns 7 into a strong deformation retract. O

Proposition 2.4.34. For a monomorphismi : K — L, with both K and L being
fibrant presheaves, the following conditions are equivalent:

(i) it is a weak equivalence;
(ii) it is an I-anodyne extension;

(iii) it is a strong deformation retract.

Proof The equivalence between conditions (i) and (ii) is a special case of
Corollary 2.4.29. The equivalence between conditions (ii) and (iii) follows
from Lemmas 2.4.32 and 2.4.33. O

We leave the proof of the following lemma as an exercise (it is sufficient to
prove it in the category of sets to make it true of presheaves). A full proof can
be found in [Cis06, Lemme 1.2.32], though.

Lemma 2.4.35. In any category of presheaves, we have the following proper-
ties.

(a) For any commutative diagram

x x
X1<—1X0—2>X2

bl b

N N
51<—150—2>52

in which the map io as well as the canonical map X, Ux, So — S1 are
monomorphism, the induced map

X1 HXO X2 i Sl HSO SQ

is a monomorphism.
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(b) For any commutative diagram of the form

X, <« Xo —2 Xo
lil lio llﬁ
S 25 2508,

R

Y1 <y—1 YO —2> Y2
if the vertical maps as well as the maps x1, s1 and vy, all are monomor-
phisms, and if the commutative squares of the left column are Cartesian,
then the induced map
(X1 %, Y1) U(x, x5, ¥0) (X2 X5, Y2) = (X11x, X2) X (5,114, 5,) (Y1 Uy, Y2)
is a isomorphism.
(c) For any small family of maps of the form X; — S; < Y, the canonical

map
]__[<x,~ xs, ¥i) — <]_[ Xi) X(11, 1) (]_] Y;)

is invertible.

2.4.36. Let us recall a special case of the construction provided by the small
object argument. Let us fix a set A of monomorphisms. We define two functors
S and B as follows: for any presheaf X, we have

S(X) = ]_[ Hom(K,X)xK and B(X) = ]_] Hom(K, X) x L
i:K—LeA i:K—LeA
There is a canonical map sy : S(X) — X induced by the evaluation maps
from Hom(K, X) X K to X, and we define L;(X) by forming the following
coCartesian square.

S(X) —=X 5 x

R

B(X) —— L1(X)

Given a well orered set E, we define, for each element ¢ € E the functor
L., together with the natural map /lgf) : X - L.(X), as follows. If e is the
successor of an element ey, we put L.(X) = Li(L¢, (X)), and we define the
map ﬂ;f ) as the composition of /l(Lle) x) with the map /lgf o) If e is a limit
element, we define L.(X) as the colicr)nit of the L;(X)’s for i < e. Finally, we
define L(X) as the colimit of the L.(X)’s. There is a canonical embedding

X — L(X) which is a transfinite composition of push-outs of elements of A,
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and, if E is large enough, the map from L(X) to the final presheaf has the right
lifting property with respect to A.

In the case where A generates the given class An of [-anodyne extension,
this is the way we get a functorial /-anodyne extension X — L(X) with fibrant
codomain.”

We shall say that a presheaf X is of size < « if « is a cardinal which is greater
than the set of morphisms of the category A/X.

Lemma 2.4.37. The functors L and I have the following properties.

(i) they preserve monomorphisms;
(ii) they preserve intersections of subobjects;
(iii) there exists an infinite cardinal a such that:

(a) for any presheaf X, the union of subobjects of size < « indexed by
a set of cardinal < « is of size < a;

(b) for any presheaf of size < a, the presheaves L(X) and I ® X are
of size < a.

(c) forany presheaf X, the presheaf L(X) is the union of its subobjects
of the form L(V), where V runs over the subobjects of size < « in
X;

(d) for any well ordered set E of cardinal a and any increasing family
of subobjects (V¢)eck, the union of the L(V,)’s is canonically
isomorphic to the image by L of the union of the V,.’s.

It follows from the preceding lemma that the functor L, preserves monomor-
phisms as well as intersections of subobjects. Since filtered colimits are exact
in any category of presheaves, this proves properties (i) and (ii). Property (iii) is
then a lengthy but elementary exercise of set theory that we leave to the reader.
For a full proof, we refer to [Cis06, Propositions 1.2.16, 1.2.17, and 1.2.35],
for instance.

Lemma 2.4.38. There exists an infinite cardinal « such that, for any trivial
cofibration i : X — Y and any subpresheaf U of size < a in Y, there exists a
subpresheaf'V of size < a inY, containing U, such that the inclusionVNX — V
is a trivial cofibration.

Proof We choose a generating set A of the class of /-anodyne extensions An, so
that An = [(r(A)). We construct a functorial /-anodyne map lx : X — L(X)
with fibrant codomain, as explained in 2.4.36. Finally, we choose a cardinal
5 This construction provides a way to factorize any map: for a map X — Y, seen as presheaf

over A/Y, we may apply this to the set A/Y of maps of presheaves over A/Y whose image in
the category of presheaves over A belongs to A.
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a such that the conclusion of Lemma 2.4.37 hold. Let i : X — Y be a
monomorphism of presheaves. We have a commutative square

X %5 L(x)

|

Y -2 L(y)
in which both horizontal maps are /-anodyne, and therefore, are weak equiva-
lences. Since L (i) is amonomorphism between fibrant presheaves, we conclude
from Proposition 2.4.34 that i is a weak equivalence if and only if L(7) is a
strong deformation retract.

From now on, we assume that L(7) is a strong deformation retract. So there
isamap r : L(Y) — L(X) such that rL(i) = 1, (x), as well as an /-homotopy
h:1®L(Y)— L(Y) from 1, y) to L(i)r whose restriction to / ® L(X) is the
constant homotopy o ® 17(;).

Let U be a subpresheaf of size < a in Y. We shall choose a well ordered set
E of cardinal @ and construct a increasing sequence (V,).cg of subobjects of
Y containing U, such that, for any e € E, if j. : V., — Y denotes the inclusion,
the map & sends I ® L(V,) into L(V,1) (where e + 1 denotes the successor of
e). For e = 0 the initial element of E, we simply put Vy = U. Assume that V;
is already constructed for all i < e. Let us define V as the union of the V;’s
for i < e. Since [ ® L(V}) is of size < , so is its image by the map 4, and
since L(Y) is the union of its subobjects of the form L(T) with T C Y of size
a, we see that there exists V" C Y of size < « such that the image of / ® L(V))
by h is contained in L(V."). We define V., = V, U V', and let V be the union
of the V,’s. Since the union of the L(V,)’s is canonically isomorphic to L(V),
we check that r maps L(V) to L(V N X) and that the restriction of the map A
to I ® L(V) turns the inclusion L(V N X) — L(V) into a strong deformation
retract. Therefore, the inclusion V N X — V is a trivial cofibration. O

Lemma 2.4.39. There exists a small set J of trivial cofibrations such that the
class [(r(J)) coincides with the class of trivial cofibrations.

Proof Let us choose a cardinal @ such that the conclusion of the preceding
lemma holds. We define J to be the set of trivial cofibrations U — V with V of
size < a.

Since the class of trivial cofibrations is saturated (Corollary 2.4.31), it is
clear that any element of the smallest saturated class of maps containing J (i.e.
any element of [(r(J))) is a trivial cofibration. It is thus sufficient to prove that
any trivial cofibration belongs to [(r(J)).

Leti : X — Y a be a trivial cofibration. Since any totally ordered set has a
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cofinal well ordered subset, by Zorn’s Lemma, there exists a maximal subobject
W of Y containing X such that the map X — W belongs to [(r(J)). Let a be
a representable presheaf, and y € Y,. The image U of the mapy : h, = Y
is of size < a, and therefore, there exists a subobject V of Y of size < «,
containing U, such that the inclusion VN W — V belongs to J. Its push-out
along VN W — W, namely the map W — V U W, thus belongs to [(r(J)).
Since W is maximal, this means that VUW = W, and thus that y € W,,. In other
words, we have W =Y. O

This achieves the proof of Theorem 2.4.19: once a cellular model has been
chosen, the small object argument and Lemma 2.4.23 show that cofibrations and
fibrations which are weak equivalences do form a weak factorisation system;
the small object argument and Lemma 2.4.39 show that trivial cofibrations and
fibrations form a weak factorisation system; proposition 2.4.30 also asserts that
fibrations between fibrant objects are nothing else than naive fibrations between
fibrant presheaves.

Proposition 2.4.40. Assume that C is a model category, and let F : A—>C
be a colimit preserving functor which sends monomorphisms to cofibrations.
Then F is a left Quillen functor (i.e. F and its right adjoint form a Quillen
adjunction) if and only if F sends I-anodyne extensions to trivial cofibrations.
If A is a generating set of the specified class An of I-anodyne extensions, then
this property holds whenever F sends A into the class of trivial cofibrations.

Proof Since the class of trivial cofibrations always is saturated, and since F
preserves small colimits, the class of morphisms of presheaves which are sent
to a trivial cofibration by F is saturated. Therefore, if F' sends a generating set
of the class of An into the class of trivial cofibrations, then it sends any element
of An to a trivial cofibration. If this is the case, for any morphism of presheaves
f X — Y, there is a commutative square

X — L(X)

lf 2%

Y —— L(Y)

in which the horizontal maps are /-anodyne. Therefore, the map F( f) is a weak
equivalence if and only if F(L(f)) has the same property. Furthermore, if f
is a monomorphism, we may assume that L(f) is a monomorphism between
fibrant presheaves. Therefore, L( f) is a weak equivalence if and only if it is an
I-anodyne extension. Thus, if f is a trivial cofibration, L(f) is an /-anodyne
extension and this implies that F( f) must be a weak equivalence. O
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Remark 2.4.41. It follows from the proof of the preceding proposition that
inverting the elements of An inverts all weak equivalences. However, it might be
the case that the class An is strictly smaller than the class of trivial cofibrations.
We shall see natural examples in both cases: where these two notions coincide
(Theorem 3.1.29), and where they do not (since there are categories whose
nerve is weakly contractible but without any final object (e.g. the set of finite
subsets of an infinite set), Proposition 4.1.7, Corollary 4.1.9, and Theorem 4.3.9
provide a counter-example).

Remark 2.4.42. Lemmas 2.4.37 and 2.4.38 simply are pedestrian ways to prove
a particular case of Jeff Smith’s Theorem [Lur(09, Prop. A.2.6.13] for construct-
ing combinatorial model categories.® Note however that Theorem 2.4.19 gives
more than the mere existence of a model category structure: since it relies on
the description of fibrations with fibrant codomain in terms of a class which
might be smaller than the class of trivial cofibrations, it gives the possibility to
describe such fibrations in several different ways. This will be useful when we
will start doing such constructions in families (i.e. working over a presheaf X
which is allowed to vary); see the proof of Theorem 4.1.5.

2.5 Absolute weak equivalences

In this chapter, we still consider a fixed small category A, and we will work in
the category of presheaves of sets over A. We also assume that an exact cylinder
1 is given, together with a given class An of I-anodyne maps.

2.5.1. For each presheaf S, the category of presheaves over A/S is canonically
equivalent to the slice category A /S.

One defines an exact cylinder /s on the category of presheaves over A/S by
describing its effect on morphisms f : X — S, seen as objects of A /S. The
object Is ® (X, f) is the object corresponding to the map

c®f=fc®lx):I®X —>S.

Similarly, one defines Ang as the class of morphisms in A /S whose image in A
belong to An. If A is a set of generators of An, then we have Ang = [(r(Ag)),

6 For the reader who already knows what this means: it is easy to see that the class of
I-homotopy equivalences is accessible and that the functor L is accessible, so that the class of
weak equivalence is accessible, so that, by virtue of Corollary 2.4.31, we may apply Smith’s
Theorem, and thus get a proof of Theorem 2.4.19.
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where Ag stands for the morphisms of A /S of the form

K—% 5L

N

such that u € A. The class Ang is a class of Is-anodyne extensions in X/S.
Therefore, applying Theorem 2.4.19 to the category of presheaves over A/S
with the cylinder Is and the class Ang gives a unique model category structure
whose cofibrations are the monomorphisms and whose fibrant objects are the
naive fibrations of codomain S.

Definition 2.5.2. A morphism of presheaves over S is an S-weak equivalence
if it is a weak equivalence in the model category structure associated to I and
Ans.

A morphism of presheaves f : X — Y (over A) is an absolute weak equiva-
lence if, for any presheaf S and any morphism b : ¥ — § the map

is an S-equivalence.

Proposition 2.5.3. A monomorphism is in An if and only if it is an absolute
weak equivalence. Similarly, a morphism of presheaves is both a naive fibration
and an absolute weak equivalence if and only if it is a trivial fibration.

Proof ltis clear that any /-anodyne extension is an absolute weak equivalence.
For the converse, leti : X — Y be a monomorphism which is an absolute weak
equivalence. Then, in particular, it is a trivial cofibration with fibrant codomain
in A /Y. By virtue of Corollary 2.4.29, this proves that i is an /-anodyne
extension.

It is obvious that any trivial fibration is both a naive fibration and an absolute
weak equivalence. Conversely, let f : X — Y be a morphism which is both a
naive fibration and an absolute weak equivalence. Then one can consider f as a
naive fibration with fibrant codomain in A, /Y. Therefore, the map f is a trivial
fibration in A /Y, and thus in A. O

Proposition 2.5.4. The class of absolute weak equivalences W is the smallest
class C satisfying the following conditions.

(a) the class C is stable under composition;
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(b) for any pair of composable morphisms f : X — Y and g:Y — Z, if
both f and gf are in C, so is g;
(c) An c C.

Moreover, a morphism of presheaves is an absolute weak equivalence if and
only if it admits a factorisation into an I-anodyne extension followed by a trivial
fibration.

Proof Letus prove that the class of absolute weak equivalences satisfies these
three properties. Let f : X — Y and g : Y — Z be a pair of composable
morphisms, and let us assume that f is an absolute weak equivalence. Then,
for any morphism Z — §, we may see the maps g and gf as maps in X/S, and
it is clear that g is an S-equivalence if and only if g f is an S-equivalence. This
proves that W satisfies properties (a) and (b). Property (c) is already known.

Let us prove the last assertion. Since trivial fibrations and /-anodyne exten-
sions are in W, it follows from (a) that any composition of such morphisms
is in W*. Conversely, if f is an absolute weak equivalence, then it admits a
factorisation of the form f = pi with i an /-anodyne extension, and p a naive
fibration. Condition (b) ensures that p is an absolute weak equivalence as well,
and thus the second assertion of Proposition 2.5.3 implies that p is a trivial
fibration.

To finish the proof, let C be a class of morphisms satisfying the conditions
(a), (b) and (c). To prove that W¢ c C, it is sufficient to prove that any trivial
fibration is in C. But this follows from the fact that any trivial fibration has
a section and that any such section is /-anodyne (being a strong deformation
retract). ]

Corollary 2.5.5. Let us consider a pair of composable monomorphisms f :
X > Yandg:Y — Z, and assume that f is an I-anodyne extension. Then
the map g is an I-anodyne extension if and only if the map gf has the same

property.
Proof This follows right away from Propositions 2.5.3 and 2.5.4. O

Proposition 2.5.6. Let f : X — Y be amap, and p : Y — S a naive fibration.
Then f is an absolute weak equivalence if and only if the map p turns f into
an S-weak equivalence.

Proof We factor f into a cofibrationi : X — X’ followed by a trivial fibration
q : X’ — Y. Then, by Corollary 2.4.29, i is an S-weak equivalence if and only
if it is in An. Since ¢ is a trivial fibration, i is an S-weak equivalence if and
only if f is an S-weak equivalence. Therefore, if f an S-weak equivalence, it
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is the composition of an /-anodyne map with a trivial fibration, and thus is an
absolute weak equivalence. O

Recall that a supply of 7/-anodyne extensions comes from strong deformation
retracts (Lemma 2.4.32). The following statement might thus be meaningful
when it comes to prove that a map is an absolute weak equivalence.

Proposition 2.5.7. For any Cartesian square

X -l x

a ]

y >y
in which p is a naive fibration and j is a strong deformation retract, the map i
is a strong deformation retract.

Proof Let us choose a retraction r : ¥ — Y’ of j as well as a homotopy
h:1Q®Y — Y from 1y to jr, such that 4(1; ® j) = o ® j. The commutative
square below then has a filler.

(o®i,1x)

18X U{0}®X —3'X

L)

Jox e Ly
The maps u = k(01 ® 1x) : X —» X andv =rp : X — Y’ satisfy the relations
pu = jv (because h(d; ® ly) = jr) and thus define a unique map s : X — X’
such that gs = v and is = u. We have si = 1x because we check that gsi = ¢
and isi = i. Hence i is a strong deformation retract. O



3

The homotopy theory of co-categories

We will start here by constructing the classical Kan-Quillen model category
structure on the category of simplicial sets, which encodes the homotopy theory
of Kan complexes. We will do this using the general method of the previous
chapter. However, even though this method gives that the fibrant objects are
the Kan complexes, an extra work is needed to prove that the fibrations pre-
cisely are the Kan fibrations. This goal is achieved using Kan’s subdivision
functor, through classical arguments on diagonals of bisimplicial sets. Since
Kan complexes will be shown to be the co-groupoids (i.e. the co-categories
in which all maps are invertible), and since co-groupoids are to co-categories
what sets are to categories, this precise understanding of the homotopy the-
ory of Kan complexes is not only a warm up before defining the homotopy
theory of co-categories: it will play a fundamental role all along the book (to
understand many fundamental notions such as locally constant presheaves and
localisations). Even the proofs we chose are meaningful with this respect, ei-
ther because they express a categorical intuition (we strongly encourage the
reader to look at Kan’s Ex™ functor with scrutiny, and to see how obviously it
is related with the idea of inverting arrows), or because possibly generalised
versions of these methods will apply in the homotopy theory of co-categories
(generalising the trick of the diagonal of bisimplicial sets is the subject of the
whole subchapter 5.5 below).

The second section is technical, but fundamental: it is all about the compat-
ibility of the homotopy theory of co-categories with finite Cartesian products.
In particular, it gives sense to the co-category of functors between two given
oo-categories. The third section defines the Joyal model category structure.
However, at that stage, it will not be obvious that the class of fibrant objects
exactly is the class of co-categories. The third section, which we took entirely
from Joyal’s work, introduces fundamental constructions such as joins and
slices, as well as a non-trivial lifting property expressing the fact that, although

72
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one cannot compose maps canonically, one can choose inverses coherently
in co-categories. The latter will be used in the fourth section. First, to prove
that the Kan complexes exactly are the oo-groupoids. Second to prove that
a natural transformation is invertible if and only if it is fibrewise invertible.
This will imply that co-categories are precisely the fibrant objects of the Joyal
model category struture, and that the fibrations between fibrant objects are the
isofibrations.

After revisiting features of the Joyal model category structures for a couple
of sections, we will come back in Section 3.8 to classical homotopy theory:
the Serre long exact sequence associated to a Kan fibration, from which we
will prove the simplicial version of Whitehead’s theorem: a morphism of Kan
complexes is a homotopy equivalence if and only if it induces an isomorphism of
higher homotopy groups (and a bijection on the sets of connected components).
This will be used in Section 3.9 to prove a kind of generalisation to co-categories:
a functor between co-categories is an equivalence of co-categories if and only
if it is fully faithful and essentially surjective.

3.1 Kan fibrations and the Kan-Quillen model structure

The simplicial set A has an obvious structure of interval, so that the Cartesian
product functor A' x () defines an exact cylinder on the category of simplicial
sets.

Definition 3.1.1. An anodyne extension is an element of the smallest class of
Al x (=)-anodyne maps (see Example 2.4.13).

Proposition 3.1.2 (Gabriel and Zisman). The following three classes of mor-
phisms of simplicial sets are equal:

(a) the class of anodyne extensions;
(b) the smallest saturated class of maps containing inclusions of the form

A' X AA" U {e} x A" > AL X A" forn > 0and e =0, 1;
(c) the smallest saturated class containing inclusions of the form
Ay = A'forn>1and0 < k < n.

Proof We know that the set M of boundary inclusions A" — A™, n > 0, is
a cellular model. With the notations introduced in Example 2.4.13, the class
of anodyne extensions is the class [(r(A;(@, M))) with I = A' x (=). The
class described in (b) above is the class l(r(A?(@, M))). To prove that these
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two classes coincide, since, by construction, A?(@,M) c Aj(@,M), it is
sufficient to prove that any element of A;(@, M) belongs to l(r(A?(@, M))).
The explicit description of Aj(@, M) shows that it is sufficient to prove that, for
any monomorphism of simplicial sets K — L and for £ = 0, 1, the inclusion

A'xKU{e}xL - A'x L
belongs to the class l(r(A?(@, M))). Using the correspondence (2.4.13.4), we
see that the class of maps K — L having this property is saturated. Therefore,
it is sufficient to check this property for the inclusions A" — A", in which
case this holds by definition. The equality between the classes (b) and (c)
follows from the lemma below (and the dual version obtained by applying the

auto-equivalence X — X°), which is a slightly more precise version of the
proposition. o

Lemma 3.1.3. The following two classes of morphisms are equal.:

(a) the smallest saturated class of maps containing inclusions of the form

A x OA" U {1} x A" — AL x A" forn > 0;
(b) the smallest saturated class containing inclusions of the form
Al = Alforn>1and0 <k <n.
Proof We define two maps
s:[n] = [1] x[n] and r:[1] X [n] — [n]

as follows. We define

. (0,0) ifi <k,
s(i) =
(1,i) else.
We also put:
i ifi <k, k ifi <k,
r(0,i) = Lot and r(1,i) = n
k else i else.

Since the nerve functor preserves products and N([m]) = A™, these maps
define morphisms

s:A" S A X A" and r: AV X A" > A

The image of A7 by s must be in the union A' X JA™ UHA' x A" (for cardinality
reasons), and none of the faces of A} can be sent in the component {0} x A"
(because k > 0). Using that (1, k) is reached by each face of A”, we see that
the image of s must be in A x A7 U {1} x A". On the other hand, the image
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of the union A! x Ay U {1} X A" by r fits in A}. To see this, recall that A}
is the union of the images of the face maps 6} for i # k. This means that the
non-degenerate simplices of A} correspond to the maps u : [n — 1] — [n]
whose image contains k. Since £ > 0, the image of {1} X A" is in the image
of 63, and thus fits in A}. It remains to prove that r sends Al x A} into A},
This follows from the fact that, for any injective map (u,v) : A" — Al x A"
such that u and v reach 0 and k, respectively, with v not an identity, the map
ru : A" — A" reaches k and is not surjective. The composed map r o s is
the identity of A". Therefore, we have a commutative diagram of the following
form.

1an
Ak

A= AUX AT U{1} x A" —" A7

(3.13.1) [ [ [

A" — 5 ALX AT — 5 A"

Ipn

This proves that the class (b) is contained in the class (a). For the converse, we
define, for each integer i, 0 < i < n, the map ¢; : [n+ 1] — [1] X [n] as the
unique strictly increasing map which reaches both values (0,7) and (1,7). We
write ¢; : A" — A! x A" for the induced morphisms of simplicial sets, and
C; for its image. We define a finite filtration

(3.132) A'xOA"U{1}xA"=A_1 CAgCAIC...C A=A xA"

by the formula A; = A;_, UC,,_; for 0 < i < n. The isomorphism A™! ~ C,,_;
defined by c,—; induces an isomorphism AZ’j +1 = Cn—i N A;_1. Let us check
that, for any face map 63?*1 ¢ A" — A1 with j # n —i+ 1, the image of
c; o 6;.”1 isin A;_q1. If j # n — i, the image is in Al x A", while, if n —i = J,
we have two cases: for n —i = j = 0, the image precisely is {1} X A", while for
n > i, itis in Cy,_;4+1. Conversely, since C,,_; is not contained in A;_1, we must
have ¢, (C,—; N A;—1) C OA"!. This means that the simplices of C,,_; N A;_q
must all factor through a simplex of dimension at most n. One checks that any
injective map A™ — C,_; N A;_1 (with m < n) must factor through the image
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of A:ﬂ .1+ In conclusion, we have a biCartesian square of the following form.

n+l X
Aylin Ai-y

(3.1.3.3) [ [

An+1 Cn-i N Ai
This shows that the generators of the class (b) all belong to the class (a) and
thus achieves the proof of the lemma. O

Corollary 3.1.4. For any anodyne extension K — L and any monomorphism
U — V, the induced inclusion KxXVULXU — L XV is an anodyne extension.

Definition 3.1.5. A Kan fibration is a morphism of simplicial sets with the
right lifting property with respect to the inclusions of the form A} — A", for
n>land0 <k <n.

A Kan complex is a simplicial set X such that the morphism from X to the
final simplicial set is a Kan fibration.

Corollary 3.1.6. For any monomorphismi : U — V and for any Kan fibration
p: X — Y, the canonical map

(i, p+) : Hom(V, X) — Hom (U, X) Xpom(u,y) Hom(V,Y)
is a Kan fibration.

Corollary 3.1.7. For any anodyne extension i : K — L and for any Kan
fibration p : X — Y, the canonical map

(i*, p.) - Hom(L, X) — Hom(K, X) Xpom(z.y) Hom(K,Y)

is a trivial fibration (i.e. has the right lifting property with respect to monomor-
phisms).

Theorem 3.1.8. There is a unique model category structure on the category of
simplicial sets whose class of cofibrations is the class of monomorphisms, and
whose fibrant objects are the Kan complexes. Moreover, any anodyne extension
is a trivial cofibration, and the fibrations between fibrant objects exactly are
the Kan fibrations between Kan complexes.

Proof By virtue of Proposition 3.1.2, this follows from Theorem 2.4.19 ap-
plied to the category of simplicial sets for the exact cylinder A! x (—) and for
the class An of anodyne extensions. O

Definition 3.1.9. The Kan-Quillen model category structure is the model ca-
tegory structure on the category of simplicial sets obtained by Theorem 3.1.8.
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The weak equivalences of this model category structure are called the weak
homotopy equivalences.

Corollary 3.1.10. The class of weak homotopy equivalences is closed under
finite products.

Proof This assertion is equivalent to the property that, for any simplicial set
Y, the functor X — X X Y preserves weak equivalences. Since all simplicial
sets are cofibrant, this can be reformulated by saying that it is part of a Quillen
adjunction from the Kan-Quillen model category structure to itself. This functor
obviously preserves cofibrations, so that it is sufficient to prove that it preserves
trivial cofibrations. By virtue of Proposition 2.4.40, it is sufficient to prove
that it preserves anodyne extensions, which is a particular case of Corollary
3.14. O

Lemma 3.1.11. Let € be a category in which a commutative square

A—15 B

o

c—*5Dp
is given. Assume that the maps j, k and | have retractions r, q and p, respec-
tively, and that pk = ir. Then this square is absolutely Cartesian (i.e. its image
by any functor of domain C is Cartesian).

Proof 1t is sufficient to prove that such a square is Cartesian. Letu : X — C
and v : X — B be two morphisms such that ku = [v. We must prove that there
is a unique map w : X — A such that jw = u and iw = v. Since pj = 14, we
must have w = rjw = ru, so that the unicity is clear. For the existence, we put
w = ru. Since both k and / are monomorphisms, it is sufficient to check that
kjw = ku and that [iw = lv, which one sees right away. O

Lemma 3.1.12. For n > 2 and 0 < i < j < n, the following square is
absolutely Cartesian.

on-t
An—2 LN An—l

-1
5| |
6 n

Z&n-—l i 5 AP

Proof 1t is sufficient to check the assumptions of the previous lemma. We

. ; : -1
choose a retracion g of ¢},. In the case where j < n, we may take r = 0',{_2 and

p = a’i_l. If j = n, then we may assume that i # n — 1, because otherwise,
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we apply the functor X +— X and get back to this case. Under this extra
assumption, we put 7 = O'é:g and p = o-ij. O

Proposition 3.1.13. Let C be a small categoryand A : A — Ca Sfunctor. Then
the induced colimit preserving functor A, : sSet — C preserves monomor-
phisms if and only if the map

(A(), A1) : A°TTA® — A = Ay (A")
is a monomorphism.

Proof The class of monomorphisms of simplicial sets is the smallest saturated
class which contains the inclusions A" — A”". Therefore, the functor A,
preserves monomorphisms if and only if, for any integer n > 0, it sends
OA" — A" to a monomorphism. We shall see that the map

Al(0A") — Ay (A") = A"

always is amonomorphism for n # 1, which will prove the proposition. The case
where n = 0 comes from the fact that, since the functor A, preserves colimits,
it sends the empty simplicial set to the empty presheaf over C. Let us assume
that n > 2. The boundary JA” is the union of representable subpresheaves of
the form F; = Im(é?), 0 < i < n, and we have Cartesian squares of subobjects
of A" of the form

A!(Fl' ﬂFj) — Al(Fl)

[ |

A((Fj) —— An

for i # j (because this square is the image by A, of an absolute Cartesian
square provided by Lemma 3.1.12). In other words, A;(JA™) is canonically
isomorphic to the union of the A(F;)’s, and thus, in particular, is a subobject
of A™. O

Proposition 3.1.14. Let A, B : A — C be two functors with values in a model
category. We denote by A, and B their extensions by colimits, respectively, and
we assume that both of them send monomorphisms to cofibrations. If a natural
transformation u : A — B induces a weak equivalence A" — B" foralln > 0,
then, for any simplicial set X, the map

uy : Ai(X) - Bi(X)

is a weak equivalence.
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Proof Tt follows from corollaries 2.3.16, 2.3.18 and 2.3.29 that the class of
simplicial sets X such that the map ux is a weak equivalence is saturated
by monomorphisms (see Definition 1.3.9). Since the category of simplices
is an FEilenberg-Zilber category, we may apply Corollary 1.3.10 for A = A,
and conclude that the smallest class of simplicial sets which is saturated by
monomorphisms and which contains all representable simplicial sets is the
class of all simplicial sets. Therefore, since the map uy is a weak equivalence
for X = A", it must have the same property for any X. O

3.1.15. A bisimplicial set is a presheaf over the product AXA. For a bisimplicial
set X, its evaluation at ([m], [n]) is denoted by X, ..

For two simplicial sets X and Y, we write X ® Y for the bisimplicial set
defined by

(XRY)mn=XmXYn.
Note that this operation preserves representable presheaves: for m,n > 0, we
have:

A" B A" = R (m),[n) -
For a bisimplicial set X and a simplicial set K, we write XX for the simpicial
set defined by

(XK)m = lin Xmn -

A"—K
In other words, the functor K +— XX is the extension by colimits of the functor
A — sSet’? which sends [#] to the simplicial set X" = ([m] > X.n)-
Finally, for a bisimplicial set X, we write diag(X) for the simplicial set

defined by

diag(X)n = Xnon -
Theorem 3.1.16. If a morphism of bisimplicial sets X — Y is a levelwise weak

homotopy equivalence (i.e. induce a weak homotopy equivalence X*" — Y2
forallm > 0), then the diagonal map

diag(X) — diag(Y)
is a weak homotopy equivalence.

Proof 1t follows from Theorem 1.3.8, applied to A = A X A (see 1.3.4), that a
cellular model for the category of bisimplicial sets is given by the maps of the
form

A"ROAN"UIA" R A" - AR A"
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for m,n > 0 (because the domain of this embedding is the boundary of the
codomain in the sense of 1.3.7). In other words, in the context of bisimplicial
sets, the trivial fibrations are the maps X — Y such that the induced morphism
of simplicial set
(3.1.16.1) XA 5 YA xyoam XA
is a trivial fibration for all m > 0.

There is an exact cylinder / defined as the cartesian product with the interval
A® m Al. Let An be the smallest class of I-anodyne extensions containing the

maps of the form
(3.1.16.2) A"RAL - A" A"

for m,n > 0 and 0 < k < n. Using the explicit construction of the class
An given in Example 2.4.13 together with Proposition 3.1.2, we see that the
corresponding naive fibrations precisely are the morphisms X — Y such that,
for any m > 0, the map (3.1.16.1) is a Kan fibration. In the sequel of this proof,
we will consider the category of bisimplicial sets as endowed with the model
category structure associated to I and An by Theorem 2.4.19.

On the other hand, the class of morphisms of bisimplicial sets whose image
by the diagonal functor diag is a trivial cofibration of the Kan-Quillen model
structure is saturated. Since the diagonal of any map of the form (3.1.16.2)
is a weak homotopy equivalence, we deduce that the functor diag sends any
element of An to a weak homotopy equivalence. Therefore, by virtue of Propo-
sition 2.4.40, the functor diag sends weak equivalences of the model category
structure associated to I and An to weak homotopy equivalences.

Since levelwise trivial cofibrations also form a saturated class of morphisms
of bisimplicial sets and since the maps of the form (3.1.16.2) have this property,
we also know that any element of An is a levelwise weak homotopy equivalence.
For a general morphism of bisimplicial sets f : U — V, we can form a
commutative diagram of shape

U—>5x

fl,l”

A
in which i and j are 7-anodyne, while p is a naive fibration with fibrant codo-
main. If f is a levelwise weak equivalence, then so is p. Applying Proposition
3.1.14 for C = sSet’?, we deduce that, for any simplicial set K, the induced
map XX — YX is a weak homotopy equivalence between Kan complexes.
Using the fact that pulling back weak equivalences between fibrant objects
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along fibrations gives weak equivalences, together with the two-out-of-three
property for weak equivalences, we deduce that the map (3.1.16.1) is a trivial
fibration for all m > 0. In particular, f is a weak equivalence, and thus diag( f)
is a weak homotopy equivalence. [

3.1.17. Given a partially ordered set E, we write s(E) for the set of finite non-
empty totally ordered subsets of E, ordered by inclusion. This defines a functor
from the category of partially ordered sets to the category of small categories:
given a morphism f : E — F, the induced map s(f) : s(E) — s(F) simply is
defined by

s(AIWU) = f(U) ={f(x) [xeU}.
The (barycentric) subdivision functor
Sd : sSet — sSet
is the extension by colimits of the functor [n] + s([x]). It has a right adjoint
Ex : sSet — sSet

defined by Ex(X), = Hom(Sd(A™), X). Taking the maximal element of non-
empty subsets of totally ordered finite sets define a functorial order preserving
map

ap :s([n]) = [n], U maz(U).
This extends to a natural transformation
ax : S8d(X) —» X,
which, by transposition, defines an embedding
bx : X — Ex(X)
(obtained by composing the Yoneda isomorphism X;, ~ Hom (A", X) with the
map a,, : Hom(A", X) — Hom/(Sd(A"), X)).

Proposition 3.1.18. The functor Sd preserves monomorphisms as well as an-
odyne extensions.

Proof The fact that this functor preserves monomorphisms is a direct appli-
cation of Proposition 3.1.13.

For each n > 0, the simplicial set Sd(A™) is the nerve of a partially ordered
set with a final element (namely [n]) and the inclusions S C [n] define a
A'-homotopy from the identity of Sd(A™) to the constant map with value [n].
In particular, the map w : A° — Sd(A™") corresponding to the final element
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is a strong deformation retract, and thus is an anodyne extension (see Lemma
2.4.32).

Let us prove that any point 77 : A’ — Sd(A™) is an anodyne extension. There
is a homotopy & : A — Sd(A™) such that 2(0) = n and h(1) = w. By virtue
of Proposition 2.5.4, we see that 4 and  must be absolute weak equivalences
and thus that 7 must be an anodyne extension.

Using Proposition 2.5.4 again, we deduce that, for any morphism u : A" —
A" the map Sd(u) : Sd(A™) — Sd(A") is an absolute weak equivalence
(because we may always choose a base point).

Let W be the class of morphisms whose image by Sd becomes an absolute
weak equivalence. We want to prove that all inclusions of the form A} — A"
belong to W, knowing that all the maps A" — A" are in W. We proceed by
induction on n > 1. The case n = 1 is easy: we have to check that the maps
A — A are in W, which we already know. For a subset I C [n], we put

Ap={ ) Im(a?) .
igl
Hence A'{’k} = A}. We shall prove that, for any non-empty proper subset /, the
map A} — A" is in W. We proceed by induction on the number ¢ of elements
in the complement of /. If ¢ = 1, this means that we have to prove that any face
map A"1 — AMisin W, which is clear. If ¢ > 1, we pick an element k ¢ I, and,
using Lemma 3.1.12, we see that there is a unique non-empty proper subset I’
of [n — 1] such that we have biCartesian squares of the following form.

-1
Ay ? A?u{k}

[ [

A1 —>5;: A}
Therefore, by induction on n, the inclusion A?u " = A;’ is in W. Since the
inclusion AY | x A is in W by induction on c, this proves that the inclusion
A} — A"isin W. O
Proposition 3.1.19. For any simplicial set X, the map ax : Sd(X) — X isa

weak homotopy equivalence.

Proof By virtue of Proposition 3.1.14, we are reduced to prove that the map
ax is a weak homotopy equivalence for X = A", n > 0. Therefore, using the
two-out-three property for weak homotopy equivalences we obtain the property
we seek. O

Lemma 3.1.20. Let f,g : K — L be two morphisms of simplicial sets, such
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that there exists a homotopy h : A'XK — L from f to g. Then, for any simplicial
set X, there exists a homotopy from f* to g*, where f*,g* : Hom(L,X) —
Hom(K, X) are the morphisms induced by f and g, respectively.

Proof The map h defines a morphism
h* : Hom(L, X) — Hom(A! x K, X) ~ Hom(A', Hom(K, X))
which induces, by transposition, a morphism
h: A' x Hom(L, X) — Hom(K, X) .
The latter is a homotopy from f* to g*. |

Proposition 3.1.21 (Kan). For any simplicial set X, the map bx : X — Ex(X)
is a weak homotopy equivalence.

Proof In the particular case where X is a Kan complex, the assertion follows
from Proposition 3.1.19. Indeed, this proposition means that the pair Sd and
Ex form a Quillen adjunction, which induces a derived adjunction LSd and
REx, and that the total left derived functor LSd is isomorphic to the identity
via the natural maps ax. By transposition, this means that the functor REXx is
isomorphic to the identity, which precisely mean that by is a (weak) homotopy
equivalence for any Kan complex X. For the general case, we consider an
anodyne extension i : X — Y with ¥ a Kan complex, and we consider the
commutative diagram below.

X%Y

b Jo

Ex(X) 2, Ex(y)
The maps i and by are weak homotopy equivalences. To finish the proof, it is
thus sufficient to prove that the map Ex(i) is a weak homotopy equivalence.
We will now prove that the functor Ex preserves weak homotopy equivalences,
which will allow to conclude.
For each simplicial set X we define a bisimplicial set E(X) by the formula

E(X)m.n = Hom(A™ x Sd(A"), X) .

The projections A™ «— A™ X Sd(A™) — Sd(A™) induce functorial morphisms
of bisimplicial sets

XRA? 5 E(X) — A"®REx(X).

For any simplicial set K such that the map K — A is a homotopy equivalence,
it follows from the preceding lemma that the induced map X — Hom(K, X)
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is a homotopy equivalence. In particular, the map X — Hom(Sd(A"), X) is a
homotopy equivalence for all n > 0. Applying Theorem 3.1.16 (possibly after
permuting the factors in A X A), we conclude that the induced map

X =~ diag(X ® AY) — diag(E(X))

is a weak homotopy equivalence.
Similarly, the map X — Hom(A™, X) is a homotopy equivalence, and thus,
since the functor Ex commutes with finite products, the map

Ex(X) =~ (A’ ® Ex(X))*" — Ex(Hom(A™, X)) = E(X)*"

is a homotopy equivalence with respect to the cylinder associated to the interval
Ex(A'). The map bp1 : A' — Ex(A') turns any Ex(A')-homotopy into a A'-
homotopy. Applying Theorem 3.1.16 once more, we deduce that the functorial
map

Ex(X) =~ diag(A° ® Ex(X)) — diag(E (X))

is a weak homotopy equivalence. For any morphism f : X — Y, we now
have the commutative diagram below, in which all horizontal maps are weak
homotopy equivalences.

X —— diag(E(X)) «—— Ex(X)
fl diag(E(f))l lEX(f)
Y —— diag(E(Y)) «—— Ex(Y)

Therefore, the map f is a weak homotopy equivalence if and only if the map
Ex(f) has this property. O

3.1.22. For any simplicial set X, and for any integer n > 1, we define Ex"* by
induction:

(3.1.22.1) ExX"Y(X) = Ex(Ex"(X))) .

It follows right away from Proposition 3.1.18 that the functors Ex" all preserve
Kan fibrations as well as trivial fibrations. We have natural morphisms

(3.1.22.2) bee(x) : EX"(X) — EX"™(X)
and thus a sequence of morphisms
(3.1223) X — Ex(X) — Ex*(X) — -+ — EX"(X) —» EX""(X) — ---
One defines
0o 1 n
(3.1.22.4) Ex®(X) = h_r)nEx (X).

n>0
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By virtue of Proposition 3.1.21, the canonical map
(3.1.22.5) Bx : X = Ex*(X)
is a trivial cofibration.

Proposition 3.1.23. The functor Ex™ preserves Kan fibrations as well as trivial
fibrations.

Proof Since the analogous property is known for Ex" with # finite, this follows
from the next lemma. O

Lemma 3.1.24. The classes of Kan fibrations and of trivial fibrations are
closed under filtered colimits.

Proof For any set J of morphisms between finite simplicial sets (i.e. simplicial
sets which are finite colimits of representable presheaves, or equivalently, which
have finitely many non-degenerate simplices), the class of morphisms with the
right lifting property with respect to J is closed under filtered colimits. Indeed,
for any finite simplicial set K, the functor Hom (K, —) commutes with filtered
colimits (Corollary 1.3.12), and a morphism p : X — Y has the right lifting
property with respect to amap u : K — L if and only if the canonical

(u*, p«) : Hom(L, X) — Hom(K, X) Xpom(k,y) Hom(L,Y)

is surjective. With u a fixed map between finite simplicial sets, the formation of
such a map (u*, p.) commutes with filtered colimits of the p’s, and this proves
our assertion. O

Lemma 3.1.25. For any partially ordered set E there is a canonical isomor-
phism

SA(N(E)) =~ N(s(E)).

Proof There is a canonical functorial map Sd(N(E)) — N(s(E)) which is
characterized by being the identity for E = [n], n > 0. One checks that

li_rr)l N(P)~N(E).
Pes(E)
In other words, the nerve of E is the union of the subobjects of the form N (P)
(one sees this thanks to the fact that, for two finite non-empty totally ordered
subsets P and Q in E, the intersection N (P) N N(Q) is either empty either the
nerve of a finite non-empty totally ordered subset). Therefore, it is sufficient to
check that the natural map

lim N(s(P)) — N(s(E))
PET(>E)
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is an isomorphism. Since the funtor s preserves monomorphisms, intersection
of subobjects, and since s(@) = @, we see that the left hand side is the union,
in the right hand side, of the subobjects of the form N(s(P)) for P € s(E).
Therefore, it is sufficient to check the surjectivity, which is obvious: any finite
sequence Pp C P; C ... C P, in s(E) can be seen as a sequence in s(P,). O

Lemma 3.1.26. There are canonical isomorphisms
Sd(Ay) = N(®}) and Sd(0A") =~ N(0®")

where @} denotes the set of non-empty subsets of [n] which do not contain
the complement of {k}, and D" is the set of proper non-empty subsets of [n]
(ordered by inclusion).

Proof We already know that Sd(A}) is a subobject of Sd(A"), and it is clear,
by virtue of the functoriality of the isomorphism provided by the preceding
lemma, that it is contained in N(®}). Any m-simplex of N(®}) is of the form
Py c Py C ... C P, and thus defines an m-simplex of N(s(P,,)). Since the
inclusion N(P,,) C A" factors through A7, this shows that Sd(A}) = N(®}).
The case of Sd(dA") is proven similarly. O

Theorem 3.1.27 (Kan). For any simplicial set X, we have a Kan complex
Ex®(X).

Proof We define a morphism ¢/} : s(s([n])) — @) by the formula
Y (P) ={c(S) | S e P},
where, for a non-empty subset S C [n] we put
en(s) = {ZW‘”(S) Lo
By virtue of the two preceding lemmas, the nerve of ' defines a morphism
uf = N} : Sd*(A") — Sd(A}),
and we check that the following triangle commutes

o Sd(a/\;l)
Sd* (A7) —5 Sd(AD)

[ =

Sd*(A™)

Let x : A} — Ex*(X) be a morphism. The previous two lemmas also imply
that the simplicial set Sd™ (A}) has finitely many non-degenerate simplices for
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any m > 0. Therefore, by virtue of Corollary 1.3.12, there exists m > 1 such
that the map x factors through Ex™ (X). The map x corresponds by adjunction
to a map X : Sd(A}) — Ex"~1(X). The morphism Xuy defines a morphism
y: AL — Ex"™*1(X) such that the following diagram commutes.

A} — 5 EX"™(X) —— Ex*(X)

| Jpren

Ar Yy gyl (X)
This proves that Ex*(X) is a Kan complex. O

Corollary 3.1.28. For any Cartesian square of simplicial sets

f

X — X

A
y — 4 .y
in which p is a Kan fibration, if g (or p) is a weak homotopy equivalence, so is
the map f (or p’, respectively).

Proof Applying the functor Ex™ to this square, we obtain a Cartesian square
whose vertices all are Kan complexes, and in which the map Ex*(p) is a Kan
fibration. If the map Ex*(g) is a weak equivalence, by virtue of the dual version
of Proposition 2.3.27 (i.e. applying the latter for C = (sSer)’’), we see that the
map Ex™(f) is a weak equivalence. If the map Ex*(p) is a weak equivalence,
then it is a trivial fibration (because it is a naive fibration between fibrant
object, hence a fibration). The existence of the natural weak equivalence from
the identity to Ex™ (3.1.22.5) thus implies that f (resp. p) is a weak homotopy
equivalence. O

Theorem 3.1.29 (Quillen). A morphism of simplicial sets is a fibration of the
Kan-Quillen model category structure if and only if it is a Kan fibration. A
morphism of simplicial sets is a trivial cofibration of the Kan-Quillen model
category structure if and only if it is an anodyne extension.

Proof 1t is sufficient to prove the second assertion. Factorizing such a trivial
cofibration into an anodyne extension followed by a Kan fibration, we see from
the Retract Lemma that it is sufficient to prove that any Kan fibration which is a
weak homotopy equivalence is a trivial fibration. Since there is a cellular model
which consists of monomorphisms with representable codomain, and since, by
virtue of Corollary 3.1.28, the class of Kan fibrations which are weak homotopy
equivalences is closed under pull-backs, it is sufficient to prove the special case
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where the codomain is representable. Let p : X — A" be a Kan fibration which
is a weak homotopy equivalence. Let F be the fibre of p at 0. Then, by virtue
of Proposition 2.5.7, the inclusion F — X is a strong deformation retract, and,
therefore, is an anodyne extension (see Lemma 2.4.32). The map F — A9 is
a weak homotopy equivalence and a fibration, which implies that it is a trivial
fibration, hence an absolute weak equivalence. It follows from Proposition 2.5.4
that the map p is an absolute weak equivalence, from which we deduce, thanks
to Proposition 2.5.3, that it is a trivial fibration. O

3.1.30. The inclusion functor Set — sSet has a left adjoint
o : sSet — Set.
In other words, 7 (X) is the colimit of X in the category of sets.

Proposition 3.1.31. The functor ny sends weak homotopy equivalences to bi-
Jections and commutes with finite products. Furthermore, for any Kan complex
X, the set no(X) may be identified with the set of A'-homotopy classes of maps
A’ — X.

Proof We first prove that 7 is the left adjoint in a Quillen adjunction, where
the category of small sets is equipped with the model category structure whose
weak equivalences are the bijections and the cofibrations are all maps. By
virtue of Propositions 2.4.40 and 3.1.2, it is sufficient to prove that mo(A})
is the one-point set, which follows from an easy induction on n, using the
push-out square at the end of the proof of Proposition 3.1.18. The last assertion
of the proposition, about the description of 73(X) when X is a Kan complex,
thus follows from Theorem 2.3.9. For any simplicial set X, there is a functorial
bijection mo(X) =~ mo(Ex*(X)). Since the functor Ex* commutes with finite
products (as a filtered colimit of limit preserving functors), it is sufficent to prove
that mop commutes with finite products when retricted to Kan complexes. But
the homotopy category of Kan complexes has finite products which correspond
to finite products of the underlying simplicial sets. Since, for a Kan complex
X, the set mp(X) is the set of map from A° to X in the homotopy category, this
proves that the functor my commutes with finite products. O

3.2 Inner anodyne extensions

Definition 3.2.1. An inner anodyne extension is an element of the smallest sat-
urated class of morphisms of simplicial sets which contains the set of inclusions
of the form A} — A" withn > 2and 0 < k < n.
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We already used the following lemma in the case where m = 1 (and it may
be seen as a direct consequence of the computation of the colimit in the proof
of Lemma 3.1.25 for E = [m] X [n]).

Lemma 3.2.2. Forany non-negative integers m and n, the simplicial set N™ X A"
is the union of its subobjects of the form N(P), where P runs over the set of
totally ordered subsets of cardinal m + n + 1.

Proposition 3.2.3 (Joyal). The following three classes of morphisms of simpli-
cial sets are equal:

(a) the class of inner anodyne extensions;

(b) the smallest saturated class of maps containing inclusions of the form
A? X QA" U AT x A" — A* x A" forn > 0;
(c) the smallest saturated class containing inclusions of the form
A’ X KU A% x L — A% x L for any monomorphism K — L.

Proof The fact that the classes (b) and (c) coincide is a formal consequence
of the fact that the smallest saturated class of maps containing the boundary
inclusions A" — A", for n > 0, is the class of all monomorphisms, and from
the fact that the class of monomorphisms K — L such that the induced map
A%? x K UA? x L — A% x L is inner anodyne is saturated (because it can be
characterized in terms of left lifting property with respect to a certain class of
morphisms).

Let us prove that the class (a) is in the class (b). Forn > 2and 0 < k < n,
we define morphisms

s:[n] = [2] x[n] and r:[2] X [n] — [n]

by the formulas

0,7) ifj <k, min{j, k} ifi=0,
s(j)=4(1,j) ifj=k, —and r(i,j) =1k ifi=1,
(2,)) ifj>k, max{j,k} ifi=2,

We clearly have rs = 1|,], and we denote by the same letters
A" > A?x A" and r:A?X A" — A"

the corresponding morphisms of simplicial sets. We claim that these maps s
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and r induce a commutative diagram of the form below.

’

AP AZXATUAZ X AT s AT

k
A" ———— AP AT ——— A"

To prove that the map s’ is well defined, we have to check that the image of
any composition of the form séf’, i # k,is in A% x AZ U A? X A"™. Such an
image must land in A2 X A" U A2 x A" for cardinality reasons. Therefore,
it is sufficient to check that the image is not contained in Im(éf) X A" nor in
A? x Im(éZ), which follows, in both cases, from the fact that the point (1, k)
must be reached. To prove that r’ is well defined, we have several cases to
consider. The image of A0} s AR by r is contained in A0k} = AZ, and,
dually, the image of A{1-2} x A™ is contained in A{K--"} A% It remains to
prove that r sends A% x A7 in A7 But, for 0 < I < n, [ # k, we have r(i, j) # [
for any j # [. In other words, the image of A% x Im(6}') by r does not reach the
value i, and is thus contained in Im(5}) C Aj.

It remains to check that the class (b) is in the class (a). For 0 <i < j < n,
we let U; ; be the image of the map

wij A — AZ X A"

defined as the nerve of the map

(0, k) if0<k<i,
k—{(1,k-1) ifi<k<j+1,
(2,k—1) else.
For 0 <i < j < n, we let V; ; be the image of the map
vi,j 0 A" o A% x A"
defined as the nerve of the map
(0, k) if0<k<i,
k= {(Lk-1) ifi<k<j+1,
(2,k—2) else.
We define
X(=1,-1) = A x A" U A? x A"
and, forn > j > 0and 0 <i < j, we put

X, /)=X(-1Lj-nu | ) v

0<i<i
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have ug % (A2 x A™) = Im(&%7}), and that u;}((A{OJ} XAMUX (i, j+1)) =

Im(61)), from which we deduce biCartesian squares of the form below.
A;‘I% — X(j-1,j-1) A —— X(0, )
AN+l Uo.j X(0, /) A+l it X(i+1, )

In particular, the inclusion X (-1, —1) — X(n, n) is an inner anodyne extension.
Similarly, we define

Y(-1,-1) = X(n,n)

and, forn+2 > j >0and 0 <i < j, we put

Y, )=y(G-1Lji-nu | v,
0<i<i
One then checks as above that each inclusion of the form Y (j — 1,5 - 1) —
Y (0, j) as well as each inclusion of the form Y (i, j) — Y (i + 1, j) is a push-
out of a horn inclusion of type AZ*Q — A™2 for 0 < k < n+2, and, since
Y(n+2,n+2) =A% x A", this ends the proof. O

Corollary 3.2.4. For any inner anodyne extension K — L and any monomor-
phism X — Y, the induced inclusion

KXYULXX —>LXY
is an inner anodyne extension.

Definition 3.2.5. An inner fibration is a morphism of simplicial sets which has
the right lifting property with respect to the class of inner anodyne extensions.

Example 3.2.6. A simplicial set X is an co-category if and only if the morphism
X — A" is an inner fibration.

Example 3.2.7. For any integers n > 2 and 0 < k < n, it follows from
Proposition 1.4.13 that the natural map 7(A}) — 7(A") is an isomorphism
of categories. This implies right away that, for any functor between two small
categories C — D, the induced morphism of simplicial sets N(C) — N(D) is
an inner fibration. This gives an even larger supply of examples: more generally,
for any co-category X and any small category C, any morphism X — N(C) is
an inner fibration.

Corollary 3.2.8. For a morphism of simplicial sets p : X — Y, the following
conditions are equivalent.
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(i) The morphism p is an inner fibration.
(ii) Forany inner anodyne extensioni : K — L, the restrition along i induces
a trivial fibration

Hom(L, X) — Hom(K, X) Xgom(k,y) Hom(L,Y) .
(iii) The restriction along the inclusion ofAf into A? induces a trivial fibration
Hom(A?, X) — Hom(A?, X) Xpom(a2,y) Hom(A%,Y).

(iv) For any monomorphism i : K — L, the restrition along i induces an
inner fibration

Hom(L, X) — Hom(K, X) Xgom(k.y) Hom(L,Y).

Corollary 3.2.9. A simplicial set X is an co-category if and only if the canonical
map

Hom(A?, X) — Hom(A?, X)
is a trivial fibration.

Corollary 3.2.10. For any co-category X and any simplicial set A, the simpli-
cial set Hom (A, X) of morphisms from A to X is an oo-category. In particular,
the functors from an co-category A to an co-category X do form an co-category.

3.3 The Joyal model category structure

3.3.1. Let X be a simplicial set and f : x — y a morphism in X. A left inverse
of fis a morphism g : y — x such that the triangle

y
7/ N\
X ——x
commutes. One can freely add a left inverse as follows. One first adds a map

g : y — x by forming the push-out below.

ant 0, x

L]

Al — X[g]
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Finally, we form the following push-out.

aAg (f.9:1x) X[g]

l l

A2 —S X[gf =1]

We still denote by f the image of f in X[gf = 1]. Applying this procedure
to X gives a way to freely add a right inverse, which gives a simplicial set
X[ fh = 1] together with a 2-simplex H witnessing that the new 1-simplex £ is
aright inverse of f, and we also denote by f the image of f in X[fh = 1].

Therefore, we have defined a procedure to freely invert a morphism f: we
define

X[ '1=Xlgf =1DIfh=1].

The canonical inclusion X — X[f~!] has the following universal property:
For any morphism of simplicial sets u : X — Y, and for any pair of 2-simplices
of G’, H' : A* — Y whose boundaries respectively are triangles of the form

u(y) u(x)
u(f) g d u(f)
/1 \ an /1 \
u(@) —2 s ux) uly) — u(y)

in Y, there exists a unique morphism v : X[f~!] — Y whose restriction to X
is u, and such that v(G) = G’ and v(H) = H'.

Proposition 3.3.2. The inclusion map X — X|[f~'] is an anodyne extension.

Proof Since the functor X +— X preserves anodyne extensions, it is suf-
ficient to prove that the inclusion X — X{[gf = 1] is an anodyne extension.
An alternative construction of X[ fg = 1] is the following. One first form the
push-out below.

f

Al —— X
agl l
A2 —— X’
Finally, we see that X [gf = 1] naturally fits in the following coCartesian square.

2
Ny

Al X’

l l

A — X[gf =1]
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The map X — X’ is an anodyne extension because it is the push-out of such
a thing. By virtue of Proposition 2.3.27, the map X’ — X[gf = 1] is a
weak homotopy equivalence because it is the push-out of the weak equivalence
A" — AY along the cofibration s67. Therefore, the map X — X[gf = 1] is
both a monomorphism and a weak homotopy equivalence, hence an anodyne
extension. O

Definition 3.3.3. We define the interval J as
J=AF1,

where f : 0 — 1 is the unique non-trivial map in A' (corresponding to the
identity of A'). The class of categorical anodyne extensions is the smallest class
of J-anodyne extensions containing the set of inner horn inclusions A} — A™,
forn > 2and 0 < k < n (see Example 2.4.13).

Remark 3.3.4. The class of categorical anodyne extensions is the smallest satu-
rated class of morphisms of simplicial sets containing the inner horn inclusions
as well as the inclusion maps of the form

JXON'"U {e} x A" — J x A"

forn > 0 and € = 0, 1. This follows from Proposition 3.2.3. One deduces the
next proposition right away.

Proposition 3.3.5. For any categorical anodyne extension K — L and any
monomorphism X — Y, the induced map

KXYULXX—>LXY
is a categorical anodyne extension.

Proposition 3.3.6. Any inner anodyne extension is a categorical anodyne
extension. Any categorical anodyne extension is an anodyne extension.

Proof The first assertion is obvious. The second one follows from Corollary
3.1.4 and Proposition 3.3.2. O

Definition 3.3.7. The Joyal model category structure is the model category
structure obtained by applying Theorem 2.4.19 to the exact cylinder defined as
the cartesian product of J and to the class of categorical anodyne extensions.
The weak equivalences of this model category structure are called the weak
categorical equivalences.

Remark 3.3.8. A reformulation of the explicit description of a generating family
of the saturated class of categorical anodyne extensions given in Remark 3.3.4
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is that a morphism of simplicial sets p : X — Y has the right lifting property
with respect to the class of categorical anodyne extensions if and only if the
operation of evaluation at & (i.e. of restriction along {¢} — J), & = 0, 1, induces
trivial fibrations

Hom(J, X) —» X Xy Hom(J,Y),
and the operation of restriction along A? — A? induces trivial fibrations
Hom(A?, X) — Hom(AZ?, X) XHom (A2.Y) Hom(A%Y).

In particular, the fibrant objects of the Joyal model category structure are the
simplicial sets X such that the two restriction maps

Hom(J, X) — Hom({0},X) =X and Hom(A? X) — Hom(AZ, X)

are trivial fibrations.

It is clear that any fibrant of object of the Joyal model category structure is
an oco-category. We will prove, among other things, that the converse is true:
the fibrant objects of this model category precisely are the co-categories; see
Theorem 3.6.1. The proof of this fact will require quite a few intermediate
results which will be meaningful in their own right, for our understanding of
the theory of co-categories as a semantic of the language of category theory.
More generally, we will also characterize the fibrations between fibrant objects
of the Joyal model category structure.

In order to do this, it is enlightening to compare the Joyal model category
structure with the usual homotopy theory of categories (which consists in
inverting the class of equivalences of categories).

Definition 3.3.9. A functor p : X — Y is an isofibration if, for any object x(
in X and any invertible map of the form g : yo — y; in Y with p(xg) = yo,
there exists an invertible map f : xo — x7 in X such that p(f) = g.

Theorem 3.3.10. The category Cat of small categories admits a cofibrantly
generated model category structure whose weak equivalences are the equiv-
alences of categories, whose cofibrations are the functors which induce an
injective map at the level of objects, and whose fibrations are the isofibrations.

Proof Here are several functors of interest. The inclusion functor  : {0} —
7(J) (which picks the object 0 in the unique category whose set of objects is
{0, 1} and which is equivalent to the final category; the functori : @ — e,
from the empty category to the final category; the functor j : {0,1} — [1];
the unique functor k£ : § — [1] which is the identity on objects, where S is
the free category whose set of objects is {0, 1} with two parallel maps from 0
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to 1. The class of isofibrations is the class of morphism with the right lifting
property with respect to {r7}. The morphisms with the right lifting property with
respect to {i, j, k} precisely are the functors which induce a surjective map at
the level of objects and which are fully faithful. Conversely, one checks that the
morphisms with the left lifting property with respect to the class of equivalences
of categories which are surjective on objects precisely is the class of functors
which are injective on objects. It is clear that any equivalence of categories
which is surjective on objects is an isofibration, and that any isofibration which
is an equivalence of categories is surjective on objects. Using the small object
argument for each sets of maps {n} and {i, j, k} provides the existence the of
expected factorisations. O

Definition 3.3.11. The model category structure provided by the preceding
proposition is called the canonical model category structure.

Lemma 3.3.12. The left adjoint of the nerve functor sends inner anodyne
extensions to isomorphisms.

Proof The class of morphisms of simplicial sets whose image by the functor 7
is an isomorphism of categories is saturated. Therefore, it is sufficient to check
that 7 sends each inclusion A}’ — A" to an invertible map of Cat whenever
n > 2and 0 < k < n. But this latter property is a reformulation of Proposition
1.4.13. O

Lemma 3.3.13. The functor 7 : sSet — Cat commutes with finite products.

Proof Let X and Y be two simplicial sets. We choose two inner anodyne
extensions X — X’ and Y — Y’ such that both X’ and Y’ are co-categories.
Then the product map X XY — X’ X Y’ is an inner anodyne extension (this is
a consequence of Corollary 3.2.4). Therefore, by virtue of Lemma 3.3.12, we
have canonical isomorphisms 7(X) =~ 7(X’), 7(Y) ~ 7(Y’) and 7(X X Y) =
7(X’ xY"). The explicit description of (W), for any co-category W, provided
by the theorem of Boardman and Vogt (1.6.6), implies that the natural map
from 7(X’ X Y’) to 7(X”) X 7(Y’) is an isomorphism. O

Proposition 3.3.14. The adjunction
7 :s85et 2 Cat : N

is a Quillen adjunction from the Joyal model category structure to the canonical
model category structure.

Proof Since, for any simplicial set X, the set of objects of the associated
category 7(X) coincides with Xj, the functor 7 sends monorphisms to functors
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which are injective on objects. In other words, it preserves cofibrations. For
any simplicial set X, the functor 7 sends the inclusion X = {0} x X —
J X X to the inclusion 7(X) = {0} X 7(X) — 7(J) X 7(X). Since 7(J) is
equivalent to the final category the explicit description of the class of categorical
anodyne extensions given in Remark 3.3.4 and Lemma 3.3.12 imply that 7 sends
categorical anodyne extensions to trivial cofibrations. This proves that 7 and N
define a Quillen adjunction; see Proposition 2.4.40. [

Definition 3.3.15. A morphism of simplicial sets p : X — Y is an isofibration
if it is an inner fibration, and if, for any object x( in X and any invertible map
of the form ¢ : yo — y1 in Y with p(xg) = yo, there exists an invertible map
f :xp — x1in X such that p(f) = g.

Remark 3.3.16. Lemma 3.3.12 means that the nerve of any functor between
small categories is an inner fibration. One easily checks that a functor p :
X — Y is an isofibration if and only if its nerve N(p) : N(X) — N(Y) is
an isofibration. We will prove later that a functor between oco-categories is an
isofibration if and only if it is a fibration of the Joyal model category structure;
see Theorem 3.6.1.

Remark 3.3.17. Any fibration of the Joyal model category structure is an
isofibration. This is a consequence of the fact that, by construction, a map
J — W is the same thing as a morphism f : x — y in W equipped with a proof
that it is invertible.

Proposition 3.3.18. A morphism of co-categories p : X — Y is an isofibration
if and only if it is an inner fibration and if, for any object x1 in X and any
invertible map of the form g : yo — y1 inY with p(x1) = yi, there exists an
invertible map f : xo — x1 in X such that p(f) = g.

Proof Assume that p has the property stated in the proposition, and let us
prove that it is an isofibration. Let us choose an object xy in X and an invertible
map g : yo — y1 such that p(xg) = yo. We choose a map ¢’ : y; — yo which
is a left inverse of g. Then, by assumption on p, we can find an invertible
morphism f’ : x; — xg in X such that p(f’) = ¢’. Let us choose a map
f : xg — x; which is a right inverse of f”. Then, p(f) and g coincide in 7(X),
and thus, by virtue of Theorem 1.6.6, there exists a map ¢ : A2 — Y whose
boundary is the following triangle.

o n
Clonz = n(f)/ \1y1
g

Yo — W
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There is a unique morphism b : A2 — X corresponding to the diagram below.
X1
b= f/ o
X0 X1

Since p is an inner fibration, the solid commutative square

A2 b x

[ a lp

A2 5y

has a filler a. For f = aé%, the image of the map f : xo — x; by p is equal to
g.

Conversely, applying what precedes to X°? — Y°P shows that any isofibration
satisfies the assumption of the proposition. O

Corollary 3.3.19. A morphism of co-categories X — Y is an isofibration if
and only if the induced morphism X°°? — Y°P is an isofibration.

3.4 Left or right fibrations, joins and slices

Definition 3.4.1. A left anodyne extension (a right anodyne extension) is an
element of the smallest saturated class of morphisms of simplicial sets contain-
ing the horn inclusions of the form A} — A" forn > 1 and 0 < k < n (and
0 < k < n, respectively).

A left fibration (a right fibration) is a morphism of simplicial sets with the
right lifting property with respect to the class of left (right) anodyne extensions.

Remark 3.4.2. Right fibrations are a generalisation of the notion of Grothen-
dieck fibration with discrete fibres; see paragraph 4.1.1 and Proposition 4.1.2
below. However, in this section, we shall focus on technical properties in-
volving coherence issues related to providing inverses of invertible maps in
co-categories.

The functor X — X° maps the horn AZ to AZ_ & Therefore, it sends right
fibrations to left fibrations and right anodyne maps to left anodyne maps, et
vice versa. In particular, any statement about right fibrations and right anodyne
extensions always has a counterpart in terms of left fibrations and left anodyne
extensions. The following three propositions are interpretations of Lemma
3.1.3.
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Proposition 3.4.3. For any left (right) anodyne extension K — L and any
monomorphism X — Y, the induced inclusion

LXxXUKXY - LXY
is a left (right) anodyne extension.

Proposition 3.4.4. Let X — Y be a left (right) fibration. If the map K — L is
a monomorphism (a left anodyne extension), then the induced morphism

Hom(L, X) — Hom(K, X) XHom(k,y) Hom(L,Y)
is a left fibration (a trivial fibration, respectively).

Proposition 3.4.5. A morphism of simplicial sets X — Y is a left fibration (a
right fibration) if and only if the evaluation at 1 (the evaluation at 0, respectively)
induce a trivial fibration of the form

Hom(A!, X) — X xy Hom(ALY).

Definition 3.4.6. A morphism of simplicial sets p : X — Y is conservative if,
for any morphism f : x — x" in X, if p(f) : p(x) — p(x’) is invertible in Y,
sois fin X.

Remark 3.4.7. If p : X — Y is a functor between co-categories, the explicit
desciption of 7(X) and 7(Y') given by the theorem of Boardman and Vogt (1.6.6)
implies that p is conservative if and only if the functor 7(p) : 7(X) — 7(Y) is
conservative.

Proposition 3.4.8. Let p : X — Y be a morphism of oco-categories. If p is
either a left fibration or a right fibration, then it is a conservative isofibration.

Proof 1t is sufficient to prove the case of a left fibration. Let us prove first
that p is conservative. Let x : xg — x; be a morphism in X whose image
p(x) =y : yo — y is invertible. This implies y has a left inverse g. In other
words, there is a map ¢ : A2 — Y whose restriction to dA? is a commutative
triangle of the form below.
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in X. The solid commutative square

AgLX

A2 £ 5y
has a filler whose restriction to A2 provides a commutative triangle of the
form

X1

AN

Xo — Xo

Since p(x) is invertible, so is p(f), and we can repeat the procedure above to
get a commutative triangle of the form below.

X0
7N
1y,
X1 — X1
In other words, the morphism f is invertible. This implies that the morphism
corresponding to x in 7(X) is invertible, and thus that x itself is invertible.

Since p is conservative and has the right lifting property with respect to the
inclusion {0} — A, it must be an isofibration. ]

3.4.9. Let A,,, be the category whose objects are the ordered sets [n] =
{0,...,n} for n > -1, and whose morphisms are the (non-strictly) increasing
maps. In other words, the category A,,, is the category obtained from the
usual category of simplices A by adjoining an initial object [—1] (the empty
ordered set). One can see a presheaf over the category A, as atriple (X, a, E),
where X is a simplicial set, E is a set, and a is an augmentation from X to
E (i.e. a morphism from X to the constant simplicial set with value E). We
denote by sSet,,, the category of presheaves over A, which we shall call
the augmented simplicial sets. The operation of composition with the inclusion
functor i : A — A, induces a functor

i 2 sSetyug — sSet

which can be described as (X, E,a) +— X in the language of augmented
simplicial sets. This functor has a left adjoint i, and a right adjoint i,; the left
adjoint sends a simplicial set X to the triple (X, px, m9(X)), where mq(X) is
the set of connected components of X (see 3.1.30), and px : X — mp(X) is the
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canonical map. The functor i, sends a simplicial set X to the triple (X, ax, A?),
with ax : X — A the obvious map.

3.4.10. The category A, is equipped with a monoidal structure induced by
the sum of ordinals

Aaug X Aaug - Aaug

([m],[n]) > [m+1+n]

(the unit object thus is [—1]). By a repeated use of Theorem 1.1.10, there is a
unique monoidal structure on the category of augmented simplicial sets whose
tensor product commutes with small colimits in each variables, which extends
the sum of ordinals in A,,,. The tensor product of two augmented simplicial
sets X and Y is denoted by X * Y, so that, in particular, A, * hin) = himat4n]-
The unit object is the representable presheaf h_1] = i.(@). However, we also
have an explicit description of this tensor product.

Proposition 3.4.11. For any augmented simplicial sets X and Y, and for any
integer n > —1, there is a canonical identification

(X *Y), = ]_[ X; XY, .
i+1+j=n
Proof For X = hyp1 and Y = hpg, since we restricts ourselves to consider
maps which never decrease, one has:

Hom([n], [p+1+4]) = U Hom([:], [p]) x Hom([/]. [¢]) .
i+1+j=n
We then extend these identifications by colimits. O
3.4.12. For two simplicial sets X and Y, we define the join of X and Y as:
XY =i"(i.(X) «i.(Y)).
In other words, for each n > 0, the simplicial set X = Y evaluated at # is:
(X %Y), = ]_[ X; X Y.
i+1+j=n
In other words, a map f : A" — X =Y is uniquely determined by a decom-
position of n into a sum n = p + 1 + g together with maps a : AP — X and
b: A1 — Y;onerecovers f as f =a*b.
This defines a monoidal structure on the category of simplicial sets whose

unit object is the empty simplicial set @ = i*(h[-1]). Therefore, there is a
functorial injective map

XY - XY
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induced by functoriality from the inclusions @ — W for W = X, Y.
Given a fixed simplicial set 7', we thus get two functors:

(=) =T : sSet — T\sSet
X T=0UT - X=xT)

T % (—) : sSet — T\sSet
X T=TUo >T=*X)

Proposition 3.4.13. Both functors (=) « T and T * (=) commute with small
colimits.

Proof These functors both preserve initial objects. It is thus sufficient to
prove that the join operation preserves connected colimits in each variable. For
this, since the tensor product preserves small colimits in each variables in the
category of augmented simplicial sets, it is sufficient to prove that the functor
i, commutes with small connected colimit. Since it obviously preserves filtered
colimits, we only need to check that it preserves coCartesian squares, which
follows right away from its explicit description. O

3.4.14. Lett : T — X be a morphism of simplicial sets. We shall write X /¢ or
X /T (t\X or T\ X, respectively) the image of (X, t) by the right adjoint of the
functor (=) = T (of the functor T * (—), respectively), which exists by virtue of
the preceding proposition.

In the case where T = A® and X = N(C) is the nerve of a category, we
observe that the identification A™*' = A" x A? implies that X/t = N(C/t).
In other words, the construction X/ extends the usual construction of slice
categories.

Remark 3.4.15. The join operation is compatible with the opposite operations
as follows:

(T % 8) = SP =T,
Therefore, we have:
(X/T)P =TP\XP .
Since the join operation is associative, we also have the following formulas:
X/(S=T)=(X/T)/S and (S=TO\X =~T\(S\X).

Proposition 3.4.16. For any monomorphisms of simplicial sets U — V and
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K — L, the induced commutative square

KxU —— KxV

l !

L+xU —— LxV
is Cartesian, and all its maps are monomorphisms. We thus have a canonical
inclusion map
LxUUK=*V > L=V,

Proof This follows right away from Proposition 3.4.11 and the analogous
property for the binary Cartesian product of sets. |

The following statement is obvious.

Proposition 3.4.17. As subobjects of A"+ = A™ « A e have the following
identities.

aAm*An UAm*aAn zaAm+1+n
A % A" UA™ % 9" = AT
1
AN™ « A" U A™ « A = Al
Theorem 3.4.18 (Joyal). Let X and Y be oo-categories, and p : X — Y an
inner fibration. We consider given a commutative square of the form

Al —5 X

[ lp nx?2,

Aty
and we assume that the morphism « : ag — ay, defined by the restriction of a
on A0 s invertible in X. Then there exists a morphism h : A" — X such
that the restriction of h on Ajj is equal to a, and such that ph = b.

By contemplating the identification A x A"™? U Al x JA"™2 = A?, this
theorem is a particular case of the following one.

Theorem 3.4.19 (Joyal). Let p : X — Y an inner fibration, and assume
that Y is an oo-category. We consider a monomorphism S — T as well as a
commutative square of the form

{0}« TUA S 25 X

[ I

AlsT — 2y
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and we assume that the morphism « : ag — a1, obtained as the restriction of
aon A« @ c Al % S, is invertible in X. Then the square above has a filler
c: A «xT > X.

The proof of this theorem will require a few preliminary results. Observe
that, for a morphism of simplicial sets S — T and a map 7 — X, there is an
induced map X /T — X/S which is functorial in X. Therefore, if X — Y is a
morphism of simplicial sets, we obtain a canonical commutative square

X/T — YT

L]

X/S —— Y/S

and thus a canonical map X /T — X /S Xy,s Y /T. We leave the next lemma as
an exercise for the reader.

Lemma 3.4.20. Leti: A — Band j : S — T be two monomorphisms. For any
morphism of simplicial sets p : X — Y, we have the following correspondence
of lifting properties.

AxTUBxS —— X A—a:X/T
[ e ]
BT ——— Y B S X/Sxys ¥/T

Lemma 3.4.21. Let p : X — Y be an inner fibration. Given any integers n > 1
and 0 < k < n and any morphismt : A" — X, the induced map

X/An — X/AZ XY/AZ Y/An
is a trivial fibration.

Proof Since 0 < m+1+k < m+1+n, the third equality in Proposition 3.4.17
and the preceding lemma explain everything we need to know. O

Theorem 3.4.22. Letp : X — Y be aninner fibration. We consider a monomor-
phism S — T, together with a morphism t : T — X. Then the canonical
projection

X/T — X/S xys Y/T

is a right fibration. Furthermore, if ever Y is an co-category, then so are X |T
as well as the fibre product X |S xXy;s Y /T.
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Proof Letn >1and0 < k < n. We then have the following correspondence
of lifting problems.

AIxTUA"sS —“5 X Af ——— X/T
[ b lp | i l
A'ST ——— ¥ A T’ X/S xy;s YT

Similarly, we have a correspondence of the form below.

Al*TUA" S —“ X s —< 5 AMX
A" % T-.T> Y T —— AP\X Xppy AM\Y

Therefore, it is sufficient to prove that the map A"\X — AJ\X X Am\Y A™\Y is
a trivial fibration. We even may check this property after applying the functor
W — WP, so that the first assertion follows from lemma 3.4.21. In the case
where Y is a final object, we obtain that the map X /T — X /S is aright fibration,
and the case where S is empty tells us that the map X /T — X is aright fibration.
Since right fibrations are inner fibrations, we deduce that X /7 and X /S always
are oco-categories. The projection of X /S Xy/s Y /T on X/S is a right fibration
as well (as the pull-back of the right fibration Y /T — Y /S), from which we see
that X /S Xy,s Y/T is an co-category. O

Proof of Theorem (3.4.19) Let p : X — Y be an inner fibration between
oco-categories, S — Y a monomorphism, and a commutative square

{0} *TUAl 8§ —2— X

[ J»
AlsT — b Sy
such that the morphism @ : ag — a1, given by the restriction of @ on A! * @,
is invertible in X. By virtue of Lemma 3.4.20, it is sufficient to prove that the
induced commutative square

{0} —— X/T

I l

A' — X/S xy;s YT

has a filler, where @ is the morphism induced by @ by transposition. But
Theorem 3.4.22 ensures that the right hand vertical map is a right fibration
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between co-categories, and thus, by virtue of Proposition 3.4.8, is an isofibra-
tion. Therefore, we are reduced to prove that the morphism @ is invertible in
X/S xy;s Y/T. On the other hand, by virtue of Theorem 3.4.22, the canonical
morphism X /Sxy,sY /T — X is aright fibration between co-categories, hence,
applying Proposition 3.4.8 again, is conservative. In other words it is now suf-
ficient to prove that this map sends the morphism @ to an invertible morphism
in X. But, by definition, it sends & to @, which is invertible by assumption. O

3.5 Invertible natural transformations

Theorem 3.5.1 (Joyal). An co-category is a Kan complex if and only if it is an
oo-groupoid.

Proof If X is an co-category, then the map X — A° has the right lifting
property with respect to horns of the form A} — A" withn =1o0r0 < k <n.
This theorem thus follows from applying Theorem 3.4.18 to the co-category X
as well as to its opposite X°7. O

3.5.2. Let Gpdbe the full subcategory of the category of small categories whose
objects are the groupoids. The inclusion functor Gpd — Cat has a left adjoint
71 and a right adjoint k. For a small category C, the groupoid 71 (C) is obtained
as the localisation of C by all its morphisms, while k(C) is the groupoid whose
objects are those of C, and whose morphisms are the invertible morphisms of
C. The latter construction can be extended to co-categories as follows. For an
oo-category X, we form the pull-back square below.

k(X) ——— X

l |

N(k(7(X))) —— N(7(X))

Remark that the inclusion k(7(X)) — 7(X) is an isofibration, hence so is
its nerve. Therefore, the morphism k(X) — X is an inner fibration and k(X)
is an oo-category. It immediately follows from Theorem 1.6.6 that the map
k(X) — N(k(7(X))) induces an isomorphism after we apply the functor 7.
By virtue of the preceding theorem, the co-category k(X) is a Kan complex.

Corollary 3.5.3. The co-category k(X) is the largest Kan complex contained
in the co-category X.

In other words, the functor k is a right adjoint of the inclusion functor from
the category of Kan complexes to the category of co-categories.
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Corollary 3.5.4. For any oo-category X, the canonical map k(X) — X is a
conservative isofibration.

Proposition 3.5.5. Any left (right) fibration whose codomain is a Kan complex
is a Kan fibration between Kan complexes.

Proof Indeed, such a map is conservative (Proposition 3.4.8), so that it is a
morphism of Kan complexes. By virtue of Theorem 3.4.18 (and of its dual
version, replacing Af} by Ay = (A{)®), any inner fibration between Kan com-
plexes has the right lifting property with respect to horns of the form A} — A"
with n > 2 and 0 < k < n. Since left (right) fibrations between oco-categories
also are isofibrations (Proposition 3.4.8), it follows from Corollary 3.3.19 that
any left (right) fibration between Kan complexes has the right lifting property
with respect to A}( — Al fork =0, 1. O

Corollary 3.5.6. Let p : X — Y be a left (or right) fibration. For any object y
of Y, the fibre of p at y is a Kan complex.

Proof The fibre of p at y is the pull-back of p along the map y : A — ¥ and
thus is a left (or right) fibration of the form g : F — A, Since A° obviously is
a Kan complex, the previous proposition applied to g implies that F must have
the same property. m}

3.5.7. Let A be a simplicial set. We write Ob(A) for the constant simplicial set
whose set of object is Ag. There is a unique morphism

Ob(A) — A

which is the identity on sets of objects. Let X be an co-category. By virtue of
Corollary 3.2.8, the restriction map

Hom(4, X) — Hom(Ob(4), X) = X
F i (F(a))aea,

is an inner fibration between co-categories.
One defines the co-category k (A, X) by forming the the following Cartesian
square.

k(A,X) ——— Hom(A, X)

(3.5.7.1) l l

k(Hom(Ob(A), X)) —— Hom(Ob(A), X)

Note that k(Hom(Ob(A4), X)) = k(Ob(A),X) = k(X)%° is the maximal
Kan complex in X4°. The co-category k(A, X) is the co-category of functors
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F : A — X, with morphisms F — G those natural transformations such that,
for any object a of A, the induced map F(a) — G(a) is invertible in X. More
precisely, a simplex x : A" — Hom(A, X) belongs to k(A, X) if and only if,
for any object a of A, the map x(a) : A" — X, obtained by composing x with
the evaluation at a, factors through k (X).

The main goal of this section is to prove that the inclusion k(Hom(A, X)) C
k(A, X) is in fact an equality. In words: we want to prove that any objectwise
invertible natural transformation is indeed invertible as a map of the co-category
of functors. This will be achieved in Corollary 3.5.12. This fundamental char-
acterisation of invertible natural transformations is very strongly related to the
characterisation of co-categories as fibrant objects in the Joyal model category
structure; see the proof of Theorem 3.6.1 below.

We need a companion of the construction k(A, X). For a simplicial set B,
we introduce the simplicial set (B, X) as the subobject of Hom(B, X) whose
simplices correspond to maps A" — Hom(B, X) such that the associated
morphism B — Hom(A", X) factors through k (A", X).

One checks that the bijections Hom(A, Hom(B, X)) ~ Hom(B, Hom(A, X)
induce canonical bijections

(3.5.7.2) Hom(A, h(B, X)) ~ Hom(B, k(A, X)) .

One may think of 4(B, X) as the full subcategory of Hom (B, X) which consists
of functors B — X sending all maps of B to invertible maps of X.

3.5.8. Let p : X — Y be an inner fibration between co-categories. Let us
consider the morphism

(3.5.8.1) evy : h(AL, X) = X xy h(AL,Y)

induced by the inclusion {1} c Al.

We remark that the morphism (3.5.8.1) has the right lifting property with
respect to AA? — A° (i.e. is surjective on objects) if and only if p is an
isofibration. Indeed, we have a correspondence of the following form:

@ —— h(A',X) {1} — X
(35.8.2) [ e l “ [ x lp with x invertible.
A T X xy h(ALY) Al — Sy

Theorem 3.5.9. For any inner fibration between co-categories p : X — Y,
the evaluation at 1 map evy : h(A', X) — X Xy h(A',Y) has the right lifting
property with respect to inclusions of the form A" — A", n > 0.
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Proof For any map A — B inducing a bijection Ay ~ By and any co-category
W, the obvious commutative square

k(B,W) —— Hom(B, W)

| l

k(A,W) —— Hom(A,W)

is Cartesian. Since the inclusion A" — A" induces a bijection on objects,
we deduce from this property that there is a correspondence between lifting
problems of shape

A" —— h(AL,X)

A" — X xy h(ALY)
and lifting problems of shape

A' XA U {1} x AT — X

[ C lp

Al x A* —_— Y
in which b corresponds to an element of k(A",Y); and the restriction of a to
Al x OA" to an element of k (A", X); (the lifting ¢, if ever it exists, will always
correspond to an element of k(A”", X); thanks to the Cartesian square above
for X =W, A =0A" and B = A").
Let us prove the existence of a lifting ¢ (in the presence of the extra hypothesis
on a and b as above). We recall that there is a finite filtration of the form

A'XxAA"U{1} xA"=A_1 CApC...CA,=A x A",

each step A;_; — A; being obtained through a biCartesian square of the form

’

C.
n+l1 i .
AT — Ay

[

APl G A;
where c¢; is induced by the unique order preserving map [n+ 1] — [1] X [n]
which reaches both points (0, 7) and (1, ). In particular, the map A_; — A,
is an inner anodyne extension, so that we may assume that the map a is the
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restriction of a map a’ : A,,—1 — X such that pa’ equals the restriction of b to
A, 1. It is thus sufficient to prove that the commutative square

X
|+
Y

admits a filler. The map @ € X;, corresponding to the image of A"~} by
c,a’ is the image of the map (0, n) — (1, n) by a; in particular, it is invertible.
Therefore, by virtue of Theorem 3.4.18 (applied to X — YP), the expected
filler A™*! — X exists. i

’
An+1 4 Cn

n+l

[

e —
An+1 - s

Corollary 3.5.10. An inner fibration between co-categories p : X — Y is
an isofibration if and only if the evaluation at 1 map ev, : h(A',X) —
X Xy h(AY,Y) is a trivial fibration.

Proof This follows from (3.5.8.2) and from Theorem 3.5.9. ]

Theorem 3.5.11. Let p : X — Y be an isofibration between co-categories. For
any monomorphism of simplicial setsi : A — B, the induced map

(i*,p+) : k(B, X) = k(A, X) Xr(ay) k(B,Y)
is a Kan fibration between Kan complexes.

Proof We will prove first that the map g = (i, p.) is a left Kan fibration.
More precisely, we will prove that it has the right lifting property with respect
to the maps

A'XOA"U{1} x A" - AL x A", n>0.

Let us first observe that the correspondence (3.5.7.2) induces the following one.

{1} ———— k(B.X) A —— n(ALx)
7 3

e I

A' s k(AX) Xpay) K(BY) B s X xy h(ALY)

Therefore, by virtue of Theorem 3.5.9, the case where n = 0 is done. We may
now focus on the case where n > 0.
Let us consider a commutative square of the form

A' X QA" U {1} x A" —— 5 k(B, X)

! I

A x A" ———— k(A, X) Xg(ay) k(B,Y)
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It gives rise to a commutative solid square of the form

BXOA"UAXA" —— h(AL, X)

BXxA" —— Xth(Al,Y)

which admits a lift / by Theorem 3.5.9. It remains to check that the morphism
[: Alx A" — Hom(B, X), induced by I, factors through k(B, X). But, by
assumption, the restriction of / to A* x A" U {1} x A" factors through k (B, X).
This means that, for each object b of B, in the commutative diagram of 7(X)

io,o(b) e io,l(b) —_— s — iO,n(b)
= | |
Lio(b) —— L11(b) — -+ —— [ ,(b)

all the vertical maps as well as all the maps of the second line are invertible.
Therefore, since n > 0, all the maps of the first line are invertible, which readily
implies that [ factors through k (B, X), as required.

The map ¢ is a Kan fibration: we have seen that it is a left fibration, and
applying what precedes to X?” — Y7 shows that g also is a right fibration. The
case A = @ and Y = A” shows that k(A, X) is a Kan complex. The Cartesian
square

k(A,X) Xgay) k(B,Y) —— k(B,Y)

l l

k(A,X) —— k(A)Y)
thus implies that k (A, X) Xy (a,y) k(B,Y) is a Kan complex. O

Corollary 3.5.12. For any co-category X and any simplicial set A, we have an
equality: k(A, X) = k(Hom(A, X)). In other words, a natural tranformation
is invertible if and only if it is object-wise invertible.

More generally, for any isofibration between co-categories p : X — Y and
any monomorphism of simplicial sets A — B, we have

k(A,X) Xk(A,Y) k(B, Y) = k(HOIn(A,X) XHom(A,Y) Hom(B, Y)) .

Proof We obviously have k(Hom(A, X)) C k(A, X). Since, by virtue of the
preceding theorem, k(A, X) is a Kan complex, we conclude with Corollary
3.5.3 that this inclusion is an equality.
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The functor k(—) sends oco-categories to Kan complexes and isofibration be-
tween Kan complexes to Kan fibration. But it is also a right adjoint, hence it pre-
serves representable limits (such as pull-backs of maps between co-categories
along isofibrations). In particular it sends Hom(A, X) Xfom(4,y) Hom(B,Y)
to k(A, X) Xk(AY) k(B,Y). [}

Corollary 3.5.13. Let p : X — Y be an isofibration between oo-categories.
For any anodyne extension A — B, the induced map

h(B,X) — h(A,X) Xpay) M(B,Y)
is a trivial fibration.

Proof We have the correspondence of lifting problems below.

K —— h(B,X) A— k(L,X)
[ ]

L = h(A. X) Xpay) h(B.Y) B s k(K. X) Xpx.y) k(L.Y)
Therefore, we conclude with Theorem 3.5.11 O

3.6 oco-categories as fibrant objects

Theorem 3.6.1 (Joyal). A simplicial set is a fibrant object of the Joyal model ca-
tegory structure if and only if it is an co-category. A morphism of co-categories
is a fibration of the Joyal model category structure if and only if it is an
isofibration.

Proof For any co-category X, any map J — X factor through k(X), because
7(J) is the contractible groupoid with objects 0 and 1. Therefore, we have

Hom(J, X) = h(J, X) .

On the other hand, by Proposition 3.3.2, the inclusion {&} — Al — J are
anodyne extensions for € = 0, 1. Hence Corollary 3.5.13 implies that, for any
isofibration between co-categories p : X — Y, the evaluation at £ = 0, 1

eve : Hom(J, X) —» X Xy Hom(J,Y)
is a trivial fibration. Remarks 3.3.8 and 3.3.17, finish the proof. |

Proposition 3.6.2. The class of weak categorical equivalences (i.e. of weak
equivalences of the Joyal model category structure) is the smallest class of
maps of simplicial sets W satisfying the following conditions.



3.6 oo-categories as fibrant objects 113

(i) The class W has the two-out-of-three property.
(ii) Any inner anodyne extension is in W.
(iii) Any trivial fibration between co-categories is in W.

Proof Let Wbe such a class of maps, and let us show that any weak categorical
equivalence is in W. Let f : X — Y be a morphism of simplicial sets. We can
form a commutative diagram of the form

X — x

A

y 1>y
in which i and j are inner anodyne morphisms, and X’ and Y’ both are co-
categories. The proof of Ken brown’s lemma (2.2.7), applied to € = (sSer)”,
shows that f” has a factorisation of the form f’ = kq, where k is the section of
a trivial fibration p, while g is an isofibration (i.e. a fibration of the Joyal model
category structure). Therefore, the map f is a weak categorical equivalence if
and only if ¢ is a trivial fibration. Hence, f € W whenever f is weak categorical
equivalence. |

Corollary 3.6.3. The class of weak categorical equivalences is closed under
finite products.

Proof Since the cartesian product is symmetric and since weak categorical
equivalences are stable under composition, it is sufficient to prove that the
cartesian product with a given simplicial set A preserves weak categorical
equivalence. Let us consider the class of maps W which consists of the mor-
phisms X — Y suchthat AXX — AXY is a weak categorical equivalence. Then
W has the two-out-of-three property, and it contains inner anodyne extensions
(as a particular case of Corollary 3.2.4) as well as trivial fibrations (because the
pull-back of a trivial fibration is a trivial fibration). Hence it contains the class
of weak categorical equivalences. O

Corollary 3.6.4. For any monomorphisms of simplicial sets i : K — L and
j U —V, ifeitherior j is a weak categorical equivalence, so is the induced
map KXVULXU — LXV.

For any trivial cofibration (cofibration) K — L, and for any fibration X — Y
of the Joyal model category structure, the induced map

Hom(L, X) — Hom(K, X) XHom(k,y) Hom(L,Y)

is a trivial fibration (a fibration, respectively)
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Proof The second assertion is a direct consequence of the first, which itself
follows right away from the preceding corollary (and from the fact that trivial
cofibrations are closed under push-outs). O

Remark 3.6.5. In Definition 1.6.10, one can find the notions of natural transfor-
mation and of equivalence of categories. It is clear that natural transformations
are the morphisms in the oo-categories of the form Hom(A, X) (with X an
oo-category) and it follows from Corollary 3.5.12 that the invertible natural
transformations precisely are the invertible maps in Hom(A, X). Note finally
that a natural transformation A' — Hom(A, X) is invertible if and only if it
factors through a map J — Hom(A, X), which corresponds to a homotopy
J X A — X. In other words, two functors u,v : A — X are related by an
invertible natural transformation if and only if they are J-homotopic. Hence the
equivalences of co-categories precisely are the J-homotopy equivalences.

Corollary 3.6.6. A functor between oco-categories is an equivalence of oo-
categories if and only if it is a weak equivalence of the Joyal model category
structure.

Proof By virtue of Corollary 2.2.18 since any simplicial set is cofibrant, and
since oo-categories are fibrant, the weak equivalences between co-categories for
the Joyal model category structures precisely are the homotopy equivalences.
And by virtue of Lemma 2.2.12, we can pick any of our favourite cylinder to
define the notion of homotopy; e.g. the cartesian product with J. In that case,
the preceding remark explains why the notion of equivalence of co-categories is
nothing else than the notion of homotopy equivalence between cofibrant-fibrant
object in the Joyal model category structure. O

Corollary 3.6.7. Let p : X — Y be an isofibration between co-categories. For
any monomorphism A — B, the induced map

h(B,X) — h(A, X) Xp(ay) h(B.Y)
is an isofibration (between co-categories).

Proof For any trivial cofibration K — L of the Joyal model category structure,
we have a Cartesian square of the form

k(LX) < Hom(L, X)

l l

k(K, X) Xgk.y) k(L,Y) —— Hom(K, X) Xpom(k,y) Hom(L,Y)

in which the right hand vertical map is a trivial fibration. We conclude as in the
proof of Corollary 3.5.13. O
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Theorem 3.6.8. Let f : X — Y be a morphism of simplicial sets. The following
conditions are equivalent.

(i) The map f is a weak categorical equivalence.
(it) For any co-category W, the map f* : Hom(Y, W) — Hom(X, W) is an
equivalence of co-categories.
(iii) For any co-category W, the functor f* : t Hom(Y, W) — 7 Hom(X, W)
is an equivalence of categories.
(iv) For any co-category W, the map f* : k(Y,W) — k(X,W) is an equiva-
lence of oco-groupoids (or, equivalently, a weak homotopy equivalence).

Proof By definition of the Joyal model category structure, and, by virtue of
Theorem 3.6.1, the map f is a weak categorical equivalence if and only if,
for any oco-category W, the induced map f* : [V, W] — [X, W] is bijective,
where [X, W] is the set of maps from X to W up to J-homotopy equivalence.
Since Hom(X, W) is an co-category, the explicit description of T Hom(X, W)
given by Theorem 1.6.6 shows that [ X, W] can alternatively be described as the
set of isomorphism classes of objects in the category 7 Hom(X, W). Remark
3.6.5 explains why a third description of the set [X, W] is the one given by
the set of connected components of the Kan complex k (X, W). Therefore, it is
clear that either of conditions (ii), (iii) or (iv) implies condition (i). By virtue
of Proposition 3.3.14, the functor 7 sends weak categorical equivalences (in
particular, equivalences of co-categories) to equivalences of categories. Hence
it is clear that condition (ii) implies condition (iii). Let us prove that condition
(1) implies condition (ii): by virtue of Brown’s Lemma 2.2.7 and of Corollaries
3.6.6 and 3.6.4, the functor Hom(—, W) sends weak categorical equivalences
to equivalences of co-categories. It remains to prove that condition (ii) implies
condition (iv). By virtue of Corollary 3.5.12, it is sufficient to prove that the
functor k sends equivalences of co-categories to equivalences of co-groupoids.
For this, using Ken Brown’s Lemma, it is sufficient to prove that the functor k
sends trivial fibrations between co-categories to trivial fibrations between Kan
complexes. Let p : X — Y be a trivial fibration, with ¥ an co-category. Then
X is an oo-category, and since p is obviously conservative (because it is an
equivalence of co-categories), the commutative square

k(X) — X

k(f’)l lf’

k(Y) — Y

is Cartesian, which implies that the induced map k(X) — k(Y) is a trivial
fibration. O
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With similar arguments, one proves:

Theorem 3.6.9. Let f : X — Y be a functor between co-categories. The
following conditions are equivalent.

(i) The functor f is an equivalence of co-categories.
(ii) For any simplicial set A, the functor Hom(A, X) — Hom(A,Y) is an
equivalence of oo-categories.
(iii) For any simplicial set A, the functor t Hom(A, X) — 7Hom(A,Y) is
an equivalence of categories.
(iv) For any simplicial set A, the functor k(A,X) — k(A,Y) is an equiva-
lence of co-groupoids.

3.7 The Boardman-Vogt construction, revisited

3.7.1. Let X be an oo-category. Given two objects x and y in X, we form the
oo-category X (x, y) of maps from x to y by considering the following pull-back
square, in which s and ¢ are the evaluation maps at 0 and 1, respectively.

X(x,y) —— Hom(A', X)
(3.7.1.1) l l(w)

A Y v x

By definition of k(A', X), and by virtue of Corollary 3.5.12, we have in fact
two pull-back squares

X(x,y) — k(Hom(A', X)) —— Hom(A", X)
3.7.1.2) l l(k(s),k(;)) l(x,t)

A (X)X k(X) ——— X x X

in which the middle vertical map is a Kan fibration (hence the left vertical map
as well). In other words, we have defined an co-groupoid of maps from x to y.

Proposition 3.7.2. There is a canonical bijection

mo(X (x, ) = Homy,(x) (x, y)

(where the right hand side is the set of maps in the Boardman-Vogt homotopy
category of X; see Theorem 1.6.6).
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Proof The canonical morphism X — N(ho(X)) induces a canonical mor-
phism X (x,y) — N(ho(X))(x,y) = Homyy(x)(x,y) (where we identify any
set with the corresponding constant simplicial set), hence a canonical map

X(x,y)o — Hompex) (x,y) .

The domain of this map is the set of maps from x to y in X, and this map
simply is the quotient map defining Homy,,(x) (x, ). In particular, this map is
surjective and obviously factors through mo(X(x,y)) (since it comes from a
morphism of simplicial sets). In other words, it is sufficient to check that, for
any maps f, g : x — yin X, if f and g agree in ho(X), then they belong to the
same path-component of the Kan complex X (a, b). Let us choose a morphism
t : A2 — X whose restriction to dA? correspond to the following diagram.

y
/N
X ——y

Let p : A' x A' — A? be the nerve of the surjective morphism which sends
both (0, 0) and (0, 1) to 0. Then the composition tp : Al x A! — X interprets
the previous commutative triangle as a diagram of the form

1

S
— Y
1y
g9
_—

= =

Y

and induces by transposition a map & : A' — X(x,y) ¢ Hom(A!, X) which
connects the points f and g. |

3.7.3. To understand the composition law better, we need the Grothendieck-
Segal condition to hold for co-categories. Recall that, for n > 2, the spine Sp”
is the union of the images of the maps u; : A — A" which send 0 toi and 1 to
i+1,for0<i<n.

Proposition 3.7.4. The inclusion Sp" — A" is an inner anodyne extension
(hence a weak categorical equivalence).

For the proof, we will need the following lemma.

Lemma 3.7.5. Let S be a subset of {0, . ..,n}, n > 2. Assume that the comple-
ment of S is not an interval (i.e. that there exists a and c notin S and b € S such
that a < b < c). Then the inclusion Ny — A" is an inner anodyne extension,
where N is the union of the images of the faces 6} fori ¢ S.
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Proof We proceed by induction on n. For n = 2, we must have S = {1}, in
which case the inclusion of AZ = A into A% obviously is an inner anodyne
extension. Assume that n > 2. We now proceed by induction on the cardinal
of S. If S only has one element k, then we have Ag = AZ, and we are done
(because, for the complement of {k} not to be an interval, we need 0 < k < n).
Otherwise, we may assume that there exists @ and ¢ notin S and b € § such that
a < b < c. Then we may choose i € S with i # b (our inductive assumptions
implies that the cardinal of S is > 1). We shall write T for the set of elements
J of [n — 1] such that §7(j) € S. Then, we have a biCartesian square of the
following form.

A¥71 ¢ s Anfl

e

Ag — Ag_ 0
Moreover, the elements a, b and ¢ are witness that the complement of S — {i}
is not an interval: a and ¢ are not in S and distinct from i (because i € §), while
b € § - {i}. Therefore, by induction on S, the map A’ W A" is an inner
anodyne extension. It is thus sufficient to check that, the map A;‘l — A" s
an inner anodyne extension. By induction on n, it is sufficient to prove that the
complement of T in [n — 1] is not an interval. Then, all elements distinct from
i are in the image of 6. Let a, 8 and y be the elements which are sent to a,
b and c, respectively. We have @ < 8 < y with 8 € T, but @ and vy are not in
T. O

Proof of Proposition 3.7.4 We first prove by induction that the inclusion
Im(55) U Sp"* — A"

is an inner anodyne extension forn > 2. Forn = 2, we have: Im/(5;)USp" = A2
For n > 2, the square

Im(s8~ Yy uSp"™t ——— Im(57) U Sp"

[ [

At (8T U Im(8T)

is Cartesian, hence also coCartesian. Therefore, it is sufficient to prove that the
inclusion of Im (7)) U Im(6};) into A" is an inner anodyne extension. Since, for
n > 1, the subset {0, n} obviously is not an interval in [r], this readily follows
from Lemma 3.7.5.

By duality (i.e. using the fact that the functor X — X preserves inner
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anodyne extensions), we also proved that the inclusion Im(d};) U Sp™" — A" is
an inner anodyne extension for n > 2.

We now can prove the proposition by induction on n. The case n = 2 is
obvious, and we may thus assume that n > 2. The Cartesian square

n—1 s Spn

[, ]

An—l o s Al

Sp

implies that the inclusion Sp”™ — Im(67') U Sp™ is the push-out of the inclusion
map Sp”_1 — A"! hence is an inner anodyne extension. Therefore, the
composition of the maps

Sp"t — Im(6)) U Sp" — A"
is an inner anodyne extension. O

Corollary 3.7.6. For any isofibration between oo-categories X — Y, and for
any integer n > 2, the canonical map

Hom(A", X) — Hom(Sp", X) Xpom(sp",y) Hom(A",Y)
is a trivial fibration. In particular, for any co-category X, the restriction map
Hom(A", X) — Hom(Sp", X)
is a trivial fibration.

Proof The first assertion is the particular case of Corollary 3.6.4 obtained
from the trivial cofibration of Proposition 3.7.4. The second assertion is the
particular case of the first when ¥ = A°, O

3.7.7. Letus consider an co-category X, together with a n + 1-tuple of objects
(x05 - - .,%n), for n > 2. We can then form the following pull-back squares.

X(xg,...,xp) —— k(Hom(A", X)) —— Hom(A", X)
(3.7.7.1) l l levaluation

k (X)n+1 ¢ Xn+1

The co-groupoid X (xo, . .., X,) is the space of sequences of maps of the form
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Xo — --+ — X, in X. Remark that we also have a pull-back square of the form
(3.7.17.2)
[To<i<n X (xi,xis1) — k(Hom(Sp", X)) —— Hom(Sp", X)

l l levaluation

k(X)n+1 ¢ Xn+1

This implies that the diagram
(3.7.7.3)
X(x0,...,%x,) —— k(Hom(A", X)) —— Hom(A", X)

l l |

[To<i<n X(xi,xi41) —— k(Hom(Sp", X)) —— Hom(Sp", X)

is made of Cartesian squares in which, by virtue of Corollary 3.7.6, all the
vertical maps are trivial fibrations. The unique map y : A! — A" which sends
0 to 0 and 1 to n induces a morphism

(3.7.7.4) X(x0,...,%Xn) = X(x0,xp) .

The choice of a section of X(xo,...,x,) = [lp<i<n X(Xi,xi41) composed
with the map (3.7.7.4) thus provide a composition law

(3.7.7.5) ﬂ X (xi,Xie1) — X (X0, Xn) -
0<i<n
Applying the functor 7 to the map (3.7.7.5) gives a composition law
(3.7.7.6) 1_[ Homy,o(x) (i, Xi41) — Homy,x) (X0, Xn)
0<i<n

which is nothing else than the composition law of Boardman and Vogt’s homo-
topy category ho(X).

3.8 Serre’s long exact sequence

3.8.1. Let X be an co-groupoid. For any object x € Xy, we define the loop
space of X at x as

(3.8.1.1) Q(X,x) = X(x,x) .

The fundamental group of X at the point x is m1(X,x) = mg(Q(X,x)) (the
group structure is obtained, for instance, from the identification of 74 (Q(X, x))
with the group Homy,,(x) (x, x) given by Proposition 3.7.2). There is a canonical
element of Q(X, x)o which we write, by abuse, and for historical reasons, x (but
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that really is 1,). We thus can iterate this construction: we write Q! (X,x) =
Q(X,x), and, for n > 1, we define

(3.8.1.2) Q" (X, x) = Q(QY(X,x),x) .

In particular, for each n > 1, we have defined a group

(3.8.1.3) (X, x) = mo(Q"(X, x))

called the n-th homotopy group of X at the point x.

Proposition 3.8.2. For any integer n > 2, the group n,(X,x) is abelian.

Proof 1t is sufficient to prove the case where n = 2. As a particular case of
the map (3.7.7.5), we have a composition law

cx t Q(X,x) X Q(X,x) = Q(X,x)
which, by functoriality of the loop space construction, gives a composition law
Qcx) : Q%(X,x) x Q%(X,x) = Q*(X,x).
On the other hand, we have the composition law
cQx,x) - Q2(X,x) x Q%(X,x) —» Q*(X,x).
Let us define
aeb=nmy(Q(cx))(a,b) and aob=mny(cox.x))(a,b).

The pairing a o b is the group law on 75 (X, x), while a e b is another pairing
which is a morphism of groups from m2(X,x) X m2(X,x) to m3(X,x). In
particular, we have:

(aeb)o(ced)=(aoc)e(bod).
We also have equalities of the form
ael,=a=1,eqa.

Let us prove that a e 1, = a holds, for instance. There is the unique map
v : A' — A? which sends 0 to 0 and 1 to 2, and its retraction r : A2 — Al
which sends both 0 and 1 to 0. If s denotes the restriction of r on Af, we then
have a commutative square

Hom(A!, X) ——— Hom(A2, X)

Hom(AZ, X) == Hom(A%, X)
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in which the vertical map on the left is a monomorphism, while the one on the
right is a trivial fibration. Therefore, this square admits a lift f. The composition
of f with y* : Hom(A?%, X) — Hom(A!, X), is the composition law of two
maps in X, i.e. cx is homotopic to y*f (because cx is also induced by a
composition of y* with a choice of section of the trivial fibration of the square
above). Therefore, since Q is a right Quillen functor, the map Q(cx) is also
homotopic to Q(y*)Q(f). But, by construction and by functoriality, the map

(Ix.1o(x,x)) Q(yQ(f)
_— _

Q2(X,x) Q2(X,x) x Q(X,x) Q%(X,x)

is the identity. This shows that a @ 1, = a. The equality 1, e a = a is obtained
similarly, replacing r by the other retraction of 7y.
With these properties, we now have

aeb=(aoly)e(lyob)=(aely)o(lyeb)=aob,
and also
aob=(1yea)o(bely)=(lyob)e(aoly)=bea,
from which we deduce thata e b = b e a. O

Proposition 3.8.3. Let us consider a commutative triangle of simplicial sets.

f

X —Y
A2
S

a) If, for any map A" — S, the induced morphism A" xg X — A" Xs Y is
a weak homotopy equivalence, then, for any map S’ — S, the induced
morphism X' = 8" xs X — Y’ =8 XgY is a weak homotopy equivalence
(in particular, f itself is a weak homotopy equivalence).

b) If p and q are Kan fibrations, the converse is true: if f is a weak homotopy
equivalence, so are the maps A" Xg X — A" Xg Y for any map A™ — S.

Proof Since the functors of the form (—) Xg X commutes with small colimits
and preserves cofibrations, by virtue of Corollaries 2.3.16, 2.3.18 and 2.3.29,
the class of maps S — § such that the induced morphism §’ Xg X — S’ Xg Y
is a weak homotopy equivalence is saturated by monomorphisms in the sense
of Definition 1.3.9 (when considered as a class of presheaves over the small
category A/S). Corollary 1.3.10 for A = A/S tells us that if ever it contains all
maps of the form A" — S, this class must be the one of all maps S” — S. This
proves the first assertion. !

1 Remark that we hardly used any specific property of the Kan-Quillen model category structure:
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Let us assume that both p and g are Kan fibrations. Then, for any map of the
form A" — S, we may consider the Cartesian squares

A" xs X — X A'xsY — ¥
l N O
AT S AT S

and see that both of them are homotopy Cartesian (by virtue of Corollary
2.3.28 and of Proposition 3.1.23 they have this property after we apply the finite
limits preserving functor Ex*, and therefore, the functorial trivial cofibration
(3.1.22.5) gives our claim). This implies that the commutative square

ANMxg X — X

Lk

AVxgY —— Y

is homotopy Cartesian. Therefore, the left hand vertical map of the latter is a
weak homotopy equivalence whenever f has this property. O

Corollary 3.8.4. Let us consider a commutative square of simplicial sets

X 45X

»| |7

y —4—vY

in which the maps p and q are supposed to be Kan fibrations. Such a square is
homotopy Cartesian if and only if, for any point y' € Y/, if we put y = v(y’),
the induced morphism between the fibres X; — Xy is a weak homotopy
equivalence.

Proof Since the map p is a Kan fibration the homotopy pull-back of Y’ and
X over Y simply is the ordinary pull-back Y’ Xy X. Therefore, this square is
homotopy Cartesian if and only if the induced map f : X’ — Y’ Xy X is a weak
homotopy equivalence. By virtue of the preceding proposition, this property is
thus equivalent to the assertion that, for any map of the form s’ : A" — Y’, the
induced map

AanfX, —)AnXY' (Y,XyX) ZAanX
is a weak homotopy equivalence. If we let y’ and y be the image of 0 in Y’ and

the same proof applies to any model category structure on the category of presheaves of sets
over an Eilenberg-Zilber category whose class of cofibrations is the class of monomorphisms.
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Y respectively, we have a commutative square of the form

X;, ———— X,

l l

A" Xy X — A" Xy X

in which the vertical maps are strong deformation retracts (see Proposition
2.5.7). Therefore, it is sufficient consider pull-backs along maps of the form
A® — Y’ only. m|

Corollary 3.8.5. For any equivalence of co-groupoids f : X — Y and any
point x € Xy, if we put y = f(x), the induced map 7, (X,x) — n,(Y,y) is an
isomorphism of groups for n > 1.

Proof We have a commutative square of the form

Hom(AL, X) —~— Hom(AL Y)

l(s,t) l(s,t)

XXX — Y XY
fxf
in which the horizontal maps are equivalences of co-groupoids (by virtue of
Ken Brown’s Lemma, it sufficient to check this latter property when f is
a trivial fibrations, in which case these maps are trivial fibrations as well).
This commutative square is thus homotopy Cartesian. Therefore, the preceding
corollary implies that it induces weak homotopy equivalences on fibres of
the vertical maps. The latter weak homotopy equivalences precisely are the
maps Q(X,x) — Q(Y,y) for all x € Xj. Iterating the process gives weak
equivalences Q"(X,x) — Q"(Y,y) for all n > 1. Since the functor my sends
weak homotopy equivalences to bijections, this achieves the proof. O

3.8.6. For an arbitrary simplicial set X, we have a canonical trivial cofibration
X — Ex®(X) which induces a bijection Xy =~ Ex®(X)q (because Sd(A°) ~
AY). By virtue of the preceding corollary, if we define

(3.8.6.1) (X, x) = m, (Ex™(X), x)

we extend the definition of homotopy groups to arbitrary simplicial sets in a way
which is compatible with the definition given at the beginning of this chapter.
Since the functor Ex™ sends weak homotopy equivalences to equivalences of
oo-groupoids, we can reformulate the previous corollary as follows.

Corollary 3.8.7. For any weak homotopy equivalence of simplicial sets f :
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X — Y and any point x € Xy, if we put y = f(x), the induced map n,, (X, x) —

. (Y, y) is an isomorphism of groups for n > 1.

3.8.8. For any simplicial set X, one can freely add a base point by forming
the pointed simplicial set X, = X II A® (where the base point corresponds to
the new copy of A%). This defines a left adjoint to the forgetful functor from
pointed simplicial sets to simplicial sets.

Given two pointed simplicial sets X and Y, with base points x and y, respec-
tively, The simplicial set of pointed maps from X to Y, denoted by Hom (X, Y)
is defined as the pull-back

Hom, (X.Y) —— Hom(X.Y)
(3.8.8.1) l lx*
A—— 2y

(where x* is the evaluation at x).
We also define the smash-product X A Y as the push-out

XVY —— XxY
(3.8.8.2) l l

A — 5 X AY

where X V'Y is the union of X x {y} and {x} XY in the cartesian product X x Y.
For any three pointed simplicial sets X, Y and Z, we have a natural bijection

Hom.(X AY,Z) ~ Hom.(X, Hom (Y, Z))

induced by the natural bijection Hom(XxY,Y) ~ Hom(X, Hom(Y, Z)) (where
Hom, denotes the set of morphisms of pointed simplicial sets). Moreover the
operation A defines a symmetric monoidal structure on the category of pointed
simplicial sets with unit object S° = (A®),. In particular we have the following
canonical isomorphisms (for all pointed simplicial sets X, Y and Z).

(3883) XAYAZ)=(XAY)ANZ XAY=YAX SYANX ~X
One defines the simplicial circle S* with the following coCartesian square.
OA! —— Al
(3.8.8.4) l l
AO gt
Then, for any integer n > 2 we define the simplicial n-sphere as:

(3.8.8.5) St=StASL.
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One checks directly that, for each pointed Kan complex X we have
(3.8.8.6) Q"(X,x) = Hom_ (8", X)

(and we really mean an equality here).

On the other hand, for any pointed simplicial set A and any pointed Kan
complex X, the set mo(Hom, (A, X)) is canonically identified with the set of
maps from A to X in the homotopy category ho(A°\sSet) (with respect to
the Kan-Quillen model category structure): indeed, this is a particular case
of Theorem 2.2.17, because, using Corollary 2.3.17, we see right away that
A A (A'), is a cylinder of A in the Kan-Quillen model category structure.
In particular, we get another proof of Corollary 3.8.5, but we also have the
following property.

Proposition 3.8.9. For any pointed weak homotopy equivalence A — B and
any pointed Kan complex X, the induced map

mo(Hom, (B, X)) — mo(Hom, (A, X))
is bijective.

Proposition 3.8.10. Let X be an oo-groupoid, and x € Xy a point. For any
integer n > 1, and for any choice of base point for A", there is a canonical
bijection mo(Hom, (0A™!, X)) ~ m,(X,x) such that the constant map with
value x corresponds to the unit 1, of the homotopy group.

Proof 1t is sufficient to prove that A" and S™ are isomorphic in the un-
pointed homotopy category of the Kan-Quillen model category structure. In-
deed, if this is the case, there will exists a weak homotopy equivalence from
AA™! to Ex™(S™). Since S™ has exactly one 0-simplex (object) and since the
trivial cofibration S — Ex™(S") is bijective on objects, these maps will al-
ways be compatible with any choice of base point we make for A", We will
conclude with the preceding proposition.

We prove this assertion by induction on n. If #n = 0, this is clear: S° = AL,
Hence we may assume that n > 0. We have the (homotopy) coCartesian square
below.

Py —

[ 1

A n+l s BA"+1

Note that X A A = A® whatever X is. Therefore, we also have the following
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(homotopy) coCartesian square.

Sn—l /\So ¢ Sn—l /\Al Sn—l ¢ Sn—l /\Al
Sn—l /\AO ¢ Sn—l /\51 AO ¢ sn

By virtue of Corollary 2.3.17, the map X A A — X A A = AY is a weak
homotopy equivalence for any pointed simplicial set X. In conclusion, the
simplicial sets A" and S™ are homotopy push-outs of diagrams of the form

AP — A" 5 A and A — §"1 5 AD,

respectively. By induction, we see that these two diagrams are weakly equiva-
lent, and therefore, by functoriality, so are their homotopy colimits. O

Proposition 3.8.11. Let X be a simplicial set. The map X — A° is a weak
homotopy equivalence if and only if the set my(X) exactly has one element and
if there exists a point xo € Xo such that, for any integer n > 1, the homotopy
group m, (X, xq) is trivial.

Proof This clearly is a necessary condition, by Corollary 3.8.7. For the con-
verse, we may assume that X is a Kan complex. Let us assume that X has
exactly one path-component as well as trivial homotopy groups 7, (X, xg) in
any degree n > 0, for a specified point xy. We first prove that, for any point x of
X, the homotopy groups 7, (X, x) are trivial. Indeed, since X is path-connected
(and a Kan complex), there exists a map & : A! — X such that £(0) = x¢ and
h(1) = x. We can form the following (homotopy) Cartesian square.

E —— Hom(Al, X)

ql l(s,t)

AP x s x
Since pulling back a weak homotopy equivalence along a Kan fibration is a weak
homotopy equivalence, the two inclusions Q(X, xo) — E < Q(X, x) are weak
homotopy equivalences. Iterating the process gives a zig-zag of weak homotopy
equivalences relating the iterated loop spaces Q" (X, x() and Q" (X, x), hence
isomorphisms 7, (X, xg) =~ m,(X,x). By virtue of Proposition 3.8.10, this
means that, for n > 0 and for any map a : A" — X, there exists a morphism
h: A' x JA™ — X which is a homotopy from a to some constant map x. We
thus get a morphism (%, x) : A' x A" U {1} x A" — X, and, since X is a Kan
complex, this morphism is the restriction of some morphism k : A! x A" — X.
The restriction of k to A" =~ {0} x A" defines a morphism b : A" — X such
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that b|gsan = a. Since X # @, this means that X — A is a trivial fibration,
hence a weak homotopy equivalence. O

Theorem 3.8.12. Let p : X — Y be a Kan fibration. We consider given a
point x € Xg and y = p(x), and we let F be the fibre of p at y. Then there is
a canonical long exact sequence of pointed sets (of groups, if we restrict to the
part of degree > 1) of the form

- — 1y (Fox) — m(X,x) — 71,(Y,y)

A1 (F,x) —— -+ —— m (Y, y)
no(F) —— mo(X) —— mo(Y)

Proof We may always assume that Y is a Kan complex (if not, use Ex*). We
first prove that, for any homotopy Cartesian square of simplicial sets of the form

T
oy —
N

l

in which P is weakly contractible (i.e. the map P — A is a weak homotopy
equivalence), for any point x of E which is sent to the connected component of
B receiving P, we have a short exact sequence of pointed sets:

no(F) — mo(E) — mo(B)

(where the base points correspond to the connected component containing (the
image of) x). Indeed, we may assume that r is a Kan fibration between Kan
complexes, and, by Corollary 3.8.4, we may also assume that P = A” (because
we can replace F by the fibre of F — P). We then have to prove that if an
object a of the co-groupoid X is sent into the connected component of y in Y,
then there is a morphism a — b in X such that p(b) = y. This immediately
follows from the fact that the map p has the right lifting property with respect
to maps of the form {0} — Al
Therefore, we already have a short exact sequence of pointed sets

7T0(F) e 7T0(X) — 71'0(Y) .

Remark that, for any Kan complex X, the loop space Q(X, x) fits in a diagram
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made of (homotopy) Cartesian squares of the form

Q(X,x) —— P(X) —— Hom(A', X)

R

(1x,x)

AP d X XxX
l lprz
A — X X

Since the map pry(s,t) = ¢ is a trivial fibration, so is the map P(X) — A°.
This means that Q(X, x) is the homotopy limit of the diagram A — X « A°.
Using the fact that homotopy Cartesian squares are closed under composition,
this implies that there is a canonical homotopy Cartesian square of the form

QY,y) — P

|

Fe—X

where P is weakly contractible. Therefore, we also have a short exact sequence
of pointed sets

m1(Y,y) = no(F) — mo(X).
Applying what precedes to the Cartesian squares
Q'(F,x) —— Q"(X,x)
A — QY(Y,y)
for n > 1 gives the rest of the long exact sequence. [

Remark 3.8.13. The natural identification comparing the homotopy pull-backs
of the diagrams

A’ 5 X — P(X) and P(X) —> X « A°

induces a bijection m1(X,x) =~ m1(X,x) which is not the identity: this is
the inverse map g +— ¢~!. This is because this inversion can be seen in the
construction of Q(X,x) = Hom,_(A!/dAL, X): it corresponds to the unique
isomorphism A'” ~ A! which induces an isomorphism S'” ~ S* and thus an
isomorphism of groups

ﬂl(X"x) = ﬂ-l(XUpwx) = ﬂl(X’x)OP



130 The homotopy theory of co-categories

which is the canonical one (where, for a group G, the opposite G is the group
defined by the pairing (g, h) — h~1g™1).

Corollary 3.8.14. A morphism of simplicial sets f : X — Y is aweak homotopy
equivalence if and only if, it induces a bijection ng(X) =~ ng(Y) and if, for
any integer n > 1 and any x € X, if we put y = f(x), the induced map
(X, x) = 7, (Y, y) is an isomorphism of groups.

Proof This is a necessary condition, by Corollary 3.8.7. Conversely, let us
assume that the map f induces a bijection at the levels of 7y and of homotopy
groups, for all base points. As already seen in the proof of Proposition 3.8.11,
given a Kan complex K and two points kg and k; connected by a path vy, there
are canonical bijections 7, (K, ko) ~ n,, (K, k1) for all n > 1. Therefore, since
any map can be factored into a weak homotopy equivalence followed by a Kan
fibration, Corollary 3.8.7 shows that it is sufficient to prove the case where f
is a Kan fibration. The preceding theorem then ensures that the fibres of f are
then Kan complexes F such that 7y(F) exactly has one elements and whose
homotopy groups all are trivial. By virtue of Proposition 3.8.11, all the fibres of
f are (weakly) contractible. Since strong deformation retracts are stable under
pull-backs along Kan fibrations (see Proposition 2.5.7), we deduce that, for
any map A" — Y, the induced map A" Xy X — A" is a weak equivalence.
Therefore, Proposition 3.8.3 tells us that f is a weak homotopy equivalence. O

3.9 Fully faithful and essentially surjective functors

Lemma 3.9.1. Let X be an co-category. The formation of the co-groupoids
k(A, X) satisfies the following operations.

a) For any coCartesian square of simplicial sets

A —25 A

i

B—t.p

in which i is a monomorphism, the induced square

k(B',X) —— k(B,X)

Ji- Ji

k(A’,X) — k(A,X)

is Cartesian and its vertical maps are Kan fibrations.



3.9 Fully faithful and essentially surjective functors 131
b) For any sequence of monomorpims of simplicial sets
AO_)AI —)~~'—)An—)An+1 A

the induced transition maps k(A,+1, X) — k(A,, X) are Kan fibrations
and the comparision map

k(lim A, X) — limk(A,, X)
— —
n n
is an isomorphism.
¢) For any small family of simplicial sets (A;)icy, the induced map

k(]_[ An X) — ﬂ k(Ai, X)

is an isomorphism.

Proof We know that k(A, X) = k(Hom(A, X)) is the maximal Kan com-
plex contained in the co-category Hom(A, X). On the other hand, we know
from Theorem3.6.1 and Corollary 3.6.4 that the functor Hom(—, X) sends
monomorphisms to isofibrations between co-categories. We also know from
Theorem 3.5.11 that the functor k£ sends isofibrations between co-categories
to Kan fibrations. On the other hand, since the functor k is right adjoint of
the inclusion functors of the category of oco-groupoids into the category of
oco-categories, it preserves the limits which are representable in the category
of oo-categories. In conclusion, the properties listed in this lemma are direct
consequences of the fact that the functor Hom (-, X) preserves small limits. O

Theorem 3.9.2. Let f : X — Y be a functor of co-categories. The following
conditions are equivalent.

(i) Theinducedmaps k(A",X) — k(A",Y) are equivalences of co-groupoids
forn=0andn = 1.
(ii) Theinducedmaps k(A", X) — k(A",Y) are equivalences of o-groupoids
for all non-negative integers n.
(iii) The map f is an equivalence of oo-categories.

Proof The dual versions of Corollaries 2.3.16, 2.3.18 and 2.3.29 (applied to
the opposite of the category of simplicial sets, endowed with the Kan-Quillen
model category structure) together with the preceding lemma shows that, given
such a functor f : X — Y, the class of simplicial sets A such that the map
k(A,X) — k(A,Y) is a homotopy equivalence between Kan complexes is
saturated by monomorphisms. Therefore, applying Corollary 1.3.10 (for A = A)
and Theorem 3.6.9, we see that condition (ii) is equivalent to condition (iii).
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Therefore, it is sufficient to prove that condition (i) implies condition (ii). For
n > 1, we have coCartesian squares of the form

AO s Spn—l

L

Al —— Spt

(where we put Sp' = A'). Hence condition (i) and the first assertion of
the preceding lemma imply that, for any integer n > 1, the induced map
k(Sp", X) — k(Sp™,Y) is a weak homotopy equivalence. On the other hand,
it follows from Proposition 3.7.4 that the inclusions Sp" — A" induce a com-
mutative diagram

k(A", X) —— k(A",Y)

l l

k(Sp", X) —— k(Sp™.Y)

in which the vertical maps are trivial fibrations (they are Kan fibrations by
Theorem 3.5.11, as well as weak homotopy equivalences by Theorem 3.6.8).
Hence, condition (ii) is fulfilled. ]

Definition 3.9.3. Let f : X — Y be a functor between co-categories.
We say that f is fully faithful if, for any objects x and y in X, the induced
map

X(x,y) = Y(f(x), f(y)

is an equivalence of co-groupoids.
We say that f is essentially surjective if, for any object y in Y, there exists an
object x in X as well as an invertible morphism from f(x) toyinY.

Remark 3.9.4. The explicit description of 7(X) given by Boardman and Vogt
(1.6.6) implies that the functor f is essentially surjective if and only if the
induced functor 7(f) : 7(X) — 7(Y) is essentially surjective. Proposition 3.7.2
also implies that the functor 7( f) is fully faithful whenever f has this property.

Example 3.9.5. Given an co-category X and a subset A C Xy, we define the full
subcategory generated by A in X as the subcomplex X4 C X whose simplices
are those maps f : A" — X such that f(i) belongs to A foralli,0 <i < n.If
ho(X) 4 denotes the full subcategory of ho(X) whose objects are in A, there is
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a canonical Cartesian square

Xy —— 5 X

| l

N(ho(X)s) —— N(ho(X))

in which both vertical maps are conservative isofibrations. It is thus clear that
X4 is an oco-category. Moreover, by construction, for any objects @ and b in A,
the induced map

Xa(a,b) — X(a,b)
is the identity. Therefore, the inclusion map X4 — X is fully faithful.

Proposition 3.9.6. A functor between oo-categories f : X — Y is fully faithful
if and only if the induced commutative square of co-groupoids

k(A', X) ——— k(AL Y)

(s,t)l l(s,t)

k(X)X k(X) — k(Y) xk(Y)
is homotopy Cartesian.

Proof Since both vertical maps are Kan fibrations between Kan complexes
(Theorem 3.5.11), and since both squares of diagram (3.7.1.2) are Cartesian,
this is a particular case of Corollary 3.8.4. |

Theorem 3.9.7. A functor between oco-categories is an equivalence of oo-
categories if and only if it is fully faithful and essentially surjective.

Proof Let f: X — Y be such a functor.

If f is an equivalence of co-categories, then the functor 7(f) : 7(X) — 7(Y)
is an equivalence of categories (this is implied by Proposition 3.3.14), hence
f is essentially surjective. Moreover, the commutative square of Proposition
3.9.6 obviously is homotopy Cartesian because its horizontal maps are weak
homotopy equivalences (Theorem 3.6.9), hence f is fully faithful.

Conversely, let us assume that f is fully faithful and essentially surjective. To
prove that f is an equivalence of co-categories, by virtue of Theorem 3.9.2 and
of Proposition 3.9.6, it is sufficient to prove that the induced morphism of Kan
complexes k(X) — k(Y) is a weak homotopy equivalence. We have a bijection
mo(k(X)) — mo((k(Y)) because we have an equivalence of categories 7(X) =~
7(Y) hence a bijection at the level of sets of isomorphism classes of objects.
Therefore, by virtue of Corollary 3.8.14, it is sufficient to prove that, for any
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object x in X, if we put y = f(x), the induced map Q(k(X),x) — Q(k(Y),y)
is a weak homotopy equivalence. Since f is conservative (because 7(f) is,
being an equivalence of categories), the commutative square

k(X) —— k(Y)

[

f

X ——Y

is Cartesian. In particular, we also have a Cartesian square in the category of
oco-groupoids

[ l

X(x,x) —— Y(4.p)

in which the vertical maps are both monomorphisms and Kan fibrations: the Kan
complex Q(k(X), x) is the union of the connected components of the Kan com-
plex X(x,x) corresponding to the elements of mo(X(x,x)) = Hom(x)(x,x)
which are the invertible automorphisms of x in the category 7(X). Since the
map X (x,x) — Y(y,y) is a weak homotopy equivalence, so is its (homotopy)
pull-back Q(k(X),x) — Q(k(Y),y). O

Corollary 3.9.8. The class of weak categorical equivalences is stable under
small filtered colimits.

Proof Letus check first that the class of homotopy equivalences between Kan
complexes is closed under filtered colimits. This makes sense because the class
of Kan complexes is stable under filtered colimits (Lemma 3.1.24). For any
pointed finite simplicial set K (such as A or dA'), the functor Hom (K, —)
preserves filtered colimits: since filtered colimits commute with finite limits,
the pull-back square (3.8.8.1) shows that it is sufficient ro prove that the functor
Hom (K, —) preserves filtered colimits, which follows from the fact that each
product A" x K has finitely many non-degenerate simplices, applying Corol-
lary 1.3.12. Therefore, the formation of iterated loop spaces is compatible with
filtered colimits. Since the functor 7y obviously preserves filtered colimits as
well, this proves that the formation of the groups (X, x) is compatible with
filtered colimits. The characterisation of weak equivalences between Kan com-
plexes given by Corollary 3.8.14 thus implies that weak equivalences between
Kan complexes as closed under filtered colimits.

The proof of Lemma 3.1.24 also shows that the class of co-categories is closed
under filtered colimits. Since the functor Hom (A*, ) preserves filtered colimits
and since filtered colimits commute with finite limits in sets, the formation of



3.9 Fully faithful and essentially surjective functors 135

oo-groupoids of morphisms X (x, y) is compatible with filtered colimits of co-
categories. The stability of equivalences of co-groupoids by filtered colimits
implies the stability of fully faithful functors between co-categories by filtered
colimits. It is an easy exercise to check that essentially surjective functors are
stable under filtered colimits. Therefore, by virtue of Theorem 3.9.7, the class
of equivalences of co-categories is closed under filtered colimits.

Finally, since the functor Hom (K, —) commutes with filtered colimits for any
finite simplicial set K, the explicit construction of the small object argument
shows that there is a functorial inner anodyne extension X — L(X) such that
the functor L takes its values in the category of co-categories and commutes
with filtered colimits. Therefore, the class of weak categorical equivalences is
the class of maps whose image by L is an equivalence of co-categories. This
implies the theorem. m}
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Presheaves: externally

The first paragraph of the first section of this chapter is heuristic: it explains
why it is natural to see right fibrations X — C as presheaves over C. The rest of
this first section is devoted to the construction of the homotopy theory of right
fibrations with fixed codomain C, through the construction of the contravariant
model category structure over C. This is achieved as an interpretation of the
last section of Chapter 2. This is also the opportunity to introduce one of the
most fundamental class of maps in the theory of co-categories: the one of final
maps. One then proves that a map between right fibrations over C is a weak
equivalence if and only if it induces a fibrewise equivalence of co-groupoids.
In the second section, using an alternative construction of the join operation,
we prove that the homotopy fibre at x of the slice fibration X/y — X is the
mapping space of maps from x to y in the co-category X. This is used in the
third section to study final objects.

Section 4.4 revisits Quillen’s famous Theorem A (see Corollary 4.4.32 be-
low), after Grothendieck, Joyal and Lurie, introducing the notions of proper
functors and of smooth functors. In particular, it provides useful computational
tools, that will ramify in various forms all along the rest of the book. After a
technical section on fully faithful and essentially surjective functors through
the lenses of the covariant and contravariant model category structures, we
finally devote Section 4.6 to Quillen’s Theorem B, or, in other words, to locally
constant presheaves.

4.1 Catégories fibrées en co-groupoides

4.1.1. Let C be a small category. The category of presheaves of sets over
C can be embedded in the category Cat/C of categories over C as follows.
For a presheaf F' : C? — Set one considers the category of elements C/F

136
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(see Definition 1.1.7), which comes equiped with a canonical projection map
C/F — C. This defines a functor

4.1.1.1) C - Cat/C, Fw—CJF.

This functor is fully faithful and admits a left adjoint as well as a right adjoint.
The left adjoint is easy: it associates to a functor ¢ : I — C the colimit of the
functor
1 —<t5c-2ts¢C

(where h is the Yoneda embedding). The right adjoint is less enlightening
(at least for the author of these notes) but has the merit of being explicit: it
associates to a functor ¢ : I — C the presheaf whose evaluation at ¢ is the set
of functors u : C/c¢ — I such that pu : C/c — C is the canonical projection.

Therefore, there is a way to think of presheaves as a full subcategory of
the category Cat/C. The aim of this section is to introduce a candidate for an
analogous subcategory of the category of co-categories over a given co-category
C. Well, in fact over any object of the Joyal model category structure, i.e., over
any simplicial set.

For this, we need to characterise functors isomorphic to functors of the form
C/F — C: these are the functors p : X — C such that, for any object x in
X, if we put ¢ = p(x), the induced functor X/x — C/c is an isomorphism.
Since the nerve of any functor between small categories is an inner fibration,
the following proposition is enlightening.

Proposition 4.1.2. A morphism of simplicial sets p : X — C is aright fibration
if and only if it is an inner fibration such that, for any object x in X, if we put
¢ = p(x), the induced functor X /x — C/c is a trivial fibration.

Proof The identification A” = A" 1 « AY, for n > 0, and Lemma 3.4.20,
show that lifting problems of the form

oA —— X/x
l j l (with ¢ = p(x))
Al —— Ce
correspond to lifting problems of the form

Al X
l 7 l (with u(n) = x).

A";C
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Since right fibrations can be characterized as the inner fibrations with the right
lifting property with respect to inclusions of the form A}, c A" for n > 0, this
proves the proposition. O

Corollary 4.1.3. The nerve any Grothendieck fibration with discrete fibres
between small categories is a right fibration.

Proof By virtue of the preceding proposition, this follows from the canonical
identification N(C)/x ~ N(C/x) for any small category C equipped with an
object x, and from the characterisation of Grothendieck fibrations with discrete
fibres recalled at the end of paragraph 4.1.1. O

4.1.4. Let C be a simplicial set. We denote by P(C) the full subcategory of
sSet/C whose objets are the right fibrations of the form pg : F — C. The
objects of P(C) will be called the right fibrant objects over C. Most of the
time, the structural map pr will be implicitly given, and we shall speak of
the right fibrant object F over C. A morphism F — G of right fibrant objects
over C is a fibrewise equivalence if, for any object ¢ of C, the induced map
F. — G, is an equivalence of co-groupoids. Here, F_ is the pull-back of the
map ¢ : A’ — C along the structural map pr; such a fibre F, always is an
oo-groupoid, by Corollary 3.5.6.

Theorem 4.1.5 (Joyal). There is a unique model category structure on the
category sSet|/C whose cofibrations are the monomorphisms, and whose fibrant
objects are the right fibrant objects over C. Moreover, a morphism between right
fibrant objects over C is a fibration if and only if it is a right fibration.

The proof of the theorem will be given below, on page 140. This model
category structure will be called the contravariant model category structure
over C.

4.1.6. We observe the following fact: Proposition 3.5.5 implies that, for C =
A%, the contravariant model category structure must coincide with the Kan-
Quillen model category structure. More generally, when C is an co-groupoid,
the contravariant model category structure over C must coincide with the model
category structure induced by the Kan-Quillen model category structure. This is
why, in order to construct the contravariant model category structure over C, we
shall forget C temporarily, for studying another presentation of the Kan-Quillen
model category structure on the category of simplicial sets.

Let us consider the interval J’ defined as the nerve of the contractible
groupoid with set of objects {0, 1}. This is a contractible Kan complex: this is a
Kan complex because this is an co-groupoid in which all morphisms are invert-
ible, and it is contractible because the nap J’ — A is a simplicial homotopy
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equivalence. Therefore, the projection map J’ X X — X is a trivial fibration for
any simplicial set X. The interval J’ thus defines an exact cylinder X +— J' X X.
Let us consider the smallest class An;fght of J’-anodyne extensions which con-
tains the inclusions of the form A’,: — A" withn > 1and 0 < k < n; see
Example 2.4.13. Using Lemma 3.1.3, we see that it coincides with the smallest
saturated class of morphisms of simplicial sets containing the following two

kinds of maps.

1. Inclusions of the form J’ X A" U {e} x A" — J' X A" for n > 0 and
e=0,1.
2. Inclusions of the form A}, — A" withn > 1and 0 < k < n.

However, according to the next proposition, this description can be dramatically
simplified.

right

Proposition 4.1.7. The class An ;""" is the class of right anodyne extensions.

Proof 1tis clear that any right anodyne extension belongs to An;fg " To prove

the converse, it is sufficient to prove that any right fibration has the right lifting
property with respect to the generators of the class An;’;ght. These generators
are all of the form i : A — B, where B is the nerve of small category (in
particular, an co-category). Let p : X — Y be a right fibration. To solve lifting

problems of the form

we may factor the given commutative square into

A—25 Bxy X %5 X

]| o |7

(where the right hand square is Cartesian). The map ¢ is now a right fibration
whose codomain is an co-category. In other words, it is sufficient to prove
that any right fibration whose codomain is an co-category has the right lifting
property with respect to the generators of the class An;fght. And here is a final
translation of the latter problem: we must prove that, for any right fibration
p : X — Y with Y an co-category, the evaluation at £ map

Hom(J’, X) — X xy Hom(J’,Y)

is a trivial fibration for £ = 0, 1. But such morphism p is always an isofibration
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between co-categories (Proposition 3.4.8) hence a fibration of the Joyal model
category structure (Theorem 3.6.1). In particular, it must have the required
lifting property: since J’ is an co-groupoid, we have h(J’,C) = Hom(J’, C)
for any co-category C, so that we can apply Corollary 3.5.13. |

Proof of Theorem 4.1.5 Thanks to Proposition 4.1.7, this is a particular case
of the construction of 2.5.1, which allows to apply Theorem 2.4.19 for A =
A/C. O

In fact, Proposition 4.1.7 has several other consequences.

Definition 4.1.8. A morphism of simplicial sets u : A — B is final if, for any
simplicial set C and any morphism p : B — C, the map u : (A, pu) — (B, p)
is a weak equivalence of the contravariant model category structure over C.

Corollary 4.1.9. A monomorphism of simplicial sets is a right anodyne exten-
sion if and only if it is a final map. A morphism of simplicial sets is final if and
only if it admits a factorisation into a right anodyne extension followed by a
trivial fibration.

The class of final maps is the smallest class C of morphisms of simplicial
sets satisfying the following properties:

(a) the class C is closed under composition;

(b) for any pair of composable morphisms f : X — Y and g :Y — Z, if
both f and gf are in C, so is g;

(c) any right anodyne extension belongs to C.
Proof This is a particular case of Propositions 2.5.3 and 2.5.4. O

Corollary 4.1.10. Let us consider a pair of composable monomorphisms f :
X > Yandg:Y — Z, and assume that f is a right anodyne extension. Then
the map g is a right anodyne extension if and only if the map g f has the same
property.

A useful sufficient condition for being final is given by the following state-
ment.

Proposition 4.1.11. Let f : X — Y be a morphism of simplicial sets, and
p : Y — C aright fibration. Then f is final if and only if the map p turns f
into a weak equivalence of the contravariant model category structure over C.

Proof This is a special case of Proposition 2.5.6. O



4.1 Catégories fibrées en oo-groupoides 141

4.1.12. Let pr : F — C and pg : G — C be two morphisms of simplicial

sets. We define Mapc (F, G) by forming the following Cartesian square.
Mapq(F,G) —— Hom(F,G)

(4.1.12.1) l l(pc)*

AP Hom(F, C)

If ever G is right fibrant over C, then Map (F, G) is the fibre of a right fibration
(by Proposition 3.4.5), and therefore is a Kan complex, by Corollary 3.5.6. In
the case of an object ¢ of C, if we write A (c) for the image of the corresponding
morphism ¢ : A’ — C, the canonical isomorphism Hom (A, X) ~ X induces
a canonical isomorphism

4.1.12.2) Mapc(h(c), G) = G,

Proposition 4.1.13. For any monomorphism F — F’ of simplicial sets over
C, and for any right fibrant object G over C, the induced map

Mapc (F, G) — Mapc(F’, G)
is a Kan fibration.

Proof Since the source and target of this map are Kan complexes, by virtue
of Proposition 3.5.5 it is sufficient to prove that it is a right Kan fibration. Since
right fibrations are stable under base change, by virtue of Proposition 3.4.5, the
Cartesian square

Map¢(F,G) « Hom(F,G)
(4.1.13.1) l l

Mapc(F',G) —— Hom(F’, G) Xgom(r,c) Hom(F, C)

thus implies this proposition. O

Proposition 4.1.14. For any weak equivalence of the contravariant model
category structure F — F' over C, and for any right fibrant object G over C,
the induced map

Mape(F, G) — Mapc(F’, G)
is an equivalence of co-groupoids.

Proof By a variation on the proof of the preceding proposition, one checks
that, for any right fibrant object G over C, the functor Map.(—, G) sends
right anodyne extensions to trivial fibrations. By virtue of Propositions 2.4.40
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and 4.1.7, this implies that the functor Map,(—, G) is a left Quillen functor
from the the contravariant model category structure to opposite of the Kan-
Quillen model category structure. In particular, this functor preserves weak
equivalences between cofibrant objects (which are all simplicial sets over C),
hence the proposition. O

Lemma 4.1.15. For any integer n > 0, the inclusion {n} — A" is a right
anodyne extension.

Proof Leth :A' x A" — A" be the morphism induced by the map

(.x) n ife=1,
£,x) —
x else.

Identifying A" with {0} x A", we have the following commutative diagram

{n} —— Al x{n}uU {1} x A" — {n}

[ [ [

A" S ALxAT — P An

which turns the inclusion {n} — A" into a retract of the right anodyne extension
Al x {n} U {1} x A" — A! x A" (see Proposition 3.4.3). This proves the
lemma. O

Theorem 4.1.16. Let ¢ : F — G be a morphism between right fibrant objects
over C. The following conditions are equivalent.

(i) The morphism ¢ is a weak equivalence of the contravariant model cate-
gory structure.
(ii) The morphism ¢ is a fibrewise equivalence.
(iii) For any simplicial set X over C, the induced map

Map¢ (X, F) = Mapq(X, G)
is an equivalence of co-groupoids.

Proof By virtue of the identification (4.1.12.2), it is clear that condition (iii)
implies condition (ii). The Cartesian square (4.1.13.1) shows that the functors
Map (X, —) preserve trivial fibrations, hence weak equivalences between fi-
brant objects. In other words, condition (i) implies condition (iii). One deduces
from Propositions 4.1.13 and 4.1.14 that, for any simplicial set X over C and
any right fibrant object F over C, there is a canonical identification between
the set mo(Mape (X, F)) and the set of homotopy classes of maps from X to
F: this is because the functor Map(—, F) will send any cylinder of X (in the
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sense of the contravariant model category structure) into a path object of the
Kan complex Map (X, F). This implies that condition (iii) implies condition
(). It now remains to prove that condition (ii) implies condition (iii). For any
integer n > 0, by virtue of the preceding lemma and of Proposition 4.1.14, for
any map s : A" — C, there is a commutative square of the form

Mapc((A",s),F) I Fs(n)

‘/’*J/ J{‘Ps(n)

Mapc((A", S), G) — GS(I’l)

in which the horizontal maps are equivalences of co-groupoids. Therefore,
condition (ii) is equivalent to the condition that, for any map s : A" — C, the
induced morphism

("2 MapC((An’s)’F) - MapC((An’s)’G)

is an equivalence of co-groupoids. On the other hand, since the functors of
the form Map(—, F) send small colimits of simplicial sets over C to limits
of simplicial sets, Proposition 4.1.13 and Corollaries 2.3.16, 2.3.18 and 2.3.29
(all three applied to the opposite of the Kan-Quillen model category) imply
that the class of simplicial sets X over C such that the induced map

Map (X, F) = Map (X, G)

is an equivalence of co-groupoids is saturated by monomorphisms. Applying
Corollary 1.3.10 in the case of A = A/C thus proves that condition (ii) implies
condition (iii). O

Corollary 4.1.17. The class of weak equivalences of the contravariant model
category structure over C is closed under small filtered colimits.

Proof The proof of Lemma 3.1.24 shows that the class of right fibrations is
closed under small filtered colimits, and that the fibrant resolution functor of the
contravariant model category structure over C preserves small filtered colimits.
Therefore, it is sufficient to prove that the class of weak equivalences between
fibrant objects of the contravariant model category structure over C is closed
under small filtered colimits. By virtue of the preceding theorem, this amounts
to prove that fibrewise equivalences are closed under filtered colimits. Since
filtered colimits are exact, they are compatible with the formation of fibres of
right fibrations. Finally, we simply have to check that the class of equivalences
of oo-groupoids is closed under small filtered colimits, which follows right
away from Corollary 3.9.8 (and was in fact used in its proof). O
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Remark 4.1.18. In the case where C is an oco-category, if p : X — C and
q : Y — C are right fibrations, a map f : X — Y over C is a fibrewise
equivalence if and only if it is an equivalence of co-categories (or, equivalently,
a weak categorical equivalence). Indeed, by virtue of general computations in
model categories such as Lemma 2.2.12 and Theorem 2.2.17, these properties
of f are also equivalent to the assertion that f is a J’-homotopy equivalence
(over C).

4.2 Mapping spaces as fibres of slices

4.2.1. For two simplicial sets X and Y, one defines X o Y by the following
push-out square

XxOA'xY —— XY

4.2.1.1) [ [

XXA'XY —— XoY

where the upper horizontal map is the disjoint union of the two canonical
projections X XY — X and X XY — Y interpreted through the identification

XxOA' xY =~ (X xY)II (X XY).

One checks that the functor sSer — Y\sSet, X — (Y — X oY) has a right
adjoint Y\sSet — sSet, (t : Y — W) +— W//t. Indeed, the functor (=) o Y
preserves connected colimits (because one directly checks that it preserves
push-outs as well as filtered colimits). The object W/ /¢ has to be distinguished
from the slice W/t that was introduced earlier (see 3.4.14). However, this
chapter is all about comparing them. If there is no ambiguity on ¢, we will also
write W/ /T =W/ /t.

Remark that we have A = A2 o A® = A0 % AC, 50 that there are canonical
maps X oY — Al and X * Y — A'. For either of these maps, the fibre at 0 is
X, and the fibre at 1 is Y.

Proposition 4.2.2. There is a unique natural map yxy : X oY — X Y such
that the diagram below commutes.

XY — XY

|

XoY — > Al
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Proof Recall that, for n > 0, we have:

(X %Y), = ]_[ X; xXY;.

i+1+j=n

A map A" — X x Al xY consists of elements x € X, and y € Y,, together with
an integer i, which correspond to the map u : A" — A (the integer i is the
smallest integer such that u(i + 1) = 1). There is a unique & : A’ — X which is
the restriction of x to A’, as well as a unique  : A/ — Y, with j =n—i -1,
which corresponds to the restriction of y to Ali*1--} ~ A/ One associates to
such a triple (x, , y) the element (&, 7). This defines a commutative square

XXxOA'xY — XY

I [

XxAlxy XY, x sy

over A!, and thus amap yxy : X oY — X * Y. This proves the existence. The
unicity is clear. O

Proposition 4.2.3 (Joyal). The map X oY — X =Y is a weak categorical
equivalence.

Proof The map yxy is the identity whenever X or Y is empty. Since the
functors (=) ¢ Y and (—) * Y preserve connected colimits as well as monomor-
phisms, we deduce from Corollaries 2.3.16, 2.3.18 and 2.3.29, that the class of
simplicial sets X such that the map yx y is a weak categorical equivalence is
saturated by monomorphisms. Similarly for the class of Y’s such that yx y is a
weak categorical equivalence. By Corollary 1.3.10, it is thus sufficient to prove
the case where X = A and Y = A". In this case, there is a section s of the map
c=cpampn : ATXALX AT — A™ 5 AT = AT above AL, defined as follows.

(x,0,0) if x < m,
s(x) =
(m,L,x-m-1) ifx > m.

This defines a section o of the map y = yam a». It is sufficient to prove that oy
is a weak categorical equivalence.
For this purpose, we also define a morphism

P AT X AL X AT - AT x AL x A"

by the formula p(x, u, y) = (x, u, uy). There is a natural transformation from p
to the identity and a natural transformation from p to sc. The map p induces a
map7: XoY — X oY, and in Hom(A™ ¢ A", A™ o A"), we have a morphism
h from m to the identity and a morphism k from 7 to oy. These natural
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transformations are the identity on the image of s. Therefore, after applying the
functor 7, they are equal to a single invertible natural transformations from 7 ()
to the identity (which is equal to 7(o)7(y) because 7(y) is an isomorphism).
Therefore, for any co-category C and any functor f : A™ o A" — C, there are
natural transformations fh : fr — f and fk : 1 — oy; both fh and fk are
in fact invertible natural transformations because it is sufficient to check this
after composing with the canonical conservative functor C — N(7(C)). Let
f A" o A" — C be a weak categorical equivalence with C an oo-category.
Then & and k induce invertible morphisms from fr to f, and from fr to fovy,
respectively, in the co-category Hom(A™ o A", C). Therefore, the maps fx, f
and f oy must be J-homotopic (see Remark 3.6.5). Since f is a weak categorical
equivalence, this proves that oy is a weak categorical equivalence. O

Proposition 4.2.4. The functors X o (=) and (=) oY preserve weak categorical
equivalences.

Proof This follows right away from Corollary 2.3.29, applied to the coCarte-
sian squares of the form (4.2.1.1). ]

Corollary 4.2.5. The functors X = (=) and (=) = Y preserve weak categorical
equivalences.

Proof This follows right away from the preceding two propositions. O

Remark 4.2.6. One can prove the preceding corollary without using Proposition
4.2.2. Here is an other proof. By Ken Brown’s Lemma, it is sufficient to prove
that these functors preserve trivial cofibrations of the Joyal model structure.
Let K — L be such a trivial trivial cofibration. To check that K *Y — L *Y
is a trivial cofibration, it is sufficient to prove that it has the right lifting
property with respect to isofibrations between co-categories (see Proposition
2.4.30). But, for such an isofibration between co-categories E — B, for any
map Y — E, the induced map E/Y — E Xpg B/Y is a right fibration between
oco-categories (Theorem 3.4.22) hence an isofibration (Proposition 3.4.8). Since
such an isofibrations have the right lifting property with respect to the trivial
cofibrations of the Joyal model category structure (Theorem 3.6.1), we conclude
from Lemma 3.4.20 that the map K =Y — L Y has the left lifting property
with respect to E — B.
The case of the functor X * (—) is deduced from the case of (—) x X,

Proposition 4.2.7. Let p : X — Y be a fibration of the Joyal model category
(e.g., an isofibration between co-categories). We consider a monomorphism
S — T, together with a morphismt : T — X. Then the canonical projection

X/|T — X[/Sxy;sY/|T
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is a right fibration. Furthermore, if ever Y is an co-category, then so are X[ |T
as well as the fibre product X[ [S Xy ;s Y //T.

Proof As in the proof of Theorem 3.4.22, it is sufficient to prove that, for any
right anodyne extension U — V/, the induced inclusion

VoSUUT=VoSUyssUoT - VoT

is a trivial cofibration of the Joyal model category structure. But we have the
commutative square

VoSUUOT —— VoT

l l

VxSUU*T —— V=T

of which the vertical maps are weak categorical equivalences, by a repeated
use of Proposition 4.2.3 (and by Corollary 2.3.29). Therefore, it is sufficient
to prove that the lower horizontal map of the commutative square above is
a trivial cofibration of the Joyal model category structure. But, by virtue of
Lemma 3.4.20 and Theorem 3.4.22, we know that it has the left lifting property
with respect to any inner fibration (hence with respect to any fibration of the
Joyal model category structure). m}

4.2.8. For Y fixed, the comparison map yx of Proposition 4.2.2 is a natural
transformation between left adjoints and thus induce a natural transformation
of their right adjoints

X/T — X//T.

Proposition 4.2.9. For any oco-category X and any map t : T — X, the
canonical comparison map X |T — X /[T is an equivalence of oo-categories.

Proof Both functors (=) o T and (-) * T are left Quillen functors (they pre-
serve monomorphisms as well as weak equivalences by Proposition 4.2.4 and
Corollary 4.2.5) and the natural transformation y () r is a termwise weak equiv-
alence, by Proposition 4.2.3. Therefore, their right adjoints are right Quillen
functors and the corresponding transposed map from (—) /7T to (-)//T is a weak
equivalence on fibrant objects. This is because the total left derived functors of
(=) oT and (-) * T are isomorphic, so that their right adjoints, the total right
derived functors of (=)/T and (-)//T, must be isomorphic as well. o

Corollary 4.2.10. Let X be an co-category, and x,y : A° — X two objects.
There is a canonical equivalence of co-groupoids from the fibre of the right
fibration X [y — X over x to the co-groupoid of maps X (x, y).
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Proof Since both maps X/y — X and X//y — X are right fibrations, by
virtue of Theorem 4.1.16, the weak equivalence of Proposition 4.2.9 induces
equivalences of co-groupoids on their fibres. Therefore, we can replace X /y by
X //y. By definition, the simplicial set X//y fits in the Cartesian square below.

X//y —— Hom(A', X)

Since the square

| [

A — s x
is Cartesian, we thus have a Cartesian square of the following form.

X//y —— Hom(A', X)

| l

X — XxX

This immediately implies, by construction of X (x, y), that the fibre at x of the
right fibration X//Y — X is X (x, y). O

Remark 4.2.11. In his monograph [Lur09], Lurie denotes by Hom’g (x,y) and
Homy (x, y) the fibres at x of the canonical projections A/y — Aand A//y —
A respectively. However, we will use the notation Hom 4 (x, y) rather differently:
for the fully functorial version of the co-groupoid of maps from x to y; see
paragraph 5.8.1 below.

Proposition 4.2.12. Let X be an co-category endowed with an object x. For
any simplicial set A, the canonical functor Hom(A, X/x) — Hom(A, X)/x is
an equivalence of oo-categories (where we also denote by x the constant functor
A — X with value x).

Proof The canonical functor Hom(A, X/x) — Hom(A, X) sends 1, tox and
thus induces a canonical functor Hom(A, X/x) — Hom(A, X)/x. We have a
commutative square

Hom(A, X/x) —— Hom(A, X)/x

l |

Hom(A, X//x) —— Hom(A, X)//x
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whose vertical maps are equivalences of co-categories (Theorem 3.6.9 and
Proposition 4.2.9). But we also have the Cartesian square

X//x —— Hom(A',X)

A —— 5 X
and since Hom (A, Hom(B, X)) ~ Hom(B, Hom(A, X)) for all simplicial sets
A and B, we conclude that the canonical map

Hom(A, X//x) — Hom(A, X)//x

is an isomorphism. O

4.3 Final objects

Definition 4.3.1. An object x of a simplicial set X is final if the corresponding
morphism x : A — X is final (see Definition 4.1.8).

Remark 4.3.2. An object x of X is final if and only if the map x : A° — X
is a right anodyne extension (this is a particular case of the first assertion of
Corollary 4.1.9).

Proposition 4.3.3. Let f : X — Y be a morphism of simplicial sets, and
assume that X has a final object x. Then the morphism f is final if and only if
the object f(x) is final in'Y.

Proof This is a special case of properties (a) and (b) of Corollary 4.1.9. O

4.3.4. When we see the category of simplical sets as moinoidal category with
the join operation X * Y, it acts naturally on the category of pointed simplicial
sets as follows. Given a pointed simpliical set (X, x) and a simplicial set S, we
define the pointed simplicial set X *, S by forming the push-out square below.

AV xS — 5 A0

x*lsl J/x’

X8 —— X%, §

The fact that this actually defines an action (in particular, that this operation
is associative up to a coherent isomorphism) follows from the property of the
join operation (—) * S of commuting with connected colimits.

We define

C(X) =X, A".
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Lemma 4.3.5. For any pointed simplicial set (X, x), the object x" is final in
C(X).

Proof The map x’ : A° — C(X) is the push-out of the map of joins x * 10 :
A% % A® — X % AV Tt is thus sufficient to prove that the latter is a right anodyne
extension. By virtue of Proposition 4.1.2, an inner fibration p : A — Bisaright
fibration if and only if, for any object a in A, the induced map A/a — B/p(a)
is a trivial fibration. In particular, for any monomorphism i : X’ — X, the
induced inclusion from X’ * A® into X * A® is a right anodyne extension. The
particular case where X’ = A thus proves the lemma. O

4.3.6. For a pointed simplicial set (Y,y), the map 1, : A' = A°+x A — ¥y
defines an object 1, : A® — Y/y. The association (Y,y) — (Y/y, 1) is
functorial and actually defines a right adjoint to the functor C. In other words,
pointed maps X — Y /y correspond to pointed maps C(X) — Y.

Proposition 4.3.7. Let X be a simplicial set, and x an object of X. If the
canonical map X [x — X has a section s such that s(x) = 1y, then x is a final
object of X. In the case where X is an co-category, the converse is true.

Proof 1If there is such a section, by transposition, the inclusion X c C(X)
has a retraction r : C(X) — X such that r(x”) = x. This means that the map
x : AY — X is a retract of the final map x’ : A° — C(X), hence that x is a final
object.

If X is an co-category and if x is is a final object of X, then the commutative
square

A0 X/x

1

X X

has a filler because X /x — X is a right fibration, while the left hand vertical
map is a right anodyne extension (see Remark 4.3.2). O

Corollary 4.3.8. For any object x in a simplicial set X, the object 1, is final
in the slice X [ x.

Proof The object A is a unital associative monoid with respect to the tensor
product defined by the join operation: the unitis @ — A!, while the multiplica-
tion is the unique map A' — A®. Since the operation X *, S defines a unital and
associative action of simplicial sets, this implies that the functor C has a natural
structure of a monad. By transposition, its right adjoint has a structure of a
comonad. The map (X/x)/1, — X/x is the comultiplication of this comonad,
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and thus has a pointed section s (i.e. a section such that s(1,) = 1; ). Therefore,
the preceding proposition implies that 1, is a final object in X /x. O

We just proved the following important theorem (one of the many incarna-
tions of the Yoneda Lemma).

Theorem 4.3.9. Let x be an object in an co-category X. The map A° — X, seen
as an object of sSet/ X, has a canonical fibrant replacement in the contravariant
model category structure over X, namely the canonical right fibration X [x —
X. In particular, if y is another object of X, there is a canonical equivalence of
co-groupoids

Mapy (X/x, X/y) = X(x,y) .
Proof The first assertion directly follows from the previous corollary. This
implies that the map 1, : A° — X/x induces a trivial fibration from the Kan

complex Mapy(X/x, X/y) to the fibre of X/y — X at x (see Propositions
4.1.13 and 4.1.14). We conclude with Corollary 4.2.10. O

Proposition 4.3.10. Let X be an oco-category, and w an object of X. We assume
that there is a natural transformation a from the identity of X to the constant
functor with value w, such that the induced morphism a,, : w — w is the
identity in ho(X). Then w is a final object of X.

Proof The natural transformation a determines an homotopy
h:A'xX > X.

We can modify % so that its restriction to A’ X {w} is constant with value w.
Indeed, by assumption on a, the restriction of 2 on A! =~ Al x {w} is the identity
of w in ho(X). This means that there exists amap u : A2 — X whose boundary
is a triangle of the following shape.

w
N
1y
w —> W
We consider the map

h:A2xX > X

whose restriction to A{%} x X is the constant homotopy with value 1x and
whose restriction to A112} x X is k. This defines a map

(,u,iz):AQX{w}UA?XXeX
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which is the restriction of some map of the form
k:A’xX — X

(because the inclusion of A% X {w} U A% x X into the product A? X X is inner
anodyne). The restriction of k to A1%-2} x X thus defines an homotopy

H:A'xX—>X

from the identity of X to the constant map with value w, whose restriction
on A x {w} is constant with value w. In other words, the map H defines by
transposition a map

H:X — X//w c Hom(A', X)

which is a section of the canonical projection X //w — X and which sends w to
1,,. We observe that the canonical equivalence (hence final functor) from X /w
to X//w provided by Proposition 4.2.9 sends the final object of X/w to the
identity of w. In particular, 1, is a final object of X//w. The map w : A — X
being a retract of the right anodyne extension 1, : A’ — X//w, it is a right
anodyne extension as well. Therefore, w is a final object of X. O

Theorem 4.3.11 (Joyal). Let X be an oco-category. We consider an object w
in X, and write 1 : X/w — X for the canonical projection. The following
conditions are equivalent.

(i) The object w is final in X.
(ii) For any object x in X, the co-groupoid of maps X (x, w) is contractible.
(iii) The map  : X/w — X is a trivial fibration.
(iv) The map n : X /w — X is an equivalence of co-categories.
(v) The map n : X/w — X has a section which sends w to 1.
(vi) Any morphism OA™ — X, suchthatn > 0 and u(n) = w, is the restriction
of a morphismv : A — X.

Proof We already know that conditions (i) and (v) are equivalent, by Propo-
sition 4.3.7. Since x is a fibration between fibrant objects of the Joyal model
category structure, it is a weak equivalence of this model structrure if and only
if it is a trivial fibration. Therefore, conditions (iii) and (iv) are equivalent. On
the other hand, the map = is also a fibration between fibrant objects of the con-
travariant model category structure over X. Hence it is a trivial fibration if and
only if it is a weak equivalence of the contravariant model category structure.
By virtue of Theorem 4.1.16, and of Corollary 4.2.10, conditions (ii) and (iii)
all are equivalent. Condition (vi) is equivalent to condition (iii): this is because
OA" = A" 1 @3 U A"t « AV, using Lemma 3.4.20.
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If 7 is a trivial fibration, then it is final, and since final maps are stable by
composition, the map w : A — X is final, by Corollary 4.3.8. Conversely,
if w is a final object, then condition (vi) holds, which implies that the map «
has a section which sends w to a final object (namely 1,,, by Corollary 4.3.8).
By virtue of Proposition 4.3.3, such a section is a right anodyne extension.
This means that 7 is a weak equivalence of the contravariant model category
structure over X, hence a trivial fibration as well. Therefore, conditions (i) and
(iii) are equivalent. O

Corollary 4.3.12. If w is a final object in an co-category X, then it is a final
object in the category 7(X).

Proof This follows right away from condition (ii) above and from Proposition
3.7.2. O

Corollary 4.3.13. The final objects of an co-category X form an co-groupoid
which is either empty or equivalent to the point.

Proof Let F be the full subcategory of X which consists of final objects: this is
the subobject of the simplicial set X whose simplices are the maps s : A" — X
such that s(7) is a final object for 0 < i < n. Condition (ii) says that the map
F — AU is fully faithful. Therefore, if F is not empty, such a functor is an
equivalence of co-categories. O

Corollary 4.3.14. Letx be a final object in an co-category X. For any simplicial
set A, the constant functor A — X with value x is a final object of Hom(A, X).

Proof This follows from Proposition 4.2.12, by using the characterisation of
final objects given by condition (iv) of Theorem 4.3.11. [

Lemma 4.3.15. Let X be a simplicial set such that, for any finite partially
ordered set E, any map N(E) — X is A'-homotopic to a constant map. Then
the map X — A° is a weak homotopy equivalence.

Proof 1t follows from Lemmas 3.1.25 and 3.1.26 that, for any integers n > 0
and i > 0, the iterated subdivision Sd’(A™) is the nerve of a partially ordered
set. Therefore, any map dA" — Ex™(X) is homotopic to a constant map:
indeed, such a map factors through a map A" — Ex'(X) with i > 0, which
corresponds by adjunction to a map of the form Sd’ (A") — X. In particular,
7o(X) has exactly one element.! This also implies that the homotopy groups
7, (X, x) are all trivial (they do not depend on the base point, since all objects are
isomorphic in the groupoid 7(Ex*(X))). Therefore, the Kan complex Ex™ (X)

1 The map u : @ — Ex®X is homotopic to a constant map. This means that there exists an
element xq of Xo such that u(x) = xq for any element x of @. In particular, X is not empty.
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is contractible, by Propositions 3.8.10 and 3.8.11. Since we have a canonical
trivial cofibration X — Ex™(X), this achieves the proof. m]

Theorem 4.3.16. Let w be an object in an oo-category X. The following
conditions are equivalent.

(i) The object w is final.
(ii) For any simplicial set A, the constant functor from A to X with value w
is a final object in the category T(Hom(A, X)).
(iii) For any simplicial set A which is isomorphic to the nerve of a finite
partially ordered set, the constant functor from A to X with value w is a
final object in the category T(Hom(A, X)).

Proof Corollaries 4.3.12 and 4.3.14 show that condition (i) implies condition
(ii). Since condition (iii) is obviously a particular case of condition (ii), it
remains to prove that condition (iii) implies that w is a final object of X. Let
us assume that w (or the constant functor with value w) is a final object of
7(Hom(A, X)) for any A of the form A = N(E), with E a finite partially
ordered set. We want to prove that, for any object x in X, the co-groupoid
X (x,w) is equivalent to the point. For any simplicial set A, since it commutes
with limits and preserves Kan fibrations as well as trivial fibrations, the functor
Hom (A, —) commutes with the formation of homotopy fibres of Kan fibrations
between Kan complexes. Therefore, it follows from Corollary 4.2.10 that the
Kan complex Hom(A, X (x, w)) is the homotopy fibre of the canonical map

Hom(A, X/w) — Hom(A, X).

Hence, by virtue of Proposition 4.2.12, the Kan complex Hom (A, X (x, w)) is
homotopy equivalent to the Kan complex Hom (A, X)(x, w) (where x and w also
denote the corresponding constant functors). Therefore, the set of connected
components mo(Hom(A, X (x, w))) has exactly one element (being the set of
maps from x to w in 7(Hom(A, X))). The preceding lemma implies that X (x, w)
is contractible. We conclude thanks to Theorem 4.3.11. O

Remark 4.3.17. There is a 2-category of co-categories: the objects are the
oo-categories and the categories of morphisms Hom(A, B) are the categories
7(Hom(A, B)). The preceding theorem means that the property of having a
final object may be detected in this 2-category. This is a particular case of a
more general feature of the theory of co-categories: the notion of adjunction is
2-categorical; see Theorem 6.1.23 below (we recall that having a final object is
equivalent to the property that the map to the final category has a right adjoint).
We also observe that the notion of equivalence of co-categories is 2-categorical
as well: this follows from Theorems 3.6.8 and 3.6.9.
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4.4 Grothendieck base change formulas and Quillen’s
Theorem A

Definition 4.4.1 (Grothendieck). A morphism of simplicial sets p : A — B is
proper if, for any Cartesian squares of the form

A/I L) Al L) A

(44.1.1) lpu lp, lp
B B 5B
if v’ is final, so is u’.
The proof of the following proposition is an easy exercise left to the reader.

Proposition 4.4.2. The class of proper morphisms is stable under composition
and under base change.

Lemma 4.4.3. Foranyn > 1 and 0 < k < n, the inclusion of {n} in A} is a
right anodyne extension.

Proof 1In the proof of Lemma 3.1.3, we saw that AZ is a retract of Al x AZ U
{1} x A™. We observe that this is a retraction of pointed simplicial sets, where
the base points are n and (1, n), respectively. Since right anodyne extensions
are stable under retracts, this shows that it is sufficient to check that (1, ) is a
final object of Al x A} U{1} x A". By definition, we have a coCartesian square
of the form

{1} X A" —— {1} x A"

l [

A' X A} —— A X AT U {1} x A"

whose first vertical arrow is a right anodyne extension. Therefore, the second
vertical arrow is a right anodyne extension as well, and it remains to check that
(1, n) is a final object of {1} x A", which is obvious. O

Proposition 4.4.4. For a morphism of simplicial sets p : A — B, the following
conditions are equivalent.

(i) The morphism p is proper.
(ii) For any Cartesian squares of the form (4.4.1.1), if B” has a final object
whose image by v’ is a final object of B’, the map v’ if final.
(iii) For any Cartesian squares of the form (4.4.1.1), if B” = A® and if v’ is a
final object of B’, the map v’ if final.
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(iv) For any Cartesian squares of the form (4.4.1.1), if v is a right anodyne
extension, so is u’.

(v) For any Cartesian squares of the form (4.4.1.1) in which the map v’ is
the canonical inclusion of A} into A", forn > 1 and 0 < k < n, the map
u’ is a right anodyne extension.

Proof A monomorphism is final if and only if it is a right anodyne extension
(see Corollary 4.1.9). Therefore, condition (i) implies condition (iv). We also
know that a morphism of simplicial sets is final if and only if it admits a
factorisation into a right anodyne extension followed by a trivial fibration.
Since the class of trivial fibrations is stable under base change, one deduces
that condition (iv) implies (i). It is clear that condition (iv) implies condition
(v). Since any map of the form 1, : A° — B/b is final (Corollary 4.3.8), we
see that condition (iii) is equivalent to condition (ii) as follows. It is clear that
condition (ii) implies condition (iii). Conversely, for any Cartesian squares of
the form 4.4.1.1, if B” has a final object w whose image by v’ is a final object
of B, if we write A’/ for the fibre of p”’ at w, there is a commutative triangle
of the form

A%
AN
A u A’

in which, assuming (iii), the maps i and i’ are right anodyne extensions. Corol-
lary 4.1.9 thus implies that u’ is a right anodyne extension. Condition (ii)
implies (iv): by virtue of the preceding lemma, forn > 1 and 0 < k < n, the
object n is final in both A}’ and A™. Since condition (i) clearly implies condition
(iii). It is now sufficient to prove that condition (v) implies condition (i).

Let C be the class of maps v" : B” — B’ such that, for any map v : B — B,
if we form the Cartesian squares as in diagram (4.4.1.1), the induced map
u' : A” — A’ is final. Since pulling back along p preserves monomorphisms
and commutes with colimits over A, we see that the class of monomorphisms
which are in C is saturated. Assuming condition (v), the class C contains all
inclusions of the form AZ into A", forn > 1 and 0 < k& < n. Therefore, it
contains all right anodyne extensions. The class C is closed under composition,
and, for any pair of morphisms f : X —» Y and g : Y — Z, if both f and gf
are in C, so is g. These latter conditions are verified because the class of final
maps has these properties. And since the class of final maps is the smallest class
with these stability properties containing right anodyne extensions, the second
part of Corollary 4.1.9 implies that any final map is in C. Hence the map p is
proper. O
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4.4.5. For any morphism of simplicial sets p : A — B, the functor
4.4.5.1) p1: sSet/A — sSet/B, (X — A)+— (X — B)
has a right adjoint
(4.4.5.2) p*:sSet/B — sSet/A, (X —> B)— (XX A — A).
Since it commutes with small colimits, the latter functor also has a right adjoint
(4.4.5.3) s - sSet/A — sSet/B.
Applying Proposition 2.4.40 twice, we obtain the following two statements.

Proposition 4.4.6. For any morphism of simplicial sets p : A — B, the pair
(p1, p¥) is a Quillen adjunction for the contravariant model category structures.

Proposition 4.4.7. If a morphism of simplicial sets p : A — B is proper,
the pair (p*, p.) is a Quillen adjunction for the contravariant model category
structures.

4.4.8. Let RFib(A) be the homotopy category of the contravariant model ca-
tegory structure on sSet/A. As seen in the proof of Theorem 4.1.16, it can be
described as the category whose objects are the right fibrant objects over A,
and such that, for two such right fibrant objects F' and G,

(4.4.8.1) Homgpip(a) (F, G) = mo(Map, (F, G)) .

For any morphism of simplicial sets p : A — B, we thus have a derived
adjunction

(4.4.8.2) pr=Lp, : RFib(A) 2 RFib(B) : Rp*.

For any map f : X — A, we have p;(X — A) = (X — B), and, for any right
fibration g : Y — B, we have Rp*(Y — X) = (AXpY — A).
If the map p is proper we also have a derived adjunction

(4.4.8.3) p* =Lp* : RFib(B) 2 RFib(A) : Rp,

where p* = Lp* = Rp*. Proposition 4.4.7 can be interpreted as a base change
formula. Indeed, for any commutative square of simplicial sets

A —— A
(4.4.8.4) ql lp

B ——> B
there is a canonical base change map

(4.4.8.5) LgRu*(X) — Rv*Lpi(X)
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defined as follows, for any object X of RFib(A). By adjunction, it corresponds
to a map

Ru*(X) = Rg"Ro*Lpi(X) = R(vg)*"Lp:(X)
=R(pu)"Lp\(X)
~ Ru"Rp*Lp(X)

which is the pull-back along u of the unit map X — Rp*Lp(X). Similarly,
there is a base change map

(4.4.8.6) LuyRg*(Y’') — Rp*Lu(Y')
for any object Y’ of RFib(B’).

Corollary 4.4.9. For any Cartesian square of the form (4.4.8.4) in which the
map p is proper, the base change map (4.4.8.6) is an isomorphism for all objects
Y’ of RFib(B’).

Proof Since Lp* = Rp* whenever p is proper, since the formation of total
left derived functors commutes with composition of left Quillen functors, it is
sufficient to prove the analogue of this assertion in the non derived case, which
consists essentially in seeing that Cartesian squares are stable by composition.

O

Lemma 4.4.10. Leti : K — L be a monomorphism of simplicial sets. Assume
that there exists a retraction r : L — K of i as well as a simplicial homotopy
h: A'x L — L which is constant on K, from 1y to ir (i.e., such that h(1x1 X i)
is the composition of the projection from A' x K to K with the map i, and such
that h({0} X L) = 1, and h({1} X L) = ir). Then the map i is a right anodyne
extension.

Proof We have a commutative diagram

K —“5 AlxKU{l}xL —*5 K

|

L — Y% s A'xp —"

in which v corresponds to the identification of L with {0} x L, and u and &
are the restrictions of v and #, respectively. The map i thus is a retract of the
middle vertical inclusion, which is a right anodyne extension, by Proposition
3.4.3. O

A good supply of proper morphisms comes from the following two proposi-
tions.
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Proposition 4.4.11. Any left fibration is proper.

Proof Let C be the class of monomorphisms j : Y — Y such that, for any
Cartesian square of the form

X —

A

y >y
in which p is a left fibration, the map i is a right anodyne extension. This class
C is saturated, and for any monomorphisms f : Y — Y and f' : Y — Y’
such that f” is in C, we have f’ in C if and only if ff’ is in C. Using Lemma
3.1.3 and Corollary 4.1.10, we see that it is sufficient to prove that the class C
contains the inclusions of {1} X Y into A’ X Y for ¥ = A" or Y = A", Let us
consider a Cartesian square of the form

a |»

Y —L 5 Alxy

in which p is a left fibration, and j is the inclusion of {1} X Y into A! x Y.
Letr : A XY — Y be the projection, and & : A' x A’ XY — Al XY be the
product of Y with the homotopy from the identity of A! to the constant map
with value 1. The proof of Proposition 2.5.7 can be repeated mutatis mutandis
and we see that the map 7 satisfies the hypothesis of Lemma 4.4.10, hence is
right anodyne. O

Proposition 4.4.12. For any simplicial sets A and B, the canonical projection
map A X B — B is proper.

Proof Since the class proper morphisms is stable under pull-back, we may
assume, without loss of generality, that B = A°. Using property (v) of Propo-
sition 4.4.4, it is now sufficient to observe that, by Proposition 3.4.3, for any
n>1and0 < k < n, the induced map A X A} — A X A" is a right anodyne
extension. O

In order to go further, we need to consider the dual version of the notions of
final maps and of proper maps.

Definition 4.4.13. A morphism of simplicial sets X — Y is cofinal if the
induced morphism X — Y is final. An object x of a simplicial set X is
initial if the corresponding map x : A — X is cofinal.

A left fibrant object over a simplicial set C is a left fibration of the form
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F — C, seen as an object of sSet/C. A morphism of left fibrant objects F — G
over C is a fibrewise equivalence if, for any object ¢ of C, the induced maps on
the fibers F. — G, is an equivalence of co-groupoids.

Theorem 4.4.14 (Joyal). There is a unique model category structure on the
category sSet|/C whose cofibrations are the monomorphisms, and whose fibrant
objects are the left fibrant objects over C. Moreover, a morphism between left
fibrant objects over C is a fibration if and only if it is a left fibration. Finally,
a morphism between between left fibrant objects is a weak equivalence if and
only if it is a fibrewise equivalence.

This model category structure will be called the covariant model category
structure over C.

Proof This comes from translating Theorems 4.1.5 and 4.1.16 through the
equivalence of categories X — X. O

Definition 4.4.15. A morphism of simplicial sets p : A — B is smooth if the
induced morphism A”” — B is proper.

Remark 4.4.16. The dual version of 4.4.4 holds; we leave to the reader the task
of translating the precise statement and proof. Similarly, the dual versions of
Propositions 4.4.11 and 4.4.12 give us examples of smooth maps: any right
fibration is smooth, and so is any Cartesian projection A X B — B.

Proposition 4.4.17. For any morphism of simplicial sets p : A — B, the pair
(p1, p¥) is a Quillen adjunction for the covariant model category structures.

Proposition 4.4.18. If a morphism of simplicial sets p : A — B is smooth,
the pair (p*, p.) is a Quillen adjunction for the covariant model category
structures.

4.4.19. Let LFib(A) be the homotopy category of the covariant model category
structure on sSet/A. Since the functor X +— X is a Quillen equivalence from
the contravariant model structure over A’ to the covariant model category
structure over A, we have a canonical equivalence of categories

(4.4.19.1) RFib(A”) ~ LFib(A).

The constructions of paragraph 4.4.8 correspond to the following ones. For any
morphism of simplicial sets p : A — B, we thus have a derived adjunction

(4.4.19.2) pr=Lp, : LFib(A) 2 LFib(B) : Rp*.
If the map p is smooth we also have a derived adjunction

(4.4.19.3) p* =Lp* : RFib(B) 2 RFib(A) : Rp,,
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where p* = Lp* = Rp*.
For any commutative square of simplicial sets

A —— A
(4.4.19.4) ql lp
B —— B
there is a canonical base change map
(4.4.19.5) Lg:Ru*(X) — Rv'Lp(X)
for any object X of LFib(A). There is also a base change map
(4.4.19.6) LuyRg*(Y’) — Rp*Lu(Y”)
for any object Y’ of LFib(B’).

Corollary 4.4.20. For any Cartesian square of the form (4.4.19.4) in which
the map v is smooth, the base change map (4.4.19.6) is an isomorphism for all
objects X of LFib(A).

4.4.21. For a simplicial set X and an object F of LFib(X), we define
(4.4.21.1) /F =Lpi(F)
A

where p : A — A denotes the structural map. We define the category ho(sSet)
as the homotopy category of the Kan-Quillen model category structure. In other
words, we have

(4.421.2) ho(sSet) = LFib(A®) = RFib(A°) .
The object /A F is thus an object of ho(sSet).

Lemma 4.4.22. Let A be a simplicial set endowed with a final object a. Then
there is a canonical isomorphism Ra*(F) =~ /A F in the homotopy category
ho(sSet).

Proof Up to isomorphism, we may assume that F' is represented by a left
fibration p : X — A whose fibre over a will be written X,. Since, by virtue
of Proposition 4.4.11, p is proper, and since a : A° — A is a right anodyne
extension, the induced map X, — X is a right anodyne extension, hence an
anodyne extension, and therefore defines an invertible morphism from X, to X
in ho(sSet). But, by construction, we have /A F =Xand Ra*(F) = X,. O
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Lemma 4.4.23. Let p : X — A be a proper morphism, and a an object of A.
For any object F of LFib(X), the base change morphism

/ Fix, = Ra"Lp\(F)

Xa

is invertible, where F\x, = Ri*(F), withi : X, — X the embedding of the fibre
of p over a.

Proof Letus choose a fibrant replacement 4 : A Ja — Aofa: A% — Ain the
contravariant model category structure over A. In particular, the map a factors
through a final map ¢, : A° — A,,. We form the following Cartesian squares.

Xo — Ajgxa X —5 X

T

ANl A, —C A

Since a is a right fibration, it is smooth. Therefore, the base change map
LgRE*(F) — Ra"Lp (F)

is invertible in LFib(A /a)- Hence we have an invertible map in ho(sSet) of the

form:
Jru™ 0=,

The preceding lemma provides a canonical isomorphism

LgR&E(F) — /A Ra*Lp (F) .
Ja

la

Ra*Lp(F) ~ RC,Ra*Lp,(F) — / Ra*Lp(F).
A/u

On the other hand, we may assume that F is represented by a left fibration
of the form 7 : ¥ — X. Then px : Y — A is proper (as the composition of
two proper maps), which implies that the inclusion X, Xx ¥ — A JaXaYisa
(right) anodyne extension, hence an invertible map in o(sSef). This map thus
provides an invertible map of the form

/ Py, [ REW
Xa A/UXAX

in ho(sSet). Since the square

f, Fixa = i ux RE(F)

l |

Ra*Lp(F) —— /A/ Ra*Lp:(F)
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commutes in ko (sSet) (because it is the image of a commutative square in sSer),
this proves the lemma. O

Theorem 4.4.24. For any Cartesian square of the form (4.4.19.4) in which
the map p is proper, the base change map (4.4.19.5) is an isomorphism for all
objects X of LFib(A).

Proof A map in LFib(B’) is invertible if and only if its image by the functor
Rx* is invertible in LFib(A®) = ho(sSet) for any object x of B’. Indeed, we
may assume that such a map comes from a morphism between left fibrant
objects over B’, and we see that we are reformulating the last assertion of
Theorem 4.4.14. Therefore, to prove that the base change map (4.4.8.6) is an
isomorphism, it is sufficient to prove that, for any object x in B’, the induced
map

Rx"Lg:Ru*(X) — Rx*Rov*Lpi(X) ~ Ro(x)*Lp(X)

is invertible. But, applying the preceding lemma twice, we see that this map is

isomorphic to the identity of f Ao XAy - |

Corollary 4.4.25. Let p : A — B be a proper morphism, and consider a
commutative square of simplicial sets of the form

¢

X — A

A
YL)B

in which both ¢ and  are left fibrations and f is a cofinal map. Then, for any
map v : B — B, the induced map

g:X =B XgX oY =B xgY

is cofinal.
Proof We form the pull-back square

A —— A

ql lp

B —— B
and then apply the preceding theorem: the base change map

LgRu*(X) — Ro*Lpi(X)

is an isomorphism in LFib(B’). Unpacking the construction of the involved
derived functors, we see that this base change map is the image in LFib(B’)
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of the map g. Therefore, the morphism g is a weak equivalence with fibrant
codomain of the covariant model category structure over B’. The dual version
of Proposition 4.1.11 tells us that g must be cofinal. O

Dually, we have the following two statements.
Theorem 4.4.26. For any Cartesian square of the form (4.4.8.4) in which the
map v is smooth, the base change map (4.4.8.5) is an isomorphism for all

objects X of RFib(A).

Corollary 4.4.27. Let p : A — B be a smooth morphism, and consider a
commutative square of simplicial sets of the form

x 2,4
i
YL)B

in which both ¢ and  are right fibrations and f is a final map. Then, for any
map v : B — B, the induced map

g:X'=B'xpX —>Y =B xpY
is final.

Corollary 4.4.28. Let us consider the commutative triangle of simplicial sets
below.

X L Y
N Ja
A
We assume that p and q are proper (smooth, respectively). Then the map
f is a weak equivalence of the covariant model category structure (of the

contravariant model category structure, respectively) if and only if it is a
fibrewise weak homotopy equivalence.

Proof We consider the case where p and ¢ are proper (the smooth case will
follow by duality). We factor the map g into a cofinal map j : ¥ — Y’ followed
by a left fibraton ¢’ : Y’ — A. Similarly, we factor the map j f into an cofinal
map i : X — X’ followed by a left fibration p’ : X’ — Y. For each object a of
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A, we obtain a commutative square of the form

Ja

Xy — Y,

S

x, Loy
in which the vertical maps are cofinal, by Corollary 4.4.25. Therefore, the map
f is a fibrewise weak homotopy equivalence over A if and only if the map p’
has the same property. We also have the property that f is a weak equivalence
of the covariant model structure over A if and only if p’ is a weak equivalence.
Therefore, it is sufficient to prove the corollary when p and g are left fibrations,
in which case this is already known: this is the last assertion of Theorem
44.14. O

4.4.29. Let A be a simplicial set. Given two objects E and F of sSet/A,
corresponding tomaps p : X — A and g : Y — A, respectively, we define

(4.4.29.1) (E,Fy=XXaY.
This defines a functor
(4.4.29.2) (=, =) :sSet/A X sSet/A — sSet.

If E is a right fibration, then the functor (E, —) is a left Quillen functor from the
covariant model category structure over A to the Kan-Quillen model category
structure; similarly, if F' is a left fibration, the functor (—, F') is a left Quillen
functor from the contravariant model category structure over A to the Kan-
Quillen model category structure. In particular, the functor (4.4.29.2) preserves
weak equivalences between fibrant objects on the product sSet/A X sSet/A,
where we consider the contravariant model category structure on the first factor,
and the covariant model structure on the second factor. Therefore, we have a
total right derived functor

(4.4.29.3) R(—,-) : RFib(A) X LFib(A) — ho(sSet) .

When either E is a right fibration or F is a left fibration, we have a canonical
isomorphism

(4.4.29.4) (E,F) ~R(E, F)
in ho(sSet). Given an object a of A and an object F of LFib(A), we define

(4.4.29.5) Fja =R((A° a),F).
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Dually, for an object E of RFib(A), we define
(4.4.29.6) E. =R(E, (A% ).

In other words, we may construct Fy, = A/a XaY and E;) = X X4 Au/,
where A Ja — A and A, ; — A are fibrant replacements of a : A% — A in the
contravariant and covariant model category structure over A, respectively. We
observe that, for an object F' of LFib(A) (for an object E of RFib(A)), there is
a canonical isomorphism

(4.4.29.7) F;o =Ra*(F) (Eq =Ra"(E), respectively)

in ho(sSet). Indeed, if F corresponds to a map p : X — A, we may choose
a factorisation of p into a cofinal map i : X — Y followed by a left fibration
q : Y — A. Then the map i induces a cofinal map X x4 A/, — ¥ X4 A/,
because the map A /a — A is aright fibration hence is smooth. Similarly the
inclusion map ¥, — ¥ x4 A /a 1s Tight anodyne since g is a left fibration hence
proper. Finally, ¥, and X x4 A Ja are isomorphic in ho(sSef). The case of an
object of RFib(A) is obtained by duality.

Proposition 4.4.30 (Joyal). Let us consider a morphism ¢ : F — G in
LFib(A). The following conditions are equivalent.

(i) The morphism ¢ is an isomorphism in LFib(A).
(ii) Foranyobject E of RFib(A), the induced morphism R(E, F) — R{(E, G)
is an isomorphism in ho(sSet).
(iii) For any object a of A, the induced map ¢, : F1q — G4 is an isomor-
phism in ho(sSet).

Proof By virtue of identification (4.4.29.7), the equivalence between condi-
tions (i) and (iii) is a reformulation of Theorem 4.1.16. Since the implications
(i)=(ii)=(iii) are obvious, this proves the proposition. O

Corollary 4.4.31. A functor between oco-categories u : A — B is cofinal if and
only if, for any object b of B, the co-category A/b = B/b Xg A has the weak
homotopy type of the point.

Proof Let F be the object of LFib(B) defined as F = (A, u). The map u is
final if and only if F is a final object of LFib(B). By virtue of the preceding
proposition, this is equivalent to say that F,, is a final object of ho(sSet) for any
object b of B. But, by virtue of Theorem 4.3.9, a canonical fibrant replacement
of (A, b) in the contravariant model category structure over B is the canonical
map B/b — B. Therefore, we have a canonical isomorphism A/b = Fy;, in the
homotopy category ho(sSet). O
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Corollary 4.4.32 (Quillen’s Theorem A). Let u : A — B a functor between
small categories. Assume that, for any object b of B, the nerve of A/b =
B/b xg A has the weak homotopy type of the point. Then the nerve of u is a
weak homotopy equivalence.

Proof We have N(B)/b = N(B/b). Therefore, the hypothesis implies that
N(u) : N(A) — N(B) is a cofinal map, hence a weak equivalence of the
Kan-Quillen model structure. ]

Proposition 4.4.33. Letu : A — B be a morphism of simplicial sets. For any
objects E in RFib(A) and F in LFib(B), there is a canonical isomorphism

R(E,Ru*(F)) ~ R(Lu(E), F)

in the homotopy category ho(sSet). Similarly, for any object F' in RFib(B) and
any object E’ in LFib(A), there is a canonical isomorphism

R(F’,Luy(E")) ~ R(Ru"(F'), E") .
Proof Cartesian diagrams of the form

XXgpY —— AXpY — Y

l |l

X —2 A “ B

show that, for £ = (X, p) and F = (Y, q), we have
(E,u(F)) = (w(E), F).

When g is a left fibration, this proves the first isomorphism. Using the identifi-
cation

(E,F)? =(F" E"),
where E% = (X9, p°P), this also implies the second one. O

Proposition 4.4.34. Let p : A — B be a morphism of simplicial sets. The
following conditions are equivalent.

(i) The morphism p is proper.
(ii) For any pull-back squares of the form

AT s A s A
(4.4.34.1) I | lp

B" Y B —Y> B
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and for any object F of LFib(A’), the base change map
Lp/Ru’*(F) — Rv""Lp|(F)

is an isomorphism in LFib(B"").
(iii) For any pull-back squares of the form (4.4.34.1), and for any object E in
RFib(B"), the base change map

Lu/Rp"”*(E) — Rp""Lv|(E)
is an isomorphism in RFib(A’).

Proof For E and F corresponding to a right fibration X — A and a left
fibration Y — A, respectively, we have the following commutative diagram.

R(E,Lp/Ru"*(F)) —— R(E,Rv"Lp|(F))

| Ik

R(LuRp"*(E), F) —— R(Rp"Lv/(E), F)

Using Propositions 4.4.30 and 4.4.33, we see easily that conditions (ii) and (iii)
are equivalent. We already know that condition (i) implies conditions (ii) (by
Corollary 4.4.9) and (iii) (by Theorem 4.4.24).% It is thus sufficient to prove
that condition (ii) implies condition (i).

Let us consider Cartesian squares of the form (4.4.34.1) in which we have
B” = A" with v” final. It is sufficient to prove that the map u is final, by
Proposition 4.4.4. In other words, we must show that the map u is a weak
equivalence of the contravariant model category structure over A’. The dual
version of Proposition 4.4.30 shows that is is sufficient to prove that, for any
objecta’ of A’,if A; ;= A’ denotes a fibrant replacement of a” : AY — A’ with
respect to the covariant model category structure over A’, then the projection
from A;’, )= A" X ar A; y to A; y is a weak equivalence of the Kan-Quillen
model category structure. Let F be the object of LFib(A’) corresponding to the
map A; g A’. Then there is a canonical isomorphism f F ~ f Lp!’ (F), and,
since v’ 1s final, Lemma 4.4.22 ensures that we have a canonical isomorphism
Rv”Lp|(F) = f F. On the other hand, assuming condition (ii), we have a base
change isomorphism in ho(sSer):

A7, z/Ru’*(F) = Lp/'Ru"*(F) — Rv*Lp|(F) = / F =~ A;,/

This ends the proof. O

2 Remark that (i)=(iii)=(ii) gives another proof of Theorem 4.4.24.
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4.4.35. Let p : A — B be a morphism of simplicial sets. We consider a
morphism v : by — by in B, as well as an object a( of A such that p(ag) = by.
We may see the map v as a morphism from v to 15, in the slice B/b;, hence
as a morphism of simplicial sets v : A — B/b;. We then form the following
pull-back squares.

Ap, —— A" —“ s AJb, A
(4.435.1) l l l lp
{1} « Al —— B/b; B

We denote by (v, bg) the object of B/b; correspondingtov : A°+A? = Al — B,
and we write (v,ag) = ((v, bg), ag) for the corresponding object in the fibre
product B/b; Xgp A = A/b;. Similarly, we have the object a’ = (0, ag) of
A’ = A! xp A. Since the map u sends a’ to (v, ag), we have a canonical
commutative square of the following form.

a'\A" —— (v,a0)\(A/b1)
(4.4.35.2) l l
0\A! —— (v, bo)\(B/b1)

This square is Cartesian, since the functor (X, x) — x\X is right adjoint to the
functor C — A « C, and, therefore, commutes with small limits. Since we also
have Cartesian squares of the form

Ap, © 0\A’ (0, b0)\(A/b1) —— A/b,
(4.4.35.3) l l l l
{1} <=L 0\A! (v, bo)\(B/b1) —> B/b;

we deduce that there is the Cartesian square below.
a'\A" —— (v,a0)\(A/b1)
(4.4.35.4) l l
0\A" —— (v, bo)\(A/b1)
In particular, there is a canonical monomorphism
(4.4.35.5) a’\Ap, — (v,a0)\Ap,

which can be identified with the inclusion

Ap, X(v.bo)\(A/by) (U, a0)\(A/b1) C Ap, Xasp, (v,a0)\(A/b7).
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In the case where p is a an inner fibration between co-categories, one can show
that the map (4.4.35.5) is an equivalence of co-categories as follows: up to
equivalences of co-categories (due to Proposition 4.2.9) it corresponds to the
identification

A, X(0.po)\\(A//by) (0, a0)\\(A//b1) = Ap, Xay/p, (v,a0)\\(A//b1).

Theorem 4.4.36 (Grothendieck). Let p : A — B be an inner fibration between
oo-categories. The following conditions are equivalent.

(i) The functor p is proper.
(ii) For any object b of B, the canonical map A, — A/b is final.
(iii) For any Cartesian squares of the form

A s s A

[

{1} —— A 2> B
the functor u’ is final.
(iv) For any Cartesian squares of the form

Y Sy VS N\

b

A —"— B ——> B
in which B’ is an co-category, if v’ is final, so is u’.

Proof Proposition 4.4.4 shows that condition (i) implies both conditions (ii)
and (iii): the map u’ is the pull-back along p of the final map {1} — A!, while
Ap — A/b is the inverse image by p of the final map b : A — B/b. Let us
check that conditions (ii) and (iii) are equivalent.

Let v : A' — B be a morphism from by to by in B. An object a’ of
A=A xgAisa pair (&,a) where a is an object of A, and € = 0, 1, such
that p(a) = b.. The object a’ belongs to A”” = Ap, if and only if & = 1. For
any object a such that p(a) = by, since a’ = (1, a) belongs to A”, the fibre
product A” X4 a’\A’ is isomorphic to the slice a’\ A", and thus has an initial
object. This proves in particular that the co-category A” X4 (a’\A”) has an
initial object and thus is weakly equivalent to the point. In other words, by
virtue of Corollary 4.4.31, the map A” — A’ is final if and only if, for any
object ag of A such that p(ag) = by, if we put a’ = (0, ag), the co-category
A" x4 a’\A’ is weakly contractible. The pair (v, bg) can be seen as an object
of A/by = B/b; Xp A. Therefore, condition (ii) is equivalent to the property
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that the co-category Ay, X4/p, ((v, bo)\(A/b1)) is weakly contractible for any
v and a( as above. The equivalence (4.4.35.5) thus proves that conditions (ii)
and (iii) are equivalent.

We now prove that condition (iii) implies condition (iv). Let us consider
Cartesian squares of the following form.

A// L) A/ L) A

bl ]

AN RN
in which B’ is assumed to an co-category, with v” final. If p satisfies condition
(iii), so does p’. Therefore, the functor p’ also satisfies condition (ii). In other
words, the map A” = A, — A’ /v s final. Since the map B’ /v — B’ is a trivial
fibration, so is the induced map A’/v = B’ /v Xxgpr A’ — A’. As any trivial
fibration is final, the composed map u’ is final.

To finish the proof, it remains to prove that condition (iv) implies that p is
proper. Let C be the class of monomorphisms v’ : B” — B’ such that, for any
map v : B — B, the induced map u’ : B” Xg A — B’ Xp A is aright anodyne
extension. The class C is saturated. Moreover, for any pair of monomorphisms
f:X—>Yandg:Y — Z, if both f and ¢gf are in C, so is g: this follows
right away from the fact that the class of right anodyne extensions has this
property; see Corollary 4.1.10. In particular, condition (iv) implies that the
class C contains any monomorphism v” : B”” — B’ such that both B’ and B”
are oco-categories, and such that there exists a final object in B”” whose image
by v is a final object of B’. Therefore, it contains all the inclusions of the form
{1} xA™ c A x A™, for n > 0. This implies that it contains all inclusions of the
form {1} x X — A! x X, for any simplicial set X. To prove this, by Corollary
1.3.10, it is sufficient to prove that the class of such simplicial sets is saturated
by monomorphisms. The stability by small sums is obvious. Let us consider a
coCartesian square of the form

X0—>X1

L

X2—>X3

and assume that the map {1} X X; — Al x X; is in C for i = 0, 1, 2. For any
map A! X X3 — B, by virtue of Corollary 2.3.17, the induced map

({1} X X3) Xp A — (Al X Xg) Xp A

is a trivial cofibration of the contravariant model category structure over the
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fibre product (A! X X3) xp A, and is thus a final monomorphism, hence a right
anodyne extension. The case of a countable unions is proved similarly.

For any integer n > 0, the inclusion of {1} x A" into A! x A" U{1} x A" is in
C, because it is the push-out of the inclusion of {1} x A" into A! x dA". Since
{1} x A" ¢ A' x A" is in C, this shows that the inclusion of A! x A" U {1} x A"
into A! x A" is in C. Lemma 3.1.3 thus implies that inclusions A} — A" are
all in C for 0 < k < n. This shows that p satisfies condition (v) of Proposition
4.4.4, hence is proper. |

Remark 4.4.37. The proof that conditions (i) and (iv) of Theorem 4.4.36 are
equivalent does not require that A and B are co-categories. It would deserve to
be inserted in Proposition 4.4.4.

4.5 Fully faithful and essentially surjective functors, revisited

Proposition 4.5.1. Let u : A — B be a morphism of simplicial sets. The
following conditions are equivalent.

(i) For any objects E in RFib(A), the unit map E — Ru*Lu\(E) is an
isomorphism.
(ii) For any object a of A, the unit map h, — Ru*Luy(h,) is an isomorphism
in RFib(A), where h, = (A°, a).
(iii) For any objects F in LFib(A), the unit map F — Ru*Lu,(F) is an
isomorphism.

Proof We shall use Propositions 4.4.30 and 4.4.33 repeatedly. Condition (i) is
equivalent to the condition that, for any objects E in RFib(A) and F in LFib(A),
the induced map

R(E, F) — R(Ru*Lu(E), F) ~ R(Lu(E), Lu:(F)) = R(E, Ru"Lu (F))

is invertible in ho(sSet). This is equivalent to the assertion that, for any object
a of A and any object F in LFib(A), the induced map

R(ha, F)y — R{hg, Ru"Luy(F)) ~ R(Ru"Lu(h,), F)
is invertible. O

Proposition 4.5.2. Letu : A — B be a functor of co-categories. The following
conditions are equivalent.

(i) The functor u is fully faithful.
(ii) The functor Luy : RFib(A) — RFib(B) is fully faithful.
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(iii) The functor Lu, : LFib(A) — LFib(B) is fully faithful.

Proof We already know from Proposition 4.5.1 that conditions (ii) and (iii)
are equivalent. To prove that condition (i) is equivalent to condition (ii), we shall
verify that u is fully faithful if and only if condition (ii) of Proposition 4.5.1 is
satisfied. Let a be an object of A. Then Lui(h4) = hy(q). Since A and B are co-
categories, fibrant replacements of /1, and h,,(,) are given by A/a and B/u(a)
in the contravariant model category structures over A and B, respectively. The
map h, — Ru*Lui(h,) is thus the natural morphism A/a — A Xp B/u(a).
By Corollary 4.2.10, for any object x of A, the induced map on the homotopy
fibers is the natural morphism A(x,a) — B(u(x),u(a)). Therefore, u is fully
faithful if and only if the functor Lu is fully faithful on RFib(A). O

Remark 4.5.3. Let A be a simplicial set, and a an object of A. For any object
F of RFib(A), there is a canonical isomorphism

4.53.1) R(F, h,) ~ Ra*(F)

in ho(sSet). Indeed, it is sufficient to prove this for F fibrant, i.e., for F corre-
sponding to a right fibration p : X — A. In this case, Ra*(F) = X, = (F, hy)
is simply the fibre of X over a.

Any map u : a — b in A induces a natural morphism u* : Rb*(F) —
Ra*(F). Indeed, for F fibrant as above, one can also describe Ra*(F) as the
mapping space Map 4 (h4, X) = X,, where h, = (A, a). Since the inclusion
{1} — A' is aright anodyne extension, the canonical map

MapA((Al,u), X) > X,

is a trivial fibration. The choice of a section of the latter, composed with the
map Map 4 ((A%, u), X)) — X,, defines a morphism

(4.5.3.2) u* : Rb*(F) =~ Map, (hp, X) = Map,(hg, X) ~ Ra*(F)
in ho(sSet).

Lemma 4.5.4. Let us assume that A is an oo-category. Ifthe mapu : a — b is
invertible in A, for any object F of RFib(A), the induced map u* : Rb*(F) —
Ra*(F) is an isomorphism in ho(sSet).

Proof Since A% = A x AY = A? x A!, the map
1
v A2 2 AL A

can be interpreted in two ways: as a map 4 : A! — A/b, and as a map
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@ : A — A/u. We then have the following commutative diagram.

{0} —% AJu —— AJa

L

{1} —— A —% A/b

The map A/u — A/a is a trivial fibration because the inclusion {0} — Alisa
left anodyne extension; see Lemma 3.4.21. Therefore, a is a final object of A /u,
because its image in A/a is final. Similarly, the map # is final because it sends
the final object 1 of A to the final object 1;, of A/b. If is thus sufficient to prove
that the canonical map A/u — A/b has contractible fibres over A (this maps is
a morphism of right fibrations over A, so that this will ensure that it is a weak
equivalence of the contravariant model category structure over A, by Theorem
4.1.16, and this will allow to apply Proposition 4.1.14). Proposition 4.2.9 shows
that we may as well consider the fibres of the canonical map A//u — A//b
over A. For each object x of A we have a trivial fibration A(x, a) < (A//u)x,
and a canonical map (A//u), — A(x, b). Therefore, we obtain a map

Homyo(a) (x, a) = m0(A(x, a)) = mo(A(x, b)) = Homy(a) (x, )

which is nothing else than the composition by f in ho(A) =~ 7(A). Since u is
invertible, the latter map is bijective. But, since the image of an invertible map
is invertible, we also know that u, seen as a morphism of constant diagrams,
is invertible in the co-category Hom(K, A) for any simplicial set K. Therefore,
since Hom(K, A)(x,a) = Hom(K, A(x,a)) for x and a as above, seen as
constant diagrams, what precedes also proves that the induced map

mo(Hom(K, A(x,a))) = mo Hom(K, (A//u)x) — mo(Hom(K, A(x, b)))

is bijective for any simplicial set K. For any simplicial set K and any Kan
complex T, there is a canonical bijection Homy,ssery (K, T) = mo(Hom(K, T)).
Therefore, the Yoneda Lemma applied to the homotopy category ho(sSet)
implies that the map (A//u), — A(x, b) is a simplicial homotopy equivalence.

O

Proposition 4.5.5. If a functor of co-categories u : A — B is essentially
surjective, then the derived pull-back functor Ru* : RFib(B) — RFib(A) is
conservative.

Proof 1If a map E — F in RFib(A) induces an isomorphism Ru*(E) =
Ru*(F), then it induces an isomorphism

Ru(a)*(E) = Ra*'Ru*(E) =~ Ra*Ru”*(F) ~ Ru(a)*(F)
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for any object a of A. But, since u is essentially surjective, any object b of B is
equivalent to an object of the form u(a). Hence the functor Rb* is isomorphic
to Ru(a)*, by the preceding lemma. Therefore, Theorem 4.1.16 implies that
the map E — F is an isomorphism. O

Corollary 4.5.6. Any equivalence of co-categories u : A — B induces equiv-
alences of categories

Lu, : RFib(A) — RFib(B) and Lu,: LFib(A) — LFib(B).

Proof 1If uis an equivalence of co-categories, it is fully faithful and essentially
surjective. Therefore, by virtue of Propositions 4.5.2 and 4.5.5, the functor Lu,
is fully faithful on RFib(A), and its right adjoint Ru* is conservative, hence
both functors are equivalences of categories and are quasi-inverse to each
other. The other equivalence comes from the natural identification RFib(A) =~
LFib(AP). O

Remark 4.5.7. There is a much more direct way to prove Corollary 4.5.6: one
proves rather easily that any trivial fibration of the Joyal model ategory structure
u : A — B induces an equivalence of categories Lu, : RFib(A) ~ RFib(B)
and we use Brown’s Lemma (Proposition 2.2.7) for the Joyal model category
structure. Although this is non-trivial, it will be seen later that there is no need to
restrict ourselves to equivalences between co-categories; see Theorem 5.2.14.

4.6 Locally constant functors and Quillen’s Theorem B

For a simplicial set X, we have three model category structures on the category
sSet/X: the contravariant model category structure, the covariant model cate-
gory structure, and the model category structure induced by the Kan-Quillen
model category structure. Since we want to interpret the contravariant model
category structure as a theory of presheaves over X, and since any Kan fibration
of codomain X is a fibrant object in the contravariant model category structure,
it is natural to ask what is the meaning of Kan fibrations in this semantic inter-
pretation of the theory of presheaves. This is what we shall investigate in this
chapter.

Proposition 4.6.1. Let W be a class of morphisms of simplicial sets. We assume
that W has the following properties.

(i) For any morphisms of the form f : X - Y and g:Y — Z, with f in W,
then g isin W ifand only if gf isin W.
(ii) The class of monomorphisms which are in W is saturated.
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(iii) Any trivial fibration is in W.
(iv) For any integer n > 0, any map A° — A" is in W.

Then any weak homotopy equivalence is in W.

Proof We first prove that any inclusion of the form A} — A", n > 1,
0 < k < n,isin W. In fact, we already saw a proof: we just have to use
the same combinatorial arguments as in the proof of Proposition 3.1.18 (this
only requires conditions (i), (ii) and (iv)). Condition (ii) thus implies that any
anodyne extension is in W. Since any weak homotopy equivalence is the com-
position of an anodyne extension with a trivial fibration, condition (iv) implies
that any weak homotopy equivalence is in W. m}

Proposition 4.6.2. Let p : X — Y be a morphism of simplicial sets. The
following conditions are equivalent.

(i) For any Cartesian squares of the form

(4.6.2.1) l”” l”' l”

Y9 25y 25y

if v/ is a weak homotopy equivalence, so is u’.

(ii) As in (i), but only when Y"" = A°,

(iii) As in (ii), but only when Y’ = A™.

(iv) As in (i), but only when v is an inclusion of the form A} — A" forn > 1
and 0 < k < n.

(v) Any Cartesian square of the form
X —- X
(4.6.2.2) l > l,,
Y ——Y
is homotopy Cartesian in the Kan-Quillen model category structure.

Proof We prove first that conditions (i) and (v) are equivalent. If condition
(v) is verified, then any Cartesian squares of the form (4.6.2.1) are homotopy
Cartesian, and, since weak equivalences are stable under homotopy pull-backs;
this proves that (v)=(i). The converse follows right away from Corollary 3.8.4.
Let us assume condition (i). Given any Cartesian square of the form (4.6.2.2),
we choose a factorisation of the map v into an anodyne extensioni : Y — T
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followed by a Kan fibration s : T — Y, and we form the Cartesian squares
below.

X s Uu—"5Xx

[ A

y" L1 25y
Then both maps i and j are weak homotopy equivalences, and the right hand
square is homotopy Cartesian, which implies that the commutative square
(4.6.2.2) has the same property.

Let W be the class of morphisms of simplicial sets A — B such that,
for any map B — Y, the induced map A Xy X — B Xy X is an anodyne
extension. Since pulling back along p preserves monomorphisms and colimits,
we check that the class of monomorphisms which are in W is saturated. Finally,
the class W satisfies the two out of three property and contains the class of
trivial fibrations. Since any weak homotopy equivalence is the composition of
an anodyne extension and of a trivial fibration, condition (i) is equivalent to
the assertion that the pull-back of any anodyne extension along p is a trivial
cofibration of the Kan-Quillen model category structure. Since, by definition,
the smallest saturated class of morphisms of simplicial sets which contains
horns A} — A" forn > 1 and 0 < k < n is the class of anodyne extensions,
we see that conditions (i) and (iv) are equivalent.

It is clear that we have (i)=(ii)=(iii). Proposition 4.6.1 shows that condition
(iii) implies condition (iv). m|

Definition 4.6.3. A morphism of simplicial sets is locally constant if it satisfies
the equivalent conditions of Proposition 4.6.2.

Proposition 4.6.4. A proper morphism of simplicial sets p : X — Y is locally
constant if and only if, for any map v : A" — Y, the inclusion X,y — A" Xy X
is a weak homotopy equivalence.

Proof This is clearly a necessary condition. For the converse, we shall prove
that a proper morphism p satisfying this extra condition satisfies condition (iii)
of Proposition 4.6.2. Let us consider Cartesian squares of the form (4.6.2.1)
such that Y/ = A°. We want to prove that the map u’ is a weak equivalence.
We proceed by induction on n. Since the case n = 0 is trivial, we may assume
that n > 0. If v’ is initial, the property we seek is true by assumption. If not,
we may assume that v’ factors through the final map w : A"~! — A" defined
by w(i) = i + 1. Since p is proper, the induced map A"~ ! xy X — A" xy X is
final, hence a weak homotopy equivalence, and the induced map A® xy X —
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A1 xy X is a weak homotopy equivalence by induction on n. Therefore, u’ is
the composition of two weak homotopy equivalences. O

Corollary 4.6.5. Any morphism of simplicial sets which is both smooth and
proper is locally constant.

Proof 1If p : X — Y is smooth then, for any map v : A" — Y, the map
Xy(0) — A" Xy X is cofinal, hence a weak homotopy equivalence. Therefore, if
p is also proper, the preceding proposition ensures that it is locally constant. O

Corollary 4.6.6. Any Kan fibration is locally constant.
Proof Any right fibration is smooth, and any left fibration is proper. O

Remark 4.6.77. The proof above is a little pedantic, since, for Kan fibrations, one
can check several of the conditions of Proposition 4.6.2 directly. For instance, as
explained in the proof of loc. cit. condition (v) follows right away from Corollary
3.8.4 (which is itself a rather direct consequence of the good properties of the
functor Ex®).

Definition 4.6.8. Let A be a simplicial set. An object F of RFib(A) is locally
constant if, for any map u : a — b in A, the induced map u* : Rb*(F) —
Ra*(F) (as defined in Remark 4.5.3) is an isomorphism in ho(sSet).

Lemma 4.6.9. Let p : X — A be a right fibration, and u : a — b be a
morphism in A. We form the following Cartesian squares.

Xb%Xu—>X

L b

A L Al 24
If F = (X, p) denotes the object of RFib(A) associated to p, then there are a
canonical isomorphisms

X, ~Rb"(F) and X, ~Ra"(F)

in ho(sSet). Furthermore, under these identifications, the map i corresponds in
ho(sSet) to the canonical map Rb*(F) — Ra*(F) of Remark 4.5.3.

Proof Since 0 is an initial object of A! and since p is smooth, the inclusion
Jj : X4 — X, is cofinal, hence a weak homotopy equivalence. It remains to
check the compatibility of the map i with the construction of Remark 4.5.3. We
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want to check that the diagram

Xbu—*>Xa

N

Xu

commutes in ho(sSet).
In other words, we want to check that, for any simplicial set K, the diagram

*

mo(Hom(K;, X)) - mo(Hom(K;, X4))

mo(Hom(K, X,,))

commutes in the category of sets.

For a given simplicial set K, let ¢ : K X A — A be the second projection.
since ¢ is proper, the pair (¢, g.) is a Quillen adjunction for the contravariant
model category structures, and we write pX : XX
corresponding object of sSet/A is q.q* (X, p). There is a Cartesian square of
simplicial sets of the form

— A for the map whose

XK —— Hom(K, X)

| B

A —— Hom(K, A)

where the lower horizontal map is the one induced by K — A". Remark that,
foranymapw : A" — A,if p’ : X’ = A" x4 X — A’ denotes the pull-back of
p along w, then we have a canonical Cartesian square of the following form.

XIK XK

e

Al — A

In particular, the fibre of pK ata € Ag is Hom(K, X,). We also have, for any
simplicial set E over A, a canonical isomorphism of simplicial sets

Hom (K, Map,(E, X)) = Map,(E, X¥) .

This shows that the construction of the map u* is compatible with the operation
X +— XX . We remark finally that the map XX — Hom(K, X,,) is a weak homo-
topy equivalence: this is the inverse image of the inclusion A! — Hom(K, A')
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along the right fibration Hom (K, X,,) — Hom(K, A'). Since any right fibra-
tion is smooth, it is sufficient to prove that A' — Hom(K, A!) is cofinal. This
follows from the fact that the object 0 is initial in both A’ and Hom (K, A?).
This shows that, up a canonical weak homotopy equivalence, the formation of
the maps 7 and j is compatible with the operation X +— XK.

In other words, we may replace X by XX, and it is sufficient to prove that
7o () mo(u*) = mo(i). In fact, both 7o (1*) and 7o (7)1 7o (i) have the following
explicit description. Given a connected component C of X3, we choose an
element x € C. We then have the solid commutative square below

{1} —> x

il

Al —2 5 A

a dotted filler of which always exists (because 1 is final in A! and p is a
right fibration), and the image of C in 7y(X,) is the connected component of
1(0). Each of the map 7o (u*) and 7o(j) " *mo(i) is determined by a choice,
for each connected component C, of a point x in C, and of such a lift 4.
Nevertheless, the filler 4 is unique in the following sense. If we endow the
category of pointed simplicial sets over A with the model structure induced by
the contravariant model category structure over A, the map /4 is a morphism from
the cofibrant object (A, 1, ) to the fibrant object (X, x, p). Since (A!, 1, u) is
weakly equivalent to the initial object, such a map / is unique up to homotopy
in the category of pointed simplicial sets over A. In particular, the connected
component of /#(0) in the fibre X, does not depend on the choice of the lift 4.
It remains to check that it does not depend on the choice of the point x in C.
Since C is the connected component of a Kan complex, if there are two points
x and x” in C, there is amap & : x” — x in C. The pair (£, /) can be seen as a
diagram of the form

3
h(0) —— x
hence as a map (&, h) : A2 — X. The obvious commutative triangle
b
/X
a—=—b

given by the map ua'21 : A2 — A thus provides a solid commutative square of
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simplicial sets

A% (&.h) X
[ t -' l
p
1

A2 5 4

which admits a filler . The restriction of 7 to A1%-1} defines amap i’ : h(0) — x’
in X such that p(A’) = u, which shows that the choice of a point of C does not
affect the final result in o (X,). m]

Theorem 4.6.10. Let p : X — A be a right fibration, and F = (X, p) the
corresponding object in RFib(A). The following conditions are equivalent.

(i) The map p is locally constant.
(ii) The object F of RFib(A) is locally constant.
(iii) The map p is a Kan fibration.

Proof We already know that (iii)=(i). It follows right away from Lemma
4.6.9 that (i)=(ii). It remains to prove that (ii)=(iii).

Let us assume that F is locally constant. For any map u : A" — A, and any
element i of [n], the induced map

MapA((An’u)7F) - MapA((AO’u(i))7 F) = Xu(l)

is a trivial fibration. Indeed, by Proposition 4.1.13, this map is always a Kan
fibration, and, by Proposition 4.1.14, the map

Map4 (A", u), F) = Map((A°, u(n)), F) = Xu(n)
is a trivial fibration. Under the latter identification, the corresponding map
Xu(ny = Ru(n)"(F) = Ru(i)"(F) = Xu@)

in ho(sSet) is the canonical map induced by the map u(i) — u(n) in A. Let W
be the class of maps u : K — L such that, for any map v : L — A, the induced
morphism

u* : Map,((L,v), F) — Map, ((K,vu), F)

is an equivalence of co-groupoids. This class satisfies the hypothesis of Propo-
sition 4.6.1 and thus contains all weak homotopy equivalences. In particular,
for any anodyne extension u : K — L and any map v : L — A, the map

u* : Map4((L,v), F) = Map,((K, vu), F)
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is a trivial fibration. A section of the latter, at the level of objects, provides a
lift in any solid commutative square of the form below.

K— X

L—— A
This implies that p is a Kan fibration. O

Proposition 4.6.11. Let u : A — B be a morphism of simplicial sets. The
Jfollowing conditions are equivalent.

(i) The pair (A, u) is locally constant as an object of RFib(B).
(ii) For any Cartesian squares of the form

A”LA’LA

(4.6.11.1) l”" l“' l“

B 2> p L8
if g and gg’ are left fibrations and if both B' and B”' have initial objects,
then the map f’ is a weak homotopy equivalence.
(iii) Any Cartesian square of the form

A’ AN A
(4.6.11.2) lu, lu

B —>B
in which the map g is a left fibration is homotopy Cartesian in the Kan-
Quillen model category structure.

Proof 1In a Cartesian square of the form (4.6.11.2), if g is a left fibration and
if B’ has an initial object whose image in B is denoted by b, then Rb* (A, u)
is canonically isomorphic to A’ in ho(sSet). Using Lemma 4.6.9, one sees that
conditions (i) and (ii) are equivalent. Since the homotopy pull-back of a weak
equivalence is a weak equivalence, condition (iii) implies condition (ii). Let
i : A — C bearight anodyne extension followed by a right fibrationp : C — B
such that u = pi. Since (A, u) and (C, p) are isomorphic in RFib(B), one is
locally constant if and only if the other has the same property. By virtue of
Theorem 4.6.10, condition (i) is equivalent to the condition that p is a Kan
fibration. Let us consider a Cartesian square of the form (4.6.11.2). If we put
C' =B’ xp C,themapi’ : A” — C’ induced by i is a right anodyne extension
because it is the pull-back of i by the left fibration g, hence by a proper map.
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Since C’ is the homotopy pull-back of C and B’ over B (because p is a Kan
fibration), this proves that the square (4.6.11.2) is homotopy Cartesian. m]

Corollary 4.6.12 (Quillen’s Theorem B). Letu : A — B be a functor between
small categories. Assume that, for any map by — by in B, the nerve of the
induced functor b1\A — bo\A is a weak homotopy equivalence. Then, for any
object b of B, the Cartesian square

N(b\A) —— N(A)

L e

N(b\B) —— N(B)
is homotopy Cartesian in the Kan-Quillen model category structure.

Proof For any left fibration B — N(B), if B’ has an initial object b’ whose
image in B is denoted by b, the canonical maps b’\B’ — N(b\B) = b\N(B)
and b’\B’ — B’ are trivial fibrations. Therefore, the pull-backs of any of
these maps along any morphism X — N(B) will remain a weak homotopy
equivalence. One deduces from there that the nerve of u satisfies condition (ii)
of the previous Proposition, hence also condition (iii). O
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Our aim is here to construct the co-category of co-groupoids 8 (with a smallness
condition determined by a given universe, to keep 8 small itself). The way we
will define § will be so that any co-groupoid can be interpreted tautologically
as an object of 8. This gives rise to the question of turning the assignment

(x,y) = A(x,y)

into a functor A”” X A — § for any co-category A. Equivalently, to the question
of defining the Yoneda embedding 4 : A — A for any oco-category A (with
appropriate smallness assumptions). A related question consists in interpreting
each left fibration p : X — A as a functor F : A — 8§ (the value of F at
a being the fibre of p at a). The way we shall define 8 will make the latter
correspondence true by definition. Significant efforts will be necessary to prove
that this defines an co-category (as opposed to a mere simplicial set), and then
to prove that this correspondence is not only syntactic, but also homotopy
theoretic: given two left fibrations p : X — A and g : Y — A corresponding
to functors F,G : A — 8, we shall have to compare the mapping space
Map 4 (X, Y) with the co-groupoid Hom(A, 8)(F, G).

The first section is a complement to Section 2.4 of Chapter 2: this is a general
theory of minimal fibrations in a model category on a category of presheaves,
under appropriate combinatorial assumptions. One proves that any fibration
may be approximated by a minimal fibration, and that weak equivalences be-
tween minimal fibrations always are isomorphisms. These properties mean that
some coherence problems can be solved whenever they have solutions up to
a weak equivalence. This will be used in Section 5.2, where we define the
universal left fibration with small fibres p,,;, : S¢ — S. We also prove that
the homotopy theory of left fibrations over a simplicial set X is invariant under
weak categorical equivalences X — Y (Theorem 5.2.14).

We then prove in Section 5.3 that the correspondence between left fibra-

184
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tions over A and functors A — § is also homotopy theoretic in the sense
sketched above. This involves a correspondence between the co-groupoid of
invertible maps between two functors with values in 8 and the space of fibre-
wise equivalences between the associated left fibrations. Section 5.4 extends
this correspondence to possibly non-invertible morphisms.

In order to define the Yoneda embedding, we develop in the fifth section a
homotopy theory of left bifibrations in the category of bisimplicial sets. This
section is quite technical and may be avoided at first: it is used only twice
in Section 5.6, in the proof (but not in the formulation of) Propositions 5.6.2
and 5.6.5, which explain how to see mapping spaces in families, using the
language of left fibrations. However, this theory of left bifibrations might be
useful for other purposes as well: it relies on a generalisation to Joyal’s covariant
model structures, of the well known fact that the diagonal of a levelwise weak
homotopy equivalence of bisimplicial sets is a weak homotopy equivalence.
It also provides a source of left fibrations under the form of diagonals of left
bifibrations (and it is this latter property that we really use in the text).

Section 5.7 compares various versions of the notion of locally small co-
category. Discussing such a set-theoretic issue is essential, simply to properly
formulate and use the Yoneda Lemma. Practical criteria for local smallness will
also be provided later in Section 7.10.

Finally, Section 5.8 is devoted to the construction of the Yoneda embedding
and to the proof of the Yoneda Lemma itself: Theorem 5.8.13. We emphazise
that, as can be seen in its proof, the Yoneda Lemma really is a cofinality
statement; this is explicitely formulated in Lemma 5.8.11 below.

5.1 Minimal fibrations

5.1.1. In this section, we fix once and for all an Eilenberg-Zilber category A;
see Definition 1.3.1 (in practice, A will be of the form A /Y for a fixed simplicial
setY). Given a representable presheaf a on A, we shall write da for the maximal
proper subobject of a.

We consider given a model category structure on A, whose cofibrations are
precisely the monomorphisms.

We also choose an exact cylinder / such that the projection / ® X — X
is a weak equivalence for any presheaf X on A (e.g., we can take for [ the
Cartesian product with the subobject classifier of the topos A\). As usual, we
write 01 = {0} I {1} c [ for the inclusion of the two end-points of I.

51.2. Let h : I ® X — Y be a homotopy. For e = 0,1, we write h, for the
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composite
X={e)@X > I0X 5y,

Given a subobject S C X, we say that & is constant on S if the restriction /|;gs
is the canonical projection / ® S — .

Given a presheaf X, a section of X isamap x : a — X with a arepresentable
presheaf. The boundary of such a section x is the map

dx:0a—a—->X.

Definition 5.1.3. Let X be an object of A
Two sections x,y : a — X are d-equivalent if the following conditions are
satisfied.

(i) These have the same boundaries: dx = dy.
(i1) There exists a homotopy /# : I ® a — X which is constant on da, and
such that g = x and hy = y.

We write x ~ y whenever x and y are d-equivalent.

A minimal complex is a fibrant object S such that, for any two sections
x,y:a — S, if x and y are d-equivalent, then x = y.

A minimal model of X is a trivial cofibration S — X with S a minimal
complex.

Proposition 5.1.4. Let X be a fibrant object. The 0-equivalence relation is
an equivalence relation on the set of sections of X, and this relation does not
depend on the choice of the exact cylinder I.

Proof Let a be a representable presheaf on A, and let x and y be two sections
of X over a such that dx = dy. One can see x and y as maps from the
cofibrant object a to the fibrant object X of Ba\g, with the obvious induced
model category structure. Since the relation of homotopy between maps from
a cofibrant object to a fibrant object is always an equivalence relation which is
independent of the choice of a cylinder object, this shows the proposition. O

Proposition 5.1.5. Let ¢ € {0,1}, and consider a fibrant object X, together
with two maps h, k : I® a — X, with a representable, such that the restrictions
of k and h coincide on I daU {1l —¢e} ®a. If, furthermore, we have h z = 0k,
then the sections hg and k . are 0-equivalent.

Proof Putz=hi_s=ki_g; wealso write ¢ for the restriction of % (and of k)
on/®da. Wedefine ¢ : IQ(I®JaU{l-e}®a) — X as the constant homotopy
atthemap (£,z) : I®daU{l-¢e}®a — X,and ¢ : I ® (I ® a) — X as the
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map whose restrictions to {0} ® / ® a and {1} ® I ® a are h and k, respectively.
Since 0h . = 0k, this defines a map

f=(pY): (I®(I®JaU{l-¢e}®a)U(AI®(I®a) > X.

Since the embedding of the source of f into / ® I ® a is a trivial cofibration, the
map f is the restriction of some map F : IQ [ ® a — X. We define a morphism
H :1®a — X as the restriction of F on I ® {¢} ® a. This is an homotopy
from hg to k which is constant on da. O

Lemma 5.1.6. Let X be any presheafon A, and xo,x1 : a — X two degenerate
sections. If xo and x1 are 0-equivalent, then they are equal.

Proof For & = 0,1, there is a unique couple (pg,y:), Where p. : a — b,
is a split epimorphism in A and y. : b — X is a non-degenerate section of
X such that x; = y-p.. Let us choose a section s of p.. As xo and x; are
degenerate and since dxg = dx1, we have xgsg = x15¢ and xgs; = x151. On the
other hand, we have y. = xz5.. We thus have the equalities yy = y1 p150 and
Y1 = Yopos1- These imply that the maps pos1-5 : bi— — b are in A, and
that by and b, have the same dimension. This means that p .51 _ . is the identity
for £ = 0, 1. In other words, we have by = by and yy = y;, and we also have
proven that py and p; have the same sections, hence are equal, by Condition
EZ3 of Definition 1.3.1. O

Theorem 5.1.7. Any fibrant object has a minimal model.

Proof Let X be a fibrant object. A subobject S of X will be called thin if it
satisfies the following two conditions.

a) If x and y are two sections of S which are d-equivalent as sections of X,
then x = y;

b) If x is a section of S whose image in X is d-equivalent to a degenerate
section of X, then x is degenerate.

Let E be the set of thin subobjects of X. We observe that E is not empty: it
follows from Lemma 5.1.6 that the 0-skeleton of X is an element of E (but the
empty subobject is good as well). By Zorn’s lemma, we can choose a maximal
element S of E (with respect to inclusion). We shall first observe that any
section x : @ — X whose boundary dx factors through S must be d-equivalent
to a section of S. Indeed, if x is degenerate, then it factors through da hence
through S. Otherwise, let us consider S = SUIm(x). A non-degenerate section
of S’ must either factor through S or be precisely equal to x. If §” is thin, then
the maximality of S implies that § = §’. Otherwise S’ is not thin. In this case,
if y is a section of S” d-equivalent to a degenerate section z of X, with y # z,
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then y does not belong to S. This means that y = xo where o : b — a is a
map in Ay. By Lemma 5.1.6, the section y must also be non-degenerate. In
other words, we must have x = y. But since dx = dz factors through S with z
degenerate, we must have z in S. This means that, for S not to be thin, either
x is d-equivalent to a degenerate section of S, either we have the existence of
two d-equivalent sections yy and y; of S” which are not equal. In the second
situation, condition a) for S implies that one of the sections, say yy, must be out
of S. This implies as above that iy must be of the form xo, with o : ag — a in
A.. If o is not an identity, then condition b) implies that y; is degenerate, and
thus, by virtue of Lemma 5.1.6, we must have yy = y;, which is not possible, or
that y; is not in S and non-degenerate, i.e., that y; = x. But then, since yo and
y1 must have the same domain, we must also have yo = x, which contradicts
that fact that yy # y;. Therefore, we must have yo = x and y; in S, which proves
that x is d-equivalent to a section of S anyway.

We will prove that S is a retract of X and that the inclusion § — X is an
I-homotopy equivalence. This will show that § is fibrant and thus a minimal
model of X. Let us write i : S — X for the inclusion map. Consider triples
(T, h, p), where T is a subobject of X which contains S, p : T — Sisaretraction
(i.e. the restriction of p to S is the identity), and 2 : I ® T — X is a homotopy
which is constant on S, and such that A is the inclusion map T — X, while
hy = ip. Such triples are ordered in the obvious way: (T, h,p) < (T', W', p’)
if T c T’, with h’|jg7 = h and p’|r = p. By Zorn’s lemma, we can choose a
maximal triple (7, h, p). To finish the proof, it is sufficient to prove that T = X.
In other words, it is sufficient to prove that any non-degenerate section of X
belongsto 7. Letx : a — X be a non-degenerate section which does not belong
to 7. Assume that the dimension of a is minimal for this property. Then dx
must factor through 7', so that, if we define T’ to be the union of T and of the
image of x in X, then, by Theorem 1.3.8, we have a biCartesian square of the
following form.

We have a commutative square

{0} ® 0a —— I® da

l lh(l@@x)

Oea — X

If we put u = (h(1 ® dx),x) : I ® da U {0} ® a — X, we can choose a map
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H :1®a — X such that Hy = x, while H|,_,, = h(1 ® 0x). If we write
Yo = Hi, as hy factors through S, we see that the boundary dyy must factor
through S. Let y be the section of S which is d-equivalent to yy. We choose a
homotopy K : I ® a — X which is constant on da and such that Ky = yo and
Kl =Y. Let

[f:I®3I®aVUlI®I®daU{l}®I®a — X

be the map whose restrictionto / ® a = I @ {¢} ® a is H for ¢ = 0 and K for
& = 1, while the restriction on /® a = {1} ® [ ® a is the constant homotopy with
value yo, and the restriction on I ® I ® da is the composition with #(1 ® dx)
of the projection / ® I ® da — I ® da which is constant on the second factor.
Since the embedding of the source of f into / ® I ® a is a trivial cofibration,
there is a map

g:1®I®a—X
which restricts to f. This defines a homotopy
L:I®a—X

as the restriction of g on {0} ® I ® a = I ® a. By construction, we have
Lo = Hyp = x and L, = K1 = y. We obtain the commutative diagram

I@da 222 1oT

l g

I®a —L 5 x

so that, identifying / ® 7" with I ® a lU;gg, I ® T, we define a new homotopy
W =(L,h):1®T — X. Similarly, the commutative diagram

da 25T

|, b

y
a—— S

defines a map p’ = (y,p) : T’ = aly, T — S. It is clear that the triple
(T’, 1, p’) extends (T, h, p), which leads to a contradiction. O

Proposition 5.1.8. Let X be a fibrant objectandi : S — X a minimal resolution
of X. Consider amap r : X — S such that ri = 1g (such a map always exists
because i is a trivial cofibration with fibrant domain). Then the map r is a
trivial fibration.

Proof There existsamap h : I ® X — X which is constant on S and such that
hg = ir and h; = 1x: we can see i as a trivial cofibation between cofibrant and
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fibrant objects in the model category of objects under S, and r is then an inverse
up to homotopy in this relative situation. Consider the commutative diagram
below.

B

da —2%—>
a

We want to prove the existence of a map w : a — X such that w,, = u and
rw = v. As X is fibrant, there exists a map k : [ ® a — X whose retriction to
I ® dais h(1; ® u), while ko = iv. Let us put w = k1. Then

r

v
D

U ——

ow=wp,, =hl;@u)=hu=u.

It is thus sufficient to prove that v = rw. But k and h(1; ® w) coincide on
I ® da U {1} ® a and thus, by virtue of Proposition 5.1.5, we must have
ko ~ (h(1; ® w))g. In other words, since div = iru = dirw, we have iv ~ irw.
As ri = 1g, this implies that v ~ rw, and, by minimality of S, thatv =rw. O

Lemma 5.1.9. Let X be a minimal complex and f : X — X a map which is
I-homotopic to the identity. Then f is an isomorphism.

Proof Letuschoose, once and forall,amap 2 : I® X — X suchthat hy = 1x
and h; = f. We will prove that the map f, : X, — X, is bijective by induction
on the dimension d of a. If a is of dimension < 0, there is nothing to prove
because there is no such a. Assume that the map f;, : Xp — X} is bijective for
any object b of dimension < d. Consider two sections x, y : a — X such that
f(x) = f(y). Then, as f is injective in dimension lesser than d, the equations

fox=0f(x)=0f(y) = fdy

imply that dx = dy. On the other hand, we can apply Proposition 5.1.5 to
the maps h(1; ® x) and h(1; ® y) for € = 0, and we deduce that x ~ y.
As X is minimal, this proves that x = y. It remains to prove the surjectivity.
Let y : a — X be a section. For any map o : b — a in A such that b
is of degree lesser than d, there is a unique section x, : b — X such that
f(xo) = 0" (y) = yo. This implies that there is a unique map z : da — X

such that fz = dy. The map I ® da 1rez, I®a R X, together with the map
{1}®a=a N X, define a map ¢ = (h(1; ® z),x), and we can choose a
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filling & in the diagram below.

I®3aU{1}®aL_;X

I®a

Let us put x = ko. Then dx = z, and thus 9 f(x) = dy. Applying Proposition
5.1.5 to the maps k and h(1; X x) for € = 1, we conclude that f(x) ~ y. The
object X being a minimal complex, this proves that f(x) = y. O

Proposition 5.1.10. Let X and Y be two minimal complexes. Then any weak
equivalence f : X — Y is an isomorphism of presheaves.

Proof 1If f: X — Y is a weak equivalence, as both X and Y are cofibrant
and fibrant, there exists g : ¥ — X such that fg and ¢gf are homotopic to the
identify of Y and of X, respectively. By virtue of the preceding lemma, the
maps ¢gf and fg must be isomorphisms, which imply right away that f is an
isomorphism. O

Theorem 5.1.11. Let X be a fibrant object of A. The Jollowing conditions are
equivalent.

(i) The object X is a minimal complex.
(ii) Any trivial fibration of the form X — S is an isomorphim.
(iii) Any trivial cofibration of the form S — X, with S fibrant, is an isomor-
phism.
(iv) Any weak equivalence X — S, with S a minimal complex, is an isomor-
phism.
(v) Any weak equivalence S — X, with S a minimal complex, is an isomor-
phism.

Proof 1t follows immediately from Proposition 5.1.10 that condition (i) is
equivalent to condition (iv) as well as to condition (v). Therefore, condition (v)
implies condition (iii): if i : § — X is a trivial cofibration with S fibrant and X
minimal, then S must be minimal as well, so that i has to be an isomorphism.
Let us prove that condition (iii) implies condition (ii): any trivial fibration
p : X — S admits a section i : S — X which has to be a trivial cofibration
with fibrant domain, and thus an isomorphism. It is now sufficient to prove that
condition (ii) implies condition (i). By virtue of Theorem 5.1.7, there exists a
minimal model of X, namely a trivial cofibration § — X with § a minimal
complex. This cofibration has a retraction which, by virtue of Proposition 5.1.8,
is a trivial fibration. Condition (ii) implies that S is isomorphic to X, and thus
that X is minimal as well. O
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It may be convenient to work with a restricted class of fibrant objects in the
following sense.

Definition 5.1.12. A class F of fibrant presheaves on A is said to be admissible
if it has the following stability properties.

(a) Itis closed under retracts: for any map p : X — Y, which has a section,
if X belongs to F, so does Y.
(b) For any trivial fibration p : X — Y, if Y isin F, then X isin F.

The following proposition shows that we can work up to a weak equivalence,
while considering such classes of presheaves.

Proposition 5.1.13. Let F be an admissible class of fibrant presheaves on A.
For any weak equivalence between fibrant presheaves f : X — Y, the presheaf
X isin Fisand only if Y isin F.

Proof We choose a factorisation of the weak equivalence f into a trivial
cofibration i : X — T followed by a trivial fibration p : T — Y. Since X is
fibrant, the map i is the section of some map r : T — X. If Y is in F, then,
since p is a trivial fibration, so is T. Therefore, X belongs to F, as retract of an
element of F. For the converse, applying what precedes to the map r we see
that, if X is in F, so is 7. Since any trivial fibration between cofibrant objects
has a section, this implies that Y is in F as well, O

Definition 5.1.14. A fibration p : X — Y in A is minimal if it is a minimal
complex as an object of A/Y ~ A/Y for the induced model category structure
(whose, weak equivalences, fibrations and cofibrations are the maps which have

the corresponding property in A, by forgetting the base).
Proposition 5.1.15. The class of minimal fibrations is stable by pull-back.
Proof Consider a pull-back square
X ‘- Xx
S [
Yy 4> Y

in which p’ is a minimal fibration. Let x, y : a — X two global sections which
are d-equivalent over Y (i.e. d-equivalent in X, seen as a fibrant object of X/\Y ).
Then u(x) and u(y) are d-equivalent in X’ over Y’, and thus u(x) = u(y). As
p(x) = p(y), this means that x = y. In other words, p is a minimal fibration. O

Remark 5.1.16. The class of minimal fibrations is not stable by composition in
general.
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Everything we proved so far about minimal complexes has its counterpart in
the language of minimal fibrations. Let us mention the properties that we will
use later.

Theorem 5.1.17. For any fibration p : X — Y, there exists a trivial fibration
r: X — S and a minimal fibration q : S — Y such that p = qr.

Proof By virtue of Theorem 5.1.7 applied to p, seen as a fibrant presheaf over
A/Y, there exists a trivial cofibration i : § — X suchthatg = p|; : § = Y is
a minimal fibration. As both X and § are fibrant (as presheaves over A/Y), the
embedding i is a strong deformation retract, so that, by virtue of Proposition
5.1.8 (applied again in the context of presheaves over A/Y), there exists a trivial
fibration  : X — § such that i = 1g, and such that gr = p. |

Remark 5.1.18. In the factorisation p = gr given by the preceding theorem, g
is necessarily a retract of p. Therefore, if p belongs to a class of maps which
is stable under retracts, the minimal fibration ¢ must have the same property.
Similarly, as r is a trivial fibration, if p belongs to a class which is defined up to
weak equivalences, then so does g. This means that this theorem can be used to
study classes of fibrations which are more general than classes of fibrations of
model category structures. This is were statements such as Proposition 5.1.13
might be useful.

Proposition 5.1.19. For any minimal fibrations p : X > Y and p’ : X' =Y,
any weak equivalence f : X — X' such that p’ f = p is an isomorphism.

Proof This is a reformulation of Proposition 5.1.10 in the context of pre-
sheaves over A/Y. |

Lemma 5.1.20. For any cofibration v : Y — Y’ and any trivial fibration
p : X — Y, there exists a trivial fibration p’ : X' — Y’ and a pull-back square
of the following form.

Proof The pull-back functor v* : X/Y’ — A /Y has a left adjoint v; and a
right adjoint v.. We see right away that v*v; is isomorphic to the identity (i.e.
that v is fully faithful), so that, by transposition, v*v, is isomorphic to the
identity as well. Moreover, the functor v, preserves trivial fibrations because its
left adjoint v™ preserves monomorphisms. We define the trivial fibration p’ as
vi(p: X oY) O
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Proposition 5.1.21. Let F be a class of morphisms of presheaves over A with
the following properties:

(i) any element of F is a fibration;
(ii) any trivial fibration is in F;

(iii) the class F is closed under retracts and under compositions.

Consider a commutative diagram of the form

i
X0L>X1—1>X{

m lm | l"i

y L vy

in which po, p1 and p} are in &, w is a weak equivalence, j is a cofibration,
and the square is Cartesian. Then there exists a cartesian square

io ,
Xo —2 X,

I

Yy L v

in which p{ is a fibration in &, as well as a weak equivalence v’ : X — X]
such that pjw = pg, and iyw = w'io.

Proof We observe that if there are two fibrations p : X — Sandg : Y — Sas
well as a weak equivalence u : X — Y over S, then p is in J if and only if ¢ is
in 3" this is a particular instance of Proposition 5.1.13 applied to the category
of presheaves on A/S for the class F of fibrations T — S which are elements
of F. This means that we may assume, without loss of generality, that the class
J consists of all fibrations.

By virtue of Theorem 5.1.17, we can choose a trivial fibration 7] : X] — §’
and a minimal fibration ¢’ : § — Y’ such that p; = ¢’r]. Let us write
S=Y Xy §,and k : S — §’ for the second projection. The canonical map
r1 : X1 — S is a trivial fibration (being the pull-back of such a thing), and the
projection g : S — Y is a minimal fibration by Proposition 5.1.15. We have
thus a factorisation p; = gri. Moreover, the map rg = ryw is a trivial fibration.
To see this, let us choose a minimal model  : T — Xjy. Then the map riwu
is a weak equivalence between minimal fibrations and is thus an isomorphism
by Proposition 5.1.19. This means that rq is a trivial fibration by Proposition
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5.1.8. The diagram we started from has the following form.

i
Xy —%- X, — X

Wb, b

S — ¢

l L

y Ly
Moreover, both squares are Cartesian. This means that we can replace j by k. In
other words, without loss of generality, it is sufficient to prove the proposition
in the case where pg, p1 and p) are trivial fibrations. Under these additional
assumptions, we obtain a cartesian square

io ,
Xo — X|

N

Yy —L v
in which py is a trivial fibration by Lemma 5.1.20. The lifting problem

i
XOLxl—lgxi

. w ,
to Py

r Po ’

X —————— 7Y
has a solution because iy is a cofibration and p a trivial fibration. Moreover,
any lift w’ must be a weak equivalence because both p( and p] are trivial
fibrations. ]

Remark 5.1.22. Inner fibrations are not necessarily fibrations of the Joyal model
structure (e.g. the nerve of any functor between connected groupoids which is
not surjective on objects is not an isofibration). However, one may still consider
minimal inner fibrations (this is done by Lurie in [Lur09, 2.3.3]). Indeed, we
observe first that, since any invertible map in A" is an identity (n > 0), any inner
fibration of the form p : X — A", is an isofibration between co-categories,
hence a fibration of the Joyal model category structure (Theorem 3.6.1). This
implies that, as an object of sSet/Y, any inner fibration p : X — Y has the right
lifting property with respect to inclusions of the form

JXxKU{e}xL—->JxL £=0,1,

where K — L is a monomorphism of simplicial sets over Y, while J X L is
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considered as a simplicial set over Y with structural map given by the compo-
sition of the second projection J X L — L with the structural map L — Y:
indeed, it is sufficient to prove this lifting property in the case where L = A"
and K = JA", in which case we may pull back p along the given structural
map A" — Y. In particular, any inner fibration X — Y is a fibrant object of
the model structure of Theorem 2.4.19 with the homotopical structure on the
category of presheaves on A = A/Y associated to exact cylinder J X (=) and the
minimal class of J-anodyne extensions (i.e. the one obtained by performing the
construction of Example 2.4.13 for § = @).* We may thus apply Theorem 5.1.7
and Proposition 5.1.8 for A = A/Y and get a factorisation of p into a trivial
fibration r : X — S followed by a minimal inner fibration g : § — Y. We
also observe that property (ii) of Theorem 5.1.11 is independent of the model
structure we choose to work with on the category of presheaves over A = A/Y.

5.2 The universal left fibration

Proposition 5.2.1. For 0 < k < n, the inclusion i : AZ — A" induces an
equivalence of categories

Liy : RFib(A}) — RFib(A").

Proof Since i is bijective on objects, it follows from Theorem 4.1.16 that the
functor Ri* is conservative. Therefore, it is sufficient to prove that the functor
Li, is fully faithful. By virtue of Proposition 4.5.1, it is sufficient to prove that,
for any object a of A", the map

ha — Ri*Liy(hg)

is an isomorphism in RFib(A}). For a € {0,...,n}, a fibrant resolution of
the image of (A%, a) by i) is A* = A"/a. The object Ri*Li|(h,) is thus the
intersection of A} with A“, the structural map to A} being the inclusion. To
finish the proof, it remains to check that « is final in AZ N A4 If a < n, then
A“ is contained in the image of the face which avoids n, and therefore, since
k < n, we have A4 C AZ, which implies in turn that AZ N A4 = A%, Since it
is obvious that a is final in A%, we only have to check the case where a = n.
In this case, we have AZ NA" = AZ, and, as k > 0, Lemma 4.4.3 finishes the
proof. O

L Despite the appearances, this is not a special case of the construction of paragraph 2.5.1.
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Corollary 5.2.2. Let us consider a commutative square of the form

where 0 < k < n. We also assume that i is final (cofinal) and that both p and g
are right (left) fibrations. Then the induced map X — N} Xan Y is a fibrewise
equivalence.

Proof 1In the case where 7 is final and p and g are right fibrations, this is a
reformulation of the fully faithfulness of the functor L), by Proposition 4.1.16.
The dual version is obtained by applying the functor 7 + TP in an appropriate
way. O

Definition 5.2.3. We fix a Grothendieck universe U. A set is U-small is it
belongs to U. One defines A so that its set of arrows is U-small. We define the
simplicial set U of morphisms of simplicial sets with U-small fibres as follows.
Anelement of U,, isamap p : X — A", such that X takes its values in U-small
sets, together with a choice, for any map f : A™ — A", of a Cartesian square
of U-small simplicial sets of the following form.

oo —Lox

o
A" N A"
with the constraint that 1%, (X) = X and Ip» = 1.

One defines the simplicial set S of left fibrations with specified U-small fibers
as the sub-object of U whose elements correspond to left fibrations of codomain
A" with specified pull-back squares of U-small simplicial sets as above.

One checks immediately that 87 can be interpreted as the simplicial set of
right fibrations with specified U-small fibers, i.e., is canonically isomorphic to
the sub-object of U whose elements are the right fibrations of codomain A"
with suitably specified pull-back squares.

There is a pointed version of U, which we denote by U,. A map A" — U, is
amap p : X — A" with X a presheaf of U-small sets, equipped with pull-backs
as above, together with a section s : A" — X of p. Forgetting the section s
defines a morphism of simplicial sets

n:Us > U.
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One defines similarly

Puniv * Se = 8
as the pull-back of 7 : U, — U along the inclusion § C U.

The proof of the following proposition is straightforward, and the details are
left to the reader.

Proposition 5.2.4. Given a morphism of simplicial sets f : X — Y, specifying
a Cartesian square of the form

is equivalent to choose, for each map ¢ : A" — Y, a Cartesian square

o (X) —25 x

ltp*(f) lf

Aam—2% sy

where ¢*(X) is a U-small simplicial set.

Definition 5.2.5. In the situation of the preceding proposition, we say that the
morphism F classifies the map f.

A morphism of simplicial sets f : X — Y is said to have U-small fibres if
there exists amap F : Y — U which classifies f.

We observe that a morphism of simplicial sets f : X — Y has U-small fibres
if and only if, for any non-negative integer n and any map f : A" — Y, the
fibre product Z = A" Xy X is isomorphic to a U-small simplicial set (i.e. the
cardinal of each set Z;, i > 0, is smaller than the cardinal of U). The excluded
middle principle has the following consequence.

Corollary 5.2.6. Let us consider a Cartesian square of simplicial sets

X — X
I
A—tsoa
in which the map i is a monomorphism. If the map f is classified by a morphism

of simplicial sets F : A — U, and if ' has U-small fibres, there exists a
morphism F' : A’ — U which classifies f', such that F'i = F.
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Proposition 5.2.7. A morphism of simplicial sets p : X — Y is a right (left)
fibration if and only if, for any map A" — Y, the induced map A" Xy X — A"
is a right (left) fibration, respectively.

Proof This follows right away from the fact that the property of being a right
(left) fibration is determined by the right lifting property with respect to a set
of maps with representable codomains. [

Corollary 5.2.8. The canonical map p,u;, : Se — S is a left fibration. More-
over, a morphism of simplical sets p : X — Y with U-small fibres is a left
fibration if and only if it is classified by a map b : Y — U which factors
through 8. In particular, any left fibration with U-small fibres p : X — Y
arises from a Cartesian square of the form below.

XLS.

J/p lpmtiv

y —£8

Lemma 5.2.9. Given integers 0 < k < n, for any minimal left fibration with
U-small fibres p : X — A}, there exists a minimal left fibration with U-small
fibres q : Y — A", and a pull-back square of the following form.

X—i>Y

s
i

AL —— A"
Proof Let us factor the map ip as a left anodyne extension iy : X — Y
followed by a left fibration py : Xy — A”". By virtue of Theorem 5.1.17
(applied to the covariant model category structure over A™), we can factor
po into a trivial fibration gg : Xy — Y followed by a minimal left fibration
q : Y — A" (see also Remark 5.1.22). On checks that one can construct all
these factorisations in such a way that all the maps have U-small fibres. If we
put 7 = goig, we thus get the commutative square below.

X — vy
(5.2.9.1) ln lq
Al s A

The projection A} Xan ¥ — A7 is a minimal left fibration (Proposition 5.1.15).
On the other hand, by Corollary 5.2.2, the comparison map X — A} Xan ¥
is a fibrewise equivalence over Aj. Therefore, Proposition 5.1.10 (applied to
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the covariant model structure over A}) implies that this comparison map is an
isomorphism, and thus that (5.2.9.1) is Cartesian. O

The following theorem was stated as a conjecture by Nichols-Barrer [NBO7].

Theorem 5.2.10. The simplicial set 8 is an co-category whose objects are the
U-small co-groupoids.”

Proof By virtue of Proposition 5.2.7 and Corollary 5.2.6, to prove that § is
an oo-category, we only have to prove that, given integers 0 < k < n, for any
left fibration with U-small fibres p : X — AZ’, there exists a left fibration with
U-small fibres ¢ : ¥ — A" and a pull-back square of the form (5.2.9.1). By
virtue of Theorem 5.1.17, there exists a factorisation of p as p = por with r
a trivial fibration and py a minimal left fibration. We can extend po and then
r, using Lemmas 5.2.9 and 5.1.20 successively. The objects of 8 correspond to
left fibrations with U-small fibres whose codomain is A°, which are nothing
but U-small Kan complexes, or, equivalently, U-small co-groupoids. O

Corollary 5.2.11 (Joyal). Leti : A — B be a trivial cofibration of the Joyal
model category structure (e.g., an inner anodyne extension). Then, for any
left (right) fibration with U-small fibres p : X — A, there exists a left (right)
fibration with U-small fibres q : Y — B, and a Cartesian square of the following
form.

X—i>Y

"lil"

A——> B

Proof By virtue of Corollary 5.2.6, we are only expressing the fact that the
map 8§ — AU has the right lifting property with respect to i, which follows from
the preceding theorem and from Theorem 3.6.1. O

Lemma 5.2.12. Given an anodyne extension K — L, for any Kan fibration
with U-small fibres p : X — K, there exists a Kan fibration with U-small fibres
q : Y — L, and a pull-back square of the following form.

—i>Y

X
(5.2.12.1) ,,l lq
K LN L

2 The last assertion is not completely correct. The objects of 8 are U-small co-groupoids X
endowed with a choice, for any integer n > 0, of an abstract category-theoretic U-small
Cartesian product A" x X.
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Proof There is a simplicial subset X C 8 such that amap F : A — 8 factors
through X if and only if F classifies a Kan fibration. We want to prove that X
is a Kan complex. That means that it is sufficient to prove this lemma in the
case where the anodyne extension K — L is a horn inclusion. Therefore, we
may assume, without loss of generality, that L itself is U-small. By virtue of
Theorem 5.1.17, there exists a factorisation of p as p = pgr with r a trivial
fibration and py a minimal Kan fibration. Lemma 5.1.20 thus shows that it is
sufficient to consider the special case where p is a minimal Kan fibration.

Let us factor the map ip as an anodyne extension iy : X — Y, followed
by a Kan fibration pg : Xo — L. By virtue of Theorem 5.1.17, we can factor
po into a trivial fibration g9 : Xog — Y followed by a minimal left fibration
q:Y — L.If we puti = ggip, we thus get a commutative square of the form
(5.2.12.1). Since any Kan fibration is locally constant (Corollary 4.6.6), the
map X — K X Y is a weak homotopy equivalence over K. Propositions 5.1.15
and 5.1.19 imply that this square is Cartesian. m}

Proposition 5.2.13. Let F : A — 8 be a morphism which classifies a left
fibration p : X — A. Then F factors though the maximal co-groupoid k(8) if
and only if the map p is a Kan fibration. In particular, for any Kan fibration
p : X — A, there exists a Cartesian square of the following form.

X — k(8.)
(5.2.13.1) pl ¥t

AL k(8)
Proof We have a canonical Cartesian square

k(8s) —— S,

k (Puniv)l lpuniv

k(§) —— 8§

because the map p,,;,, being a left fibration, is conservative. The map & (piv)
is a left fibration whose codomain is a Kan complex, hence it is a Kan fibration.
Therefore, if the classifying map F : A — 8 of a left fibration factors through
k(8), we have a Cartesian square of the form (5.2.13.1) which proves that p
is a Kan fibration. Conversely, if p : X — A is a Kan fibration, then Lemma
5.2.12 ensures that there exists a Cartesian square of the form
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where 4 is the canonical anodyne extension (3.1.22.5), and ¢ is some Kan
fibration. In particular, any classifying map of p factors through the co-groupoid
Ex*(A), hence through k(8). |

Theorem 5.2.14 (Joyal). For any weak categorical equivalence f : A — B,
the functor L fi : RFib(A) — RFib(B) is an equivalence of categories.

Proof Let W be the class of maps f such that Lf; is an equivalence of
categories. We want to prove that W contains the class of weak equivalences of
the Joyal model category structure. By virtue of Proposition 3.6.2 it is sufficient
to prove that W satisfies the following conditions.

(1) The class W has the two-out-of-three property.
(i) Any inner anodyne extension is in W.
(iii) Any trivial fibration between co-categories is in W.

Property (i) follows from the facts that the class of equivalences of categories
has the two-out-of-three property, and that the assignment A — RFib(A) is
a functor: given two composable morphisms of simplicial sets f and g, we
have LgiLfi = L(gf): and L(14)1 = 1ggipca). To prove property (ii), we first
remark that any inner anodyne extension is bijective on objects. Indeed, the
class of morphisms of simplicial sets which induce a bijective map on objects
is saturated, so that, by the small object argument, it is sufficient to check this
property for the case of the inclusion of A} into A" for 0 < k < n, in which
case we obviously have an equality at the level of objects. In particular, as a
consequence of Theorem 4.1.16, for any inner anodyne extensioni : A — B,
the functor Ri* is conservative. This means that we only have to prove that
Liy is fully faithful. Given an object F of RFib(A), we may assume that F is
represented by a right fibration p : X — A. By virtue of Corollary 5.2.11, we
can choose a Cartesian square of simplicial sets of the form

X 1.y

"l_l"

A—> B

in which ¢ is a right fibration. It is now sufficient to prove that the map 7 is
a right anodyne extension. Indeed, if this is the case, the image in RFib(A)
of the canonical isomorphism from X to A Xp Y is then the co-unit map
F — Ri*Li\(F). In particular, the functor Li, is fully faithful. Let us prove that
71is aright anodyne extension. We first consider the case where i is the canonical
inclusion of Aﬁ into A" for some 0 < k < n. Then we already know that Li) is
an equivalence of categories. The map 7 is then the co-unit of this adjunction
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and is thus invertible in RFib(A"). Therefore, it is a weak equivalence with
fibrant codomain in the contravariant model category structure over A", hence
aright anodyne extension (see Proposition 4.1.11). The case where i is a sum of
inclusions of inner horns follows right away. For the general case, assume that
i is a retract of an inner anodyne extension iy : Ay — By. Let pg : Xo — Ag
and go : Yo — By for the pull-backs of p and g respectively, so that we get a
new Cartesian square

XOL)YO

"

AOL)BO

of which the previous square is a retract. In particular, the map 7 is a retract
of 7y, and it is sufficient to prove that 7j is a right anodyne extension. Using
the small object argument, we can produce such a map iy which is a countable
composition of maps

J1 J2 J Jn+1
A0—>A1—>~-'—n>Ann—>An+1—>~--

>

each map j, being obtained through a pushout square of the form

may
aer, Ay, — Ana

N

Haer, A™ —— A,

with 0 < ky <my forall A € L,. Let p,, : X, — A, be the pull-back of gq
along the inclusion A,, € By. We then have canonical pull-back squares

Jn
Xn—l > Xn

e

An—l L) An
and it is sufficient to check that each j,, is a right anodyne extension, because
1y is the countable composition Xy — li_n}n X, of the j,’s. But each of these
is the push-out of the pull-back of a sum of inner horn inclusions along a right
fibration, which we already know to be a right anodyne extension. This achieves
the proof that the class W contains all inner anodyne extensions.

It remains to prove that any trivial fibration is in W. Let ¢ : A — B be a
trivial fibration. Since ¢ is surjective on objects (it even has at least a section),
the functor Rg* is also conservative. Therefore, it is sufficient to prove that the
functor Lq, is fully faithful. Since trivial fibrations are stable by pull-backs, the
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functor ¢* also preserves weak equivalences. Therefore, given an object F' of
RFib(A) represented by a morphism p : X — A, the co-unit F — Rq*Lq\(F)
is the image of the map f = (p, 1x) : X — A Xp X. This map is a section of
the trivial fibration A Xp X — X and is thus a right anodyne extension (see
Corollary 2.4.29 and Proposition 4.1.7). O

Remark 5.2.15. An inspection of the proof of Theorems 5.2.10 and 5.2.14
shows that a monomorphism of small simplicial sets i : A — B has the left
lifting property with respect to 8§ — A (for all universes U) whenever the
induced functor Li\ : RFib(A) — RFib(B) is fully faithful.

Corollary 5.2.16 (Joyal). A morphism of simplicial sets f : A — B is a weak
categorical equivalence if and only if it satisfies the following two properties.

(a) The functor t(f) : T(A) — 7(B) is essentially surjective.
(b) The functor Lfi : RFib(A) — RFib(B) is fully faithful.

Proof Let us choose a commutative square of the form

f

A—— B

oL

AL p
in which both a and b are weak categorical equivalences, while A’ and B’ are
oo-categories. We know that the functor 7 sends weak categorical equivalences
to equivalences of categories (see Proposition 3.3.14), and it follows from the
preceding theorem that the functors La, and Lb, are equivalences of categories.
Therefore, f satisfies conditions (a) and (b) if and only if f’ has the same
property. Similarly, f is a weak categorical equivalence if and only if f” is a
weak categorical equivalence. We may thus assume, without loss of generality,
that A and B are co-categories. In this case, it follows from Proposition 4.5.2
that f satisfies condition (a) if and only if it is fully faithful. We also know that
f is essentially surjective if and only if the functor 7(f) has this property (see
Remark 3.9.4). Therefore, Theorem 3.9.7 achieves the proof. O

5.3 Homotopy classification of left fibrations

Proposition 5.3.1. Any weak categorical equivalence is final.

Proof Letu : X — Y be weak categorical equivalence. To prove that u is
final, it is sufficient to prove that it induces an isomorphism in RFib(Y); see
Proposition 4.1.11. We may choose an inner anodyne extension j : ¥ — Y’ with
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Y’ an co-category. Since, by Theorem 5.2.14, the functor Lj is an equivalence of
categories, it is sufficient to prove that ju induces an isomorphism in RFib(Y”’).
For this, it is sufficient to prove that ju is final. In other word, it is sufficient to
prove that u is final under the additional assumption that ¥ is an co-category.
We recall that J’ is the nerve of the contractible groupoid with sets of objects
{0, 1}. We observe that inclusions of the form

A= A", n>20<k<n,
or of the form
JxOAN"U{e}x A" - T xA", n>0,e=0,1,

all are right anodyne extensions (Proposition 4.1.7) as well as weak categorical
equivalences. Applying the small object argument to this family of inclusions,
we obtain a factorisation of u of the form u = pi with i both a trivial cofibration
of the Joyal model structure and a right anodyne extension, and p an isofibration
(hence a fibration of the Joyal model structure, by Theorem 3.6.1). Therefore,
the map p is a trivial fibration, and this shows that u is final, by virtue of
Corollary 4.1.9. O

Corollary 5.3.2. Let us consider three composable maps
Abalplp

and assume that i and j are weak categorical equivalences. Then the map f is
final if and only if the map j fi is final.

Proof The map f is final if and only if it defines an isomorphism in the
homotopy category RFib(B); see Proposition 4.1.11. The previous proposition
shows that i is final, hence induces an isomorphism in RFib(B). Therefore,
f is final if and only if fi is final. By Theorem 5.2.14, the functor Lj, is an
equivalence of categories, and it is clear that Lj,( f) is the map induced by j f.
Since, again by the previous proposition, the map j is final, this shows that f
is final if and only if j f has this property. m}

Corollary 5.3.3. Any right fibration is a fibration in the Joyal model category
structure.

Proof By virtue of Theorem 4.1.5, any right fibration p : X — Y is a fibration
of the contravariant model category structure over Y. Therefore, by definition of
the latter, such a map has the right lifting property with respect to right anodyne
extensions over Y. Proposition 5.3.1 thus implies that p has the right lifting
property with respect to any trivial cofibration of the Joyal model category
structure. O
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Remark 5.3.4. However, it is not true that any right fibration X — Y over a
given simplicial set C is a fibration of the contravariant model category structure
over C, even if C is an co-groupoid. Indeed, if it was true over A°, this would
imply that all right fibrations are Kan fibrations (see paragraph 4.1.6). But the
latter is obviously not true; for instance, the inclusion of {0} into A" is always
a right fibration, but it is not a Kan fibration when n > 0.

Proposition 5.3.5. For any Cartesian square
x Ly
s
f

A—— B

|

inwhich f is a weak categorical equivalence and q is a right fibration, the map
f is a weak categorical equivalence.

Proof We check first that the functor Lfi : RFib(X) — RFib(Y) is fully
faithful. Let u : E — X be a right fibration. We form a commutative square

F
Y
in which v is a right fibration, and ¢ is final. In other words, (Y, ¢) = Lﬁ(E, u)
in RFib(Y). We will prove that the map E — X Xy F is final as follows.
Since the map X Xy F — X is fibrant in the contravariant model category
structure over X (being a pull-back of v), and since p is a right fibration, the
composed map X Xy F — A is a right fibration. By virtue of Proposition
4.1.11, it is sufficient to prove that this map is an isomorphism in RFib(A). We
now observe that X Xy F is canonically isomorphic to A Xp F. Therefore, the
map E — X Xy F corresponds to the co-unit map (E, pu) — Rf*Lfi(E, pu),
which is invertible, since L fj is fully faithful, by Theorem 5.2.14. On the other
hand, the map £ — X Xy F, which we now know to be final, can also be
interpreted as the co-unit map (E,u) — R f “L ﬁ (E, u). Therefore, the latter is
an isomorphism, and this shows that L fu is fully faithful. By Corollary 5.2.16 it

suffices to check that 7( f ) is essentially surjective. Let us choose a commutative
square of the form

g

|

<
«—

f

|
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in which both a and b are inner anodyne extensions, while A’ and B’ are co-
categories. By corollary 5.2.11, we can also choose a right fibration of the form
q’ :' Y’ — B’ such that there is a pull-back square

y —2 .y

ol

Bt p

and we can form the following pull-back square

x Ly

p,l l 7
I

Al —— B

which happens to be homotopy Cartesian. We then have a commutative square

in which the right vertical map is an equivalence of co-categories and the two
horizontal maps are bijective on objects (as pull-backs of the inner anodyne
extensions a and b, respectively). To prove that 7( f) is essentially surjective, it
is thus sufficient to prove that b is a weak categorical equivalence. For this, by
virtue of Corollary 5.2.16, it is sufficient to check that Ll;! is fully faithful, which
we already know, since b is the pull-back of a weak categorical equivalence
along a right fibration. O

Corollary 5.3.6. Any Cartesian square of simplicial sets of the form

x 2y

o s
ALB

in which the map q is a right or left fibration is homotopy Cartesian in the Joyal
model category structure.

Proof Since the functor T +— TP preserves and detects limits and weak cate-
gorical equivalences, and sends right fibrations to left fibrations, it is sufficient
to prove the result in the case of a right fibration. Let us choose an inner anodyne
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extension b : B — B’ with B’ an co-category, as well as a pull-back square

b /

in which ¢’ is a right fibration (see Corollary 5.2.11). We factor the map b f
into a trivial cofibration of the Joyal model category structure a : A — A’,
followed by a fibration f’ : A’ — B’. By forming appropriate pull-backs, we
also complete these data into a commutative cube

X;Y
ay /l
X —Y q
pl .
p‘/A_fl_/B

in which the non-horizontal faces are Cartesian. The slanted arrows are weak
categorical equivalences: they are pull-backs of weak categorical equivalences
along right fibrations, which allows to apply the preceding proposition. There-
fore, it is sufficient to prove that the front face of the cube is homotopy Cartesian.
Since all the objects of this face are fibrant, this follows from the fact that f” is
a fibration (see the dual version of Corollary 2.3.28). O

53.7. Letp: X - Aand g : Y — A be two morphisms of simplicial sets. We
form the map

Hom, (X.Y)
(5.37.1) l"”

A

corresponding to the internal Hom from (X, p) to (Y, ¢) in the category sSet/ A.
In other words, given amap f : A” — A, morphisms A" — Hom , (X, Y) over
A correspond to morphisms A” X4 X — A’ X4 Y over A’. Equivalently, we
have (Hom ,(X,Y), nx,y) = pp* (¥, q) as objects of sSet/A.

Proposition 5.3.8. If the morphisms p : X — A and q : Y — X are left
fibrations, then the morphism nxy : Hom,(X,Y) — A is a fibration of the
Joyal model category structure.
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Proof The functor (Y, g) — (Hom , (X,Y), nx,y) is right adjoint to the func-
tor (—) x4 X. The latter preserves monomorphisms, and, by virtue of Proposition
5.3.5, it also preserves the class of weak equivalences of the model category
structure on sSet/ A induced by the Joyal model category structure. In particular,
we have here a Quillen pair. O

Lemma 5.3.9. Let f : X — Y be a morphism of simplicial sets. Assume
that there is also a given map q : Y — A. Then the following conditions are
equivalent.

(i) For any map of the form o : A" — A, for n > 0, the induced morphism
A" xa X — A" X4 Y is a weak categorical equivalence.

(ii) For any map g : B — A, the induced morphism B X4 X — BXaY isa
weak categorical equivalence.

In particular, condition (i) implies that the map f is a weak categorical equiv-
alence.

Proof The class of simplicial sets B over A such that Bx4 X - Bx4 Y isa
weak categorical equivalence is saturated by monomorphisms: since colimits
are universal in the category of simplicial sets, this follows from Corollaries
2.3.16,2.3.18 and 2.3.29. Corollary 1.3.10 thus implies that conditions (i) and
(ii) are equivalent. O

5.3.10. A morphism of simplicial sets X — Y over A is said to be locally a
weak categorical equivalence over A if it satisfies the equivalent conditions of
Lemma 5.3.9. Under the same assumptions as in 5.3.7, we define @A(X, Y)
as the subobject of Hom , (X, Y) whose sections over f : A" — A correspond
to maps A’ x4 X — A’ X4 Y over A’ which are locally a weak categorical
equivalence over A’. We shall still write 7xy : E_qA(X, Y) — A for the
restriction of the structural map of Hom , (X,Y). We observe that, in the case
where both p and ¢ are left fibrations, the object @A(X ,Y) classifies fibrewise
equivalences; see Theorem 4.1.16 and Remark 4.1.18, keeping in mind that all
the A™’s are co-categories. In fact, in this case, Corollary 5.3.6 and the preceding
lemma show together that a section of @A(X ,Y)over f: A” — Aissimply a
map A’ X4 X — A’ X4 Y over A’ which is a weak categorical equivalence.

Proposition 5.3.11. Ifboth p : X — Aand q : Y — A are left fibrations,
then the map ntxy : %A (X,Y) — A is a fibration of the Joyal model category
structure.
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Proof Let us consider a solid commutative square of the form

K —> Eq,(X,Y)

. 1
jl v lﬂx,y

L— A
in which j is assumed to be a trivial cofibration. The map u can be interpreted
as a weak categorical equivalence from K X4 X to K X4 Y over K, and we want

to find a weak categorical equivalence v from L X4 X to L X4 Y over L such
the following square of simplicial sets commutes.

KxsX 25 Kx,Y

jXAXJ/ J/jXAY

Applying twice the dual version of Proposition 5.3.5 ensures that the two maps
J Xa X and j X4 Y are weak categorical equivalences. Since u is also a weak
categorical equivalence, we only have to find a map v from L X4 X to L X4 Y
over L which extends u as in the square above. The existence of such a map v
follows from Proposition 5.3.8. O

5.3.12. There is auniversal morphism of left fibrations with U-small fibres. One
considers the Cartesian product § X §, over which there are two canonical left
fibrations with U-small fibres Sﬁo) — 8x8and 851) — 88 which are classified
by the first and second projection to 8, respectively. The isofibration (s,t) :
Homg ¢ (SSO) , Sﬁl) ) — 8§ X8 classifies morphisms between left fibrations with
U-small fibres: for a simplicial set A, a map (F,G) : A — 8 X § essentially
consists of two left fibrations p : X — Aandg : Y — A. And alift ¢ of (F, G)
to Ho_m5><5(8£0), Sﬁl)) is equivalent to the datum of a morphism ¢ : X — Y
over A. In particular, there is a canonical map 8 — Homg ¢ (SEO), 851)) which
corresponds to the identity of 8, over 8. Since the identity is a fibrewise
equivalence, we end up with a diagram

idsg, (s,1)

(5.3.12.1) § = Eqg (SI”,81Y) =5 $x8

which is a factorisation of the diagonal § — & X 8. We know that the map
(s, t) is an isofibration. The nature of the map idg, is revealed by the following
proposition.

Proposition 5.3.13. The map idsg, : § — @SX5(8£O), Ssl)) is a trivial cofi-
bration of the Joyal model category structure. In other words, the diagram
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(5.3.12.1) is a path object of the oo-category § in the Joyal model category
structure.

Proof This map is a section of the isofibration #, and, therefore, it is sufficient
to prove that the map

t:E_<18X5(s£°),551>) -8

is a trivial fibration. Consider a cofibration j : ¥ — Y’. Then a commutative
square

s (0) ¢(1)
Y —— Eq . (8.”.8.")

1 |
y — & .3

consists essentially of a commutative diagram of the form

i
X0L>X1—1>Xi

% lm |

Yy v
in which po, p; and p are left fibrations (with U-small fibres), w is a weak cat-
egorical equivalence, and the square is Cartesian (where the triple (pg, w, p1)
corresponds to &, the left fibration p] corresponds to &, and the Cartesian
square to the equation &’j = t£). Since all left fibrations are fibrations of the
Joyal model category structure (by the dual version of Corollary 5.3.3), Propo-
sition 5.1.21 may be applied for J the class of left fibrations. Together with
Corollary 5.2.6, this giveamap ¢ : Y/ — @st(SEO), SEI)) such that £ = &’
and {j =¢. [

53.14. Letp : X —> Aand g : Y — A be two left fibrations with U-small fibres
over a simplicial set A, classified by two morphisms F and G, respectively. A
morphism from F to G in Hom(A, 8) is essentially given by a left fibration
7 W o> Al x A, together with isomorphisms X ~ Wy and Y ~ W; over A,
where we denote by 7; : W; — A the pull-back of 7 along {i} x A C A X A.
We thus have the following solid commutative square

{0}xX — W
(5.3.14.1) [ “’7 ln

Al x X 282P0 ATy 4
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which admits a filler ¢ because the left hand vertical map is a cofinal monomor-
phism, hence a left anodyne extension, and r is a left fibration. Taking the fibre
at 1 turns ¢ into a morphism

(5.3.14.2) 01:X=(A'xX) > W, =Y

of left fibrations over A. We thus get a morphism

(5.3.14.3) ¢1: A - Homg, (8{”,8)

which lifts the classifying map (F,G) : A — & X § for p and gq.

Proposition 5.3.15. The J-homotopy class over A of the map (5.3.14.2) is
independent of the choice of a lift in the solid commutative square (5.3.14.1).
So is the J-equivalence class of the map (5.3.14.3) over § X 8.

Proof A lift of the commutative square (5.3.14.1) is a morphism from a
cofibrant object which is weakly equivalent to the initial object to a fibrant object
in the category X\sSet/A! x A, endowed with the model category structure
induced by the covariant model category structure over A' x A. Therefore, any
two such lifts are equal up to J-homotopy over A! x A. Corollary 5.3.6 implies
that passing to the fibres at 1 is weakly equivalent to passing to the homotopy
fibres. Therefore, two choices of lifts of the commutative square (5.3.14.1) give
the same map (5.3.14.2), seen in the homotopy category of the Joyal model
category structure over A. Since this is a map from a cofibrant object to a fibrant
object, this identification in the homotopy category of sSet/A is equivalent to
an identification up to homotopy over A.

A J-homotopy between maps from X to Y over A is a map of the form
h:JxX — Y, so that gh is the composition of p with the projection of
J x X onto X. This defines amap H : / X X — J XY over J X A defined by
the projection of J x X onto J and &, where the structural maps of J x X and
JxYare 15 X p and 1; X g, respectively. The map H can be seen as a map
from J X A to Ho_mSXS(Sfo) ,8{1). One deduces from this observation that
the J-equivalence class of the map (5.3.14.3) over 8 X § only depends on the
J-homotopy class over A of the map (5.3.14.2). |

Proposition 5.3.16. Under the assumptions of Paragraph 5.3.14, the following
assertions are equivalent.

(i) The morphism ¢1 : X — Y is a fibrewise equivalence over A.
(ii) The map F — G, corresponding to W, is invertible in the co-category of
functors Hom(A, §).
(iii) For any object a of A, the morphism rt,, : W, — A%, obtained by pulling
back m along A* x {a} ¢ A' x A, is a Kan fibration.
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Proof Since a map of Hom(A, 8) is invertible if and only if it is fibrewise
invertible (Corollary 3.5.12), it is sufficient to prove the case where A = A® is
a point. Proposition 5.2.13 ensures that conditions (ii) and (iii) are equivalent.
Let us prove that conditions (iii) and (i) are equivalent. If 7 is a Kan fibration,
the maps W; — W are weak homotopy equivalences fori = 0, 1. Hence the map
@ : A'xX — W must be a weak homotopy equivalence between Kan fibrations
over A, which implies that it is a fibrewise weak homotopy equivalence. In
particular, the map ¢; : X — Y is a weak homotopy equivalence. Conversely,
if ¢1 is a weak homotopy equivalence, then ¢ is a fibrewise equivalence (recall
that ¢ is an isomorphism), hence the inclusion X — W is a weak homotopy
equivalence. Lemma 4.6.9 implies that 7% : W — (AH)” =~ Al is locally
constant as an object of RFib(A'). Theorem 4.6.10 shows that 7% is a Kan
fibration, hence so is . O

5.3.17. Recall that there is a subobject h(A!,8) < Hom(A!,8) such that
morphisms A — h(A', 8) correspond to invertible maps in Hom(A, §); see
(3.5.7.2) and Corollary 3.5.12. The evaluation map ev : A x Hom(Al,8) — §
corresponds to a morphism

E : A' - Hom(Hom(A%L 8),8).
As explained above, the image of E in Hom(/4(Al, §), §), namely
E" : A' - Hom(h(A',8),8),

is an invertible map (it corresponds to the identity of 4(A, §)). One may think
of E as the universal morphism in an co-category of the form Hom(A, §), and
of E" as the universal invertible morphism in such an co-category. Indeed,
these morphisms correspond to left fibrations with U-small fibres 7 and 7",
respectively, obtained by forming the following Cartesian squares.

wh w .
(53.17.1) ”hl "l lp
Al x h(AY,8) —— Al x Hom(AL 8) —2— §

Given a morphism f : F — G in Hom(A,8), seen as a map of the form
f: A — Hom(A',8), we can form a pull-back square

V———m—m W

(5.3.17.2) Pl ln

1r1
Alx A 2270 AL s Hom(AL )
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and the left fibration p : V. — Al x A is the one classified by the morphism
Al x A — § corresponding to f. The property that f is invertible in the co-
category Hom(A, 8) is equivalent to the property that the map 151 X f factors
through A(A',8). The construction of 5.3.14 applied to the left fibration 7
above provides a lift ¢; : Hom(AY, 8) — I{()_mSX5(S£O>,8£1)) of the map
(Wo, Wp) : Hom(A', 8) — 8§ x 8 which classifies the source and the target of
W. Furthermore, Proposition 5.3.16 ensures that there is a canonical Cartesian
square of the following form

h(Al,8) —— Eqg  (8.”,8)

(5.3.17.3) [ [

Hom(A!,8) —£— Homyg, (87, 8!")

over the co-category & X 8. Proposition 5.3.15 explains in which way this map
is independent of the choices we made, at least up J-homotopy over 8 X 8.

Lemma5.3.18. Letp : X — Aand q : Y — A be two left fibrations classified
by morphisms F and G, respectively. There is a canonical Cartesian square

Map,(X,Y) —> Hom(A, Homg, (8, 8{"))

! o

A 9D Hom(A,S) x Hom(A, S)

where Map 4(X,Y) is the mapping space of simplicial sets over A introduced
in (4.1.12.1).

Proof Both the fibre of the map (s,r) over (F,G) and the simplicial set
Map 4 (X, Y) are identified with the simplicial set whose elements are the maps
¢ : A" x X — A" XY such that the triangle

AMxX — % S APxY

IAH% qu
A" x A
commutes. O
5.3.19. For two left fibrations p : X — A and g : Y — A classified by
morphisms F and G as in the previous lemma, we define Equiv,(X,Y) as

the union of the connected components of the Kan complex Map,(X,Y)
corresponding to the maps ¢ : X — Y over A which are fibrewise equivalences
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(or equivalently, which become invertible in LFib(A)). We observe that it fits
in the following Cartesian square.

Equiv,(X,Y) —— Hom(4, Eq, (8{”,8{"))

(5.3.19.1) [ [

Map,(X.¥) —— Hom(4, Homg,(5.”.8."))
We also have a canonical Cartesian square

k(A,8)(F,G) —— Hom(A, h(Al, 8))

(5.3.19.2) [ [

Hom(A, 8)(F,G) —— Hom(A, Hom(A", 8))

which identifies k (A, 8)(F, G) with the union of the connected components of
Hom(A, 8)(F, G) corresponding to invertible morphisms from F to G in the
oo-category Hom(A, 8) (see Corollary 3.5.12). Finally, the Cartesian square
(5.3.17.3) provides a Cartesian square of the form below.

k(A,8)(F,G) — Equiv,(X,Y)
(5.3.19.3) [ [
Hom(A, 8)(F,G) —— Map,(X,Y)

Note that, although the construction of the horizontal maps relies on a choice,
the formation of this Cartesian square is perfectly functorial in A (i.e., defines
a presheaf on the category of simplicial sets over A with values in the category
of Cartesian squares of simplicial sets). Furthermore, the choice we made is
irrelevant up to J-homotopy: as recalled at the end of paragraph 5.3.17, the J-
homotopy class over 8§ X § of the map ¢; of diagram (5.3.17.3) is independent
of the choice we made, so that passing to the homotopy fibres give a map, as in
the lower horizontal map of (5.3.19.3), whose J-homotopy class only depends
on the one of ¢; over 8§ X 8. Since the square (5.3.19.3) is homotopy Cartesian
in the Kan Quillen model category structure, its upper horizontal map, which
is a morphism of co-groupoids, only depends on the J-homotopy class of the
lower horizontal map.

Proposition 5.3.20. The morphism constructed above
k(A,8)(F,G) — Equiv,(X,Y)

is an equivalence of co-groupoids.
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Proof By virtue of Corollaries 3.6.7 and 3.6.4, and of Proposition 5.3.11, the
diagram

Hom(A, h(A!,8)) —£— Hom(4, Eq,  (5\",8{")

l l

Hom(A, 8) x Hom(A,8§) =———= Hom(A, 8) x Hom(A, 8)

is a morphism of isofibrations between co-categories. Furthermore, projecting
to the first factor, the induced maps

Hom(A, h(Al,8)) — Hom(A, S)
and Hom(A,@SXs(SEOKSS”)) — Hom(A, 8)

are trivial fibrations: by Corollary 3.6.4, it is sufficient to check this for A =
A%, in which case this follows from Corollary 3.5.10 and Proposition 5.3.13,
respectively. Therefore, since the map (¢1 ). is a weak equivalence between two
fibrations over the co-category Hom(A, §) X Hom(A, §), it must induce a weak
equivalence on the fibres. O

Corollary 5.3.21. For any simplicial set A, the operation of pulling back along
the map puniv : S« — 8 defines a bijection from the set [A, 8] = no(k(A,S))
onto the set of isomorphism classes of left fibrations with U-small fibres p :
X — Ain LFib(A).

Remark 5.3.22. Proposition 5.3.20 allows to work up to weak categorical
equivalence. For instance, assuming that we have a homotopy Cartesian square

X — 8.

(5.3.22.1) pl l”

A—%.5

in which p is a left fibration, if we denote by ¢ : ¥ — A the left fibration
classified by G, there is a canonical morphism & : X — Y over A which must
be a weak categorical equivalence, hence a fibrewise equivalence: since the
square (5.3.22.1) is homotopy Cartesian, this follows from Corollary 5.3.6. Let
F : A — § be a morphism which classifies the left fibration p. Proposition
5.3.20 ensures that there is an essentially unique invertible morphism F — G
in Hom(A, 8) associated to the weak equivalence &. Conversely, if there are
two functors F,G : A — § which classify two left fibrations p : X — A
and g : Y — A, respectively, for any invertible morphism F' — G in the co-
category Hom(A, 8), there is an essentially unique associated weak categorical
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equivalence £ : X — Y over A. Using &, one produces a commutative diagram
of the form (5.3.22.1). Corollary 5.3.6 implies that this square is homotopy
Cartesian because, by construction, the comparison map X — Y = A Xg S, is
the weak equivalence &.

5.4 Rectification of morphisms

Lemma 5.4.1. Let 1 : W — A" X A be a left fibration. We denote by m; :
W; — A the fibre of m at i for 0 < i < n. The inclusion W, — W is a weak
equivalence of the covariant model category structure over A. We also choose
a lift ¢ in the solid commutative square below.

{0} x Wy ——— W

[

"ul.Al X7
AN'xX Wy —— A" XA
We write ¢, for the map induced by ¢ by passing to fibres over n. Then, if
we consider this diagram as a commutative square over A through the second
projection A" X A — A, foranyi € {0,...,n}, the diagram

Wo ¥ W,

(t',lwo)l [

AV X Wy —2s W

commutes in LFib(A). In particular, the map ¢, is equal in LFib(A) to the
composition of the inclusion of Wy — W with the inverse of the invertible map
W, - W.

Proof We prove first that the inclusion W,, — W is a weak equivalence of
the covariant model category structure over A. We remark that this is a map
between proper morphisms of codomain A: the map W,, — A is a pull-back of
the left fibration &, and the map W — A it he composition of the left fibration 7
with the second projection A” X A — A, which is proper, by Proposition 4.4.12.
Since this is a map between proper morphisms, Corollary 4.4.28 ensures that
we only have to check that the inclusion of W, into W is a fibrewise weak
homotopy equivalence. But, fibrewise, it is a final map, since it is the pull-back
of the final map {n} — A" along some left fibration.

It remains to check the commutativity of the diagram in LFib(A). This
is obviously true for i = n. Moreover, since (0, 1y,) is initial, the second
projection p : A" x Wy — Wy is a weak equivalence of the covariant model
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category structure over A. Therefore, any other section of p is also a weak
equivalence, and all sections of p define the same map in LFib(A). This settles
the case of (i, 1w, ) fori # n. O

5.4.2. Let A be a simplicial set. We denote by Arr(sSet/A) the category of
arrows of sSet/ A, or, equivalently, of functors from 7 to sSet/A, where I is the
category freely generated by the oriented graph 0 — 1.

We consider the injective model structure on Arr(sSet/A) associated to the
covariant model category structure over A (see Proposition 2.3.11 for C =
(sSet/A)°P). In other words, if p; : X; — Y¥;, i = 0,1, are two morphisms of
sSet/A, amap f from pg to pp is a commutative square of the following form.

X, 2 x,

(5.4.2.1) p% lm

YO L} Yl

Such amorphism f is a weak equivalence (a cofibration, repectively) if and only
if both fy and f; have this property in the covariant model category structure
over A. For f to be a fibration, we require that fj is a left fibration and that the
canonical map Xy — Yy Xy, X is a left fibration.

We define an adjunction

(5.4.2.2) f1 - Arr(sSet/A) 2 sSet/(A* x A) : t*

as follows. If p = pry : AL x A — A denotes the second projection, the functor
p* : sSet/A — sSet/A' x A has a right adjoint p,. For & = 0, 1, the functor
ce =(&,14) : A > Al x A defines a fully faithful inclusion ¢, of sSet/A into
sSet/A' x A which sends a simplicial X over A to X = {&} x X. Furthermore,
for any simplicial set X over A, there is a natural map c(X) = {e} X X —
Al x X = p*(X) over A! x A. By transposition, this defines a natural map
p«(W) — ct(W) = W, for any simplicial set W over A' X A. The functor *
corresponds to the natural transformation p, — cj.

In what follows, the category sSet/A' x A is endowed with the covariant
model category structure over Al x A.

Proposition 5.4.3. The adjunction (5.4.2.2) is a Quillen equivalence.
Proof The adjunction (cg,1, ¢%) is a Quillen pair, and, since the functor p is

smooth, so is (p*, p.); see Propositions 4.4.17 and 4.4.18. For any monomor-
phismi : K — L over A, and for any map p : X — Y over Al x A, there is a
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correspondence between the following two lifting problems.

K ——— p.X A'XxKU{l}xL — X

L — Xi Xy, p.Y ALXL — 5y

Since A' x K U {1} x L — A! x L is a left anodyne extension whenever
K — L has this property, this shows that * preserves both fibrations and
trivial fibrations. In other words, (f,¢*) is a Quillen pair. Similar arguments
(replacing {1} by {0}) show that the canonical morphism p.X — c;X = Xo
is a trivial fibration: for any monomorphism K — L, the induced embedding
A x KU {0} x L — A' x L is always a left anodyne extension. This implies
that the total derived functor Rt* is conservative. Therefore, it is now sufficient
to prove that the total left derived functor Lz, is fully faithful.

For a simplicial set W over A' x A and & = 0, 1, let W /e be the simplicical
set over A obtained by pulling back along the canonical map A /e — Al, the
structural map being induced by composing with the projection of Al/e x A
to A. For € = 1, this is a fancy way to look at the functor p,. For ¢ = 0, this
another way to look at the functor cfj. The operation W — W /e is a left Quillen
functor for the appropriate covariant model category structures. Furthermore,
whenever W is fibrant, the map W, = ¢.(W) — W/e is a weak equivalence
(this is the first assertion of Lemma 5.4.1). Therefore, given any object F of
Arr(sSet/A), if we choose a fibrant resolution G of #; F, we obtain, fore = 0, 1,
the following commutative diagram of simplicial sets over A.

Fs — t*t!(F)s —_— t*(G)a

| |

ceh(F) — c(G)

l I

n(F)/le —— Gle

in which the decorated arrows — are weak equivalences. The map F, —
t*(G) ¢ corresponds to the evaluation at & of the derived unit F — Rt*Lt (F).
In other words, the property of fully faithfulness for the functor L is equivalent
to the property that the map F, — #(F)/e is a weak equivalence of the
covariant model category structure over A for any F and € = 0, 1. Since the
latter maps are natural transformations between left Quillen functors, and since
the category Arr(sSet/A) is the category of presheaves over the Eilenberg-
Zilber category [1] X A/A, the homotopy theoretic Corollaries 2.3.16, 2.3.18
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and 2.3.29, and Corollary 1.3.10, imply that we only have to check this property
for F representable.

Leta : A" — A be a morphism of simplicial sets, defining an object (A", a)
of A/A. For F the presheaf represented by (0, (A", a)), t;(F) is the simplicial
set Al x A", with structural map 1,1 X a : A X A" — Al x A. Therefore, the
map Fy — £(F)/0 is the identity, and the map F; — #,(F)/1 is the inclusion
A" = {1} x A" — Al x A" over A (with structural map p(1a1 X a) for the right
hand side), which is a homotopy equivalence. For F the presheaf represented
by (1, (A", a)), t:(F) is the simplicial set A" over A' x A, with structural map
(1,a) : A* — A' x A. The map Fy — #©(F)/0 is the identity of the empty
simplicial set @, while the map F; — t;(F)/1 is the identity of A" over A. O

Lemma5.4.4. The choice of alift ¢ in the solid commutative diagram (5.3.14.1)
provides, for any left fibration m : W — A X A, a weak equivalence iy : Wy —
p«(W) in the covariant model category structure over A, such that the following
triangle commutes.

Wo —2— p.(W)

sax / (W)
Wi

Proof Foranymapgq:Y — A, we have
P(@)=0pxq) :p"¥)=A"XY 5 A xA

and, therefore, the composition of the unit 7y : ¥ — p.(A! x Y) with any
of the canonical maps p.(A! xY) — ¢t (Al xY) =Y is the identity of Y.
Any choice of a lift ¢ in the solid commutative diagram (5.3.14.1) thus gives a
commutative diagram of simplicial sets over A of the following form.

Wo

I

Wy «—— p*(A' x W) —— Wy

1Wo:‘/’01 lm(sﬁ) l‘ﬁl

~ (W
Wy e p.(W) — Wy
We put iw = p.(@)nw,. We have seen in the proof of the preceding proposition
that the decorated arrows of the form « are trivial fibrations. O

Theorem 5.4.5. There is a canonical equivalence of categories from the ho-
motopy category ho(Hom(A, 8)) onto the full subcategory of LFib(A) whose
objects are the left fibrations with U-small fibres of codomain A.
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Proof We first define a functor
ho(Hom(A, 8)) — LFib(A).

At the level of objects, this is the operation of pulling back along the left fibration
Puniv : Se — 8. In other words, we associate to a morphism F' : A — 8 the left
fibration p : X — A it classifies. As for maps,if p: X - Aandg:Y — A
are two left fibrations classified by F' and G, respectively, the map

¢ : Homy(ttom(a,s)) (F, G) — Homygip(a) (X, Y)
is constructed, taking into account the canonical identifications,

mo(Hom(A, 8)(F,G)) = Homp,(tom(a,s)) (F, G)
mo(Map,(X,Y)) = Homygipca) (X,Y),

by applying the functor g to the lower horizontal map of diagram (5.3.19.3).
We recall that this map does not depend on the choice made to construct the
map ¢ of diagram (5.3.17.3). Let 7 : W — A% x A be a left fibration, classified
by amap F. Fori =0, 1, 2, we denote by r; : W; — A the pull-back of 7 along
the inclusion A = {i} x A ¢ A? x A, which is classified by the map F;. For
i # j,in {0, 1, 2}, the restriction of & to A7} x A defines a map from F; to F;
in Hom(A, 8), and we want to check that the induced triangle

Wi
(5.4.5.1) / \

Wo — Wy

over A (which does not comnute in sSef) gives a commutative triangle in
LFib(A). We see that A%/i = A/, the canonical map A%2/i — A? being the
obvious inclusion. Foramap g : ¥ — A% x A, we write g/i : Y/i — A? x A for
the pull-back of g along the inclusion A’ x A C A% x A. In the case where g is
a left fibration, since it is proper, the inclusion ¥Y; — Y /i is a weak equivalence
(this is the first assertion of Lemma 5.4.1). We always have Y, = Y/0 and
Y/2 = Y For Y = A% x W, we remark that we have Y/i = A’ x W,. The
inclusions AY ¢ A' ¢ A? give an obvious commutative triangle of simplicial
sets over A

w/1
(5.4.5.2) / \

W/0 — W/2

whose image in LFib(A) can be shown to be isomorphic to the previous triangle
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(5.4.5.1), using Lemma 5.4.1 (observe that the assumptions and choices, hence
also their consequences, made in the statement of this lemma, are stable under
base change along any map of the form A™ X A — A" X A over A).

Now, we have a well defined functor, and Corollary 5.2.8 ensures that, at the
level objects, its essential image consists of objects isomorphic to left fibrations
with U-small fibres of codomain A. It remains to prove that it is fully faithful.
Let us prove the property of fullness. Let p : X — Aandg : Y — A be
left fibrations classified by F' and G, respectively, and let  : X — Y be a
morphism of simplicial sets over A. By virtue of Proposition 5.4.3, the map ¢
corresponds to a left fibration 7 : W — Al x A, such that the fibers of 7 at 0
and 1 are homotopic over A to X and Y, respectively. We claim, that, since X
and Y have U-small fibers, we may choose W with the same property. This is
proved as follows. We observe that this is obvious whenever A itself is U-small
(since the model structures involved in Proposition 5.4.3 may be restricted to
U-small objects). In general, we may assume that 7 is a minimal left fibration.
We observe furthermore that A! X A is a filtered union of subobjects of the
form A! x B, where B runs over U-small subobjects of A. It is thus sufficient
to prove that the domain of the pullback of 7 over such A! x B is U-small. By
minimality, it is sufficient to prove that such a pullback is fiberwise equivalent
to a left fibration with U-small fibers, which we already know. Using Lemma
5.4.4, one can find a morphism A! — Hom(A, 8) classifying the left fibration
7 : W — Al x A, out of which we can produce a commutative triangle

Wo ’—W> p+(W)

«:K / (W)
W1

with iy a weak equivalence, and such that t* (W) and ¢ are isomorphic as arrows
of the homotopy category ho(sSet/A). In particular, there exists a commutative
diagram of the form

WOAX

o |«

W, —4— Y

in LFib(A), with u and v invertible. Proposition 5.3.20 ensures that  and v are
the images of isomorphisms in ho(Hom(A, 8)). Therefore, ¢ = vpu~! is the
image of a morphism F' — G. It remains to check faithfulness.

Replacing A by A! X A in the statement of Proposition 5.3.20, and composing
with the total right derived functor R¢* provided by Proposition 5.4.3, we get a
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canonical equivalence of groupoids of the form
(5.4.5.3) k(ho(Hom(A' x A, 8))) = k(ho(Arr(sSet/A))) .
It is time for a couple of remarks.

a) Givenanymaps f : X — Yandg: X’ — Y’ insSet/A, any commutative
square of the form

X <25 X

b
Yy 2>y
in ho(sSet/A), in which a and b are isomorphisms, can be promoted to
a morphism from f to g in k(ho(Arr(sSet/A))).
b) Given two maps f : X — Y and g : X — Y between fibrant objects
in sSet/A, any homotopy from f to g provides amap & : X’ — Y’ in
sSet/A as well as a commutative diagram of the form

X 25 X <24 X

1o

Y#y'#y

in ho(sSet/A), in which a and b are isomorphisms (in fact, we can even
impose b to be the identity).

To prove a), we observe that we may replace f and g by weakly equivalent
maps at will. In particular, we may assume that X and Y are fibrant. Therefore,
both a and b are homotopy classes of maps of simplicial sets over A and the
square commutes up to homotopy. There is thus a commutative diagram of the
form

X (0,1x) Jx X (1,1x) X 4, x
T
Yy —— Y Y’ Y’

in which all horizontal maps are homotopy equivalences, showing that f and
g are isomorphic in the homotopy category of arrows. Property b) is clear: we
may take X’ = J X X and observe that the two end-points of J are equal in the
homotopy category.

Using Lemma 5.4.4 together with the equivalence of groupoids (5.4.5.3),
we see that we can improve the property of fullness by asserting that any
commutative diagram as in a) above can be lifted to an analogous commutative
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diagram in ho(Hom(A, 8)). Therefore, relations between maps expressed as in
b) can be lifted in ho(Hom(A, 8)), hence faithfulness. O

Remark 5.4.6. The preceding theorem will be fundamental to reach the co-
category-theoretic Yoneda Lemma; see the proof of Theorem 5.8.4 below. It
can be improved as follows.

Corollary 5.4.7. Letp : X — Aand q : Y — A be two left fibrations with U-
small fibres classified by two morphisms F and G, respectively. The canonical
map Hom(A, 8)(F,G) — Map,(X,Y) is an equivalence of co-groupoids.

Proof For any simplicial set K, if Fx denote the composition of F with the
projection p : K X A — A, we have

Hom(K, Hom(A, 8)(F,G)) =~ Hom(K x A, 8)(Fk,Gk)
and we also have a canonical isomorphism
Hom (K, Map,(X,Y)) ~ Mapgys(K X X,K X X) .
Hence, applying the preceding theorem for K x A, we see that the map
mo(Hom(K, Hom(A, 8)(F, G))) — mo(Hom(K, Map, (X,Y)))

is bijective for any simplicial set K. Since, for any Kan complex W, the set
mo(Hom (K, W)) is the set of homotopy classes of maps from K to W in the
Kan-Quillen model category structure, applying the Yoneda Lemma to the
homotopy category of Kan complexes, this implies the corollary. O

Corollary 5.4.8. The category ho(8) is equivalent to the homotopy category
of U-small Kan complexes.

We can also see that changes of universes are harmless.

Proposition 5.4.9. Let V be a Grothendieck universe which contains U as an
element. Let 8 be the co-category of V-small co-groupoids (i.e. maps from
A" — & correspond to left fibrations with V -small fibres equipped with coher-
ence data for base change, as in Definition 5.2.3). Then, for any simplicial set
A, the inclusion map

Hom(A, 8) — Hom(A, §')
is fully faithful.

Proof Letp:X — Aand g :Y — A be two left fibrations with U-small
fibres classified by two morphisms F and G, respectively. We may also see F
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and G as maps with values in 8, so that we get the commutative triangle below
in ho(8’).

Hom(A,8)(F,G) Hom(A,8")(F,G)

\ /

Map,(F,G)

Since the two slanted maps are isomorphism, by Corollary 5.4.7, so is the
horizontal one. O

The latter proposition also means that the apparently naive notion of fibrewise
U-smallness, which consists in asking that the fibre of a left fibration at each
object is equivalent to a U-small co-groupoid, is almost equivalent to the one
we gave.

Corollary 5.4.10. Let A be a simplicial set, and p : X — A a left fibration. We
assume that, for each object a of A, the co-groupoid X, = p~'(a) is equivalent
to a U-small co-groupoid. Then there exists a left fibration with U-small fibres
q Y — A and a fibrewise equivalence X — Y over A. Equivalently, there is
an homotopy Cartesian square of the following form.

X — 8.

pl lpuniv

A—— 8§

Proof We choose a universe V as in the previous proposition. Let 8y, be
the full subcategory of 8’ whose objects are the V-small co-groupoids which
are equivalent to a U-small co-groupoid. The inclusion 8 — §j; is essentially
surjective, by definition, and fully faithful, by the previous proposition. Hence
this is an equivalence of co-categories, which implies that the induced functor

Hom(A, 8) — Hom(A, 8y)

is an equivalence of co-groupoids. Since we can always choose V so that
the left fibration p has V-small fibres, the essentiall surjectivity of the latter
equivalence, together with Corollary 5.4.7, prove that p is equivalent to a left
fibration with U-small fibres ¢ : ¥ — A in the covariant model category
structure over A. O

Remark 5.4.11. In his thesis, Nichols-Barrer states Theorem 5.2.10 as a con-
jecture and deduces from it a version of Corollary 5.4.7; see [NBO7, Conjecture
2.3.1 and Theorem 2.4.12]. He also introduces the homotopy coherent nerve
of the simplicial category of Kan complexes [NBO7, Proposition 2.3.5] and
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conjectures that it is equivalent to the co-category S above [NBO7, Conjecture
2.3.10]. Since the homotopy coherent nerve functor is a Quillen equivalence
relating the Joyal model category structure with the homotopy theory of simpli-
cial categories of Dwyer and Kan (see [Lur(9, Ber18]), and since the simplicial
category of small Kan complexes is known to be the Dwyer-Kan localisation
of the category of small simplicial sets by the class of weak homotopy equiv-
alences, this latter conjecture essentially asserts that the co-category 8 is the
localisation of the category of U-small simplicial sets by the class of weak
homotopy equivalences. This reformulation of Nichols-Barrer’s second con-
jecture will be proved below; see Theorem 7.8.9.

5.5 Bivariant model category structures

5.5.1. This section addresses another approach to the theory of functors from
a product of oco-categories A X B to the oo-category of co-groupoids 8. We
write bisSet for the category of bisimplicial sets. We first recall from paragraph
3.1.15 a few basic operations in this context.

Let pry and pr,, be first and second projection from A X A to A, respectively.
We have pull-back functors

pr; : sSet — bisSet, i =0, 1.
For two simplicial sets A and B, the external product A ® B is defined as:
(5.5.1.1) AR B =pri(A) x pry(B) .
In particular, the evaluations of A ® B are of the form:
(5.5.1.2) (AR B)yn=AnXB,.

Remark that the representable presheaves on the product A X A are precisely
the ones isomorphic to A" ® A", form,n > 0.

Another natural operation is induced by the diagonal functor § = (1, 1) :
A — A X A. The corresponding functor

(5.5.1.3) 6" = diag : bisSet — sSet
has a left adjoint

(5.5.1.4) 01 : sSet — bisSet

as well as a right adjoint

(5.5.1.5) 0s : sSet — bisSet .
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We recall that, for any bisimplicial set X, the evaluation of the diagonal diag(X)
atnis

(5.5.1.6) F(X)n=Xum-
In particular, we have the following formula:
(5.5.1.7) "(ARB)=AXB.

Given two simplicial sets A and B, we remark that we have a canonical identi-
fication:

(5.5.1.8) (AXA)/(A® B) =A/AxA/B.

Using this, we can reinterpret formula (5.5.1.7) by asserting that there is a
canonical Cartesian square of categories of the form

A/(AxB) 2%, AJAxA/B

(5.5.1.9) l l

A—2% L AXA

where d4 p sends a triple (A", (a,b)), witha : A* - Aand b : A" — B
two morphisms of simplicial sets, to the pair (A" ® A", a ® b), where the map
aRb: A"® A" — AR B is the one induced by functoriality of the external
product.

5.5.2. For a bisimplicial set X and a simplicial set K, recall that one defines a
simplicial set XX by the formula

(5.5.2.1) (X%),, = Hompisser (A" R K, X) =~ lim Xy -
AP—K

Similarly, one defines X X by the formula

(5.5.2.2) (XX), = Hompjsser (K ® A", X) =~ lim X -

AM—K
Definition 5.5.3. The class of bi-anodyne extensions is the smallest saturated
class of morphisms of bisimplicial sets containing inclusions of the form
(5.53.1
A"RIA"UA'RA" -5 A"RA" and A"RALUIA"RA" - A" A"

form>1,n>0and0 <k <m,orm >0,n>1and0 < k < n, respectively.
We define Kan bifibrations as the morphisms of bisimplicial sets with the
right lifting property with respect to bi-anodyne extensions.
A Kan bicomplex is a bisimplicial set X such that the map from X to the
terminal bisimplicial set is a Kan bifibration.
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We obviously have:

Proposition 5.5.4. For a morphism of bisimplicial sets X — Y, the following
conditions are equivalent.

(i) The morphism X — L is a Kan bifibration.
(ii) For any anodyne extension K — Y in sSet, the induced maps

XL - xK sk YE and X — KX xky by
are trivial fibrations.
(iii) For any monomorphism K — L in sSet, the induced maps
XL xK sk YE and X — KX xky by
are Kan fibrations.

5.5.5. The category A X A is an Eilenberg-Zilber category, and the boundary
of a representable presheaf A ® A" is A ® JA" U dA™ ® A". Therefore, a
morphism of bisimsplicial sets is a trivial fibration (i.e., has the right lifting
property with respect to monomorphisms) if and only if it has the right lifting
property with respect to inclusions of the form

(5.55.1) A"RIA"UIAN"RA" - AR A"
with m, n > 0. This gives the following statement.

Proposition 5.5.6. For a morphism of bisimsplicial sets X — Y, the following
conditions are equivalent.

(i) The map p is a trivial fibration.
(ii) For any monomorphism K — Y in sSet, the induced map

XL — xK xyk YE
is a trivial fibration.
(iii) For any monomorphism K — Y in sSet, the induced map
Lx - KX xky Ly
is a trivial fibration.

Theorem 5.5.7. There is a model category structure on the category of bisim-
plicial sets whose fibrant objects are the Kan bicomplexes and whose cofi-
brations are the monomorphisms. A morphism between Kan bicomplexes is
a fibration if and only if it is a Kan bifibration. The weak equivalences are
the morphisms X — Y whose associated diagonal diag(X) — diag(Y) is
a weak homotopy equivalence. Moreover, both pairs (6,,6%) and (6%, 6.) are
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Quillen equivalences (wWhen we endow the category of simplicial sets with the
Kan-Quillen model category structure).

Proof Letusputl = A'®A°. This is an interval, so that the Cartesian product
with I defines an exact cylinder. Since, for £ = 0, 1, the inclusion {&} — Al s
an anodyne extension, for any monomorphism of simplicial sets K — L, the
induced map A = A’ x K U {€} x L — A! x L = B is an anodyne extension.
This implies that, for any bi-anodyne extension X — Y, the induced map

IXxXU{e} XY > IXY

is a bi-anodyne extension for € = 0, 1. Indeed, it is sufficient to prove this
for X — Y a generating bi-anodyne extension of the form (5.5.3.1). We then
get a map of the foom ARV UBRU — B RV associated to an anodyne
extension A — B and a monomorphism U — V, and Proposition 5.5.4 implies
that such a map has the left lifting property with respect to Kan bifibrations.
In other words, the class of bi-anodyne extensions define a class of /-anodyne
maps, and we can apply Theorem 2.4.19 to get the expected model category
structure. The diagonal functor 6* = diag preserves cofibrations, and it is
clear that it sends the generating bi-anodyne extensions (5.5.3.1) to anodyne
extensions. Therefore, Proposition 2.4.40 ensures that (6*, d..) is a Quillen pair.
In particular, the functor 6* preserves weak equivalences and cofibrations, and
commutes with colimits. It follows from Proposition 3.1.13 that the functor
o1 preserves monomorphisms. Replacing Sd by ¢, in the proof of Proposition
3.1.18, we see that the functor §; sends the horn inclusions AZ — A" to
bi-anodyne extensions. Another application of Proposition 2.4.40 gives that
(61,6%) is a Quillen pair. Since both functors d; and 6* are left Quillen functors,
the class of simplicial sets X such that the unit map X — 6*6(X) is a weak
homotopy equivalence is saturated by monomorphisms. But this class contains
the representable simplicial sets A", since, in this case, the unit map is the
diagonal embedding of A" into its two fold product A" x A”". Therefore, by
virtue of Corollary 1.3.10, this class contains all simplicial sets. Similarly, the
class of bisimplicial sets X such that the co-unit map §,6*(X) — X is a weak
equivalence is saturated by monomorphisms. In the case where X = A" m A"
is representable, we have 6*(X) = A™ x A" weakly contractible, and therefore,
since ) preserves the terminal object as well as weak equivalences, by virtue
of Corollary 1.3.10, to prove that the co-unit map 616" (X) — X is a weak
equivalence for all X, we only have to check that A" X A" is weakly contractible
for all m and n, which is an easy exercise. In other words, the adjoint pair
(61,6%) is a Quillen equivalence. In particular, the functor §* preserves weak
equivalences and induces an equivalence of homotopy categories. Therefore,
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the Quillen pair (6%, §,) is a Quillen equivalence as well. This readily implies
that the functor §* preserves and detects weak equivalences. O

Remark 5.5.8. If X — Y is a morphism of bisimplicial sets is such that, for any
integer m > 0, the induced map X*" — Y2" is a weak homotopy equivalence,
then it is a weak equivalence of the model category structure of Theorem 5.5.7.
Indeed, itis sufficient to check that its diagonal is a weak homotopy equivalence,
which is precisely the conclusion of Theorem 3.1.16.

Remark 5.5.9. Although we will not use it in these notes, it is a fact that
the trivial cofibrations of the model category structure of Theorem 5.5.7 are
precisely the bi-anodyne extensions. This can be proved in a pedestrian way,
or by applying general results from Grothendieck’s theory of test categories,
such as [Cis06, Corollaire 8.2.19]. However, this means that, if we consider
the class of absolute weak equivalences associated to the homotopical structure
used to construct the model category structure of Theorem 5.5.7 via Definition
2.5.2, we simply get the class of maps whose diagonal is a weak homotopy
equivalence. As we did to define the covariant model category structures, we
shall now consider an alternative presentation using a bivariant version of the
class of left fibrations, which will provide an interesting notion of absolute
weak equivalence.

Definition 5.5.10. The class of left bi-anodyne extensions (of right bi-anodyne
extensions) is the smallest saturated class of morphisms of bisimplicial sets
containing inclusions of the form

(5.5.10.1)

A"RIATUAIRA" -5 A" RA" and A" RALUOIA"RA" - A" mA"

form>1,n>0and0 <k <m,andform >0,n>1and0 < k <n
form >1,n>0and 0 < k <m,andform >0,n >1and 0 < k < n,
respectively)

We define left bifibrations (right bifibrations) as the morphisms of bisimpli-
cial sets with the right lifting property with respect to left (right) bi-anodyne
extensions.

As before, we have:

Proposition 5.5.11. For a morphism of bisimplicial sets X — Y, the following
conditions are equivalent.

(i) The morphism X — Y is a left (right) bifibration.
(ii) For any left (right) anodyne extension K — L in sSet, the induced maps

XL xK sy YE and X — KX xky by
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are trivial fibrations.
(iii) For any monomorphism K — L in sSet, the induced maps

XL - XK sk YE and X — KX xky by
are left (right) fibrations.

Lemma 5.5.12. Let I be either the interval J ® A° or the interval A° = J. Then
the exact cylinder defined as the Cartesian product with I, together with the
class of left (right) bi-anodyne extensions form an homotopical structure in the
sense of Definition 2.4.11.

Proof We only consider the case of left bi-anodyne extensions, from which
the case of right bi-anodyne extensions can be obtained by an easy duality
argument. The two inclusions {¢} — J are left anodyne extensions because
they are weak categorical equivalences (Proposition 5.3.1). Therefore, for any
monomorphism of simplicial sets K — L, the induced map J X KU{e} XL —
J x L is a left anodyne extension. This implies, using the same arguments as
in the first part of the proof of Theorem 5.5.7, that, for any left bi-anodyne
extension X — Y, the induced inclusion

IXXU{e} XY > IXY
is a bi-anodyne extension for € = 0, 1. O

Theorem 5.5.13. Let C be a bisimplicial set. There is a model category struc-
ture on the slice category bisSet|C whose cofibrations are the monomorphisms,
and whose fibrant objects are the left (right) bifibrations of codomain C. For
two left (right) bifibrations p : X - Cand q:Y — C,amap f : X — Y over
C is a fibration if and only if it is a left (right) bifibration.

Proof We use the construction of paragraph 2.5.1 for A=A XA and S = C,
applied to the homotopical structure provided by the preceding lemma. O

The model category structure of the previous theorem will be called the bi-
covariant model category structure over C (the bicontravariant model category
structure over C, respectively).

Remark 5.5.14. In the case where C is the terminal bisimplicial set, the bico-
variant model category structure coincides with the model category structure
of Theorem 5.5.7. To see this, it is sufficient to check that the classes of fibrant
objects are the same. Let X be a bisimplicial set such that the map to the final
bisimplicial set is a left bifibration. Then, for any simplicial set K, the simplicial
set XX is a Kan complex because the map XX — A is a left fibration. For any
monomorphism of simplicial sets K — L, the map X* — XX is a left fibration
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between Kan complexes, and thus a Kan-fibration. By duality, the same is true
for the map X — X X. Proposition 5.5.4 shows that X is a Kan bicomplex.

Proposition 5.5.15. Let u : C — D be a morphism of bisimplicial sets. We
consider the adjunction

(5.5.15.1) uy : bisSet/C 2 bisSet/D : u*

where u, is the functor (X, p) v~ (X, up). Then (5.5.15.1) is a Quillen pair for
the bicovariant (bicontravariant, respectively) model category structures over
C and D.

Proof The functor u) preserves monomorphisms as well as left (right) bi-
anodyne extensions. Therefore, this proposition is a particular case of Proposi-
tion 2.4.40. O

Lemma 5.5.16. Let A and B be to simplicial sets, and leti : S — T be a
monomorphism of bisimplicial sets over A ® B. Assume that, the map from T
to AR B is a left (right) bifibration and that, for any integer n > 0, the induced
map SY' — TA" is a left (right) anodyne extension. Then the map i is a left
(right) bi-anodyne extension.

Proof By virtue of Proposition 2.5.6, it is sufficient to prove that the map i is a
weak equivalence of the bicovariant (bicontravariant) model category structure
over A ® B. Let A be the set of monomorphisms of the form

A"ROA"UAIRA" — A" m A"

form >1,n>0and 0 < k < m (and 0 < k < n, respectively). Applying
the small object argument to A, we factor i into a map j : § — X followed
by amap g : X — T, where g has the right lifting property with respect to
A, while j belongs to the smallest saturated class of maps containing A. The
class of morphisms of bisimpicial sets K — L such that KA" — LA" is a left
(right) anodyne extension for any # is saturated and contains A. Therefore, the
map S&" — X" are left (right) anodyne extensions for all # > 0. On the other
hand, for all n, the map XA 5 TA" is a left (right) fibration, and Corollary
4.1.9 ensures that it is cofinal (final). This implies that the maps X" — 72"

are trivial fibrations. On the other hand, for any simplicial set K, we have

(AEB)K = A X Homse (K, B) = U A
Homgse (K, B)

The projection (A®B)X — A is thus a Kan fibration for all K. This mean that we
can see the maps X2" — T2" as trivial fibrations between fibrant objects of the
covariant (contravariant) model category structure over A. Since both functors
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K — XX and K +— TX are continuous and send monomorphisms of simplicial
sets to left (right) fibrations we see that the class of simplicial sets K such
that the map XX — TX is a weak equivalence of the covariant (contravariant)
model category structure over A is saturated by monomorphisms. Therefore,
the map XX — TX is a trivial fibration for all K. This implies that the map
Xt — XK x;x T is a trivial fibration for any monomorphism K — L.
Therefore, the map ¢ : X — T is a trivial fibration of bisimplicial sets, and,
since i is a monomorphism, it is a retract of j, which is in particular a left
(right) bi-anodyne extension. m]

Lemma 5.5.17. The functor §* = diag : bisSet — sSet sends left (right)
bi-anodyne extensions to left (right) anodyne extensions.

Proof 1tis sufficient to check this on generators. Using Formula (5.5.1.7), this
follows right away from Proposition 3.4.3. m}

Proposition 5.5.18. Let A and B be two simplicial sets, andletp : X — AR B
be a left bifibration. We consider two objects a and b of A and B, respectively.
We can form the fibre X,p of pata®b : A ® A — A ® B. We also choose
fibrant replacements A/a — A and E/b — Bofa: A’ - Aandb : A° - B
in the contravariant model category structures over A and B, respectively. We
have the pull-back 6 (X)(a,p) = (A/a xé/b) X (axB) 0" (X). Then the canonical
map 8" (Xa,p) = 0°(X)/(a,p) is a weak homotopy equivalence.

Proof We consider the pull-back
Xjamb = (Aja 8 Byp) X(aup) X

so that the map 6*(X4,5) — 6" (X)/(a,p) is the image by 6" of the canonical
map X, , — X;amp- It is thus sufficient to prove that the latter map is a weak
equivalence of the model category of Theorem 5.5.7. Replacing A and B by
A Ja and B /b, Tespectively, and replacing X by X, ,xp, we may assume that a and
b are final objects of A and B, and we want to prove that X, , — X is a weak
equivalence. Let us write X, — A°® B for the pull-back of the map X — A= B
along the map a ® 13 : A°® B — A ® B. For any simplicial set K, the map
XK — XK is final because it is the pull-back of the final map Homgs,, (K, B) —
A x Homgs,, (K, B) along the left fibration XX — A x Hom(K, B). Therefore,
Theorem 3.1.16 ensures that the inclusion X, — X is a weak equivalence.
Similarly, for any simplicial set K, the map K Xap — Kx, is final: it is the
pull-back of the final map b : A — B along the left fibration X, — B.
Therefore, applying Theorem 3.1.16 (up to a permutation of the variables),
we obtain that the embedding X, , — X, is a weak equivalence as well. The
composed map X, , — X, — X is thus a weak equivalence. O
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Corollary 5.5.19. Under the assumptions of the preceding proposition, if we
choose a fibrant replacement q : Y — A X B of 6*(p) : 6*(X) — A X B for the
covariant model category structure over A X B, the induced map on the fibre
over (a, b) is an equivalence of co-groupoids 6*(Xa.p) - Yab.

Proof 1t follows from Remark 5.5.14 that the fibre X, ; is fibrant in the
model structure of Theorem 5.5.7, so that §*(X,,5) is a Kan complex. We
also know that the fibres of left fibrations are Kan complexes. Therefore, it is
sufficient to prove that the map 6*(X) — Y is a fibrewise equivalence. We have
a commutative square of the form

6*(Xa,b) — Ya,b

l l

0" (X)/(ab)y — Y/(ap)

in which Y4 ) = (A/a X E/b) X(axB) Y. The vertical maps of this square are
weak homotopy equivalences because of the preceding proposition for the first
one, and because ¢ is proper for the second one. The lower horizontal map is
cofinal because it is the base change of a cofinal map along the smooth map
A Ja X B /b — A X B. In conclusion, all the morphisms of this square are weak
homotopy equivalences over A X B. O

Lemma 5.5.20. Let p : X — A ®R B be a left (right) bifibration, and n > 0.
Then the induced map

M XY 5 (AxB)Y =AxB,

is a left (right) fibration; in particular, the induced map X*' — A is a left
(right) fibration. We consider furthermore an object a of A as well as an n-
simplex b of B, and we let ¢ be the restriction of b : A" — B to {0} c A"
(to {n} C A", respectively). We finally write Xﬁfb for the fibre of p»" at (a, b).
Then there is a functorial weak equivalence of the form

XY, = 6" (Xae) .

Proof We shall consider the case of a left fibration, the other one being
deduced by duality. The first assertion is a particular case of condition (iii) of
Proposition 5.5.11. Since B,, is discrete, the projection A X B, — A is a left
fibration. Since the inclusion of {0} into A" is cofinal (hence a left anodyne
extension), condition (ii) of Proposition 5.5.11 implies that the induced map

n 0
XY — (A X By) X(axp,) X*
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is a trivial fibration over A X B,,. Passing to the fibres over the objects of A X B,;,
we get trivial fibrations:

A AO
Xa,b - Xa,c .

To finish the proof, it sufficient to produce a functorial weak homotopy equiva-
lence from XaA,OC t0 0" (Xg,c). Letus write Y = X, .. We shall prove that there is
a canonical weak homotopy equivalence Yy 6 (Y). Indeed, what precedes
(for b = c) shows that there is a canonical anodyne extension YA 5 yA" in-
duced by the map A" — A°, because the inclusion {0} — A" induces a trivial
fibration YA" — YA’ by Proposition 5.5.4). Therefore, by virtue of Theorem
3.1.16, the image of the canonical map YA RA? > ¥ by ¢* is a weak homotopy
equivalence. [

Proposition 5.5.21. Letp : X > AR Bandq :Y — AR B be two left (right)
bifibrations, and ¢ : X — Y a morphism of bisimplicial sets over A ® B. The
following conditions are equivalent.

(i) The map ¢ is a weak equivalence of the bicovariant (bicontravariant)
model category structure over A R B.

(ii) For any objects a and b in A and B, respectively, the map Xap — Ya.p
is a weak equivalence of the model category structure of Theorem 5.5.7.

(iii) For any objects a and b in A and B, respectively, the map §* (X, p) —
6" (Yu.p) is an equivalence of co-groupoids.
(iv) For any integer n > 0, the map X*" — Y2" is a fibrewise equivalence
over A.
(v) For any integer m > 0, the map ™" X — 2"'Y is a fibrewise equivalence
over B.

Proof The permutation of factors in A X A induces an isomorphism from
bisSet/A ® B onto bisSet/B ® A which preserves left (right) bifibrations, so
that, if conditions (i) and (iv) are equivalent, then conditions (i) and (v) are
equivalent as well. Hence we may leave out condition (v). We shall focus on
the case where p and ¢ are right fibrations, since the case of left fibrations
will follow by an obvious duality argument. Since the funtor 6* preserves and
detects weak equivalences of Theorem 5.5.7, it is clear that conditions (ii) and
(iii) are equivalent. Since right Quillen functors preserve weak equivalences
between fibrant objects, the fact that condition (i) implies condition (ii) follows
from Proposition 5.5.15, applied for u = a ® b. For any object (a, b) of AX B,
if b, : A — B denotes the evaluation of b at n, we have a commutative square
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of the form

A" A"
_—
Xa,b Ya,b

| l

0" (Xu,hn) — 0" (Yu,bn)

in which the vertical maps are weak homotopy equivalences, by virtue of
the preceding lemma. Since the fibre of X" over a is the disjoint union of
the X i"b’s, this implies that conditions (iii) and (iv) are equivalent. It is now
sufficient to prove that condition (iv) implies condition (i). Theorem 4.1.16
implies that conditions (iv) is equivalent to the property that the maps X" —
Y2" are weak equivalences of the contravariant model category structure over
A (observe again that the fibre of X" over a is the disjoint union of the X ﬁ’"b’s).
We may choose a factorisation of the map ¢ into a cofibration ¢ : X — T
followed by a trivial fibration 7 : T — Y. It is clear that condition (i) for ¢ is
equivalent to condition (i) for . Similarly, since the induced maps 72" — Y2"
are trivial fibrations as well, condition (iv) for ¢ is equivalent to condition (iv)
for . In other words, we may assume, without loss of generality, that ¢ is a
monomorphism. But then, Lemma 5.5.16 shows that condition (iv) implies that
@ is a right bi-anodyne extension, hence satisfies condition (i). O

Corollary 5.5.22. Letp: X > AR Band q:Y — AR B be two bisimplicial
sets over A ® B. A morphism ¢ : X — Y over A ® B is a weak equivalence of
the bicovariant (bicontravariant) model category structure over A R B if and
only if the induced map 6 (¢) : 6" (X) — 6*(Y) is a weak equivalence of the
covariant (contravariant) model category structure over A X B.

Proof We choose a commutative square of bisimplicial sets over A ® B of the
form

X 15 x

b

y — Ly

in which i and j are left bi-anodyne extensions and the structural maps of X’
and Y’ are left bifibrations. Lemma 5.5.17 implies that the maps ¢*(i) and
0*(j) are left anodyne extensions. Therefore, we may assume, without loss of
generality, that both p and g are left bifibrations. But then, Theorem 4.1.16
and Corollary 5.5.19 show that 6*(¢) is a weak equivalence over A X B if and
only if, for any objects a and b in A and B, respectively, the induced map
6" (Xa,p) = 6" (Ya.p) is a weak homotopy equivalence. This corollary is thus
a reformulation of Proposition 5.5.21. O
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5.5.23. Let A and B be two simplicial sets. The functor 64,5 : A/A X B —
A/A x A/B induces an adjunction

(5.5.23.1) Oapy:sSet/AX B 2 bisSet/ AR B : 0}y p

where the functor 67 , simply sends a morphism p : X - A® B to 6*(p) :
6*(X) — AXxB. This latter functor has a right adjoint 0, p..- Thefunctord , 5,
has an explicit description: it sends a map p : X — A X B, to the composed
map £61(p) : 61(X) > AR B, where € : §;(A X B) > AR B is the co-unit
map (corresponding to the identity of A X B = 6*(A R B)).

Theorem 5.5.24. The pair (6, 4,
covariant (contravariant) model category structure over the Cartesian product
A X B to the bicovariant (bicontravariant) model category structure over the
external product A ® B. Furthermore, the pair (6*A’B, 6A’B’*) is also a Quillen
equivalence from the bicovariant (bicontravariant) model category structure

over AR B to the covariant (contravariant) model category structure over AX B.

6*A’ ) 1s a Quillen equivalence from the

Proof The class of maps (a, b) : X — A X B such that the induced map X —
6*6)(X) is a weak equivalence of the covariant model category structure over
A X B is aclass of objects of sSet/A x B which is saturated by monomorphisms.
This class contains all the maps of the form (a, b) : A" — A X B. Indeed, the
diagonal A" — A" x A" sends the initial object 0 to the initial object (0, 0),
hence is a left anodyne extension. Corollary 1.3.10 thus shows that this class
consists of all simplicial sets over A X B. Therefore, by virtue of Corollary
5.5.22, the functor ¢ AB. is a left Quillen functor, and what precedes also
implies that the induced total derived functor is fully faithful, and another use
of Corollary 5.5.22 shows that its right adjoint is conservative. This readily
implies the first assertion of the theorem. The second one follows from the first,
as in the proof of the last assertion of Theorem 5.5.7. O

Corollary 5.5.25. The functor 6, : sSet — bisSet sends left (right) anodyne
extensions to left (right) bi-anodyne extensions.

Proof We only have to consider the case of left anodyne extensions, by the
usual duality argument. The class of morphisms of simplicial sets whose image
by d; is a left bi-anodyne extension is saturated. Therefore, it is sufficient to
check that, for n > 1 and 0 < k < n, the inclusion of 5;(/\’,2) into 6(A") =
A" ® A" is a left bi-anodyne extension. But we know, by the previous theorem
applied for A = B = A", that it is a trivial cofibration of the bicovariant model
structure over A" ® A", hence, since the identity of A" ® A" is a left bifibration,

it is a left bi-anodyne extension, by Propositions 2.5.3 and 2.5.6. O
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5.6 The twisted diagonal
5.6.1. Given asimplicial set A, we define a bisimplicial set S(A) by the formula
(5.6.1.1) S(A)m.n = Homgse, ((A™) % A", A), m,n > 0.

This defines a functor from the category of simplicial sets to the category of
bisimplicial sets. There is a canonical map

(5.6.1.2) (sa,t4) 1 S(A) > AP R A

induced by the inclusions (A™)% — (A™)? x A" «— A". We finally define
S(A) as the diagonal of S(A):

(5.6.1.3) S(A) = 6" (S(A)) .

The elements of S(A),, thus correspond to morphisms (A™")% « A" — A, for
n > 0. We also have a canonical map

(5.6.1.4) (sasta) : S(A) > AP X A.

Proposition 5.6.2. If A is an co-category, then the induced map (5.6.1.4) is a
left fibration, and the simplicial set S(A) is an co-category.

Proof We shall first prove that the map (5.6.1.2) is a left bifibration (see
Definition 5.5.10). Given two monomorphisms of simplicial setsi : K — L
and j : U — V,aswell astwomaps f : L - Aandv:V — A, thereis a
one-to-one correspondence between the following lifting problems.

Leruv

[ w LeUUK=YV —— S(4)

LP«UUK?*V — A i
e
[ LRV — AP’RA
LP «V

Therefore, Proposition 3.4.17 implies that (5.6.1.2) is aleft bifibration. Indeed, it
ensures that, for i the boundary inclusion dA™ — A™ and j the horn inclusion
Al — A", withm > 0,n > 1and 0 < k < n, or for i the horn inclusion

AZ" — A™ and j the boundary inclusion A" — A", withm > 1, n > 0 and
0 < k < n, we have L? %V = A™*" and L « U U K% % V = AJ"**" for
some 0 < [ < m + 1 + n. The proposition now follows from the fact that the
functor 6* sends left bifibrations to left fibrations, since its left adjoint &, sends

left anodyne extensions to left bi-anodyne extensions (Corollary 5.5.25). O
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Definition 5.6.3. The twisted diagonal of an co-category A is the co-category
S(A).

Remark 5.6.4. The opposite of the twisted diagonal of the opposite of A is also
known as the twisted arrow category of A. All the results of this chapter on the
twisted diagonal have their counterpart in terms of twisted arrow categories.

If A is the nerve of a small category C, then one may describe S(A)? as
the nerve of the category of elements of the presheaf (x,y) — Home (x,y).
In general, one might expect to extract the twisted diagonal of A out of the
oco-category of arrows of A from a general procedure of twisting Cartesian
fibrations over a binary product. Although we shall not explain such a general
procedure here, its outcome in the special case of the co-category of arrows is
discussed in Corollary 5.6.14 below.

Proposition 5.6.5. If A is an co-category, for any object a of A, we form the
following Cartesian squares.

aS(A) —— 5(4) S(A)a — S(A)
A DI por s a A B8 qop oy g

Then there are canonical cofinal maps
a\A — 4,S(A) and (A/a)” — S(A),
over A and over AP, respectively.

Proof We shall only consider the case of the fibre , S(A), since the other one
can be deduced from the first by appropriate duality arguments. By virtue of
the dual versions of Proposition 4.1.11 and of Theorem 4.1.16, it is sufficient
to prove that there is a canonical fibrewise equivalence a\A — , S(A) over A.
Let us consider the Cartesian square below.

aS(A) — S(4)

l(SAJA)

A0 A LA por g A

Then we have 6*(,S(A)) = 4, S(A). Furthermore, we see that there is a canon-
ical identification:

A%(4S(A)) =a\A.

Since, by the preceding proposition, the map (s4,4) is a left bifibration, the
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property that the induced inclusion map
¥ (a8(4)) — 6" (uS(4))
is a fibrewise equivalence over A is a particular case of Lemma 5.5.20. O

Corollary 5.6.6. A functor between co-categories u : A — B is a fully faithful
if and only if the induced map

S(A) = (A? x A) X(pwxp) S(B)
is a fibrewise equivalence over A% X A.

Proof 1Indeed, Corollary 4.2.10 and Proposition 5.6.5 show that the induced
maps on the fibres are homotopic to the canonical maps A (x, a) — B(u(x), u(a)).
O

Lemma 5.6.7. Let us consider three co-categories A, B and C, as well as a
commutative square of the form

X'—f>Y

lr Js

AXC 2% AxB

in which p and q are left fibrations. If the map f is fibrewise cofinal over A,
then it is cofinal. In other words, if the induced map on the fibres f, : X, — Y,
is cofinal for any object a of A, then f is cofinal as well.

Proof 1t is sufficient to prove that f is a weak equivalence of the covariant
model structure over A X B, by the dual version of Proposition 4.1.11. Given
any map 7 — B and any object b of B, we write T/b = T Xg B/b. By virtue
of Proposition 4.4.30, it is sufficient to prove that the induced functor f/b is a
weak equivalence of the covariant model structure over A. We remark that we
have a commutative square of the form

x/b — v

Jp/h lq/b
1A><g/b
AXC/b —> AXB/b
which is obtained by pull-back from the original one. For any object a of
A, the functor on the induced fibres X, — Y, is cofinal over B. Since the
projection B/b — B is aright fibration, it is smooth, hence the induced functor
X./b — Y, /b is cofinal. This means that the functor f/b is fibrewise cofinal
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over A. But both functors p/b and g /b are left fibrations, since they are pull-
backs of the left fibrations p and ¢, respectively, so that the maps X/b — A
and X/b — A are proper, because any projection of the form A x D — A is
proper. Henceforth, f/b is a weak equivalence of the covariant model structure
over A, by Corollary 4.4.28. O

5.6.8. Letu : A — Bbeafunctor between co-categories. We have the following
commutative diagrams.

G681 (syam| | [smm

AP x A L AP X B B’ x B

u’’x1p

S(A) —— (B? X A) X(gwxB) S(B) —— S(B)
(5.6.8.2) (‘”"’A)l l ym,zs))

AP x A A gopyq 1B popyp
Proposition 5.6.9. The canonical maps

S(A) — (A x B) X(gwrxp) S(B) and S(A) — (B” x A) X(porxp) S(B)
are cofinal.

Proof Proposition 5.6.5 shows that, for any object a of A, the vertical maps
of the obvious commutative squares

a\A — u(a)\B (A/a)?” —— (B/u(a))”
| oo |
aS(A) — u(a) S(B) S(A)a —_— S(B)u(u)

are cofinal. On the other hand, the upper horizontal maps are cofinal, because
they preserve initial objects, so that we can apply Proposition 4.3.3. Therefore,
the lower horizontal maps are cofinal as well, by Corollary 4.1.9. This proves
our assertion, by the preceding lemma. O

5.6.10. There is an alternative point of view on the twisted diagonal, which con-
sists in replacing the join operation * by the diamond operation ¢ of paragraph
4.2.1. For a simplicial set A, we put:

(5.6.10.1) Se(A)m.n = Homgge: ((A™) o A", A) .
This defines a bisimplicial set S, (A). As above, there is a canonical map

(5.6.10.2) S.(A) - AR AP
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induced by the inclusions (A™)? — (A™)% o A" «— A", and we define S, (A)
as the diagonal of S, (A):

(5.6.10.3) Se(A) = 6"(Ss(A)) .
We also have a canonical map
(5.6.10.4) So(A) > AP X A.

The canonical map (A™)% o A" — (A™)° « A" provided by Proposition 4.2.2
induces the natural commutative triangle below.

S(A) ——— S.(A)

(5.6.10.5) \ /

AP x A

Lemma 5.6.11. For any monomorphisms of simplicial sets i : U — V and
Jj S =T, ifiisaleft anodyne extension or if j is a right anodyne extension,
then the induced map

VoSUUOT - VoT
is a trivial cofibration of the Joyal model category structure.

Proof We already know this property if we replace ¢ by = (this is an easy
consequence of Proposition 3.4.17). Proposition 4.2.3 thus implies this lemma.
O

Replacing * by ¢ in the proof of Proposition 5.6.2 (and replacing the use of
Proposition 3.4.17 by the preceding lemma), we get:

Proposition 5.6.12. If A is an co-category, then the map (5.6.10.2) is a left
bifibration. In particular, the induced map (5.6.10.4) is a left fibration, and the
simplicial set S, (A) is an co-category.

Similarly, replacing * by ¢ in the proof of Proposition 5.6.13 gives the
following statement, where we have put

a\\A = (A /[a)* .

Proposition 5.6.13. For any object a of an co-category A, we form the following
Cartesian squares.

aSe(A) — S.(A) Se(A)a — So(A)
A2l pory g Ao L2 yopy g
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Then there are canonical fibrewise equivalences of left fibrations
a\\A — ;S.(A) and (A]la)”? — S.(A)a
over A and over AP, respectively.
Corollary 5.6.14. For any oco-category A, the comparison map
S(A) — S.(A)

is a fibrewise equivalence of left fibrations over AP X A (hence an equivalence
of oco-categories). In particular, for any object a of A, there is a canonical
commutative square of the form

a\A — ,S(A)

l l

a\\A —— 45, (A)
in which all the maps are fibrewise equivalences over A.
Proof This follows right away from Propositions 4.2.9, 5.6.5 and 5.6.13. O

Remark 5.6.15. As observed in the proof of Corollary 4.2.10, the fibre of the
canonical map x\\A — A over an object y of A is the co-groupoid of maps
A(x,y). Therefore, the preceding corollary expresses exactly how to recover
the co-groupoid of morphisms between two objects of A as a homotopy fibre
of the map S(A) — A% X A.

5.7 Locally small co-categories

Definition 5.7.1. An co-category A is locally U-small if the twisted diagonal
of A is isomorphic to a left fibration with U-small fibres of codomain A” x A
in LFib(A%? x A).

Remark 5.7.2. By virtue of Corollary 5.4.10, an co-category A is locally small
if and only if, for any objects x and a in A, the co-groupoid A (x, a) is equivalent
to a U-small co-groupoid.

In particular, an co-category A is locally U-small if and only if its opposite A%
is locally U-small. Similarly, if # : A — B is an equivalence of co-categories,
then A is locally U-small if and only if B has the same property.

Of course, a sufficient condition for an co-category to be locally U-small
is that one of the left fibrations (5.6.1.4) or (5.6.10.4) have U-small fibres.
In particular, whenever the simplicial set underlying A is U-small (i.e., takes



244 Presheaves: internally

its values in the chosen Grothendieck universe), the co-category A is locally
U-small. Such an co-category will be said to be U-small. Another fundamental
example is the following one.

Proposition 5.7.3. Forany U-small simplicial set X, the co-category of functors
Hom(X, 8) is locally U-small. In particular, the co-category 8 of U-small co-
groupoids is locally U-small.

Proof The covariant model structure over some U-small simplicial set X
restricts to U-small simplicial sets over X. Given two U-small simplicial sets E
and F over X, the mapping space Mapy (E, F) is a subcomplex of Hom(E, F),
which is U-small. Therefore, Corollary 5.4.7 and the preceding remark show
that Hom(X, 8) is locally U-small. O

In order to generalize the previous proposition to abstract locally U-small
oo-categories, we need the next two propositions.

Proposition 5.74. Let u : A — B be a functor between locally U-small
oo-categories. The following conditions are equivalent.

(i) The functor u : A — B is fully faithful.
(ii) For any U-small simplicial set X, the induced functor

u, : Hom(X, A) - Hom(X, B)

is fully faithful, and its essential image consists of functors ¢ : X — B
such that, for any object x of X, there exists an object a of A, as well as
an invertible map u(a) — ¢(x) in B.

(iii) For any U-small simplicial set X, the induced functor

u. : ho(Hom(X, A)) — ho(Hom(X, B))

is fully faithful.

(iv) There exists a factorisation of u into an equivalence of oo-categories
i:A— A followedbyamapu’ : A’ — B with the right lifting property
with respect to inclusions of the form A™ — A", for n > (.

Proof Given a simplicial set K and a subset S C Ky, one defines the full
simplicial subset of K generated by S as the simplicial set whose maps A" — Kg
correspond to maps k : A" — K such that, for 0 < i < n, we have k(i) € S. We
remark that the inclusion Kg — K has the right lifting property with respect to
any morphism of simplicial sets U — V such that the induced map Uy — Vj is
bijective, such as A" — A" forn > 0 or AZ — A" for n > 2. In particular, if
K is an co-category, then so is Ky , and the inclusion Kg — K is fully faithful.
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If, furthermore, the set S has the property that, for any invertible map » — b’ in
B,wehave b € S © b’ € S, then the inclusion Kg — K is also an isofibration.

We choose a factorisation of u into a trivial cofibrationi : A — A’ followed
by a fibration u’ : A” — B in the Joyal model category structure. We apply
this construction for K = B and § the essential image of u: an object b of
B belongs to S if there exists an object a of A as well as an invertible map
u(a) — b in B. The map us : A — Bg is essentially surjective. Therefore,
since its composition with the fully faithful map Bs — B is fully faithful), the
functor ug is an equivalence of categories if and only if the functor « is fully
faithful. Let S’ be the image of g : A9 — Bg. Then the inclusion Bgs — By is
fully faithful and essentially surjective. For a simplicial set X, let T be the set
of functors ¢ : X — B such that, for any object x of X, there exists an object a
of A, as well as an invertible map u(a) — ¢(x) in B. Then we have:

Hom(X, Bs) = Hom(X, B)r .

Let T’ be the set of functors ¢ : X — B such that, for any x in X, there exists
a € Ag such that u(a) = ¢(x). Then we have:

Hom(X, BS') = Hom(X, B)Tr .

Since the functor Hom(X, —) preserves equivalences of co-categories, the in-
clusion

Hom(X, B)r» — Hom(X, B)r

is an equivalence of co-categories. Moreover, condition (ii) is equivalent to the
property that the functor (ug). : Hom(X, A) — Hom(X, By) is an equivalence
of co-categories for all X. This proves that conditions (i) and (ii) are equivalent.
We also see that conditions (i) and (iv) are equivalent. One checks that condition
(i) is equivalent to the property that the map ug, : A” — B is an isofibration
which is an equivalence of co-categories, hence a trivial fibration. This proves
that condition (i) is equivalent to condition (iv). If condition (iv) is verified,
then the uss : A — By factors as an equivalence of co-categories followed by
a trivial fibration, hence condition (i) is verified.

We already know that condition (ii) implies condition (iii) (see Remark
3.9.4). Let us assume that condition (iii) holds. Given any objects a in A,
and any simplicial set X, by Proposition 4.2.12, if a also denotes the constant
functor X — A with value a, then there is a canonical fibrewise equivalence of
right fibrations over Hom(X, A) from Hom(X, A/a) to Hom(X, A)/a. Hence,
by forming the set of connected components of the homotopy fibres over the
points of A, we have canonical identifications

mo(Hom(X, A(x,a))) = Hompe (Hom(x,4)) (X, @) .



246 Presheaves: internally

Proceeding similarly for B and b = u(a), we have canonical bijections

mo(Hom (X, A(u(x), u(a)))) = Hompo (Hom(x,4)) (u(x), u(a)) .

Applying the Yoneda Lemma to the homotopy category of U-small Kan com-
plexes, this shows that the maps A(x, a) — B(u(x), u(a)) are homotopy equiv-
alences, hence that u is fully faithful. O

Remark 5.7.5. Since, in any model category, pulling back a weak equivalence
beween fibrant objects along a fibration always gives a weak equivalence, and
since right lifting properties are preserved by pull-backs, condition (iv) of the
preceding proposition shows that pulling back a fully faithful functor between
oo-categories along an isofibration gives a fully faithful functor.

Proposition 5.7.6. Let A be an co-category. The following conditions are
equivalent.

(a) The oo-category A is equivalent to a U-small co-category.

(b) There exists a U-small simplicial set X as well as a weak categorical
equivalence from X to A.

(c) Any minimal model of A is U-small.

(d) There is a U-small minimal model of A.

(e) The set of isomorphism classes of ho(A) is U-small, and A is locally
U-small.

Proof Conditions (c) and (d) are equivalent because all minimal models of A
are isomorphic to each other. Conditions (a) and (b) are equivalent because there
is a fibrant replacement functor of the Joyal model category structure which
preserves U-smallness (e.g. the one obtained by applying the small object
argument to the set of inner horns inclusions). Since any minimal model of a
U-small co-category C is U-small, as a retract of C, it is clear that conditions
(a) and (d) are equivalent. It is clear that condition (a) implies condition (e). It
is thus sufficient to prove that condition (e) implies condition (d). For n > 1,
the fibre A(xq, ..., x,) of the evaluation map

Hom(A", A) — A™!

at (xg,...,x,) is a Kan complex which is equivalent to a finite product of
Kan complexes of the form A(x;,x;+1) (3.7.7). In particular, such a fibre is
equivalent to a U-small Kan complex. We also define dA(xo, .. .,x,) as the
fibre at (xq, ... ,x,) of the evaluation map

Hom(AA", A) — A",



5.7 Locally small co-categories 247

We thus have a canonical Cartesian square of the form

A(xg,...,x,) —> Hom(A", A)

| |

0A(xg,...,x,) —— Hom(dA", A)

To prove condition (d), assuming condition (e), we may assume, without loss
of generality, that the set of objects of A is U-small: we just have to choose a
U-small set of objects E in A such that any object of A is isomorphic in zo(A)
to an element of E, and to replace A by the full subcategory generated by E.
This means that it is sufficient to prove that the set of d-equivalence classes of
simplices in A is U-small. In other words, to finish the proof, it is thus sufficient
to check that the fibres of the maps

A(xg,...,xp) = 0A(x0,...,Xpn)

are equivalent to U-small Kan complexes. Note that these maps are Kan fi-
brations: they are isofibrations between Kan complexes. It is thus sufficient to
prove that dA(xg, ..., x,) is equivalent to a U-small Kan complex. We shall
prove this by induction on n > 1. The case n = 1 is clear: A? is U-small. If
n > 1, we consider JA™ as the union of A” and of the image of 6" : A"~! — A™.
We then have a canonical Cartesian square over A™*! of the form

Hom(AA", A) —— Hom(A" 1, A) x A

| l

Hom(A”, A) —— Hom(AA"1, A) x A

which induces, by passing to the fibers over (xo, .. ., x;), a Cartesian square of
the form below.

0A(xg,...,xp) — A(xg, X2, "+ ,Xy)

l l

ATA(xg, ..., xp) —— 0A(xg,X2,...,Xp)

Since, by induction, the vertical map of the right hand side is a Kan fibration
between Kan complexes which are equivalent to U-small ones, this shows, that
the fibres of the map dA(xo,...,x,) — AJA(xo,...,x,) are U-small up to
homotopy. Henceforth, the latter map is equivalent to a Kan fibration with U-
small fibres of codomain AJA(xo, ...,x,), by Corollary 5.4.10. Therefore, it
is sufficient to prove that its codomain is equivalent to a U-small Kan complex.
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But the trivial fibration
Hom(A", A) — Hom(A], A)
induces a trivial fibration
A(x0, ..., xn) = Al A(xq, ..., x5)
whose domain is already known to be equivalent to a U-small Kan complex. O

Corollary 5.7.7. Let A be a locally U-small co-category. For any U-small
simplicial set X, the co-category Hom(X, A) is locally U-small.

Proof Let f and g be two functors from X to A. Since X is U-small, there
is a U-small set S of objects of A such that both f and g factor through the
full subcategory Ags spanned by S in A. By virtue of Proposition 5.7.4, we thus
have an equivalence of co-groupoids of the form

Hom(X, As)(u,v) = Hom(X, A) (u1v) .

Replacing A by Ag, we may thus assume that the set of objects of A is U-
small. But then, the preceding proposition ensures that A is equivalent to a
U-small oco-category C. Therefore, the co-category Hom (X, A) is equivalent to
Hom(X, C), which is U-small, hence locally U-small. O

Corollary 5.7.8. If an oo-category A is locally U-small, so are its slices A/a
for any object a.

Proof The proof is similar to the one of the previous corollary: given two
objects (x,u) and (y,v) in A/a, we can find a full subcategory C of A which
contains a, x and y, and which is equivalent to a U-small co-category D. We
then have a canonical isomorphism

Cla((x,u), (y,v)) = Ala((x,u), (y,v)) .

Since C/a is equivalent to a slice of D, this proves that A/a is locally U-
small. O

Corollary 5.7.9. An co-groupoid X is equivalent to a U-small Kan complex
if and only if no(X) and 7,,(X, x) are U-small for any object x in X and any
positive integer n.

Proof Since AA™! = Im(8"*]) U A1, the map A+ — A? induces a weak
homotopy equivalence A" — A"/JA™. By virtue of Proposition 3.8.10,
one may interpret the elements of 7, (X, x) as the pointed homotopy classes of
maps A" /A" — X. The assumption of U-smallness on homotopy groups thus

means that the set of d-equivalence classes in X is U-small, or equivalently,
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that the minimal models of X are U-small. This corollary is thus a direct
consequence of Proposition 5.7.6. O

5.8 The Yoneda Lemma

5.8.1. Let A be alocally U-small co-category. A Hom space of A is a morphism
of co-categories Homy : A?? x A — 8 equiped with a map o4 : S(A) — S,
which exhibits the left fibration (5.6.1.4) as the homotopy pull-back of the
universal left fibration, i.e., such that we get a homotopy Cartesian square of
the following form.

SA) —22 8,

(5.8.1.1) (“‘A”A)l lp

AP x A Homa g

By virtue of Theorem 5.4.5, such a square determines Hom4 up to a unique
isomorphism in ho(Hom(A x A°,8)). Furthermore, by Corollary 5.6.14, we
may always choose the map S(A??)” — 8, so that it factors through S, (A%”)%
over A°? X A, in which case, as explained in Remark 5.6.15, for any objects a
and x in A, there is a canonical homotopy Cartesian square of the following
form.
A(x,a) —— 8,

(5.8.1.2) P

S.

o Homa (x,a)
_—

A
We define the Yoneda embedding of A as the unique functor
(5.8.1.3) ha:A— Hom(A,8)
which corresponds by transposition to Hom 4. In other words, we have
(5.8.1.4) ha(a)(x) = Homa(x,a) .

for any objects x and a of A. By construction, the functor s4(a) : A% — 8
classifies a left fibration which is canonically equivalent to the left fibration
a\A”? = (A/a)®” — A°P. More precisely, applying Corollary 5.6.14 to A%
produces a homotopy Cartesian square of the following form.

(Ala)” — 8.

(5.8.1.5) l lp

AP ha(a) S
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A functorial way to put the identifications (5.8.1.2) and (5.8.1.4) together is the
following statement.

Proposition 5.8.2. Let a be an object of the locally U-small co-category A. The
left fibration classified by the Yoneda embedding composed with the functor of
evaluation at a

(5.8.2.1) A2 Hom(A,8) %5 s

is fibrewise equivalent to the pull-back of the map (sa,ta4) : S(A) > AP X A
along the embedding A = {a} xA C AP X A. Furthermore, there is a canonical
homotopy Cartesian square of the following form.

Cl\A 80
Puniv

(5.8.2.2) l

Al Hom(A4,8) —4— §

Proof By definition of the co-category 8, if F : A’ — § classifies a left
fibration p : X — A, the map a*(F) = F(a) : A° — § classifies the fibre of
p at x. This turns the first assertion into a tautology. The last assertion of the
proposition is a reformulation of Corollary 5.6.14. O

Remark 5.8.3. The interest of the Hom space is that it is a functor (while the
construction (x,y) — A(x,y) is not). In particular, for any object a of A, the
functor Homy4 (—, a) = ha(a) takes any map f : x — yin A to a morphism
f*: Homa(y,a) » Homa(x,a) in 8.

Given a functor u : A — B between locally U-small co-categories there is
an obvious commutative square of the form
S(4) —“ S(B)
(5.8.3.1) l l

AP x A XX pop o B

and the induced map S(A) — A% X A Xgwxp S(B), of left fibrations over
the Cartesian product A% X A, determines, by Corollaries 5.4.7 and 5.4.10,
an essentially unique map Hom (—, —) — Homp(u(-), u(-)) in Hom (A% X
A, 8). In other words, for any objects x and y in A, there is a functorial map

(5.8.3.2) Hom 4 (x, y) —» Homp(u(x), u(y))

in the co-category 8, which corresponds, up to homotopy, to the canonical map
of co-groupoids A(x,y) — B(u(x),u(y)).
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Theorem 5.8.4. Let A be a simplicial set. We consider a map f : U — A
which we suppose equipped with a factorisation into a right anodyne extension
i: U — V followed by a right fibration with U-small fibres q : V — A. We
also consider given a functor ®© : A’ — 8 which classifies the left fibration
q% VP — AP Let

m: W =Hom(A”,8) Xpom(uer,s) Hom(U”,8,) — Hom(A”, )

be the left fibration obtained by pulling back along the functor f* of composition
with f°P. Then there is a canonical initial object w in W, associated to i, whose
image in Hom(A, 8) is ®. In particular, there is a homotopy Cartesian square
of the following form in the Joyal model category structure.

®\ Hom(A”,8) —— Hom(U?, 8.)

l J((puniv)*

Hom (A%, 8) _r, Hom (U, S)

Proof The last assertion about the existence of a homotopy pull-back square is
a translation of the first part of the theorem. Indeed, if there is an initial object w
of W whose image by 7 in Hom (A, 8) is ®, the canonical functor w\W — W
is a trivial fibration (see the dual version of condition (iii) of Theorem 4.3.11),
and, by the dual version of Proposition 4.1.2, the induced map

w\W — ®\ Hom (A, §)

is a trivial fibration. Choosing a section of the latter, that will define the an-
nounced homotopy Cartesian square.

The first thing to do is to understand W explicitely as follows. A map ¢ :
E — W corresponds to a pair (F, s), where F is a morphism which classifies
a left fibration of the form p : X — EX A? and s : E X U’ — X is a map
such that ps equals the map 1g X f°7 from E X U to E X A°P. In other words,
this is essentially determined by a commutative diagram of the form

(5.8.4.1) / lp

ExXU%? —— ExA”
LEX [P
in which p is a left fibration with U-small fibres. We first remark that, if we
replace s by another section s’ of p over E x U’ which is homotopic to s
in the covariant model category structure over £ X A%, and if we denote by
Y’ : E — W the morphism corresponding to the pair (F,s’), then ¢ and
Y’ are homotopic in the Joyal model category structure (i.e., ¢ and ¢’ are
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isomorphic in the homotopy category ho(Hom(E, W))). Indeed, if we have a
homotopy & : J X E X U%” — X over E X A%, from s to s, this defines a
map S = (pri,h) : IXEXU®P — JXx X over J X E X A°, hence a map
VY :JXx E — W corresponding to the composition of F with the projection
J X E — E, endowed with the section S. The evaluations of ¥ at 0 and 1 give
back  and y’, respectively.

Since V has a given section i°” over U, one may see the pair (®, (%) as
an object w of W. It is clear that the image of w in Hom(A%, §) is ®. Given
amap ¢ : E — W, corresponding to a diagram of the form (5.8.4.1), we can
always choose a dotted filler A in the solid commutative square below.

ExU? —— X
(5.8.4.2) 1”‘% A lp

EXV?P — 5 Ex A

Note that, since 1g X i°? is cofinal, the operation of right composition with it
defines a trivial fibration between Kan complexes

Mapgyam (E X VP, X) = Mapgy a0 (E X U, X)

Therefore, the Kan complexes of lifts of s is contractible. This expresses in
which sense s and A determine each other up to homotopy.

The pull-back @ g of @ by the projection E X A? — A classifies the left
fibration 1g X g7 : E XV — E X A°P, and, if we equip it with the section
1g %iP, this defines amap wg : E — W, which is nothing but the constant map
with value w. By Corollary 5.4.7, the map A determines a map u : g — F in
the oo-category Hom(E, Hom (A, 8)). Conversely, any such map u defines a
map A : E XV — X over E X A°?; composing A with 1g X i’ gives back a
diagram of the form (5.8.4.1), and thus a map ¢ : E — W. The equivalence
of categories of Theorem 5.4.5 means that this correspondence is compatible
with composition of (invertible) maps up to homotopy, from which we deduce
that the assignment ¢ — u defines a bijection of the form

(5.8.4.3) Ewl= || nO(Hom(ExA””,S)((DE,F))
Fe[ExA°r,8]

(where [—, —] is the set of maps in the homotopy category of the Joyal model
category structure). For E = A", the object w, seen as a map A° — W,
corresponds to the identity of ®.

For E = W, let us write F; for the map W X A’ — § corresponding to 7
by transposition. It classifies a left fibration p; : X — W x A°. The latter
has a canonical section s; associated to the canonical projection from W to
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Hom (U, 8,) (because the pull-back of p; along 1y X f° is classified by
the map obtained by transposition from the canonical functor f* from W to
Hom (U, §)). The construction above thus determines a map u; : @y — F;
which we may see as a functor from Al x W x A to 8. It also corresponds
through the bijection (5.8.4.3) to the identity of W. Therefore, the evaluation
of u; at w is equivalent to the identity of @, because it corresponds to the map
w : A — W through the bijection (5.8.4.3). Let

A x Al - A

be the unique map which sends a vertex (i, j) to 1 if and only if i = j = 1. Then
u1T is a commutative square of the form

1([)W
(DW _— CI)W

1¢Wl lu

@W L) Fl
in Hom(W x A%, S§). In other words, this corresponds to a map
Pprryw = 1oy, — ug

in Hom(A! x W x A%, 8). Using Correspondence (5.8.4.3), it determines an
homotopy h : A' x W — W from the constant map with value w to the identity
of W whose restriction on A x {w} is equivalent to u, (w), hence is the identity
in ho(W). Applying Proposition 4.3.10 for X = W and w = w, this shows that
w is an initial object. O

Corollary 5.8.5. The oco-category of co-groupoids 8 has a final object e which
classifies the Kan complex A°. Furthermore, there is a fibrewise equivalence
e\8 — 8, over 8. In other words, for any Hom space Homg : 87 X § — 8,
there is a canonical invertible map from the functor Homg (e, —) to the identity
of 8 in the co-category Hom(S, 8).

Proof Let e be an object of 8§ which classifies the identity of A°. For any
Kan complex X, the Kan complex Hom(X, A°) is isomorphic to A°, hence
contractible. Therefore, Theorem 4.3.11 and Corollary 5.4.7 show that the
object e is final in 8. In the case of U = A = A", Theorem 5.8.4 says that there
is a homotopy Cartesian square of the following form.

e\ — 3,

-
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The last assertion follows from the fact that Homg (e, —) also classifies the
left fibration ¢\8 — 8§ up to homotopy (more precisely, from the homotopy
Cartesian square (5.8.1.5) for A = 8% and a = e): Proposition 5.3.20 then
associates an invertible map Homg (e, —) — 1g to the fibrewise equivalence
e\S — 8, over 8. O

Corollary 5.8.6. Let X be a U-small simplicial set. We choose a final object e
in 8, and also write e for the constant functor X — 8 with value e. Finally, we
choose a Hom space Hom for Hom(X, 8). Then there is a homotopy Cartesian
square in the Joyal model category of the form below.

Hom(X,8,) —— 8.

(leiv)*l J/p‘m"“

Hom(X, 8) 2m3) g

In other words, there is a fibrewise equivalence
Hom(X,8.) — ¢\ Hom(X,$).

Proof The equivalence of co-categories ¢\S — 8. over 8 induces an equiva-
lence of co-categories Hom(X, e\8) — Hom(X, S,) over Hom(X, §). Choos-
ing an inverse up to homotopy over Hom(X, §) of the latter, we will prove
this corollary as follows. Proposition 4.2.12 ensures that we have a canonical
equivalence of co-categories of the form

Hom(X, e\8) — ¢\ Hom(X,$8)

over Hom (X, 8). Taking into consideration the homotopy Cartesian square
of Proposition 5.8.2 applied to A = Hom(X, §), with a = e, this defines a
homotopy Cartesian square of the expected form. O

Remark 5.8.7. Theorem 5.8.4 is already some version of the Yoneda Lemma:
given an object a in a U-small co-category A, for any functor F : A% — §,
this theorem, applied with U = A and f = a, asserts that the left fibration
ha(a)\ Hom(A%,§) — Hom (A, 8) is fibrewise equivalent to the left fibra-
tion classified by the evaluation at a functor. In other words, the homotopy
Cartesian square of the theorem provides a homotopy Cartesian square of the
form

Hom(A?,8)(ha(a), F) —— 8.

J/ J/pmliv
-

A° Fa) S

and Theorem 5.4.5 explains how to interpret this as an identification of the Kan
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complex Hom(A, 8)(h,, F) with the fibre F (a). A construction of the Yoneda
embedding, using the twisted diagonal, as well as this version of the Yoneda
Lemma, can also be found, in the setting of Rezk’s complete Segal spaces, in a
paper by Kazhdan and Varshavskii [ VK 14]. However, the genuine version of the
Yoneda Lemma does not only give such an identification abstractly: it provides
an explicitely given invertible map, functorially in a and F. This is precisely
what we will do now: we shall first give an explicit description (Theorem 5.8.9),
which will be functorial in F, and then provide a fully functorial version, by a
cofinality argument (Theorem 5.8.13).

5.8.8. Let A be a U-small co-category. Then both A and Hom (A%, §) are
locally U-small. We choose an Hom space functor Hom4 for A. This defines
the Yoneda functor 74 : A — Hom(A,8). For each object a, we apply
construction (5.8.3.2) to the functor a : A — A, so that we get a canonical
map

(5.8.8.1) 14 : e = Hompo(0,0) — Hom(a, a)

(we leave to the reader the task of checking that the object Hompo (0, 0) is final
in 8). We also choose Hom space functors for Hom (A, 8) and for 8, which
will be simply denoted by Hom. The evaluation functor

(5.8.8.2) ev : A% x Hom(A?,8) - 8, (a,F)+— F(a)
induces by transposition a map
(5.8.8.3) A% — Hom(Hom(A%,S8),8), ar> a".

for each object a of A, the functor a”* is the evaluation at a. Thus construction
(5.8.3.2) induces, for each functor F : A” — §, a map

Hom(ha(a), F) —» Hom(ha(a)(a), F(a)) = Hom(Homay(a, a), F(a))

in 8, which is functorial in F. Using the invertible map from Hom(e, F (a)) to
F(a) provided by Corollary 5.8.5, there is a map

Hom(Homx(a, a), F(a)) — F(a)
defined as the evaluation at 1, , so that we end up with the map below.
(5.8.8.4) Hom(ha(a),F) — F(a), s+ s(a)(1ly)

This map is functorial in F in the sense that it is the evaluation at F of a map
Hom(ha(a),—) — a* in the oco-category Hom(Hom (A, §8), §).

Theorem 5.8.9. The evaluation map (5.8.8.4) is invertible in the co-category
8 of U-small co-groupoids.
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Proof Let us denote by V and W be the domains of the left fibrations classi-
fied by the functors Hom(44(a), —) and a*, respectively. We choose a functor
f:V — W over Hom(A,8) corresponding to the map (5.8.8.4) via Corol-
lary 5.4.7. Tt is sufficient to prove that this functor is a fibrewise equivalence
over Hom (A, §); see Proposition 5.3.16. The