Special values of automorphic cohomology classes
著者
書誌事項
Special values of automorphic cohomology classes
(Memoirs of the American Mathematical Society, no.1088)
American Mathematical Society, c2014
大学図書館所蔵 件 / 全11件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 143-145)
"September 2014, volume 231, number 1088 (fifth of 5 numbers)."
内容説明・目次
内容説明
The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains $D$ which occur as open $G(\mathbb{R})$-orbits in the flag varieties for $G=SU(2,1)$ and $Sp(4)$, regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces $\mathcal{W}$ give rise to Penrose transforms between the cohomologies $H^{q}(D,L)$ of distinct such orbits with coefficients in homogeneous line bundles.
目次
- Introduction Geometry of the Mumford Tate domains Homogeneous line bundles over the Mumford Tate domains Correspondence and cycle spaces
- Penrose transforms The Penrose transform in the automorphic case and the main result Bibliography
「Nielsen BookData」 より