Survival extrapolation with external data: a new Bayesian model and R package

Christopher Jackson

ESMI Seminar, Exeter, 18 October 2022

Right-censored survival data

Informing policy with censored time-to-event data

Should health service adopt a new treatment

 \triangleright given 3 years of follow-up data from a clinical trial?

- \triangleright needs information on length of stay in hospital
- \triangleright data from first 2 months of the epidemic, with many people

Should health service adopt a new treatment

 \triangleright given 3 years of follow-up data from a clinical trial?

What is the predicted burden on hospitals in a epidemic?

- \blacktriangleright needs information on length of stay in hospital
- \triangleright data from first 2 months of the epidemic, with many people still in hospital?

Should health service adopt a new treatment

 \triangleright given 3 years of follow-up data from a clinical trial?

What is the predicted burden on hospitals in a epidemic?

- \blacktriangleright needs information on length of stay in hospital
- \triangleright data from first 2 months of the epidemic, with many people still in hospital?

Consequences of policy decisions will last longer than the end of the data! Need longer-term judgements.

- \triangleright equivalent to knowing the total outcome (e.g. survival,
- \triangleright Not provided by most common survival analysis tools e.g.
-

- \triangleright equivalent to knowing the total outcome (e.g. survival, hospital length of stay) over the population
- \triangleright Not provided by most common survival analysis tools e.g.
- \triangleright Provided by a fully-parametric distribution for the time T to

- \triangleright equivalent to knowing the total outcome (e.g. survival, hospital length of stay) over the population
- \triangleright Not provided by most common survival analysis tools e.g. Kaplan-Meier estimators, Cox models.

 \triangleright Provided by a fully-parametric distribution for the time T to

- \triangleright equivalent to knowing the total outcome (e.g. survival, hospital length of stay) over the population
- \triangleright Not provided by most common survival analysis tools e.g. Kaplan-Meier estimators, Cox models.
- \triangleright Provided by a fully-parametric distribution for the time T to the event.

Many choices for how to specify these

For example, Weibull distribution

Survivor function $S(t|\lambda,\alpha) = \exp(-\lambda t^{\alpha})$

Hazard function $h(t|\lambda,\alpha) = \lambda \alpha t^{\alpha-1}$

For example, Log-logistic distribution

Survivor function $S(t|\lambda,\alpha) = 1/(1+(t/b)^a)$

Hazard function $h(t|\lambda, \alpha) =$

For example, Typical set of models in standard software

For example, Typical set of models in standard software

Fit a set of models and judge which :

- \triangleright fits the data best in the short term? (easy, e.g. AIC)
- \triangleright gives more plausible risk changes in the long term? harder

Clinical judgements about the mechanism

 \triangleright e.g. some people get cured of the disease, so disease-specific hazard of death reduces to zero

Data on general population, or disease registry

 \triangleright survival of people with a specific disease cannot be better than a comparable set of people in the general population?

Formally-elicited judgements about, e.g. 5-year, 10-year survival?

Want to be able to use this kind of information in a transparent and statistically-principled way

Methods for combining individual $+$ external survival data

Recent methods reviews

I NICE DSU (2021) [https://www.sheffield.ac.uk/nice-dsu/tsds/](https://www.sheffield.ac.uk/nice-dsu/tsds/flexible-methods-survival) [flexible-methods-survival](https://www.sheffield.ac.uk/nice-dsu/tsds/flexible-methods-survival) **NICE Decision Support Unit** Appraisal specific Methods development **Training TSDs Publications** About v

Home > NICE Decision Support Unit > Technical support documents > Flexible methods for survival analysis TSD

Jackson et al. (Medical Decision Making 2017) Extrapolating Survival from Randomized Trials Using External Data: A Review of Methods

```
Christopher Jackson, PhD, John Stevens, PhD, Shijie Ren, MPhil, PhD, Nick Latimer, PhD, MSc, Laura
                                                                                                       Show loce A
Boike, PhD, MSc, Andrea Manca, PhD, MSc, Linda Sharples, PhD
First Published July 10, 2016 | Research Article | Find in PubMed | Ch Check for updates
https://doi-org.ezp.lib.cam.ac.uk/10.1177/0272989X16639900
```
In piecewise models, spline models, cure, relative survival, proportional and additive hazards, converging hazards, diminishing treatment effects, Bayesian methods . . .

What is missing is an easily usable tool in which to build different models with useful ranges of assumptions, in particular for Bayesian methods.

- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!
- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!
- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!
- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!
- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!

<https://chjackson.github.io/survextrap>

Infrastructure based on

- \blacktriangleright multiparameter evidence synthesis, Bayesian inference
- \triangleright probabilistic programming (MCMC and Stan)
- \blacktriangleright flexible / sensible default modelling choices

. . . hopefully allowing extension in future to wide range of survival and multi-state modelling situations

- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!

M-spline models to fit the individual data

Easiest of the challenges, for the individual data

M-spline models to fit the individual data

Easiest of the challenges, for the individual data

Hazard modelled with M-spline $h(t) = \eta \sum_{k=1}^K p_k b_k(t)$

inspired by the https://mc-stan.org/rstanarm package

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

M-spline $h(t) = \eta \sum_{k=1}^{K} p_k b_k(t)$

- \triangleright Axis of time split into different periods defined by knots
- \triangleright Weighted sum of basis functions that describe hazard in each period. Resulting $h(t)$ smooth.
- \triangleright Use lots of knots, and Bayesian estimation with a prior that controls overfitting (shrink towards a constant hazard)

Covariates by proportional hazards (linear on $log(\eta)$), or stratify, or flexible nonproportional hazards (put linear models on the p_k)

- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!

- \blacktriangleright Default: hazard assumed constant after last knot, here 3 years (end of follow up)
- \triangleright Or: suppose we think hazard
- \blacktriangleright If no data in long-term

- \blacktriangleright Default: hazard assumed constant after last knot, here 3 years (end of follow up)
- \triangleright Or: suppose we think hazard might change between 3 and 10 years. Place final knot at 10 years instead!
- \blacktriangleright If no data in long-term 10 years instead!

If no data in long-term

period: Bayesian model

acknowledges uncertainty!

- \blacktriangleright Default: hazard assumed constant after last knot, here 3 years (end of follow up)
- \triangleright Or: suppose we think hazard might change between 3 and 10 years. Place final knot at 10 years instead!
- \blacktriangleright If no data in long-term period: Bayesian model acknowledges uncertainty!

- \blacktriangleright Default: hazard assumed constant after last knot, here 3 years (end of follow up)
- \triangleright Or: suppose we think hazard might change between 3 and 10 years. Place final knot at 10 years instead!
- \blacktriangleright If no data in long-term period: Bayesian model acknowledges uncertainty!

But there is rarely no data at all about the long term

- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!

Jointly modelling all data: Bayesian evidence synthesis

External data, e.g. from matched population data, registry data, or elicited judgements?

- \triangleright External and individual-level data jointly generated by the
- \triangleright Any differences between data sources expressed through

Jointly modelling all data: Bayesian evidence synthesis

External data, e.g. from matched population data, registry data, or elicited judgements?

- \triangleright External and individual-level data jointly generated by the
- \triangleright Any differences between data sources expressed through

Jointly modelling all data: Bayesian evidence synthesis

External data, e.g. from matched population data, registry data, or elicited judgements?

Supply as aggregate counts of survival on any / multiple time periods

- \triangleright External and individual-level data jointly generated by the same spline survival distribution
- \blacktriangleright Any differences between data sources expressed through covariates, e.g. as proportional hazards
- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!

Foregrounded assumptions

- \triangleright Data included: both short term and long term
- \triangleright Range of knots: period in which we think the hazard might change
- \blacktriangleright Effects of covariates (e.g. proportional hazards)

-
- \blacktriangleright Exact location of knots within that range
- \blacktriangleright Exact shape of spline curve

Foregrounded assumptions

- \triangleright Data included: both short term and long term
- \triangleright Range of knots: period in which we think the hazard might change
- \triangleright Effects of covariates (e.g. proportional hazards)

Background "black box" assumptions

- \blacktriangleright Prior distributions
- \blacktriangleright Exact location of knots within that range
- \blacktriangleright Exact shape of spline curve

Needs work to develop software defaults that can be shown empirically to be unimportant

Despite this, we don't have to rely on opaque assumptions like e.g. "Weibull hazard trajectory is valid beyond the study data"

For example, Typical set of models in standard software

- 1. Incorporate all available data
- 2. Fit the data as well as possible
- 3. Make any assumptions transparent
- 4. Quantify uncertainty
- 5. Be easy to use!
- Install from $http://chjackson.github.io/survextrap$
- \triangleright Example: default spline model with proportional hazards between three treatment groups

library(survextrap) mod \leq survextrap(Surv(years, status) \sim rx, data=colons) plot(mod)

Using the survextrap R package

Restricted mean survival time over 20 years rmst(mod, t=20)

Hazard ratios and other parameter estimates

summary(mod) ## # A tibble: 16 x 9

Using survextrap with external data

Example: we observe 40/100 survivors between 10 and 15 years in an external population like those in the control group (rx="Obs")

Using survextrap with external data

Example: we observe 40/100 survivors between 10 and 15 years in an external population like those in the control group (rx="Obs")

```
extdat \leq data.frame(start=10, stop=15,
                    n=100, r=40, rx = "Obs")mod <- survextrap(Surv(years, status) ~ rx, data=colons,
                  external=extdat)
```

```
plot(mod, xlab="Years")
```


Hazard from 10-15 has been "pulled up" by inclusion of external data

\blacktriangleright Mixture cure models

- ▶ Latent proportion of people become "cured" of cause of interest
- \blacktriangleright Relative survival models
	- \triangleright Overall hazard $=$ background general population hazard (inputted as constant, from matched national statistics) $+$ disease-specific hazard

Further examples at <http://chjackson.github.io/survextrap>

- \triangleright Wide experience in real situations
- ▶ Worked examples of incorporating external long-term data
	- \blacktriangleright National statistics, registry, elicited \dots
- \triangleright Empirical assessment of how well the default settings do
	- \triangleright Simulation studies, real data examples

 \blacktriangleright Mixture cure models

- ▶ Latent proportion of people become "cured" of cause of interest
- \blacktriangleright Relative survival models
	- \triangleright Overall hazard $=$ background general population hazard (inputted as constant, from matched national statistics) $+$ disease-specific hazard

Further examples at <http://chjackson.github.io/survextrap>

Future work

- \triangleright Wide experience in real situations
- \triangleright Worked examples of incorporating external long-term data
	- \blacktriangleright National statistics, registry, elicited ...
- \blacktriangleright Empirical assessment of how well the default settings do
	- \triangleright Simulation studies, real data examples