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Abstract
This paper is a description of the Speech Technology Cen-
ter (STC) systems for the CHiME-6 challenge aimed at multi-
microphone multi-speaker speech recognition and diarization in
a dinner party scenario. We participated in both Track 1 and
Track 2 and submitted our results for Ranking A as well as
Ranking B for each track.

The soft-activity based Guided Source Separation (GSS)
as a front-end and a combination of advanced acoustic mod-
eling techniques such as GSS-based training data augmenta-
tion, multi-stride and multi-stream self-attention layers, statis-
tics layer and SpecAugment, as well as the lattice-level fusion
of acoustic models were applied in the 1st track system. Our
system for Track 1 was in the top three systems, achieving 30%
relative WER reduction over the baseline. Additionally, lattice
rescoring with a neural language model was applied for Rank-
ing B. Overall, this led to 34% relative WER reduction over the
baseline in Track 1.

For Track 2, we proposed a novel Target-Speaker Voice
Activity Detection (TS-VAD) approach to solve the diariza-
tion problem. Good diarization results made it possible to per-
form GSS on the obtained segments. TS-VAD is based on i-
vector speaker embeddings, which are initially estimated using
a strong diarization system based on spectral clustering of x-
vectors. The back-end from the Track 1 system was used in the
second track. The system for Track 2 demonstrated state-of-
the-art performance, outperforming the baseline by 39% DER,
45% JER, 43% WER (Ranking A) and 45% WER (Ranking B)
relative.
Index Terms: automatic speech recognition, speaker diariza-
tion, guided source separation, target-speaker VAD, CHiME-6

1. Introduction
Significant progress in the Automatic Speech Recognition
(ASR) area was made in recent years. However, there are still
many problems, such as Distant Speech Recognition (DSR),
which are far from being solved. DSR is a highly important
problem for a wide range of real-world applications, and many
initiatives have been organized in the last years to investigate it.

The CHiME-6 challenge [1] considers the problem of dis-
tant multi-microphone conversational speech recognition in ev-
eryday home environments. CHiME-6 is a replica of the pre-
vious CHiME-5 Challenge [2] in the sense of data used. The
dataset consisting of the informal conversational communica-
tions between 4 persons in noisy real-life environments was
recorded in a dinner party scenario. The speech was captured by
the distant Microsoft Kinect microphone arrays that resulted in
reverberated and low Signal-to-Noise Ratio (SNR) recordings.
Another challenging feature was a large amount of overlapping

speech in conversations. The main task of the CHIME-6 was to
develop a speech recognition system with the best possible ac-
curacy in the described conditions. The details on the challenge
are described in [2].

There are numerous approaches developed for improving
multi-microphone DSR. First of all, various dereverberation
methods such as Weighted Prediction Error (WPE) [3, 4], and
denoising approaches such as IRM masking [5] or denoising
TasNet [6], can clean the acoustic signal from external distor-
tion sources. Besides, beamforming approaches such as Mini-
mum Variance Distortionless Response (MVDR) [7] and Gen-
eralized Sidelobe Canceller (GSC) [8], are really helpful in the
case of multiple microphones. Various data augmentation tech-
niques such as room acoustics simulation [9] and spectral aug-
mentation [10], as well as different perturbations of a raw sig-
nal are also extremely useful in such a task. Finally, separa-
tion of overlapped speech is crucial for accurate speech recog-
nition [11–16].

This paper provides a description of the STC system for
the CHiME-6 challenge. The system for Track 1 uses a strong
front-end provided by organizers of the challenge, but with sev-
eral modifications, providing a noticeable WER improvement.
The back-end is trained on GSS-based augmented data and uti-
lizes different modern techniques such as SpecAugment [10]
and multi-stride [17] / multi-stream [18] self-attention layers.
For Track 2, we proposed a novel Target-Speaker Voice Activ-
ity Detection (TS-VAD) approach, which is described in detail
in [16]. TS-VAD allowed us to perform a good diarization
and apply GSS on the obtained segments. Additionally, lat-
tice rescoring with a strong Language Model (LM) was applied
prior to fusion for Ranking B in both Track 1 and Track 2.

The rest of the paper is organized as follows. Section 2
describes the conditions and our contributions corresponding to
the first track of the challenge, Section 3 relates to the second
track. Finally, Section 4 concludes the paper.

2. Track 1: Speech recognition only
2.1. Front-end

Track 1 conditions allow the participants to use the information
about the speakers boundaries for each utterance. So it is possi-
ble to use Guided Source Separation (GSS) [12,13], which was
developed during the CHiME-5 Challenge [2] and later allowed
to improve the recognition accuracy significantly [19, 20]. The
STC system uses the combination of the WPE dereverberation
method [3, 4], GSS, and the MVDR beamforming [7] adopted
from the baseline system. As in [19], this enhancement was
also applied for training data augmentation and provided a sig-
nificant WER reduction.

As noted in [20], the use of the refined utterance boundaries



Figure 1: Back-end scheme

obtained after the first-pass decoding can provide an additional
WER improvement. By default, per-frame speaker activities in-
duced from hard label information are multiplied by the spectral
masks after each iteration of GSS. We supposed that using soft-
activity labels can improve the masks estimates. Soft-activities
can be extracted from the first-pass decoding lattices. However,
we found that better results can be obtained using speaker activ-
ity probabilities estimated by a special TS-VAD model. A more
detailed description of such models is given in Section 3.2 and
in [16].

The basic MVDR-beamforming procedure included in the
pb chime1 package uses spectral masks obtained from GSS. Af-
ter a thorough analysis of this procedure, we found a couple of
ways to improve the accuracy slightly. The first one is a di-
agonal regularization of noise spatial covariance matrices. The
second one is excluding one-third of all microphones with worst
Envelope Variance [21] scores from the beamforming.

The contributions of applied approaches are presented in
Table 1.

Dev WER%

baseline TDNN-F 51.8
training on GSS-enhanced data 47.6
improved GSS2 46.2

+ MVDR: regularization 46.0
+ MVDR: EV 45.8

+ hard activity from ASR 43.5
+ soft activity from ASR 43.3
+ soft activity from TS-VAD 43.0

Table 1: Contributions of various front-end approaches. EV
stands for excluding microphones by Envelope Variance

2.2. Back-end

As demonstrated in [19], using GSS-enhanced data in training
improves ASR results significantly. Following this, we trained
AM on a dataset consisting of worn microphones recordings

1https://github.com/fgnt/pb_chime5
2Microphones: 12 → 24, context: 10 s → 15 s, iterations: 5 → 20

and data obtained using four versions of GSS with various set-
tings (microphones set, context length, number of iterations).
We also used the room simulation [9] and both speed and vol-
ume perturbations included in the baseline recipe.

The scheme of our system back-end is presented in Fig-
ure 1. Our basic AM consists of 9-layer Convolutional Neural
Network (CNN) [22] with residual connections, followed by 8-
layer Factorized Time-Delay Neural Network (TDNN-F) [23].
The network takes 80-dimensional log Mel filterbank (fbank-
80) or Gammatone filterbank (gtf-80) [24] feature vectors as an
input.

Mean and standard deviation statistics computed by the
Kaldi stats-layer are used as additional input channels, and
the Kaldi spec-augment-layer (SpecAugment) [10] is applied
for spectral perturbation. We tried both local (per-chunk) and
global (per-utterance) statistics. The best result was obtained
with local statistics computed in parallel to the SpecAugment
layer.

Speaker embeddings are also used to provide speaker-aware
training. We obtained the best results when using i-vectors [25]
as speaker embeddings; however, models with x-vectors [26,
27]) were also included in an ensemble. It should be noted here
that x-vectors were good enough only when they were evaluated
on the segments with no speakers overlaps. Such segments were
obtained from the JSON files provided by organizers in Track 1
and from the TS-VAD-based diarization segments in Track 2.

We also observed a noticeable improvement after adding
multi-stride [17] and multi-stream [18] self-attention layers
into the model. To perform multi-stream self-attention lay-
ers, we replaced 8-layer TDNN-F from the CNN-TDNN-F de-
scribed above, with 5 streams of 7 TDNN-F layers and 12 self-
attention heads per stream. For multi-stride self-attention lay-
ers, we extended CNN-TDNN-F with 3 self-attention blocks
with different strides and 12 self-attention heads each. All the
models were trained according to the Lattice Free Maximum
Mutual Information (LF-MMI) [28] criterion for 4 epochs and
fine-tuned for one more epoch of state-level Minimum Bayes
Risk (sMBR) [29] training. Different acoustic models are com-
pared in Table 2.

https://github.com/fgnt/pb_chime5


In the baseline recipe, the decoding is carried out in two
stages. According to the results of the first stage, the weights
extracted from lattices are used for i-vectors recalculation. We
found, however, that using speech segments from a simple neu-
ral VAD intersected with manual utterance boundaries is much
faster and provides comparable accuracy in a single decoding
stage.

Finally, we performed lattice fusion followed by MBR de-
coding [30] to combine recognition results from different mod-
els and different versions of GSS.

Acoustic model Dev WER%

TDNN-F on MFCC 43.0
TDNN-F on fbank/gtf 42.5

+stats 41.9
+SpecAugment 41.0

CNN-TDNN-F+stats+SpecAugment 39.6
+multi-stride self-attention 38.3
+multi-stream self-attention 37.8

+sMBR 36.8
Table 2: Comparison of acoustic models

2.3. Advanced language modeling and rescoring

As part of Ranking B, the regularized Long Short-Term Mem-
ory (LSTM) LM [31] was applied for lattices rescoring [32]
prior to fusion. The LM consisted of 3 layers with 2048 units
per layer. The network was trained for 800 epochs with the
Adam optimizer and learning rate of 3e-3. The training data
was obtained with the Byte Pair Encoding (BPE) text decompo-
sition provided by YouTokenToMe3. The model averaging over
10 best epochs was applied to obtain the final LM. The best
single LM was trained on 3k BPE text decomposition. BPE-
Dropout [33] also provided an additional improvement. Ini-
tializing the hidden states of LM during rescoring procedure
with the hidden states obtained from the previous lattice also
improved WER slightly. The combination of models trained on
1k, 3k, 5k, and 8k BPE was used in the final rescoring. The
contributions of the applied methods are presented in Table 3.

Dev WER%

baselines (best single AM):
no rescoring 36.8
rescoring with regularized LSTM 34.2

+ model averaging 34.0
+ BPE-Dropout 33.9

+ hidden states initialization 33.8

fusion of LMs (1k+3k+5k+8k BPE) 33.7
Table 3: Contributions of language modeling and rescoring ap-
proaches

2.4. Track 1 results

Final recognition results for Track 1 are presented in Table 4.
The fusion of acoustic models provided 3.3% absolute WER
improvement on development set, and lattice rescoring for
Ranking B reduced WER of more 2.6%. These results were
scored 3rd in Ranking A and 2nd in Ranking B of Track 1 of
the challenge.

3https://github.com/VKCOM/YouTokenToMe

Dev WER% Eval WER%

Kaldi baseline 51.76 51.29
Best single AM 36.82 38.59

Fusion (Ranking A) 33.53 35.79
+ LSTM-LM (Ranking B) 30.96 33.91

Table 4: ASR results for Track 1

3. Track 2: Diarization and ASR
In Track 2, participants are not allowed to use the information
about the speakers boundaries for utterances. Detection of such
boundaries is one of the goals of Track 2.

Baseline recipe uses the agglomerative hierarchical clus-
tering (AHC) of x-vectors on VAD segments. However, this
approach does not allow one to take into account the regions
where speakers overlap. Since the baseline diarization is not
accurate enough, GSS cannot be applied directly, which re-
sults in a very high word error rate. Therefore, our main in-
tention was to achieve a substantial diarization improvement,
which would be sufficient for applying GSS effectively. In or-
der to perform this, we investigated a novel approach referred to
as Target-Speaker Voice Activity Detection (TS-VAD), which
was inspired by End-to-End Neural Diarization [34], Target-
Speaker ASR [35, 36], and Personal VAD [37]. TS-VAD takes
standard acoustic features (MFCC) along with the i-vector of
each speaker as its inputs. The model produces the probabil-
ity of each speaker activity on each frame. However, TS-VAD
requires a sufficiently accurate initial diarization to estimate i-
vectors for each speaker. To obtain such a diarization, we im-
proved the baseline procedure in two main directions.

3.1. Baseline diarization improving

Firstly, Track 2 conditions allow the participants to use the Vox-
Celeb [38] data for the diarization models training. So we used
the improved 34-layer Wide ResNet (WRN) x-vector extrac-
tor [39] trained on the VoxCeleb data. Basic AHC clustering of
these WRN x-vectors computed on the same VAD segments by
PLDA scores improved DER on the development set by about
12% abs. compared to the baseline extractor. Secondly, we re-
placed PLDA scores with cosine similarities and applied Spec-
tral Clustering (SC) with automatic selection of the binariza-
tion threshold [40] instead of AHC, which reduced DER by
another 5-7% abs. Such diarization accuracy was already suffi-
cient to provide a good start for TS-VAD. The proposed diariza-
tion scheme is presented in Figure 2.

3.2. Target-speaker VAD

The STC system includes two types of TS-VAD models. The
first one (TS-VAD-1C) is single-channel; it is presented in
Figure 3 and can be described as follows. Input MFCC fea-
tures are transformed by a 4-layer CNN and then fed to four
parallel Speaker Detection (SD) blocks. Each SD block is a
2-layer Bidirectional LSTM (BLSTM) with projections [41],
which takes an i-vector corresponding to the speaker as an ad-
ditional input. It is important to note that the parameters of
four SD blocks are shared. Then, combined outputs of four
SD blocks are passed to one more BLSTM layer followed by
four parallel fully connected layers and 2-class softmax layers
on top of them. Four pairs of outputs produced by the TS-
VAD model represent the probabilities of the presence/absence

https://github.com/VKCOM/YouTokenToMe


Figure 2: Diarization scheme for Track 2

Figure 3: Single-channel TS-VAD

of each speaker on the current frame. The training loss is a sum
of 4 cross-entropies computed from speaker alignment. The de-
scribed TS-VAD model is applied to each of the Kinect chan-
nels separately. After that, the output probabilities are aver-
aged over the channels for each speaker. After simple post-
processing (thresholding, median filtering, combining speech
segments separated by short pauses, deleting too short speech
segments) of these probabilities, one can obtain an improved
speaker segmentation with significantly reduced DER. These
probabilities can be used as weights for recalculating the i-
vectors. We used the obtained embeddings in the second it-
eration of the described approach, which provides an additional
DER improvement. The third iteration, however, did not im-
prove DER anymore.

The second TS-VAD model (TS-VAD-MC) is multichan-
nel and takes a combination of TS-VAD-1C model SD blocks
outputs from a set of 10 Kinect recordings as an input. The
channels of input Kinect recordings are chosen randomly for
training, and the 1st and 4th channels are taken at test-time.
This way of combining information from different channels is
more effective than a simple averaging of probabilities, as in
the TS-VAD-1C model. All the SD vectors for each speaker are

Figure 4: Multi-channel TS-VAD

passed through a convolutional layer and then combined using a
simple attention mechanism. Combined outputs of the attention
for all speakers are passed through a single BLSTM layer and
converted into a set of per-frame probabilities of each speaker’s
presence/absence. The scheme of TS-VAD-MC is presented in
Figure 4. Both types of TS-VAD models are described in detail
in [16].

We used both CHiME-6 and an 800h subset of the Vox-
Celeb data for training the TS-VAD models for Track 2. Be-
sides, we used the probabilities obtained from the TS-VAD
model trained only on CHiME-6 data in Track 1 as soft-
activities (see Section 2.1) to improve GSS performance. We
also found that

• TS-VAD works better (1% abs. DER reduction) on top
of blockwise WPE dereverberation;

• Fusion of probabilities from several TS-VAD models
further improves diarization;

• Best ASR results (up to 2.5% abs. WER improvement)
are obtained when using diarization with a larger False



Figure 5: Scheme of STC system for Track 2

data diarization Spk Miss False Alarm Spk Error DER WER 4

dev WRN xvec + SC 27.24 9.83 10.22 47.29 70.47
best DER 15.85 8.85 8.13 32.84 54.70
best WER 9.02 20.71 7.57 37.30 53.33

eval WRN xvec + SC 25.58 16.09 18.43 60.10 72.86
best DER 16.31 10.15 9.56 36.02 55.56
best WER 9.32 23.27 8.81 41.40 54.85
Table 5: Diarization errors and their influence on GSS performance

Alarm rate instead of the best DER diarization.

The results of the successive application of the approaches
described above are presented in Table 6. It is interesting to note
that the best ASR results were obtained on the segmentation not
optimal with respect to DER but better in terms of JER.

Table 5 shows the breakout of the total DER into three types
of errors, namely speaker miss, false alarm, and speaker error,
obtained on the best clustering-based system and TS-VAD. The
last column shows the Word Error Rates of the baseline acous-
tic model after applying the GSS-based front-end. Our best
clustering-based segmentation is not good enough for GSS. On
the other hand, TS-VAD segmentation allows one to perform
GSS effectively. Besides, the segmentation which provides the
best speech recognition accuracy has a larger False Alarm rate
but significantly smaller speaker error and speaker miss rates.
So the False Alarms are not very harmful to GSS, unlike speaker
errors and misses. Note that the sum of Speaker Error and Miss
rates is significantly less than the lowest possible error of clus-
tering based diarization on the challenge data, which is 25%, as
mentioned in [16].

DEV EVAL
DER JER DER JER

x-vectors + AHC 63.42 70.83 68.20 72.54
WRN x-vectors + AHC 53.45 56.76 63.79 62.02
WRN x-vectors + SC 47.29 49.03 60.10 57.99

+ TS-VAD-1C (it1) 39.19 40.87 45.01 47.03
+ TS-VAD-1C (it2) 35.80 37.38 39.80 41.79
+ TS-VAD-MC 34.59 36.73 37.57 40.51

Fusion (best DER) 32.84 36.31 36.02 40.10
Fusion (best WER) 37.30 36.11 41.40 39.73

Table 6: Diarization results for Track 2

3.3. Recognition of diarized segments

The good diarization results obtained with TS-VAD made it
possible to apply front-end technologies that we used success-
fully in Track 1, namely WPE + GSS + MVDR, for Track 2 as
well. As in Track 1, this led to a substantial improvement of

412-microphone GSS enhancement, baseline TDNN-F

WER. Moreover, the ASR performance gap between TS-VAD
and manual segmentation is rather small. The recognition re-
sults on the TS-VAD segments are compared in Table 7, while
the scheme of the STC system provided for the second Track is
presented in Figure 5.

Dev WER% Eval WER%

Kaldi baseline 84.25 77.94
Best single AM 44.89 47.67

Fusion (Ranking A) 41.56 44.49
+ LSTM-LM (Ranking B) 39.56 42.67

Table 7: ASR results for Track 2

4. Conclusion
In this paper we presented the STC system for the CHiME-6
challenge. The data augmentation approaches turned out to be
extremely useful in such a task. Convolutional, statistics, and
multi-stream/multi-stride self-attention layers in AM also pro-
vided a significant WER improvement.

We also presented TS-VAD, a novel approach for the di-
arization of conversations with multiple speakers and overlap-
ping speech, which provided state-of-the-art results in a com-
plex multi-channel dinner party scenario. It directly solves
the diarization problem and allows performing GSS in the 2nd
track of the challenge. It should be noted here, that using
soft-activities from TS-VAD to initialize GSS instead of hard-
activities improves system performance, so TS-VAD was useful
in both tracks of the challenge. And re-estimation of i-vectors
utilized by TS-VAD reduced DER in the 2nd track of the chal-
lenge significantly.

The described approaches allowed us to develop a compet-
itive system for the first track of the CHiME-6 challenge and to
achieve state-of-the-art results in Track 2.
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