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Abstract
This technical report describes our submission to the 6th
CHiME Challenge. The submitted systems for CHiME-6 cover
both the multiple-array speech recognition track and multiple-
array diarization and recognition track. For each track, the re-
sults corresponded to Category A and Category B are reported.
The main technique points of our submission include the deep
learning based iterative speech separation, training data aug-
mentation via different versions of the official training data,
SNR-based array selection, front-end model fusion, acoustic
model fusion. Tested on the development and eval test set, our
best system takes the first place among all submitted systems in
both two tasks of track 1.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Track1: Multiple-Array Speech
Recognition Track

First of all, due to rules defined by official, systems are allowed
to exploit knowledge of the utterance start and end time, the ut-
terance speaker label and the speaker location label for track 1.
It’s allowed to use binaural data and far-field data in the training
set.

1.1. System overview

The overall framework of track 1 is shown in Fig. 1. As we
can see, it contains several main parts including multi-channel
based WPE denoising, space-and-speaker-aware iterative mask
estimation (SSA-IME), beamforming and acoustic model train-
ing. For the front-end, we fisrt apply a conventional multi-
channel noise reduction using log-spectral amplitude [1] which
is based on weighted prediction error (WPE) [2]. With the de-
noised data, we can build the following SSA model which is
based on deep-learning techniques. After all, each method of
these frond-end techniques can provide processed data of offi-
cial original training data, add increase the diversity of origi-
nal data. Using the final augmented data, five types of acoustic
model are trained as the back-end system.

The decoding phase is divided into four successive steps,
namely, beamforming initialization, SSA-based signal statistics
estimation, beamforming, and recognition. First, beamformed
speech is initialized and a T-F mask of test speech is obtained by
cACGMM-based beamforming [3] using time annotation as ini-
tial prior values. Then, the mask estimated by our SSA model is
used to improve the initial mask where the SSA model uses the
features of the initial beamformed speech. And the ASR-based
voice activity detection (VAD) information from the segmenta-
tion results of a recognizer with beamformed speech [4] also can
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Figure 1: An illustration of overall framework.

be used to improve the initial mask. Next, the improved mask
is used as the initial values of the cACGMM-based approach
to generate the estimated mask which steers the beamforming,
thereby obtaining the beamformed speech for ASR.

1.2. Front-end

1.2.1. Multi-channel preprocessing

For CHiME-6 challenge, we first utilize a multi-channle pre-
processing step by traditional methods of signal process,
which doesn’t rely on training. It uses log-spectral amplitude
[1] which is based on generalized weighted prediction error
(WPE) [2]. The goal of this step is to suppress some obvious
noises and output the single-channel signals for the following
stage. The preprocessing is simple but important for our entire
system.

1.2.2. SSA model training

In this section, we will describe the training process of the
SSA model in detail. To improve the mask estimation accu-
racy, a neural-network-based mask estimator learned from a
multi-feature concatenation data set is proposed. The beam-
formed STFT features, ŜTi

BF, are composed of the elements.
Unlike conventional regression model for mask estimation, the
beamformed features of four speakers are used together as the
input of the BLSTM-based regression model. Specifically,
log(|ŜTi

BF|
2) (i = 1, 2, 3, 4) denotes the log-power spectral

(LPS) features of four speakers on a whole utterance. And ϕ̂
Dj

BF
(j = 1, 2, 3) denotes the inter-phase difference (IPD) between
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Figure 2: An illustration of multi-feature acoustic model.

a target speaker and three other interfering speakers on a whole
utterance, which contains the spatial information between dif-
ferent speakers. Based on the above introduction, the BLSTM-
based regression model can learn both space and speaker infor-
mation at the same time. Therefore, we defined this regression
model as space-and-speaker-aware (SSA) model which is also
a speaker-independent speech separation model.

To train the BLSTM-based SSA model, the learning targets
are used because they are calculated by beamformed features
which are more reliable than the conventional masks. The opti-
mization function of the BLSTM-based model is defined as:

ESSA =

4∑
i=1

∑
t,f

(
M̂Ti

SSA(t, f)−MTi
BF(t, f)

)2
(1)

where M̂Ti
SSA(t, f) and MTi

BF(t, f) are the BLSTM estimated
mask and the reference mask, respectively. By using ESSA, the
model can not only distinguish four speaker as much as possi-
ble by taking advantage of the space and speaker information
but also yield robust and refined masks. After training, the one
single SSA model of all four speakers can be generated. More
detailed can refer to [5].

1.2.3. Beamforming

Motivated by Guided Source Separation (GSS) [6] demon-
strated to be very effective for the difficult CHiME-6 dinner
party recognition task, the estimated masks from SSA model in-
troduced above are adopted to improve the a complex Angular
Central Gaussian Mixture Model (cACGMM)-based [3] mask
estimation. It’s the first time to address five factors simultane-
ously in realistic conditions, namely noises, target speaker and
interference speakers. The masks are adopted as the initializa-
tion state for the EM algorithm. Final masks are sent to gener-
alized eigenvalue decomposition (GEVD) beamformer [7]. Be-
cause there are huge differences between the different channels,
the channel selection [8] is adopted according to the signal to in-
terference plus noise ratio (SINR). The mean SINR is calculated
among all the channels, and only the channels with a higher
SINR than the mean SINR are selected. Also the online beam-
forming [9] are also adopted to update the beamforming weights

by continuous blocks. Finally, four beamformers are adopted,
denoted as Multi array, Selected online, Selected offline and
Single array. Note only the Selected online is online, and the
others are offline.

So far, the entire frond-end stage finishes and outputs the
separated waveform for recognition.

1.3. Acoustic model

In the back-end, we use six different kinds of acoustic mod-
els. The features of the first two acoustic models consist of
40-dimensional mel-frequency cepstral coefficients (MFCCs)
appended with 100-dimensional i-vectors being extracted on
top of PCA-reduced spliced-MFCC features for speaker adap-
tation [10]. The features of the others four acoustic mod-
els consist of four speaker 40-dimensional FBANK, target
speaker 40-dimensional MFCC, target speaker 128-dimensional
FBANK, target speaker 128-dimensional mask and the three
128-dimensional inter-phase difference (IPD) features of differ-
ent speakers. Fig. 2 give an example of multi-feature AM.

The CNN-TDNN-RBiLSTM architecture was proposed in
[11,12], which consists of a CNN, TDNN, and RBiLSTM [11].
This architecture is the main contribution of acoustic modeling
for the Hitachi/JHU CHiME-5 system that achieved the second-
best result in the CHiME-5 Challenge. ResNets [13] are popular
in computer vision due to their increasing number of convolu-
tional layers and ease of optimization, achieving a better per-
formance in almost all the standard image recognition datasets.
Accordingly, in our system, we use the ResNet to replace the
simple CNN to build the acoustic model architectures with the
combination with TDNN/TDNNF and RBiLSTM. More de-
tailed can refer to [14]. They are listed as follows:

* ResNet-TDNNF (Multi-feature): 20-layer ResNet + 11-
layer TDNNF

* ResNet-TDNNF-Dialation (Multi-feature): 20-layer
ResNet + 12-layer TDNNF-Dialation

* ResNet-TDNN-RBiLSTM (Single/Multi-feature): 20-
layer ResNet + 2-layer TDNNF-RBiLSTM

* ResNet-SelfAttention-TDNNF (Single/Multi-feature):
20-layer ResNet + 5-layer SelfAttention-TDNNF

2. Track2: Speaker Diarization and Speech
Recognition

2.1. Multi-channel Speech Separation

In this section, we will describe the training process of the
multi-channel speech separation (MCSS) model in detail. Con-
sidering the distribution of microphone arrays in CHiME-6
data, there are 6 microphone arrays with 4 channels for each
array corresponding to I = 6 and J = 4. log(|Xi,1(t, f)|2)
(i = 1, ..., I) denotes the log-power spectral (LPS) features of
mixture from channel 1 for each array. And ϕ̂

Dd
i (t, f) (i =

1, ..., I; d = 1, ..., J − 1) denotes the inter-phase difference
(IPD) between the channel 1 and three other channels in the i-
th array. Based on the above introduction, the BLSTM-based
regression model can learn the spatial information. Then, the
deep model outputs multiple speakers and noise masks. Mix-
ture is processed with weighted prediction error (WPE) [2] and
cACGMM. We initialize the cACGMM parameters with prior
hard masks indicating existence of speakers and noise. The soft
masks of cACGMM outputs are more reliable than the conven-
tional defined mask and taken as the learning targets. The op-



timization function of the BLSTM-based model is defined as:

EMCSS =

L=4∑
l=1

∑
t,f

(M̂
TSl
MCSS(t, f)−M

TSl
cACGMM(t, f))

2+

∑
t,f

(M̂N
MCSS(t, f)−MN

cACGMM(t, f))
2

(2)

where M̂∗
MCSS(t, f) and M∗

cACGMM(t, f) are the BLSTM esti-
mated masks and the reference masks of target speakers (TS) or
noise (N), respectively.

2.2. Speaker Diarization

The diarization stage illustrated in Figure 3 includes the next
few steps. In the beginning, we perform the CHiME-6 base-
line [15] SAD on the four speakers beamformed data. Exper-
iments show clustering all of SAD segments results in a much
lower class purity. Because the front-end separation algorithm
performs not very well on the overlapping speech and the beam-
formed speech still contains other speakers’ speech. Currently,
the best selection strategy is keeping the longest target speaker
duration and removing the others’ within a time period. Then,
we consider extracting x-vectors with the most popular resid-
ual network architecture named as ResNet34. The settings for
ResNet34 training are similar to [16]. ReLU activation fol-
lows each convolutional layer. We apply batch normalization
technique to stabilize and speed up network convergence. The
x-vectors with 512 dimensions are extracted on the selected
speech. Finally, spectral clustering (SC) [17], as its name im-
plies, making use of the spectrum (or eigenvalues) of the sim-
ilarity matrix of the data, is adopted to cluster the extracted x-
vector with a certain number of classes. More detailed can refer
to [18].

2.3. Speech Recognition

ASR stage of Figure 3 is a description of speech recognition
system for CHiME-6. All of the details can be found in [19].
We explore data augmentation approaches including GSS-based
training data augmentation [20] and spectral augmentation [21].
Advanced neural network acoustic models trained according to
the Lattice Free Maximum Mutual Information (LF-MMI) cri-
terion [22] whose main modules include the deep convolutional
residual network (ResNet), factorized time delay neural net-
work (TDNNF) [23] and residual bidirectional long short-term
memory (RBiLSTM) [24], realignment achieved by the acous-
tic model trained using the cross-entropy criterion on GMM
alignments [25], long-term decoding, and lattice-level fusion of
acoustic models based on Minimum Bayes Risk (MBR) decod-
ing [26].

3. Experiments on Track 1
3.1. Front-end experiments

First of all, we present the front-end results on official base-
line in single-array track. Factored Time Delay Neural Neural
Network (TDNNF) recipe [27] using lattice-free maximum mu-
tual information (LF-MMI) training, is used here. The trainin-
ing data keeps the same with official recipe in KALDI [28],
which uses both binaural data and far-filed data with speech
perturbation. The front-end uses the GSS enhancement refined
by time annotations from ASR output [29] as a default mul-
tichannel speech enhancement approach. More details can be
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Figure 3: Framework of our proposed CHiME-6 Track 2 system.

found in [29]. First, compared with the GSS-based approach
WER of 48.43% , our implemented four versions yield com-
parable WERs, as listed in Fig. 4. Second, lattice fusion fol-
lowed by MBR decoding is performed to combine recognition
results from the four enhancements, which achieves more than
2% absolute WER reduction over the best single enhancement
and yields the recognition result of 43.24% on the development
set.

So far, testing data processed by those frond-end processing
procedures is fixed in the rest of this paper.
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Figure 4: WERs comparison between different front-end ap-
proaches on development set, for Category A. Note the official-
AM trained with original training data is adopted.

3.2. Acoustic models

As shown in Fig. 5, we have compared WERs of acoustic
models and model ensembling on development set, for Cat-
egory A. The result of official baseline acoustic model is
shown in blue bar. We first use the newly fixed training data
with new model architectures instead of LF-TDNN, includ-
ing ResNet-TDNN-RBiLSTM, ResNet-SelfAttention-TDNNF,
ResNet-TDNNF and ResNet-TDNNF-Dialation. They are all
built with lattice-free maximum mutual information (LF-MMI)
training method by KALDI tookit. As we can see, the ResNet-
TDNNF yields better results than ResNet-TDNN.

Although the performance of four CNNs is comparable due
to their big architecture similaritities, lattice fusion followed
by MBR decoding is performed to combine recognition results
from different models trained on the four kinds of architectures,
which achieves more than about 2% absolute WER reduction
over the best single system. Compared with official acoustic
model, the final WER is reduced from 43.24% to 30.00%, indi-
cating a relative reduction of 30.62%. This large improvement



Table 1: Results of the best system tested on the development
and eval test set for multiple-array speech recognition. WER
(%) per session and location together with the overall WER.

Category Session Dining Kitchen Living Overall

A
Dev S02 33.25 33.43 28.97 30.00S09 28.45 27.70 26.73

Eval S01 25.48 42.94 37.94 30.88S21 25.56 34.87 25.86

B
Dev S02 34.66 34.86 29.50 30.77S09 29.10 27.74 27.22

Eval S01 25.01 42.66 37.44 30.50S21 25.14 34.84 25.34

can be attributed to both data augmentation , acoustic modeling
and ensembling.
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Figure 5: WERs comparison between acoustic models and
model ensembling on development set, for Category A. Note the
official-AM is trained with original training data, while others
are trained using newly fixed training data.

3.3. Results summary

To summarize, in the following tables we present the perfor-
mance details of our best system tuned on the development test
set, with its corresponding results on the evaluation test set.
The only difference between Category A and Category B is the
language model, which yields slightly better results when us-
ing simple RNN-based model. After all, the final results take
the first place among all submitted system in both two tasks of
Track 1.

4. Experiments on Track 2
4.1. Separation model training

Multi-channel speech separation model takes the inputs of
LPS features of six arrays’ channel-1 (CH-1) and IPD features
between CH-1 and (CH-2, CH-3, CH-4) outputs 4 speakers and
noise masks for initializing the cACGMM parameters. A series
of frames are extracted by a left-to-right window with 64ms
frame length and 16ms frame shift and the dimension of ex-
tracted LPS and IPD is compressed from 513 to 128. All LPS
and IPD features is spliced together with a 3072-dimensional
(128 ∗ 6 + 128 ∗ 3 ∗ 6) vector as the model inputs. Simu-
lated training data is used for fine-tuning a 2-layer BLSTM with

1024 cells for each layer. Then the BLSTM outputs with 640-
dimensional (128 ∗ 5) labels including four speakers and noise
masks. The soft learning target masks are obtained by perform-
ing cACGMM on the dereverberated (WPE) simulated mixture
where cACGMM parameters are initialized with hard masks in-
dicating whether the target speaker or noise exists.

ResNet x-vector extractor model is trained with the Vox-
Celeb data [30]. 40-dimensional filter-bank features as inputs
are extracted by a left-to-right window with 25ms frame length
and 10ms frame shift. The ResNet model generates a 512-
dimensional x-vector with 200 feature frames each time.

Table 2: Diarization results for CHiME-6 Track 2

Enhancement & Diarization Dev. Eval.
DER JER DER JER

BeamformIt+x-vectors+AHC 63.42% 70.83% 68.20% 72.54%
BeamformIt+RN x-vectors+SC 58.15% 59.28% 66.59% 71.72%
MCSS+RN x-vectors+SC 56.69% 58.49% 65.37% 64.25%

Table 3: ASR results for CHiME-6 Track 2

Enhancement Diarization Acoustic Model Dev. Eval.
WER WER

BeamformIt x-vectors+AHC TDNN-F 84.25% 77.94%
BeamformIt x-vectors+AHC MBR Fusion 74.47% 74.79%
BeamformIt RN x-vectors+SC MBR Fusion 70.64% 71.72%
MCSS RN x-vectors+SC MBR Fusion 68.22% 68.48%

4.2. Results

The CHiME-6 Track 2 baseline system [15] provides a
BeamformIt-based speech enhancement front-end. Then, di-
arization using AHC on the PLDA scoring of x-vector extracted
by TDNN is conducted, followed by a two-stage decoding with
the TDNN-F acoustic model. The baseline system only per-
forms SAD, speaker diarization and ASR for the U06 array for
simplicity.

As shown in Table 2, the baseline enhancement and di-
arization system are denoted as ‘BeamformIt+x-vectors+AHC’.
For comparison, both BeamformIt and our neural mask-
based beamforming approach using MCSS are followed by
the speaker diarization using SC on ResNet (RN) x-vector,
which are denoted by ‘BeamformIt+RN x-vectors+SC’ and
‘NMBB+RN x-vectors+SC’ respectively. Obviously, diariza-
tion with SC on ResNet x-vector brings about 1.61% absolute
reduction of DER on the evaluation set (68.20% vs. 66.59%).
And neural mask-based beamforming reduces DER by an abso-
lute 1.22% on the evaluation set (66.59% vs. 65.37%).

Table 3 shows the ASR results on different front-ends and
back-ends. First, doing MBR decoding and fusion with multi-
ple acoustic models reduces WER on evaluation set to 74.79%
from 77.94% obtained by the baseline. Then, SC of the ResNet
x-vectors on the selected SAD segments further decrease WER
to 71.72%. Finally, our neural mask-based beamforming us-
ing MCSS yields the best WER 68.48%, mainly for the front-
end enhancement aiming at removing the overlapping segments
which have negative effects on for both speaker diarization and
speech recognition.
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