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Abstract 
 
When most system designers look at serializer/deserializer (SerDes) devices, they often 
compare speed and power without considering how the SerDes works and what it 
actually does with their data. Internal SerDes architecture may seem irrelevant, but this 
overlooked item can dictate many important system parameters like system topology, 
protocol overhead, data formatting and flow, latency, clocking and timing requirements, 
and the need for additional buffering as well as logic. These issues can have a big impact 
on system cost, performance, and efficiency. 
 
There are at least four distinct SerDes architectures. They include: parallel clock SerDes, 
8b/10 SerDes, embedded clock bits (alias start-stop bit) SerDes, and bit interleaving 
SerDes. Each one has evolved over the years to address a certain set of system design 
issues. This paper unveils the inner workings of these four SerDes architectures, 
examines their differences, and shows how each fits an important range of today’s 
applications. 
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Introduction 
 
Serial interconnects form the critical backbone of modern communications systems, so 
the choice of serializer/deserializer (SerDes) can have a big impact on system cost and 
performance. While the maze of choices may seem confusing at first, SerDes devices fall 
into a few basic architectures, each tailored to specific application requirements. A basic 
understanding of these architectural differences enables the designer to quickly find the 
right SerDes for the application. In this article we examine four distinct SerDes 
architectures and show how each plays a vital role in today’s systems. 
 
SerDes Architectures 
 
Parallel Clock SerDes 
 

 
 

Figure 1. Parallel clock serializer coding example. 
 
Parallel clock SerDes are normally used to serialize wide “data-address-control” parallel 
buses such as PCI, UTOPIA, processor buses, and control buses, etc. Instead of tackling 
the whole bus with one multiplexer, the parallel clock SerDes architecture employs a 
bank of n-to-1 multiplexers, each serializing its section of the bus separately. The 
resulting serial data streams travel to the receiver in parallel with an additional clock 
signal pair that the receiver uses to latch in and recover the data. Since clock and data 
travel on multiple pairs, pair-to-pair skew must be minimized for proper deserialization. 
 



Embedded Clock (Start-Stop) Bits SerDes 
 

 
 

Figure 2. 18-bit embedded clock bits serializer coding example. 
 
The embedded clock bits architecture transmitter serializes the data bus and the clock 
onto one serial signal pair. Two clock bits, one low and one high, are embedded into the 
serial stream every cycle, framing the start and end of each serialized word (hence the 
alternative name “start-stop bit” SerDes) and creating a periodic rising edge in the serial 
stream. Data payload word widths are not constrained to byte multiples; 10- and 18- bit 
widths are popular bus widths.   
 

 
Figure 3.  Periodic embedded clock transition. 

 
After powering up, the receiver automatically searches for the periodic embedded clock 
rising edge. Since the data payload bits change value over time while the clock bits do 
not, the receiver is able to locate the unique clock edge and synchronize to it. Once 
locked, the receiver recovers data from the serial stream regardless of payload data 
pattern. This automatic synchronization capability is commonly called “lock to random 
data” and requires no external system intervention. This is an especially useful feature in 
systems where the receiver is in a remote module not under direct system control. Since 
the receiver is locked to the incoming embedded clock and not an external reference 
clock, jitter requirements for both transmitter and receiver input clocks are relaxed 
significantly. 
 



8b/10b SerDes 
 

 
 

Figure 4. 8b/10b serializer coding example. 
 
The 8-bit/10-bit (8b/10b) serializer maps each parallel data byte to a 10-bit code and 
serializes the 10-bit code onto a serial pair. The 10-bit transmission codes were developed 
by IBM Corporation1 in the early 1980’s and guarantee both multiple edge transitions 
every cycle as well as DC balance (balanced number of transmitted ones and zeros). 
Frequent edge transitions in the stream allow the receiver to synchronize to the incoming 
data stream. DC balance facilitates driving AC-coupled loads, long cables and optical 
modules. 
 
In order for the receiver to locate the 10-bit code word boundaries in the serial stream, the 
transmitter first marks one such boundary by sending a special symbol called a comma 
character. The unique bit sequence in this comma character never appears in normal data 
traffic and acts as reliable a marker for receiver code alignment. Once code alignment is 
accomplished, the receiver maps the 10-bit codes back to byte data, flagging an error if it 
detects an invalid 10b code. 
 
Most 8b/10b deserializer architectures monitor lock by comparing the recovered clock 
frequency to an external reference clock. As a result, they typically require tight external 
clock source frequency and jitter control. 
 



Bit Interleaving SerDes 
 

 
 

Figure 5. Bit interleaving serializer coding example. 
 
Bit interleaving SerDes multiplex several slower SONET/SDH or 8b/10b serial streams 
into one faster serial stream by interleaving the bits. The receiver demultiplexes the bits 
back into the original slower streams. Note that a serial stream coming into transmitter 
input channel 1 may not come out on receiver output channel 1. This is not regarded as a 
problem in the applications because the serial streams contain independent cell or packet 
data that is processed downstream. Due to their high-speed nature and low jitter 
requirements, bit interleaving SerDes require very precise external clocks.  
 
 
Applications 
 
Parallel Clock SerDes 
 
Parallel clock SerDes are normally used to serialize traditional wide 
“data+address+control” buses, acting as a “virtual ribbon cable” unidirectional bridge.  
 

 
Figure 6. Parallel clock SerDes accommodate traditional wide parallel buses with address 

and control as well as data signals. 



 
Despite requiring multiple serial pairs, parallel clock SerDes still deliver benefits over 
non-serialization such as fewer wires (especially grounds), lower power, longer cable 
driving capability, lower noise/EMI, and lower cable/connector costs. Not being confined 
to using one serial pair, parallel clock SerDes can be made arbitrarily wide and also avoid 
the design issues associated with ultra high speed serial data rates. Parallel clock SerDes 
offer excellent price/performance and are often the only practical way to transmit a 
traditional wide parallel bus over several meters of cable. Common parallel bus widths 
for these chipsets include 21-, 28-, and 48- bits. 
 

Figure 7. Unidirectional rack-to-rack processor bus extension. 
 
Common applications include stackable Ethernet switch expansion, rack-to-rack and 
shelf-to-shelf datacom/telecom interconnect, and video/camera links. 
 
Embedded Clock (Start-Stop) Bits SerDes 
 
Embedded clock bits SerDes are especially well suited to applications that transmit raw 
data plus other signals such as control, parity, frame, sync, status, etc. An application 
example for serializing 18 bits is shown below. The 18-bit transmitter serializes not only 
the data but also two extra bits of additional information such as parity and frame. These 
bits are serialized along with the data at the normal A/D sampling rate so no data 
buffering or extra logic is required. 
 



 
 

Figure 8. Signal processing system example implementations based on DS92LV18 
SerDes (above) and 8b/10b SerDes (below). 

 
Using a byte-oriented 8b/10b SerDes in the same application would be more complicated. 
The extra non-byte-oriented control information must be buffered and sent in byte 
format. A K28.5 comma character must also be sent at the start of link synchronization, 
requiring additional logic. These extra “non-data” bytes require the SerDes to operate 
faster than the data conversion rate, placing higher demands on backplane or cable design 
and also requiring some kind of idle insertion/deletion flow control mechanism. While in 
data communications systems such buffering typically already exists, in many non-
datacom applications this extra processing and buffering must be added. 
 
Another feature of the embedded clock bits SerDes is automatic receiver lock to random 
data. This is an especially useful feature in systems where the receiver is in a remote 
module not under direct system control and also in systems where one transmitter 
broadcasts to multiple receivers. In the broadcast case, a new receiver module inserted 
onto the bus will lock to random data without the need to interrupt traffic to the other 
receivers by sending training patterns or characters.  
 



 
 

Figure 9. Automatic receiver lock to random data in a broadcast topology during hot 
insertion. 

 
The embedded clock bits deserializer locks to and tracks the incoming embedded clock 
rising edge, requiring a reference clock only during initial synchronization to prevent 
lock to a false harmonic. This relaxes the jitter requirement on both transmit and 
reference clocks by at least an order of magnitude (see table below), reducing the cost of 
the clock oscillators and clock distribution networks. In many cases, an inexpensive PC-
grade oscillator can be used to generate the receiver reference clock. 
 

 Embedded Clock 
Bits SerDes 

Other SerDes 

Serializer Transmit Input 
Clock Jitter 80 or 120 ps RMS 5 or 10 ps RMS 

Deserializer Reference 
Clock vs. Serializer 
Transmit Clock Disparity 

± 50000 PPM ± 100 PPM 

 
Figure 10.  Comparison illustrating relaxed clocking requirements of embedded clock bits 

SerDes versus typical SerDes chipsets. 
 
Embedded clock bits SerDes are well suited to non-byte-oriented applications such as 
applications requiring transmission of unpacketized raw data plus control signals. 
Examples include signal-processing systems such as base stations, automotive 



imaging/video and sensor systems where an analog-to-digital converter, camera or 
display communicates raw data with the processing unit at the other end of the link. 
 
8b/10b SerDes 
 
8b/10b SerDes are well suited to serializing byte-oriented data such as cell or packet 
traffic across backplanes, cable and fiber. Many standards such as Ethernet, Fibre 
Channel, InfiniBand and others use the popular 8b/10b coding at rates of 1.0625, 1.25, 
2.5, and 3.125 Gbps and many SerDes are available which span these data rates. 
 
8b/10b coding has a maximum run length (the maximum number of consecutive ones or 
zeros in the serial stream) of 5 bits. This limits the spectral content of the serial stream 
that can ease the task of suppressing electromagnetic radiation. For example, given a 1 
Gbps line rate after 8b/10b coding, the maximum and minimum 1st harmonic frequencies 
are 1 GHz and (1 GHz)/5 = 200 MHz. (The max and min fundamental frequencies are 
therefore 500 and 100 MHz, respectively.) 
 
Minimizing the run length can also reduce deterministic jitter due to inter-symbol 
interference (ISI) on lossy interconnects, though this effect is small for most applications. 
ISI is caused by interconnects that attenuate higher frequencies more than low 
frequencies, “smearing” longer consecutive bits sequences into surrounding isolated bits.  
 

 
 

Figure 11.  ISI versus signaling rate and run length for a typical FR4 backplane. 



 
The graph above shows a typical FR4 backplane S21 loss versus frequency curve. 
Plotting the max and min frequencies for the 1st harmonics, we see the slope between the 
points—hence the ISI—increases dramatically with signaling rate due to the sharp roll off 
in loss above 3 GHz. Increasing the run length (and therefore decreasing the min 
frequency), however, does not have a large effect on ISI since the loss curve is relatively 
flat at low frequencies. 
 
8b/10b serial streams are DC balanced, meaning the running disparity—or the number of 
ones sent minus the number of zeros sent—is on average equal to zero. 8b/10b data code 
words have a disparity of +2, 0, or –2, so the running disparity of an 8b/10b serial data 
stream always lies between +2 and –2.  
 

 
 

Figure 12.  8b/10b running disparity example. 
 
DC balance coding as well as short run length are necessary for reliably driving AC 
coupled environments and fiber optic modules. This is a major advantage of 8b/10b 
coding as more serial interconnects go optical. In addition, DC balance can help extend 
cable drive capability. 
 
8b/10b coding also provides a way to check errors and send control information. As 
described earlier, most of the possible 10-bit code permutations are not valid 8b/10b data 
code words. This allows 8b/10b deserializers to flag invalid codes and provide a level of 
error checking similar to using a parity bit. While this scheme does not count total bit 
errors, it is a good way to monitor serial link performance. In addition to data code 
words, many standards also define control words such as packet/frame markers, fault 
flags, alignment characters, etc. These control code words help systems assemble and 
disassemble packets, making 8b/10b coding very popular in communications data 
processing systems. 
 
Bit Interleaving SerDes 
 
Bit interleaving SerDes are commonly used in telecom transmission equipment such as 
add-drop multiplexers and pseudo-optical switches to aggregate SONET/SDH streams 
for transmission over cable or fiber to the core network. Common serializer 
configurations include 4 x 155 Mbps to 622 Mbps and 4 x 622 Mbps to 2.488 Gbps 
mux/demux functions. 



  
 

 
Figure13.  Bit interleaving SerDes 4 x STM1 (155 Mbps) to 1 x STM4 (622 Mbps) 

application example. 
 
Other types of bit interleaving SerDes chips multiplex 8b/10b-coded streams and are 
employed in switch and router equipment to get more bandwidth through existing 
backplanes. In the example below, a bit interleaving SerDes is used to multiplex up to 4 x 
1.25 Gbps 8b/10b LVDS streams into one 5 Gbps CML serial signal. Backward 
compatibility to 1.25 and 2.5 Gbps speeds supports existing low and medium speed line 
cards while the 5 Gbps maximum rate enables the router to support high capacity line 
cards without chassis redesign. 



 
Figure 14.  Bit interleaving SerDes router application example. 

 
 
Comparison Overview 
 
Each SerDes architecture has its own advantages making it well suited to certain 
applications. 
 
Parallel clock SerDes are inexpensive and conveniently serialize wide buses. The major 
drawback is the use of multiple serial pairs, requiring more wiring and low pair-to-pair 
skew. 
 
Embedded clock bit SerDes are well suited for applications needing a couple of extra bits 
and/or the lock to random data feature. They also have relaxed transmitter and reference 
clock requirements for systems with inexpensive clock sources. The lack of DC balance 
coding can be a disadvantage with AC coupling and when driving optical modules. 
 
8b/10b SerDes work well with byte-oriented cell or packet data. The 8b/10b coding 
guarantees sufficient edge transition density in the serial stream as well as DC balance for 
driving AC-coupled interconnect and fiber optics. When using 8b/10b SerDes with bus 



widths that are not byte multiples, extra design effort is required to pack the bus into 
bytes and run the SerDes link the increased speed. 
 
Bit interleaving SerDes are required for many SONET/SDH applications and also 
datacom applications where it’s imperative to get the most data through the fewest pairs. 
Such performance, however, comes at a higher price and tighter jitter requirements.  
 
Technology Advantages Disadvantages 
Parallel Clock SerDes Serializes wide buses 

Low cost 
Automatic transmitter/receiver 
sync 

More pairs/wires needed 
Tight pair-to-pair skew 
requirements 

Embedded (Start-Stop) 
Bit SerDes 

10- and 18- bit widths available 
Lock to random data capability 
Relaxed clocking requirements 

No inherent DC balance 
Not well suited for AC-
coupled or fiber applications 

8b/10b SerDes DC balance coding 
Works well in AC-coupled & fiber 
environments 
Widely available 

Byte-oriented 
Tight clocking requirements 
Requires comma for sync 

Bit Interleaving 
SerDes 

Aggregates existing slower serial 
streams 
SONET/SDH-compliant versions 

High speed design challenges 
Higher cost 

 
Figure 15.  Comparison overview of advantages/disadvantages of SerDes architectures. 

 
 
Conclusion 
 
Over the past ten years, several SerDes architectures have flourished to meet the 
diverging needs of a growing number of applications. Understanding the advantages and 
disadvantages of each allows the designer to fit the SerDes to the application versus the 
application to the SerDes in order to maximize performance and minimize system cost 
and complexity. 
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