
A Demonstration of TextDB: Declarative and
Scalable Text Analytics on Large Data Sets

Zuozhi Wang, Flavio Bayer, Seungjin Lee, Kishore Narendran, Xuxi Pan, Qing Tang, Jimmy Wang, Chen Li
UC Irvine, CA 92697, USA

{zuozhiw, fbayer, seungl13, narendrk, xuxip, qingt, jianwenw, chenli}@uci.edu

Abstract—We are developing TextDB, an open-source data-
management system that supports text-centric operations in a
declarative and efficient way using an algebraic approach as in
relational DBMS. In this demonstration, we show scenarios where
we can use TextDB to perform powerful information extraction
easily and efficiently on text documents.

Video: https://github.com/TextDB/textdb/wiki/Video

I. INTRODUCTION

We are living in an era where a large amount of information
is recorded as text. Text data needs to be stored, indexed,
and managed to support advanced analytics and knowledge
discovery. Some of the tasks are performed by search engines,
as they support efficient keyword-based search on text, and
some tasks are managed by relational databases, as they
provide a query-processing engine and a declarative language.
Many text-centric applications rely on different components by
combining them with ad-hoc scripts and programs, which re-
quire a significant amount of programming efforts and are also
inflexible. To overcome these limitations, we are developing
TextDB1, an open-source data-management system to store,
index, and query large amounts of text data in a declarative
and efficient way using an algebraic approach as in relational
DBMS. A family of text-related operations, such as keyword
search, regular expression match, and named entity extraction,
are supported natively by the system so that end users need
not write the same kind of operations repeatedly. The system
also provides a user-friendly GUI to let users easily formulate
a query.

Related Work: Relational DBMS systems are mainly optimized
for storing and querying data types such as integer, float, and
string, but they have limit support for the text type, which is
not treated as a first-class citizen. Open-source search engines,
such as Lucene, have a main focus of keyword search. A
fundamental operator, namely join, is missing in these engines.
There are many open-source systems specifically developed for
text analytics. For example, Stanford NLP supports statistical
NLP, deep learning NLP, and rule-based NLP tools for major
computational linguistic problems. TextDB is different from
the systems aforementioned by: 1) providing storage and
indexing capabilities as in a database, 2) supporting built-in
text-specific operators such as keyword matcher, or operators
provided by incorporating other packages, and 3) the ability
to connect operators to make a more expressive plan, and 4)
a user-friendly interface to formulate a query easily. The IBM
SystemT [1] is a rule-based information extraction system that

1https://github.com/TextDB/textdb

Fig. 1. TextDB system architecture. Modules with dotted lines are under
development.

takes a database-like algebraic approach. It provides a declara-
tive language called AQL to formulate queries. TextDB differs
from SystemT in TextDB’s storage and indexing capability, as
well as extensibility of incorporating other packages. SystemT
is a commercial product, while TextDB is open-source.

II. SYSTEM OVERVIEW

Figure 1 shows the architecture of TextDB. Similar to a
relational DBMS, it includes a persistent storage layer for
storing and indexing text data, a rich set of text-specific
operators, and a plan generator to construct query plans, which
can be executed by a run-time engine. Data is modeled as
a collection of records, with each record containing a few
fixed-type attributes. Each attribute can be text, as well as
other data types such as integer, float, and date. Operators are
pull-based iterators, providing a getNextTuple() function
and a getOutputSchema() function, so that they can be
connected to each other to form a directed acyclic graph (DAG)
as a query plan.

TextDB includes relational operators such as select
and project. It also provides several text-specific operators
specifically for information extraction [2], such as keyword
matching, regular expressions, and named entities. These op-
erators return matching results as a list of spans. Each span is
a pair <begin, end> that represents a text region from the
beginning position to the ending position. The system has a
join operator that can match tuples based on conditions over
spans, such as “two spans are within a certain character or
token distance.”



Fig. 2. Demo 1: Extracting Zika cases.

As a data-management system, it is critical to provide
a storage layer to keep information reliably. TextDB uses
Lucene, an open-source package for keyword search, as its
storage layer. Lucene’s 18 years of active development and its
large community have made it very stable. We decided not to
implement the storage layer from scratch, considering that it
would require a significant amount of engineering effort. We
also did not use a storage module of an existing relational
DBMS, due to the fact that their storage is not optimized for
text and is hard to be detached. This architectural decision
allows us to focus on new open-ended research topics. At the
same time, we also need to deal with related challenges due
to the limited interface of Lucene.

TextDB includes a declarative language (under develop-
ment), which is an extension of the commonly used SQL
language for easy use by developers. A compiler and an opti-
mizer convert a query to a plan to be executed by the engine.
Using a declarative method, users can fully focus on query
formulation and leave the physical implementation behind.
TextDB can also run as a web service with a RESTful API. In
addition, since it is not easy for users (especially non-experts)
to formulate a query to express their needs, TextDB provides
a user-friendly Web-based GUI to let users easily formulate a
query by dragging and dropping predefined elements such as
a regular expression for emails and a dictionary of cities.

III. DEMONSTRATION SCENARIOS

We will use two scenarios to demonstrate the system.

A. Case Study 1: Extracting Zika Case Reports

Consider a case where a public health researcher wants to
investigate the recent Zika disease outbreaks by finding case
reports from various websites, such as CDC reports and news
articles. Specific case reports can help the researcher determine
the severity of the outbreak. She can also use these cases to
warn the public when traveling to dangerous places. In order to
find case reports, she could search “zika” on a search engine
such as Google or Bing, and manually find cases from the
search results. This process can be time consuming and error
prone. With the help of TextDB, she can find more results
with less effort by constructing a query plan using the GUI
interface, as shown in Figure 2.

The query uses various operators to accomplish the ex-
traction task. The query relies on an assumption that, within
articles containing the keyword “zika”, if a person and a date
appear closely together, then there is a high chance that the
article has a Zika case report. The extraction plan first filters
the documents containing the “zika” keyword using a Keyword
Matcher. Then it extracts person-related information by using

Fig. 3. Demo 2: Extracting drug information

a pre-defined extractor, which can be implemented by a Name-
Entity operator. Date-related information is extracted by a pre-
defined extractor too, which can be implemented by a regular
expression. Finally, the results from “Person” and “Date” are
joined based on the condition that their distance is smaller than
100 characters.

B. Case Study 2: Discovering Drug Information

A biomedical researcher wants to discover a pair of ar-
ticles (r, s) in a large medical literature repository such as
MEDLINE. In one article r, a drug is verified to be effective
to diabetes, while in another article s, the same (or similar)
kind of drugs were discovered to cause heart failure. This
piece of information is very important for a doctor when
deciding the medication for patients who have both diseases.
Using existing search engines, one has to retrieve publications
containing keyword diabetes and those containing keywords
heart failure, and then identify similar drugs mentioned in
these publications. Again, this approach is doable, but can
be very costly and challenging, especially for non-experts.
Using TextDB, she can formulate a declarative query on a
GUI to find a set of potential answers, as shown in Figure 3.
In this query, documents containing “diabetes” and “hearth
failure” are selected respectively from the repository. The
extractor isDrug() finds drugs in a document, and can be
implemented using regular expressions. The join operator with
a predicate sim > 0.8 specifies a similarity threshold that
allows the drug names extracted from the previous step to be
slightly different.

In the two scenarios, both queries use relational algebra
to select and join multiple pieces of text to improve search
efficiency and quality. In each of them, we will show how
to use the GUI to formulate a query, submit the query to
the backend engine, and display the results on the frontend
interface. We will explain the design and implementation of
each operator. We will show the benefits of the system by
allowing the user to dynamically modify the operators (such
as adding or deleting entities in a dictionary or a regular
expression) and re-run the query. We will show its NLP
capabilities using the incorporated Stanford NLP package. We
will also show the high efficiency of the system on large data
sets due to its internal storage and indexing.

REFERENCES

[1] Y. Li, F. Reiss, and L. Chiticariu, “SystemT: A declarative information
extraction system,” in The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, Proceedings
of the Conference, 19-24 June, 2011, Portland, Oregon, USA - System
Demonstrations, 2011, pp. 109–114.

[2] R. Grishman, “Information extraction: Capabilities and challenges,”
Notes prepared for the 2012 International Winter School in Language
and Speech Technologies, Jan 2012.


