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Abstract
Object-oriented programming complicates the already difficult task
of reverse engineering software, and is being used increasingly
by malware authors. Unlike traditional procedural-style code, re-
verse engineers must understand the complex interactions between
object-oriented methods and the shared data structures with which
they operate on, a tedious manual process.

In this paper, we present a static approach that uses symbolic
execution and inter-procedural data flow analysis to discover ob-
ject instances, data members, and methods of a common class. The
key idea behind our work is to track the propagation and usage of
a unique object instance reference, called a this pointer. Our goal
is to help malware reverse engineers to understand how classes are
laid out and to identify their methods. We have implemented our
approach in a tool called OBJDIGGER, which produced encourag-
ing results when validated on real-world malware samples.

1. Introduction
As malware grows in sophistication, analysts and reverse engineers
are increasingly encountering samples written in code following
the object-oriented (OO) programming model. For those tasked
with analyzing these programs, recovering class information is an
essential but painstaking process. Analysts are often forced to resort
to slow and manual analysis of a large number of methods and data
structures.

Programs that follow a traditional, procedural-based program-
ming model are typically arranged around functions with well-
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defined boundaries, inputs, and outputs. They use structures that
support limited operations with simple relationships (e.g., C-style
structs). The clear relationships between procedures make it rela-
tively easy to recover control and data flow even after compilation.

Conversely, the OO programming model is organized around
data structures (i.e. C++ objects) with complex relationships and
interactions. While C++ data structures are easily recognizable in
source code, compilation hides them behind sets of methods with
no obvious organization or relevance to one another. Therefore,
to reverse engineer an OO program, analysts must: (1) determine
related methods that belong to the same class; and (2) understand
how they interact.

To facilitate the recovery of object structures and relationships,
we have developed an approach that leverages the use of the “this
pointer” (hereafter ThisPtr), a reference assigned to each unique
(up to allocation instruction address) object instance. Specifically,
we use symbolic execution [11] and static inter-procedural data-
flow analysis [9] to track individual ThisPtr propagation and usage
between and within functions.

Although previous authors, most notably Fokin et. al [7][6] and
Sabanal et. al [18], have used ThisPtr tracking for OO reverse
engineering purposes, our work is distinct for two reasons: 1) We
document heuristics for identifying object-oriented methods and
structures expressed as data-flow patterns, which can be detected
in an automated way. Although patterns may vary from compiler
to compiler or from one object to another, the key idea is that each
variant may be captured as a unique pattern. 2) Our approach relies
only on static analysis and symbolic execution. Thus, it has the
ability to recover object-oriented artifacts that may not be created
during execution.

We have implemented our approach on top of the ROSE analysis
framework [15][17]. ROSE provides an infrastructure for disassem-
bly, symbolic execution, control flow analysis, and data flow anal-
ysis. Our tool, OBJDIGGER, aggregates data from object instances
created throughout a binary, compiled with Microsoft’s Visual Stu-
dio C++ (MSVC). It records potential constructors, data members
and methods. Tests against open-source programs, compiled with
MSVC, and real-world malware samples indicate that we are able



to recover this information reasonably accurately. Although our
current implementation is specific to MSVC, our approach could
be extended to others as well.

In summary, the contributions of this paper are:

• We present a purely static approach that uses symbolic execu-
tion and inter-procedural data-flow analysis to track object ref-
erences in binaries, produced by MSVC.

• We provide an implementation capable of analyzing a binary
and producing a list of (1) potential constructors or builders;
(2) methods; (3) data members.

• We present techniques for detecting inheritance relationships
and embedded objects.

• We demonstrate, through experimentation on both open-source
programs and closed source malware, that the techniques de-
scribed in this paper can be practically applied for reverse engi-
neering OO code.

The remainder of this paper is organized as follows. In Sec. 2,
we provide a brief overview of C++ object internals. In Sec. 3,
we formalize our goals and constraints. In Sec. 4, we provide
definitions for data structures crucial to our approach. In Sec. 5,
we describe our approach. In Sec. 6, we describe experiments
conducted using our implementation. In Sec. 6.1.2, we describe
limitations in our current work and our plans to address them in the
future. In Sec. 7, we review related work. In Sec. 8, we conclude.

2. Implementing Object Oriented C++ Features
In this section, we provide a basic overview of object-oriented C++
concepts. For a more detailed discussion, we direct interested read-
ers to Gray [8]. Although this paper focuses on code following
MSVC’s __thiscall convention, objects produced by other compil-
ers follow similar patterns. Our discussion focuses on the example
presented in Fig. 1.

When objects are created, the compiler allocates space in mem-
ory for each class instance. The amount of space allocated is based
on the number and size of data members and possibly padding for
alignment. Fig. 2 illustrates the layout of this memory region for
Sub, Add and Add1, as generated1 by MSVC. Every instantiated
object is referenced by a pointer to its start in memory; this refer-
ence is commonly referred to the ThisPtr.

The ThisPtr is maintained for the lifetime of the object. It is
passed amongst methods, and is used for data member accesses
and to make virtual function calls. For example, suppose that tPtr
is a ThisPtr to an instance of Add1. The memory dereference
[tPtr+12] points at variable one (see Fig. 2), and [tPtr+8]
points at the embedded Sub object inherited from Add.

Only one instance of a function is created by a compiler. How-
ever, many instances of a C++ class may exist. Therefore, the
ThisPtr allows for operations on the data members within a par-
ticular object instance. In MSVC, the ThisPtr is typically passed as
a hidden parameter to OO functions via the ECX register in accor-
dance with the __thiscall calling convention (more on this later).
For example, the sum() method, depicted in Fig. 3, implements
the __thiscall calling convention. At 0x401120, the ThisPtr is re-
trieved from ECX. At 0x40112A, the immediate value 1 is moved
into the memory location corresponding to ThisPtr plus 12. This
memory location corresponds to the offset of the Add1 class mem-
ber variable one. Therefore, the instruction at 0x40112A corre-
sponds to the high-level assignment one=1.

Inheritance manifests in memory layouts by embedding an ob-
ject of each superclass inside the object of the subclass (see Fig. 2).

1 This output is generated using the -d1reportAllClassLayout flag.

class Sub {
private:
int c;

public:
int sub(int a, int b) {
c=a-b;
return c;

}
};

class Add {
protected:
int x;
int y;
Sub b;

public:
Add() {x=0; y=0; }
Add(int q, int e) { x=q; y=e; }
int sum() { return x+y; }
int sub() { return b.sub(x,y); }

};

class Add1: public Add {
public:
int one;
int sum() {
one = 1;
return x+one;

}
Add1(int q) {
x = q;

}
};

Figure 1. Object-oriented code sample.

Dereferences to parent data members consist of addresses com-
posed of the ThisPtr plus offsets into the parent and child objects.
For example, to access the class member variable Add::x from an
Add1 object, Add1’s ThisPtr is adjusted by an offset to refer to the
embedded Add instance (zero in this case) and then dereferenced as
needed.

Virtual functions are implemented using virtual function tables
that contain a list of virtual function addresses. The address of
a virtual function table is stored as an implicit data member at
offset zero of the object (i.e., and accessed by reading [thisPtr]).
Indirect calls to virtual functions are made by dereferencing the
virtual function table and calling the target virtual function.

Fig. 4 illustrates a virtual function call to the second function in
a virtual function table. At address 0x402300, the virtual function
table’s address is moved from offset zero of the class layout into
EAX. At 0x402305, the pointer corresponding to the second func-
tion in the virtual function table is moved into EAX, which is called
in the next instruction.

When an inheritance relationship exists, the child object over-
writes the virtual function table references of its parent (if it has
one) on instantiation to ensure the most specific virtual function ta-
ble is installed at runtime. If there are multiple parents with virtual
functions, the child object has multiple references to distinct virtual
function tables, one per parent. In this arrangement, references to
virtual function pointers are placed at the beginning of each em-
bedded parent object.



class Sub size(4):
+–-

0 | c
+–-

class Add size(12):
+–-

0 | x
4 | y
8 | Sub b
+–-

class Add1 size(16):
+–-
| +–- (base class Add)

0 | | x
4 | | y
8 | | Sub b
| +–-

12| one
+–-

Figure 2. Class layouts for Sub, Add, and Add1.

0x401120: mov [esp+4], ecx
0x401125: mov eax, [esp+4]
0x40112A: mov dword ptr [eax+12], 1
0x401131: mov eax, [esp+4]
0x401136: mov eax, [eax]
0x401138: mov ecx, [esp+4]
0x40113D: add eax, [ecx+12]
0x401140: retn

Figure 3. Assembly Code for sum() in Add1.

0x402300: mov eax, [ecx]
0x402305: mov eax, [eax+4]
0x40230A: call eax

Figure 4. Virtual function call example.

3. Problem Statement
Given a binary executable compiled from C++ source code without
debugging information, recover the following:

• Unique constructors and builder methods for classes instanti-
ated

• Methods associated with object instances
• Location and size of data members used in these methods.

Goals and Assumptions. The goal of this work is to expedite
the recovery of object-oriented structures in compiled executables.
We aim to aid program understanding such that reverse engineers
and malware analysts are able to quickly identify when objects and
their data members are being used.

However, we do not seek to recover the original source code
of classes for two reasons. First, recovering source might not al-
ways be possible, because compilation is not an injective mapping.
Different sources can be compiled to produce the same binary, so
identifying the original source code is impossible in general. Sec-
ond, from the malware analysts’ point of view, it is more important
to understand the details of the compiled code (e.g., method rela-
tionships and class layouts) than high-level abstractions.

4. Definitions
In this section, we review basic definitions and abstractions from
data-flow analysis, used in the next section. For additional informa-
tion, we direct the reader to work by Kiss, Jász, and Gyimóthy [12].

A computer system can be defined as C = 〈P,M,R〉, where P
is a program; M and R are memory locations and registers that
are available for use by P . Each program is composed of a set
of functions, F , which can be further divided into sequences of
instructions (i.e., ∀f ∈ F, f = 〈i0, i1, i2, ...〉). Let I be the set of
instructions, and V be the set of values they manipulate.

Instructions read from and write to parts of M and R. Let
Use : I 7→ 2(V×(M∪R)) be a mapping such that Use(i) is the
set of all pairs 〈v, a〉, where v is the value read by i and a is either
a memory address in M or a register in R that stores v:

Use(i) =
{
〈v, a〉 | a ∈M ∪R, i

v← a
}

Simply stated, Use(i) is a data structure that maps instructions
to values read in particular registers and memory locations. Sim-
ilarly, let Def : I 7→ 2(V×(M∪R)) be a mapping between an in-
struction and the locations it writes to:

Def(i) =
{
〈v, a〉 | a ∈M ∪R, i

v→ a
}

An instruction is said to depend on another instruction, if it
reads/uses a value that has been set by the other. We define the
function DepOn to be a mapping between an instruction i and the
set of triplets 〈v, a, j〉, where v is the value written to the register
or memory location a by j.

DepOn(i) = {〈v, a, j〉 | 〈v, a〉 ∈ Use(i) ∩Def(j)}

Simply stated, DepOn adds to the data provided by Use by
providing information about the instruction responsible for defining
the value that was read. Alternatively, the first instruction is said to
be a dependent of the second. DepOf is the inverse of DepOn:

DepOf(j) = {〈v, a, i〉 | 〈v, a〉 ∈ Use(i) ∩Def(j)}

Finally, we define the notion of data flow order. Consider a
function X that calls three others: A, B, and C, such that B calls
D just before returning. Furthermore, suppose that X passes each
method the value v. Written in flow order, [A,B,D,C], implies
that 1) A,B,D and C contain instructions that all use v (i.e.,
instructions in A,B,C and D share a reaching definition of v),
2) Instructions in A dominate the instructions in B,D and C.
Instructions in B dominate those in C and D, and so forth. (i.e.,
Given a control-flow graph containing X,A,B,C and D, and
taking the first instruction in X as the starting node, every path
to the start from the instructions in B,C and D must go through
the instructions in A. Every path from the instructions in C and D
must go through those in A and B, and so forth.)

5. Approach
Our approach consists of a preliminary stage and iterative anal-
ysis passes. We begin by disassembling binaries using the ROSE
framework, and use data and control flow analysis to build the
Use,Def,DepOn and DepOf maps. These data structures are
then used to identify object-oriented structures. ROSE provides the
x86 instruction semantics and symbolic emulation infrastructure re-
quired for this analysis.

The key idea behind identifying OO structures is to track the
propagation of unique (up to allocation sites) ThisPtr instances
within and between functions. We begin by identifying the set
of functions (FM ) that possibly follow the __thiscall convention.
Next, using heuristics about known heap allocation functions such
as the new() operator and stack allocation patterns, we identify



points at which a ThisPtr is created. We track these pointers to
functions in FM using inter-procedural data flow analysis. Depend-
ing on data flow order, we mark methods as either constructors
or member/inherited functions. Within these functions, we look
for data transfers to and from memory addresses based off of the
ThisPtr. Depending on the offsets from the ThisPtr and the size
of dereferences, we recover the size and position of data members.
OBJDIGGER uses the ROSE framework to perform control-flow and
dominator analysis.

5.1 Data and Control Flow Analysis
To construct the four maps described above, we implemented the
well known work-list algorithm [3, 10, 12] for data-flow analysis.
Our algorithm is shown in Procedure buildDependencies(). It
maintains a list of symbolic expressions (called states) that capture
the contents of registers and memory after each basic block2 is
executed. For each basic block B, and for each instruction i of B in
flow order, the algorithm: (i) symbolically executes i; (ii) updates
the register and memory contents of B’s state with the result r;
and (iii) adds i to the list of “modifiers” of r. This list records the
addresses of all instructions that have contributed to the value up
to this point. For example, processing the instruction add [eax],
5, located at address 0x00405630, updates the memory contents at
the address pointed to by EAX with 5, and adds 0x00405630 to
the value’s list of modifiers. Therefore, when a different instruction
reading this same memory location is processed later (i.e., cmp
[EAX], 0), a dependency relationship with the add is established
by reading the list of modifiers.

The state of each basic block, before any instructions are ex-
ecuted, is composed of the ‘merged’ states of each of the block’s
predecessors. In more detail, if control-flow can reach a basic block
from multiple locations, the contents of registers and memory at
block entry may have different symbolic values and modifiers, de-
pending on the specific path taken. Thus, the merged state com-
bines the information from each possible entry path by performing
a union across all possible entry states. Explicitly, if the contents
of a register or memory location is the same in two different entry
states, the symbolic value for that location in the merged state is the
same. If they are different, the merged state reflects that the value
is unknown, and the resulting list of modifiers is the combination
of the lists from each entry state.

The state of each basic block, after all instructions are executed,
is compared with the its previous state in states. If any of the
registers or memory contents have changed, states is updated and
all the block’s successors (those that the block can flow into) are
marked for processing. The algorithm terminates when the state of
all blocks stop changing.

5.2 Identifying __thiscall Functions
Most methods follow the __thiscall calling convention. When
identifying data members and inheritance, we restrict ourselves
to such functions, and thus our first step is to identify them. Note
that the steps outlined here are not precise enough to distinguish
between __thiscall and some instances of __fastcall,[5] (i.e., a
more complete algorithm would also need to verify that EDX is not
being used to pass parameters.) However, it is a cheap way to elim-
inate many functions that cannot be methods from further analysis,
thereby improving the overall efficiency of our approach.

A key trait of __thiscall in MSVC is ThisPtr is passed as a
parameter in the ECX register3. Exploiting this feature, we find
__thiscall methods as follows:

2 A sequence of instructions with one entry and one exit.
3 http://msdn.microsoft.com/library/ek8tkfbw(v=vs.80)
.aspx

Procedure buildDependencies()

Input: Func: A binary function composed of assembly
instructions

Input: EntryState: Symbolic state of system, storing register
and memory contents, upon function entry

Result: Uses, Defs, DepsOn and DepsOf are populated for
each instruction

1 foreach block ∈ getBasicBlocks(Func) do
2 states[block]← initSymbolicState();
3 queue[block]← true;

4 changed← true;
5 while changed do
6 foreach block ∈ getBasicBlocks(Func) do
7 if queue[block] then
8 if isFirstBlock(block) then
9 curstate← EntryState;

10 else
11 foreach pred ∈ getPredecessorBlocks(block) do
12 curstate← mergeStates(curstate, states[pred]);

13 foreach instr ∈ getInstructions(block) do
14 curstate← symbolicExec(instr, curstate);
15 foreach aloc ∈ getRegsAndMemRead(instr) do
16 symval← getRegOrMemValue(aloc, curstate);
17 Uses[instr]← 〈symval, aloc〉;
18 foreach definer ∈ getModifierList(symval) do
19 DepsOn[instr]← 〈symval, aloc, definer〉;
20 DepsOf[definer]← 〈symval, aloc, instr〉;

21 foreach aloc ∈ getRegsAndMemWritten(instr) do
22 symval← getRegOrMemValue(aloc, curstate);
23 Defs[instr]← 〈symval, aloc〉;

24 if not regsAndMemEqual(curstate, states[block]) then
25 changed← true;
26 foreach successor ∈ getSuccessorBlocks(block)

do
27 queue[successor]← true;

28 states[block]← curstate;

29 queue[block]← false;

We examine each method within a binary, f ∈ F , and look
for those that contain instructions that use ECX, whose value has
been defined externally to the function. We examine DepOn and
look for an instruction, i, that maps to the tuple 〈∗, ECX, j〉,
where j is an instruction that belongs to a different function than i,
and ‘*’ matches an arbitrary value.) Therefore, the set of methods
following __thiscall is:

FM ← {f | ∃i ∈ f � ∃j 6∈ f � 〈∗, ECX, j〉 ∈ DepOn(i)}

Our algorithm for identifying __thiscall methods is shown
in Procedure findThisCall(). It generates a set containing
pairs, each containing the __thiscall method, and the first in-
struction within that method to read ECX. In the rest of this pa-
per, by a __thiscall method, we mean a method identified by
findThisCall().



Procedure findThisCall()

Input: Funcs: set of functions from the executable
Input: DepsOn: the dependent-on map
Result: ThisCalls: set of pairs 〈func, instr〉, where func

follows __thiscall and instr is the first instruction in
func that reads ECX

1 ThisCalls← nil;
2 foreach func ∈ Funcs do
3 foreach instr ∈ getInstructions(func) do
4 foreach 〈value, aloc, depinst〉 ∈ DepsOn[instr] do
5 deffunc← getFunction(depinst);
6 if aloc = ECX and func 6= deffunc then
7 ThisCalls← ThisCalls ∪ 〈func, instr〉;
8 Repeat at Line 2;

9 return ThisCalls

5.3 Identifying Object Instances and Methods
Once potential __thiscall methods have been identified, the next
step is to group them into object instances by finding those that
share a common ThisPtr. Recall, the ThisPtr is a reference to an
object instance. Object-oriented methods are passed these point-
ers, so that they know which object instance they are operating
on, and they use the pointer to obtain member values and identify
virtual methods. Therefore, we first identify a potential ThisPtr,
which points to the stack or the heap. Next, from the data struc-
tures constructed earlier in buildDependencies(), we look for
those object-oriented methods that have been passed this particular
pointer in ECX.

Identifying ThisPtr creation follows a similar pattern for both
the stack and the heap. Heap space is obtained using functions such
as MSVC’s new() operator. Stack space is allocated upon function
invocation in the function prologue4. The lea instruction is often
used subsequently to load references to portions of this space. In
the remainder of this section, we describe how we track a heap-
addressed ThisPtr to object-oriented methods. Tracking a stack-
addressed ThisPtr is very similar, except the process begins at an
lea instruction.

We are able to identify calls to new(), either by parsing the bi-
nary’s import section or from fingerprints/hashes of known5 new()
implementations. Once a call to new() has been identified, we iter-
ate through each __thiscall method, and attempt to identify those
that contain an instruction that uses this new()’s returned value.

To identify methods belonging to an object created on the heap,
we do the following for each function that calls new():

1. We retrieve the ThisPtr by identifying the first instruction, j,
that reads EAX after a call to new().6 The symbolic value of
the ThisPtr is found from Use(j), corresponding to the pair
〈thisP trFromNew,EAX〉.
See Procedure findReturnValueOfNew().

4 Typically push ebp; mov ebp, esp; sub esp, X; where X is the
number of bytes allocated in the current stack frame.
5 We hash the bytes of unique new() implementations across different ver-
sions of the Visual Studio compiler. We attempt to identify functions that
match these signatures within a binary.
6 Functions such as new() typically return their result in the register EAX.

2. We then iterate through each __thiscall method, called in the
same function that calls new(), looking for those that contain an
instruction, i, that reads ECX with a matching value.

Simply stated, we look for __thiscall methods that are passed
values of ECX that match the symbolic value in EAX, immediately
following a call to new(). Or more formally:

objectMethods = {f ∈ FM | ∃i ∈ FM �

〈thisP trFromNew,ECX〉 ∈ Use(i) ∧ i ∈ f}
where f is a __thiscall method, i is an instruction in f , and
thisP trFromNew is defined above. Also see Procedure
findObjectMethodsFromNew().

0x401008: call new
0x40100D: mov [ebp-4], eax
0x401010: mov ecx, [ebp-4]
0x401021: call constructor
0x401024: ...
0x401026: push param1_offset
0x40102D: push param2_offset
0x401030: mov ecx, [ebp-4]
0x401033: call method

Figure 5. Heap object construction and method call example.

Fig. 5 illustrates these concepts. The call to new() at 0x401008
allocates space on the heap. The ThisPtr, referring to this region,
is returned in EAX and the instruction at 0x40100D saves it into
a temporary variable. Next, this ThisPtr is transferred to the ECX
register prior to the call to the constructor at 0x401021 and to the
method call at 0x401033. Since constructor and method share a
ThisPtr, they are methods belonging to the same class.

Procedure findReturnValueOfNew()

Input: NewCaller: a function that calls new()
Input: NewAddresses: set of addresses of new() functions
Input: Uses: the Uses map built by buildDependencies()
Result: ThisPtr: the symbolic value returned by a new() call

1 found← false;
2 foreach instr ∈ getInstructions(NewCaller) do
3 if found = false then
4 if getInstructionType(instr) = x86_call then
5 if getCallDest(instr) ∈ NewAddresses then
6 found← true ; // found the call to new

7 else
8 foreach 〈ThisPtr, aloc〉 ∈ Uses[instr] do
9 if aloc = EAX then

10 return ThisPtr ; // return the symbolic value

11 return failure ; // not usually reached

In a similar fashion, we identify objects created on the stack
by identifying lea instructions, l, that reference locally allo-
cated stack space. The value of ThisPtr is found from the pair
〈thisP tr,REG〉 ∈ Def(l), where REG is the first parameter of
the lea instruction. The pointer is tracked to __thiscall methods
in the same way as on the heap.

Identifying which methods are likely constructors is compli-
cated by several factors. Constructors are required to return a
ThisPtr, which distinguishes them from many, but not all con-
ventional methods. If the class uses virtual functions, initialization



Procedure findObjectMethodsFromNew()

Input: NewCaller: a function that calls new()
Input: ThisCalls: set of functions from findThisCall()
Input: Uses: the Uses map built by buildDependencies()
Result: ObjectMethods: set of functions sharing a common

ThisPtr

1 ObjectMethods← nil;
2 thisptr← findReturnValueOfNew(NewCaller);
// Get list of OO calls from this function

3 OurCalls← ThisCalls ∩ getCalls(NewCaller);
4 foreach 〈func, instr〉 ∈ OurCalls do
5 foreach 〈symval, aloc〉 ∈ Uses[instr] do
6 if aloc = ECX and symval = thisptr then
7 ObjectMethods← ObjectMethods ∪ func;

8 return ObjectMethods

of the virtual function table pointers can be used to reliably iden-
tify constructors, but virtual functions are not present in all classes.
Another common heuristic is that constructors are always called
first after space is allocated for the object. This heuristic fails when
compiler optimization has resulted in the constructor being inlined
following the allocation. We chose to identify constructors as the
first method called following allocation of the object if it returned
the same ThisPtr that was passed as a parameter. This algorithm
erroneously identifies some functions as constructors; for exam-
ple, builder/factory methods can closely resemble constructors at
the binary level. However, because these types of methods may
be indistinguishable from constructors in the binary we have not
counted this as an error. This heuristic also misses some legitimate
constructors, for example in methods that construct other types of
objects.

5.4 Data Members
Once related __thiscall methods have been associated with unique
object instances, we process each one to retrieve data members. Re-
call that the ThisPtr points into the memory region allocated for an
object. Therefore, by finding memory dereferences that use ThisPtr
and extracting their offset into this area and size, we identify the lo-
cation and width of the data member in the class layout.

Specifically, we identify the first instruction, j, in the function
to read ECX. We retrieve the value of the ThisPtr from the pair
〈thisP tr, ECX〉 ∈ Use(j). We then iterate through all of the
other instructions that dereference memory, i, looking for a pair
〈∗, thisP tr + offset〉 ∈ Use(i). The algorithm is given more
formally in Procedure findDataMembers(), which produces a
mapping, MemberMap, between a __thiscall method and a set of
data members discovered at a particular offset, represented by the
pair 〈offset, size〉.

Fig. 6 illustrates the use of ThisPtr for accessing a data mem-
ber. The ThisPtr is moved from ECX to EAX at 0x401104 and
0x401107. The data variable located at memory address ThisPtr
plus 0xC is transferred to EAX at 0x40110A. Therefore, we de-
termine that there is a data member at offset twelve in this class’
layout. Since the size of the dereference is 32-bit, we can assume
that a variable, of at least that size, exists at that particular offset.

5.5 Virtual Function Tables
Objects that have virtual function tables initialize the memory at
ThisPtr (zero offset) with the address of the table. This memory

0x401100: push ebp
0x401101: mov ebp, esp
0x401103: push ecx
0x401104: mov [ebp-4], ecx
0x401107: mov eax, [ebp-4]
0x40110A: mov eax, [eax+0Ch]
0x40110D: add eax, 1
0x401110: mov esp, ebp
0x401112: pop ebp
0x401113: retn

Figure 6. Data member discovery example.

Procedure findDataMembers()

Input: ThisCalls: set of functions from findThisCall()
Input: Uses: the Uses map built by buildDependencies()
Result: MemberMap: mapping from functions to pairs

〈offset, size〉 describing data members

1 MemberMap← nil;
2 foreach 〈func, instr〉 ∈ ThisCalls do
3 members← nil;
4 foreach 〈thisptr, aloc〉 ∈ Uses[instr] do
5 if aloc = ECX then
6 foreach uinstr ∈ getInstructions(func) do
7 if instr 6= uinstr then
8 〈symval, ualoc〉 ← Uses[uinstr];
9 if isMemReadType(ualoc) then

10 offset← thisptr − symval;
11 if isConstant(offset) then
12 size← getReadSize(uinstr, ualoc);
13 members← members ∪ 〈offset, size〉;

14 break ; // done with this function

15 MemberMap[func]← members;

16 return MemberMap

write occurs within a constructor and typically takes on the form
of mov [reg], vtableAddr where reg contains the value of a
ThisPtr. Therefore, if we find such instructions within constructors
identified previously, we record the written constants as potential
virtual function table addresses (i.e., 〈vtableAddr, thisP tr〉 ∈
Def(i)). We then identify calls made to entries within this table by
examining the dependents of the mov instruction, i. In more detail,
we find the set of instructions, Q:

Q = {q|〈vtableAddr, thisP tr, q〉 ∈ DepOf(i)}

where Q contains the set of instructions that read the ThisPtr
from the address initialized by the mov instruction. Using symbolic
execution, we follow the flow of the pointer from this instruction
to a call instruction. We record the branch target and offset of the
call destination from ThisPtr as an entry at the given offset within
the virtual table.

5.6 Inheritance and Embedded Objects
Although our current implementation does not fully support inher-
itance detection, we describe our current progress in this area.



Inheritance relationships can be determined by analyzing con-
structors. When a class inherits from a parent, the constructors of
the subclass call the parent’s constructors. Specifically, the sub-
classes pass their ThisPtr to the parents’ constructors. In the case
of single inheritance, the subclass constructor passes the ThisPtr
directly (the memory address is exactly equal to ThisPtr with no
offset). In the case of multiple inheritance, the subclass passes the
pointer plus the offset at which the parent is located in the class
layout.

Unfortunately, this behavior is also observed when an object
contains embedded objects. Therefore, in order to distinguish be-
tween embedded objects and inheritance, we need additional dis-
criminators. One reliable method would be to check if the subclass
overwrites the virtual table address of its parent in its constructors.
As mentioned earlier, classes in general, and the parent class in this
case, are not required to contain virtual functions.

In summary, to identify inheritance relationships, we could: (1)
retrieve all cross-references (calls out of the function) from con-
structors to other constructors; (2) compare the values of ECX at
the beginning of each function; a constructor that calls other con-
structors that share a common ECX value (possibly plus some con-
stant) indicates either an inheritance relationship or an embedded
object; (3) check to see if the caller overwrites, the address passed
to the called constructors. Recall, the pointer to the virtual table
is typically located at offset zero within a class layout. Therefore,
if a constructor writes to a memory address, that corresponds to
a ThisPtr passed to another constructor, with a pointer to a new
virtual table, we can label the other constructor as a parent. If we
cannot find such an overwrite, it is possible that the constructor is
instantiating an embedded object within the class. See Procedure
lookForInheritance().

0x401104: mov [ebp-4], ecx
0x401107: mov ecx, [ebp-4]
0x40110A: call sub_4010C0
0x40110F: mov ecx, [ebp-4]
0x401112: add ecx, 10h
0x401115: call sub_401080
0x40111A: mov eax, [ebp-4]
0x40111D: mov dword ptr [eax], 0x40816C
0x401123: mov ecx, [ebp-4]
0x401126: mov dword ptr [ecx+10h], 0x40817C

Figure 7. Example constructor with multiple inheritance.

Fig. 7 shows part of a constructor that calls two other methods at
0x4010C0 and 0x401080. It passes its ThisPtr without any offset to
the first call at 0x401107. It passes the second call the ThisPtr plus
0x10 at 0x401112. At 0x40111D and 0x401126, we observe that
these same memory locations are overwritten with constants cor-
responding to two new virtual function table addresses. Therefore,
we know that this constructor inherits from two other constructors,
at 0x4010C0 and 0x401080, whose layouts are embedded at offset
zero and sixteen of the class (see Fig. 2 for an example of single
inheritance and layout embedding).

In summary, there’s an open problem related to reliably distin-
guishing between embedded objects and multiple inheritance in the
absence of virtual functions in the parent. Some of our remaining
deficiencies stem from this difficulty, and we plan to continue in-
vestigating this problem in future work.

5.7 Object Instance Aggregation and Reporting
Our implementation aggregates data from object instances created
throughout a binary. This information is grouped by unique con-
structor, and in some cases builder methods that return object in-
stances that are largely indistinguishable from constructors. The

Procedure lookForInheritance()

Input: Func: function identified as a constructor, member of
ThisCalls

Input: Constructors: the set of all identified constructors
Input: ThisCalls: set of functions from findThisCall()
Input: Uses: the Uses map built by buildDependencies()
Input: Defs: the Defs map built by buildDependencies()
Result: Parents: set of parent/inherited constructors called

by Func

1 Parents← nil;
2 passed← nil;
3 foreach instr ∈ getInstructions(Func) do

// Find calls to other constructors
4 if getInstructionType(instr) = x86_call then
5 target← getCallDest(instr);
6 if target ∈ Constructors then

// Get ThisPtr passed to each constructor
7 foreach 〈cxf, cxi〉 ∈ ThisCalls do
8 if target = cxf then
9 foreach 〈symval, aloc〉 ∈ Uses[cxi] do

10 if aloc = ECX then
11 passed← passed ∪ 〈cxf, symval〉;

// Look for mov instruction that overwrites
location of a passed ThisPtr

12 foreach instr ∈ getInstructions(Func) do
13 if getInstructionType(instr) = x86_mov then
14 foreach 〈symval, aloc〉 ∈ Defs[instr] do
15 if isMemWriteType(aloc) then
16 foreach 〈pxf, thisptr〉 ∈ passed do
17 if symval = thisptr then
18 Parents← Parents ∪ pxf;

19 return Parents;

list of all seen data members and methods associated with an ob-
ject instance, produced by some constructor, are merged with that
of another object instance, produced by the same constructor. In-
formation from constructors known to belong to the same class,
for example because they share a common virtual table, are also
merged.

In this way we provide results to the analyst which are more use-
ful than individual object instances and yet are not truly class defi-
nitions either. With more rigorous detection of inheritance and ob-
ject embedding relationships these merged object instances should
converge on complete class definitions although we do not claim
that result in this work.

Fig. 8 shows data about merged object instances from one of
our experiments. Note that the actual output of our tool generates
raw addresses. For illustrative purposes here, we have substituted
the raw addresses with symbol information obtained from the com-
piler generated PDB files. This particular example shows correctly
identify methods, members and virtual function information from
the class XmlText. However, it also illustrates a case in which our
approach was unable to distinguish between an embedded object
and an inheritance relationship. XmlText inherits from XmlNode.



However, the XmlNode() and SetValue() methods of XmlNode
were reported as methods of XmlText.

Constructor: __thiscall XmlText::XmlText(char *)
Vtable: 4b7264
Vtable Contents:
Address: 4b7264 Pointer to Function @4035ae
Data Members:
Offset: 16 Size: 4
Offset: 20 Size: 4
Offset: 24 Size: 4
Offset: 28 Size: 4
Offset: 36 Size: 4
Offset: 40 Size: 4
Offset: 44 Size: 1
Methods:
void *__thiscall XmlText:: XmlText()
void __thiscall XmlNode::SetValue(char *)
__thiscall XmlNode::XmlNode(XmlNode::NodeType)
void *__thiscall XmlText::SetCDATA(bool)
Inherited methods:

Figure 8. Output of OBJDIGGER (with symbols substituted for
addresses).

6. Experiments
To validate our approach, we conducted experiments on open-
source packages, downloaded from SourceForge7, and on real-
world malware for which source is unavailable. We propose here
a framework for evaluating such algorithms using a mixture of
tool output, debugging information, and compiler generated class
member layouts.

6.1 Open-source Tests
6.1.1 Methodology
The open-source tests were designed to evaluate the effective-
ness of our approach given ground truth. The packages that we
used were: The Lean Mean C++ Option Parser version 1.3, Light
Pop3/SMTP Library, X3C C++ Plugin Framework version 1.0.2,
PicoHttpD Library version 1.2, and CImg Library version 1.0.5.
Each program serves a different purpose, such as XML or math
parsing, and includes test programs that exercise different parts of
their respective APIs. We ran our tool on a binary from each library.

In these experiments, ground truth came from three sources:
1) a compiler layout produced by MSVC (as shown in Fig. 2)
that contains information about the class layout and data members;
2) symbol information from compiler generated PDB files, which
allows us to map function addresses to symbolic names (from
which we can determine the classes in which they belong), and 3)
source code of the test programs and libraries.

The results of our experiments are summarized in Table 1. We
collected data in three categories for each test package:

1. # Unique classes found / # of unique classes. Using the symbol
information from the PDB, we counted the number of unique
classes instantiated in the binary code. We excluded classes that
were part of the standard compiler library. For the numerator,
we counted those classes for which OBJDIGGER identified at
least one instance of a constructor and associated methods and
members.

2. # of methods found / # of methods in binary. We used the sym-
bol information from the PDB to determine which methods

7 http://www.sourceforge.net

were included in the binary. We counted a method as found by
OBJDIGGER if it was associated with at least one instance of
a constructor for the correct class. Note that inlined methods,
and methods which were not included in binary are not present
as symbols in the PDB file. We also excluded from the denom-
inator cases where source code inspection confirmed that the
methods were not in the control flow. This sometimes happen
the compiler includes functions just because they were part of
an object file.

3. # of data members found / # of data members in binary. Using
the compiler layout information we compared the class mem-
bers identified by OBJDIGGER to the members reported by the
compiler. In certain circumstances we excluded from the de-
nominator members that were known to have no uses in bi-
nary. This sometimes occurs when the compiler excludes the
only function which accesses a member because the method
was never called.

Our testing methodology, for each package, was as follows:

1. Compile test programs for the package. Generate layout in-
formation using the compiler and demangle class names using
undname.

2. Run OBJDIGGER on each binary which reports method ad-
dresses and object layouts, without names.

3. Extract symbol data from PDB files using IDA Pro8 and de-
mangle names using undname9. This maps function addresses
to method names.

4. Correlate the function addresses from the OBJDIGGER output
to the names in the symbol data. As can be seen in Fig. 8,
the symbolic names specify the classes that particular methods
belong to, and allows us to determine the validity of grouped
methods.

5. Compare the discovered data members to those reported by the
compiler, using the class named obtained from the symbol for
the constructor.

6. Manually inspect the source code of each test program, exclud-
ing any methods or members as described in the previous sec-
tion.

Table 1. Test results for open-source packages.
Package Classes Methods Members
PicoHttpD 1.2 8/9 (89%) 31/47 (66%) 18/25 (72%)
x3c 1.0.2 4/5 (80%) 21/24 (88%) 6/8 (75%)
CImg 1.0.5 7/7 (100%) 61/83 (73%) 33/42 (79%)
OptionParser 10/10 (100%) 37/52 (71%) 33/35 (94%)
Light Pop3/SMTP 8/9 (89%) 29/35 (83%) 16/23 (70%)

6.1.2 Discussion
Table 1 lists the recall or true positive rate for OBJDIGGER. Method
and member totals are summed across all classes. While the table
does not explicitly list precision values, there were no false pos-
itives generated for this test set using the tool, so precision was
100% in all tests.

In each case, we verified that all identified methods and data
members were correctly associated with the classes in which they
actually belong by looking up their symbolic names.

8 https://www.hex-rays.com/products/ida/
9 Undname is a MSVC tool for demangling OO method names.



With regards to missed methods, OBJDIGGER was often able to
identify many of these missed methods as following __thiscall , but
was not able to associate these missed methods with a specific class.
It was also able to group many of these missed methods with other
found methods that shared the same ThisPtr. Unfortunately, none of
those other found methods could be positively identified as a con-
structor. For example, in the case of PicoHttpD, the single missed
class was created as a global variable. A memory address for a lo-
cation in the .rdata section was passed to the constructor. How-
ever, currently, OBJDIGGER only checks for local stack addresses
and space allocated by new(). Thus, even though OBJDIGGER cor-
rectly identified that this same pointer to the .rdata was passed
as a ThisPtr in a couple of other methods (those that we missed),
we didn’t report a new class instance being found or any of these
associated methods. We chose this conservative approach to avoid
over counting unique class instances. It is possible that these meth-
ods could have belonged to an object instance from a class that had
already been identified, but created in another function.

When a constructor is not found, we are unable to associate any
of the found members or methods in that object instance with a
specific named class. This leads to a cascading effect where a single
missed constructor negatively affects recall. Additionally, missed
class methods also mean that any data members that were accessed
inside of them were missed as well. This cascading effect is a
fundamental challenge in analyzing OO code, since methods and
data members are tied together to produce the object abstraction.

With regards to the missed methods and data members in CImg
and Light Pop3, we suspect that these omissions were due to imple-
mentations bugs and not limitations with the approach. Specifically,
at the time of the experiments, OBJDIGGER had problems tracking
objects that were passed as parameters to other methods. The tool
also had problems identifying certain methods that were called in-
directly, by dereferencing addresses within a class’s virtual table.
We are currently working on addressing those issues.

A fundamental limitation of our approach is that we can only de-
tect methods and members called and accessed by the program be-
ing analyzed, respectively. Our technique relies on grouping meth-
ods together by shared ThisPtr. Thus, if a program creates a class
with methods the are never called by any instances of that class
(or associated with a unique constructor belonging to that class),
OBJDIGGER fails to detect these methods. Similarly, if a data mem-
ber is never accessed (i.e., OBJDIGGER never observes a mem-
ory read or write to a particular location within a class layout),
OBJDIGGER fails to detect this particular data member.

6.2 Closed-source Malware Case Study
Object-oriented malware presents many challenges to analysts. Un-
derstanding object structures can be critical for recovering func-
tionality. To demonstrate how OBJDIGGER can aid with mal-
ware analysis we used it to help analyze a malware sample
(file md5 019d3b95b261a5828163c77530aaa72f on http://www.
virustotal.com).

It is not uncommon for OO malware to encapsulate critical, ma-
licious functionality in C++-style data structures. As a result, re-
verse engineering OO malware can be challenging because under-
standing program functionality may first require recovering C++
data structures.

Manually recovering C++ data structures can be a tedious and
error prone task, especially if done piecewise or in conjunction with
trying to understand program functionality. OBJDIGGER automat-
ically recovers object structures thereby streamlining analysis ef-
forts. For example, in the sample, OBJDIGGER quickly identifies
object instances and potential constructors.

Of the 585 functions within the sample, our tool identified nine
object instances and their constructors, methods, data members,

and virtual function tables. The analyst can then inspect this re-
duced set to determine each data structure’s relevance to the pro-
gram.

0x401010 push 0FFFFFFFFh
0x401012 push 41497Bh
0x401017 mov eax, large fs:0
0x40101D push eax
0x40101E mov large fs:0, esp
0x401025 sub esp, 0A8h
0x40102B push esi
0x40102C lea ecx, [esp+4]
0x401030 call sub_403000
0x401035 mov eax, [esp+C0h]
0x40103C mov ecx, [esp+BCh]
0x401043 push eax
0x401044 push ecx
0x401045 lea ecx, [esp+Ch]
0x401049 mov dword ptr [esp+BCh], 0
0x401054 call sub_401470
0x401059 lea ecx, [esp+4]
0x40105D mov esi, eax
0x40105F mov dword ptr [esp+B4h], 0FFFFFFFFh
0x40106A call sub_401F20
0x40106F mov ecx, [esp+ACh]
0x401076 mov eax, esi
0x401078 pop esi
0x401079 mov large fs:0, ecx
0x401080 add esp, 0B4h
0x401086 retn

Figure 9. Main function of the malware sample.

Constructor: 403000
Vtable: 41647c
Vtable Contents:
Address: 41647c Pointer to Function @ 403030
Data Members:
Offset: 0x0 Size: 0x4
Offset: 0x8 Size: 0x4
Offset: 0x18 Size: 0x4
...
Offset: 0xa0 Size: 0x4
Offset: 0xa4 Size: 0x4
Methods:
401470
401f20

Figure 10. OBJDIGGER output for the malware sample main func-
tion.

Fig. 9 shows the disassembly for the main function generated
by IDA Pro. A cursory analysis of this function shows that it is a
relatively simple routine containing three methods: sub_403000,
sub_401470, and sub_401f20. Note that in Fig. 10, OBJDIGGER
identified all three of these methods as related to one object,
sub_403000 is the constructor and sub_401470 and sub_401f20
are class methods.

With this information the analyst immediately has a sense that
the malware’s functionality is organized around (at least) one object
instantiated in the main function. Because significant parts of the
program are encapsulated in this object understanding its internals
is likely critical to determining program functionality. For instance,
understanding the purpose of this object’s data members takes on
greater importance because of the object’s usage in the malware.
Notably, OBJDIGGER also provides information on class member
offset and size, further simplifying analytical efforts.



In this scenario, the information provided by OBJDIGGER could
be recovered manually, but this may take considerable effort. Au-
tomatically reasoning through C++ data structures saves time and
frees the analyst to focus on questions that are more relevant to
malware functionality.

7. Related Work
Sabanal et. al [18] provide a detailed discussion of recovering C++
data structures from binary code. In particular, they are the first
to describe heuristics for recognizing C++ objects by monitoring
the use of the ThisPtr in binary methods. Our work builds upon
their ideas, and captures these heuristics as machine recognizable
data-flow patterns. Additionally, our work goes one step further by
tracking the propagation of ThisPtr between function to identify
common data members and methods of classes. Jens Tröger and Ci-
fuentes [21] pioneered similar use of dataflow analysis techniques
applied to binaries to recover virtual function tables; however, their
work relied on dynamic execution of code to resolve addresses of
object methods.

Lee et. al. [13], Balakrishnan and Reps [2], and Ramalingam
et. al. [16] are focused on variable/data type recovery in executable
files. While type recovery is an important and related problem, our
primary concern is to recover the class structure of objects.

Srinivasan et. al [20] propose a method that uses dynamic anal-
ysis to observe call relationships between methods to infer class
hierarchy (similar to what we have done in a static context). How-
ever, their ability to recover class structure is limited to portions of
a binary that actually run. Furthermore, since they are not tracking
memory dereferences that use the ThisPtr, they do not recover data
members.

Slowinska et. al [19] and Lin et. al [14] are focused on type
discovery of variables using dynamic analysis. Although their work
does not deal with object-oriented code directly, their method of
tracking the use of memory locations to infer size and type is
similar to the way we track memory dereferences, involving the
ThisPtr, to infer size and offset of data members.

Adamantiadis [1] provides a detailed explanation of construc-
tors, destructors and virtual function tables at the binary level. They
give an example of reverse engineering an object-oriented C++ bi-
nary. However, the discussion does not propose an automated tech-
nique.

Dewey et. al [4] describe many techniques similar to the ones
we use in our work. They specifically state though they are focused
on analyzing known non-malicious code for a specific class of vul-
nerability. Our work is designed to be used explicitly for analyzing
malicious software.

Fokin et. al [7] adopt an approach that appears to be very similar
to ours, but provides less detail about the data flow analysis. Their
earlier work [6] provides interesting insights about the aggregation
of related object instances into classes.

8. Conclusion and Future Work
In this paper, we present a purely static approach for recovering
object instances, data members and methods from x86 binaries,
compiled using MSVC. We produced a tool, OBJDIGGER, which
we tested against open-source software and real-world malware. A
comparison of the output from the open-source tests against ground
truth, generated by the compiler’s debug information, indicates that
our technique can achieve its goal effectively. The tests against real-
world malware demonstrate that our tool can aid in the malware
reverse engineering process.

While our experiments demonstrate that our approach is viable,
there is room for improvement. First, OBJDIGGER needs to be
extended to recognize and recover objects instantiated on a global

scope. We are currently exploring this direction, building on data-
flow analysis techniques to reason through mechanics of global
object creation and storage.

In certain object arrangements, inheritance and composition are
hard to distinguish. Determining whether an embedded object is a
parent or a member without using the presence of virtual function
tables is an open problem. More work is needed to correctly iden-
tify this arrangement. Similarly, constructors and destructors can
be difficult to distinguish under certain circumstances. OBJDIGGER
needs to be extended to accurately identify destructors to enable
better identification and tracking of object scope.

Advanced OO features of C++, such as virtual inheritance, are
currently not supported. Virtual inheritance fundamentally changes
the layout of objects in memory. The primary mechanism to imple-
ment virtual inheritance is the virtual base class tables. The virtual
base class table maintains offset to multiple parent classes to re-
move ambiguity possible with multiple inheritance. OBJDIGGER
must be extended to correctly recognize and interpret these tables.

Further investigation is needed to fully understand the impli-
cations of compiler optimizations such as inlining of constructors,
destructors, and other methods.

Finally, further experimentation is needed to determine to what
extent OBJDIGGER can analyze non-MSVC generated binaries.
Preliminary analysis suggests that compilers such as the GNU C++
Compiler use similar mechanisms to implement OO C++ features,
but additional investigation is needed to determine what, if any
nuances exist in different compilers. It might also be interesting to
investigate what we can discover of OO patterns in other languages,
such as Delphi, which analysts see frequently in the malware realm.

On a more practical note, the output of OBJDIGGER can cer-
tainly be improved to help the analyst more quickly see relation-
ships between methods and objects (perhaps as a custom plugin to
IDA Pro).
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