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Abstract— We present a real-time dense mapping system
which uses the predicted 2D semantic labels for optimizing
the geometric quality of reconstruction. With a combination
of Convolutional Neural Networks (CNNs) for 2D labeling and
a Simultaneous Localization and Mapping (SLAM) system for
camera trajectory estimation, recent approaches have succeeded
in incrementally fusing and labeling 3D scenes. However,
the geometric quality of the reconstruction can be further
improved by incorporating such semantic prediction results,
which is not sufficiently exploited by existing methods. In this
paper, we propose to use semantic information to improve
two crucial modules in the reconstruction pipeline, namely
tracking and loop detection, for obtaining mutual benefits in
geometric reconstruction and semantic recognition. Specifically
for tracking, we use a novel probabilistic projective association
approach to efficiently pick out candidate correspondences,
where the confidence of these correspondences is quantified
concerning similarities on all available short-term invariant
features. For the loop detection, we incorporate these semantic
labels into the original encoding through Randomized Ferns to
generate a more comprehensive representation for retrieving
candidate loop frames. Evaluations on a publicly available
synthetic dataset have shown the effectiveness of our approach
that considers such semantic hints as a reliable feature for
achieving higher geometric quality.

I. INTRODUCTION

A dense 3D representation of scenes with precise geometry
and reliable semantic information is the basis for intelligent
motion planning and modern VR/AR applications. As the
most prevalent dense reconstruction pipeline, the Kinect-
Fusion [1] and its subsequent variants for enhancing the
capacity [2], [3] and quality [4], [5] have recently been
integrated with modern CNN techniques [6], [7] for 2D
semantic labeling to develop incremental dense semantic
mapping systems such as SemanticFusion [8]. Soon after-
wards, by exploring the role of semantics, MaskFusion [9]
and DynSLAM [10] propose to use such 2D labeling for pre-
segmenting moveable objects (e.g., persons and vehicles),
leading to a divide-and-conquer reconstruction strategy for
dynamic scenes. Fusion++ [11] also maintains such a list of
objects and further formulates an object-level pose graph for
a globally consistent map of objects. We argue that semantic
hints have more profound effects on SLAM algorithms,
by contributing to the two most influential modules in a
reconstruction scenario, namely the tracking module and
the loop refinement module. In this section, we first review
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related work on these two modules and then discuss our
proposed methods for refinement.

The tracking module is used for estimating sensor poses
via frame registration so that measurements and predictions
can be projected and fused into the map. The most prevalent
solution for dense reconstruction systems [4], [5] is to min-
imize a joint cost involving both geometric and photometric
terms [12], where dense pixel-wise correspondences are
efficiently established through projective data association [1].
Recent methods that exploit additional semantic hints can
be classified into two major categories: (1) The first cat-
egory suggests using semantic hints to form higher-level
representative entities for the factor graph optimization [13],
[14]. Starting from primitive-level geometric entities such as
lines [15], [16] and planes [17], [18], coarse [19], [20] and
fine [21] representations for instances extracted by recent
object detection [22] and segmentation [7] approaches are
also introduced nowadays for establishing a richer represen-
tation of the involved landmarks. (2) The latter category takes
a different view by reformulating the associations between
frames and entities into a probabilistic form, where semantic
hints are regarded as invariant features for estimating their
likelihood. For this type of approaches, the expectation-
maximization (EM) [23] algorithm is broadly applied: Bow-
man et al. [24] use two interconnected stages, as an esti-
mation of discrete data association and continuous optimiza-
tion over the metric states, for optimizing the constructed
factor graphs containing probabilistic associations. Lianos et
al. [25] also use such a scheme to determine and minimize
semantic reprojection errors for visual odometry. Parkison et
al. [26] also follow the strategy to register unorganized point
clouds by updating and minimizing weighted residuals from
a group of established probabilistic correspondences. Unlike
existing methods, we propose to register organized frames,
where the efficiency of the original projective association
method [1] can be maintained in its probabilistic form to
support the real-time application.

The loop refinement module is used for reducing cu-
mulative drifts brought in by sequential tracking. It often
consists of two sub-modules, i.e. detection and optimiza-
tion. The loop detection module finds reliable events of
place revisiting for constructing trajectory constraints. These
constraints are then used by the latter module for refining
the trajectory [5] or deforming the scene [4]. Although the
behavior of loop detection is similar to the relocalization
problem in the computer vision community, many end-to-
end deep learning techniques such as PoseNet [27] and
Dual-Stream CNN [28] that predict recovered poses cannot



be directly applied in such an online scenario, because the
estimated poses of those continuously recorded frames need
to be optimized on the fly, i.e., the trained model should
be efficiently evolved during the scanning process. Hence,
loop detection methods for such scenarios are mainly based
on efficiently retrieving visually similar frames among a
database consisting of keyframes. Although some approaches
introduce deep neural networks to predict feature descriptors
for representing these keyframes [29], [30], the most widely
used methods for acquiring such a compact representation
are still based on low-level descriptors such as Bag-of-
Words (BoW) for monocular images [31] and Randomized
Ferns for RGBD frames [32]. By introducing additional
semantic hints, such representations can be evolved into a
more comprehensive form, leading to more accurate retrieval.

In this paper, we advance those key modules with pre-
dicted semantic labels, and form a novel system in which
geometric and semantic information can achieve mutual
benefits. For the tracking module, we revise the original
projective data association [1] into a probabilistic form.
Although such a change often comes at the expense of com-
putational efficiency as reported by previous methods [26],
we propose a reliable criterion for quickly determining target
regions containing most correspondences within a constant
time complexity. Furthermore, the probability of such an
association is assigned through a joint likelihood consid-
ering all available short-term invariant features (geometric,
semantic, and photometric). On the other hand, for the loop
detection module, we incorporate the predicted semantic
labels with the original low-level raw measurements to
obtain a compound encoding, which can better represent
their corresponding keyframe in the frame retrieval problem.
Generally, these improvements can be applied to other dense
reconstruction systems [5], and we choose to work on
ElasticFusion [4], which is also used as an underlying system
by SemanticFusion [8], to test our effectiveness. Experiments
on a high-fidelity synthetic dataset [33] with ground-truth
trajectory and labeling for quantitative comparisons demon-
strate the effectiveness of our improved modules and system.

II. PIPELINE OVERVIEW

Fig. 1 describes the pipeline of our system based on
ElasticFusion [4]. The input to our system is a stream of
RGB-D (color and depth) frames. It uses two different pro-
cessing frequencies (illustrated with green and black arrows)
for integrating the computationally intensive 2D semantic
labeling task into the real-time processing. Instead of densely
predicting semantic labels on each input frame, we use ray-
casted labels from the map for sequential tracking.

Map Structure. The reconstructed map is an unordered
list of surfelsM, where each surfelMk stores various types
of attributes. In addition to the original attributes such as
location pk, normal nk, color ck, and radius rk, we also store
the uncertainty of its semantic and geometric information:
The semantic information of Mk is stored as a normalized
histogram of possibilities Lk = {l1k, . . . , lMk } and updated
with a recursive Bayesian rule [8], where M is the number
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Fig. 1. The data flow of our proposed system. Processing modules, frames,
and the frames ray-casted through the map are colored in red, blue and
green, respectively. 2D semantic labeling is performed sparsely and fused
into the map in a low frequency (green arrows), and the ray-casted semantic
labels (top-left) are used for tracking sequential frames and constructing the
relocalization database. The red R’s stand for registration attempts, and they
generate constraints for deforming the reconstructed map.

of classes and lmk denotes the possibility of Mk belonging
to class m. Lk has 2 bytes for each class along with a
maximum likelihood cache, so we allocate 14 × 2 bytes in
total for a surfel in the target dataset [33] containing M = 13
classes. Surfels are obtained by mapping pixels in RGB-D
frames, so for simplicity, we also use Mk to represent the
corresponding RGB-D pixel. A potential choice for storing
more categories is to use the Least-Recently-Used (LRU)
strategy due to the sparsity of the possible categories through
such predictions. For the geometric uncertainty, a 3 × 3
covariance matrix Σk is used for describing the confidence
of position according to multiple noisy depth measurements.
For each pixelMz on a raw depth frame, its back-projection
pz , f(puvdz ) = K−1 · puvdz with regard to the camera
intrinsics K maps the point in the image space puvdz =
dz[uz vz 1]> to the camera space pz , where (uz, vz) and dz
are the coordinates and depth of the pixel in the image. Under
the assumption that there is no correlation of noise between
different axis directions, the covariance in the image space
can be set in a diagonal form Σuvd

z = diag(σ2
u, σ

2
v , σ

2
d), so

that such uncertainty in the camera space is calculated as:

Σz = Jf (puvdz ) ·Σuvd
z · J>f (puvdz ), (1)

where Jf is the Jacobian matrix of the back-projection
function f(puvdz ). For rasterized depth pixels on a frame,
we assume σu = σv = 0.5 and σd as concluded by Handa
et al. [34]. Then, once a new observation Mz is added
to Mk with an estimated pose Tz = [Rz|tz], we use
Σk ← Σk+RzΣzR

>
z to update its uncertainty according to

the Gaussian mixture model [35]. In total, we use 112 bytes
(with 64 extra bytes) for each surfel. Through ray-casting,
these surfels are rendered as small plain disks with regard to
their radius and normal for subsequent registration.

Tracking module. By ray-casting the reconstructed dense



map into organized images, all these three types of registra-
tion (frame-to-model, frame-to-frame, and model-to-model)
can be performed in a unified correspondence search manner.
Instead of the original projective association [1], we propose
to use a novel probabilistic projective association (Sec. III)
strategy for constructing correspondences and registering
images. Specifically, in the tracking module when performing
frame-to-model registration, the semantic labels for the input
frame are iteratively refined with the estimated pose and
ultimately finalized after pose estimation before being sent
to the loop refinement module.

Loop Refinement module. The other two types of regis-
tration, i.e., frame-to-frame and model-to-model in the origi-
nal ElasticFusion [4], are used for verifying candidate global
and local loops, respectively. For detecting global loops, the
proposed system maintains a database consisting of historical
keyframes, and a new frame will trigger the verification when
a similar keyframe is found. For detecting local loops, the
surfels in the map are split into two types as either ‘active’
or ‘inactive’ by their last update time, and the verification
is performed between these two ray-casted frames to de-
tect and recover possible misalignments caused by cumu-
lative drifts of sequential tracking. We incorporate higher-
level semantic features into the original encoding through
Randomized Ferns [32] to obtain a representative code of
each keyframe for more effective retrieval (Sec. IV). In
addition, these verifications are based on the joint likelihood
considering all available short-term invariant features rather
than the original ICP residual that only assesses geometric
convergence (Sec. V). For how to apply these established
constraints for scene deformation, we refer readers to the
original ElasticFusion [4] for their implementation details.

III. PROBABILISTIC PROJECTIVE ASSOCIATION

Given a source frame and a target frame, the original pro-
jective data association [1] locates at most one corresponding
pixel Mj for each source pixel Mi as the nearest neighbor
of its reprojection on the target image domain, where the
reprojection p′i = d′i[u

′
i v
′
i 1]> is calculated as:

p′i = f ′(T · f(puvdi )), (2)

where f ′ , f−1 and T = [R|t] is the estimated relative
transformation for transforming points in the source camera
space to the target camera space. If such a candidate pixel
Mj on the target frame puvdj is picked, a post verification
based on the difference of their depth values d′i and dj
by a hand-tuned threshold is required to reject unsuitable
correspondences.

The main advantage of this reprojection strategy is that
its time complexity is independent of the total number of
pixels, which outperforms other correspondence searching
data structures such as Kd-trees, but it also suffers from
noise of depth measurements and may result in erroneous
correspondences, especially when commodity depth sensors
are used. To address this, we instead formulate correspon-
dence search into a probabilistic form taking into account
possible sensor noise. As shown in Fig. 2, we replace

Fig. 2. Schematic of probabilistic projective association in our tracking
module. The original projective association [1] is shown in red, while our
proposed probabilistic association shown in green uses a region considering
possible sensor noise to find multiple candidate correspondences, with the
confidence of each correspondence assigned according to the similarity of
the appearance between pixels (cyan and brown represent two different
semantic labels).

the original projective data association [1] (red) with our
new probabilistic projective association (green), where the
probabilities of such correspondences are quantified through
the joint likelihood based on available pixel features. We first
present the definition of the probability of such associations,
and then derive the criterion for the candidate region (orange)
for quickly locating possible candidates.

Under the assumption that geometric, semantic and color
measurements are independent, such a joint probability Pi,j
between the source pixelMi and its candidate corresponding
pixel Mj in the target frame is defined as:

Pi,j = Pgeo(pi, pj ; Σi,j)·Psem(Li, Lj)·Pclr(ci, cj ;λ2
c), (3)

where Pgeo, Psem, and Pclr are similarities according to the
different types of measurements. The geometric similarity
Pgeo is calculated as:

Pgeo(pi, pj ; Σi,j) ∝ exp(−1

2
‖pi − pj‖2Σi,j

) , wgeo, (4)

where ‖x‖2Σ , x>Σ−1x is the squared Mahalanobis dis-
tance with covariance matrix Σ, and Σi,j = Σj + RΣiR

>

again through the Gaussian mixture model [35]. The seman-
tic labeling similarity Psem is defined as the similarity of
their normalized histograms:

Psem(Li, Lj) ∝
∑

x∈{1...M}

lxi · lxj , wsem, (5)

and the color similarity Pclr is similarly defined by the differ-
ence of colors under the assumption of normally distributed
uncertainty:

Pclr(ci, cj ;λ
2
c) ∝ exp(−1

2
‖ci − cj‖2λ2

cI) , wclr, (6)

where a parameter λc is introduced to set the confidence for
the consistency of color measurements, and λc = 0.1 is used
in our experiments.

Based on the joint probability defined above (Equ. 3), for
fast rejecting those less possible correspondences, we suggest



ignoring those correspondences if their joint probability
is relatively small. According to the following relations,
we choose to use the geometric similarity for such a fast
rejection:

Pi,j < Pgeo(pi, pj ; Σi,j)

= Pgeo(pi, pj ; Σi) · Pgeo(R>pi,R>pj ; Σj)

< Pgeo(pi, pj ; Σi)

= Pgeo(p
′
i, p

uvd
j ; Σ′i),

(7)

where Σ′i is the reprojected covariance on the target frame
shown in Fig. 2 and we use its first order approximation
Σ′i ≈ Jf ′ · R>ΣiR · J>f ′ for computing. Since such
an approximation only relies on the geometry information
from the source frame, we thus can define a condition as
wgeo(p

′
i, p

uvd
j ; Σ′i) < λp for fast rejecting less possible

correspondences (with λp = 0.1 in our implementation).
Then, the rejection region Ωi ⊂ R2 can be solved by the
following problem with the condition represented in the
logarithm form:

find Ωi that ∀(uj , vj) ∈ Ωi,∀dj ∈ (λn, λf ),

s.t. ‖p′i − dj [uj vj 1]>‖2Σ′i > −2 log λp,
(8)

where the condition can be treated as a quadratic function of
dj for solving for the image domain Ωi. λn = 0.0, λf = 4.0
are assigned as the possible scanning range of the target
frame.

Finally, we traverse each source pixelMi and its candidate
corresponding pixels Mj that lies within such an estimated
range Ωi to compute the weighted residual and solve the
relative transformation T as:

argmin
T

∑
i

∑
j∈Ωi

wi,j‖pj −T · pi‖2Σi,j
, (9)

where these joint weights wi,j are calculated as the product
of wgeo, wsem, and wclr according to Equ. 3. These weights
are held constant during each inner iteration.

IV. SEMANTIC ENCODING FOR KEYFRAME RETRIEVAL

Reliable and compact codes for keyframes are essential
for efficiently retrieving similar poses. As used in various
reconstruction systems, the original encoding strategy based
on the Randomized Ferns [32] defines 4-channel binary tests
at randomized but fixed image locations (N in total) to
generate a compact code for each keyframe X . Intuitively by
integrating higher-level labeling results with low-level color
and depth tests, a richer and more effective code can be ac-
quired for better measuring similarities between keyframes.
We expand the original code bX = [bX1 . . . bXN

] ∈ B4N

by adding the maximum likelihood of labeling denoted as
qX∗ of each location, and thus form a revised code b′X =
[(bX1

, qX1
) . . . (bXN

, qXN
)] ∈ B(4+dlog2Me)N . Thus, the dis-

similarity measured by both pixel and semantic differences
of two encodings b′I and b′J can be calculated as:

Dis(b′I , b
′
J) =

1

N

N∑
y=1

(bIy ≡ bJy ∧ qIy ≡ qJy ), (10)

where the equivalent operator ≡ returns 0 if two blocks are
identical and 1 otherwise. We follow the original ID look-up
table as an efficient structure for searching and maintaining
the keyframe database.

V. POSE EVALUATION THROUGH JOINT-LIKELIHOOD

Registration attempts may fail or result in unexpected con-
vergence. The original ElasticFusion [4] does not explicitly
address such problems and chooses to use a hand-tuned
threshold on its ICP residual reflecting the geometric conver-
gence for verification. However, a better strategy concerning
all available features can be applied in our scenario, based
on the observation that a reasonable relative transformation
should have geometric, semantic, and photometric features
converged simultaneously. Hence, we choose to verify the in-
dependent pixel-wise maximum joint-confidence rather than
only rely on the geometric residual for evaluating estimated
poses, and the score Scr(I, J ; T) of a candidate relative
transformation T for the source frame I and the target frame
J is defined as:

Scr(I, J ; T) = (
∏
i∈I

max
j∈Ωi

wi,j)
1/|I|, (11)

where |I| stands for the total number of those valid pixels
Mi on the source frame I , and the total score is calculated
as the geometric mean of those individual scores for each
Mi. Empirically, we use a threshold λv for accepting the
estimated pose if Scr(I, J,T) > λv . This parameter and
its performance in comparison to the original threshold are
further discussed in Sec. VI-F.

VI. EXPERIMENTS AND EVALUATIONS

A. Evaluation Dataset

We perform experiments on a publicly available dataset:
SceneNetRGBD [33]. This dataset contains a rendering
engine and randomized scenes, where random trajectories
can be automatically generated for rendering photorealistic
videos as well as ground truth depth measurements and in-
stance labels. Also, it provides a collected dataset for training
2D semantic labeling models. We generated 53,787 frames
of 42 trajectories from 7 scenes (6 trajectories each), where
the lighting and textures of each scene remain unchanged in
its trajectories for testing relocalization algorithms. We sorted
these scenes ascendingly through their density of objects and
denote them from S-1 to S-7. For rendering color images, we
keep its original configuration to synthesize visual artifacts
such as motion blur, while for depth images, we follow the
noise model proposed by Handa et al. [34] to synthesize
realistic noisy depth scans. These ground-truth labelings of
instances are converted into 13 classes.

B. System Implementation

Network Training. We uniformly sampled a subset
(168,650 images as 1/30) of the publicly available training
set for our training. We apply the DeepLabv3 [7] for training
a 2D semantic labeling model, and the network was trained
using the ‘poly’ learning rate policy with the base learning
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Fig. 3. An example of the dense reconstruction of ours (Top-Right) in
comparison to the ElasticFusion (Top-Left) with close views (Bottom-Left).
We also show the 3D labeling result according to the incremental semantic
fusion on the Bottom-Right.

rate set to 0.007 and power to 0.9. Momentum and weight
decay were set to 0.9 and 0.0002 respectively. We used a
mini-batch size of 10 and trained the network for a total of
300K iterations for about three days on an NVIDIA Titan
Xp. The performance of the network is evaluated with mean
Intersection over Union (IoU) of 44.52% and pixel accuracy
of 80.19% on its publicly available validation set.

Parameters. For registering frames, (λn, λf ) are used
for picking reliable depth measurements due to the reported
accuracy of depth cameras [34]. Decreasing λp may accept
more less-important correspondences in the iteration, but
we found that the chosen value is suitable for maintaining
the quality of registration while reducing the computational
cost. λc can be assigned according to the quality of color
frames, and it is necessary to increase the value to reduce
the sensitivity of color features when scanning scenes with
changing lighting conditions. For the threshold λv used for
pose evaluation, we demonstrate its effectiveness in compar-
ison to the original threshold on ICP residual in Sec. VI-F.

Hardware Configurations. All experiments were per-
formed on a desktop PC with an i7-6850K CPU, 32 GB
RAM, and two NVIDIA Titan Xp GPUs. We use one GPU
for continuously predicting poses and the other for the main
system. The 2D labeling task takes 104ms on average for
each frame (∼10Hz), and the main system requires 3.42GB
graphics memory.

C. Reconstruction Quality

For estimating the geometric reconstruction quality, we
calculate the RMSE (root mean square error) of distances
for every surfel to its nearest ground-truth surface. For com-
parison, we use two publicly available reconstruction systems
ElasticFusion [4] and the state-of-the-art BundleFusion [5].
Since SemanticFusion [8] directly applies ElasticFusion [4]
for its geometric reconstruction, they will obtain the same
geometric quality under the same configuration. We use
the default parameters as suggested by their paper, and
λf = 4.0 to cut off far noisy measurements. Results of
geometric reconstruction are listed in Tab. I, where the

RMSE of each scene is averaged over all the trajectories.
Fig. 3 and our supplementary video also show visualized
examples. According to our results, the original projective
data association (Equ. 2) used by ElasticFusion [4] and
BundleFusion [5] has generated false correspondences and
thus influence the final reconstruction quality. Although
BundleFusion adds sparse features during the registration, it
failed to precisely register frames in some textureless scenes.
On the other hand, the effect of such semantic hints on
scenes with complicated object arrangements is more evident
according to the difference between ElasticFusion and ours.

S-1 S-2 S-3 S-4 S-5 S-6 S-7
ElasticFusion 10.5 15.7 17.9 19.6 23.7 24.2 28.2
BundleFusion 12.5 21.9 21.2 18.9 22.8 20.0 16.3
Ours 10.0 15.9 16.6 16.7 22.0 19.4 16.2

TABLE I
STATISTICS OF GEOMETRIC QUALITY FOR DIFFERENT METHODS

EVALUATED IN RMSE (MILLIMETERS).

D. Performance of Registration
To further test the performance of our proposed registra-

tion algorithm (Sec. III), we randomly select 20,000 pairs
whose ground-truth relative transformation between its two
frames is less than 0.05m and 5◦ (since these registration
methods are mainly used for fine-level local registration) to
construct the test set. Our registration method is performed
in comparison with the original point-to-plane ICP used in
KinectFusion [1] and the RGBD odometry [12] used in
ElasticFusion [4]. As a reference, if the estimated relative
transformation has less than both 1cm translational and 1◦

rotational error, we consider the registration as successful.
The results of all these methods are shown in Tab. II.
We compare 3 semantic labeling sources, namely RGBD-
CNN pre-trained by SemanticFusion [8], our trained model
based on DeepLabv3 [7], and the ground truth generated
from rendering, for assessing the influence of the quality of
the input labels. Although the semantic quality will affect
the accuracy of tracking, using currently available labeling
strategies yields better results than the classical tracking al-
gorithms. DeepLabv3 works better than RGBD-CNN and the
performance is reasonably close to using ground-truth labels.
Meanwhile, our probabilistic association method considers
more corresponding pixels but can still maintain real-time
efficiency (less than 33ms for 30Hz RGB-D streams).

Err-T.(mm) Err-R.(◦) Suc.(%) Avt.(ms)
Point-to-Plane ICP 19.6 0.673 45.6 0.96
RGBD Odometry 5.66 0.246 81.9 3.13
Ours (RGBD-CNN) 5.45 0.236 84.8 12.93
Ours (DeepLabv3) 5.42 0.229 85.4 12.93
Ours (Ground-Truth) 5.36 0.203 87.2 12.92

TABLE II
STATISTICS OF THE REGISTRATION PERFORMANCE FOR DIFFERENT

METHODS. ERR-T./R. - AVERAGE TRANSLATIONAL/ROTATIONAL ERROR.
SUC. - SUCCESS RATE. AVT. - AVERAGE RUNNING TIME.



E. Performance of Keyframe Encoding

Since the purpose of the encoding strategies discussed
in Sec. IV for loop detection is to find spatially close
frames based on visual appearance, we use 4 trajectories
of each scene to construct their keyframe database and
the other 2 trajectories are used for retrieval attempts. As
the most common usage of such loop detectors, we re-
trieve the best candidate keyframe, and record its (1) initial
translational/rotational difference after retrieval, and (2) final
translational/rotational error after frame-to-frame registration
through the RGBD Odometry [12]. Also, if a recovery within
〈1cm,1◦〉 difference to its ground-truth pose is obtained, we
treat it as successful. The detailed comparison results are
listed in Tab. III for relocalization. Our method performs
both higher success rate and lower average difference of
pose in vast majority of cases, demonstrating the effective-
ness of such incorporation. It is worth mentioning that the
reconstructed databases of keyframes are also enlarged, since
more dissimilarity, i.e., diversity, is recorded in consideration
of such a higher-level feature.

Method Size Suc. Init-T.(mm) Init-R.(◦) Final-T.(mm) Final-R.(◦)

S-1 R-Ferns 586 102 32.6 2.10 10.5 0.65
Ours 636 102 33.2 1.97 9.0 0.60

S-2 R-Fern 1026 108 43.2 1.10 7.1 0.46
Ours 1162 114 35.6 0.96 7.0 0.45

S-3 R-Fern 508 51 47.3 1.27 4.8 0.21
Ours 590 57 42.6 1.18 4.6 0.18

S-4 R-Fern 438 95 44.1 1.22 14.6 0.74
Ours 614 123 35.4 0.95 15.6 0.58

S-5 R-Fern 356 61 43.4 2.36 9.0 0.67
Ours 424 74 35.4 2.00 8.8 0.61

S-6 R-Fern 444 98 41.7 1.97 15.7 0.81
Ours 546 108 35.1 1.71 16.1 0.77

S-7 R-Fern 404 49 42.8 1.23 8.4 0.43
Ours 480 59 38.2 1.08 8.4 0.45

TABLE III
STATISTICS OF THE RELOCALIZATION PERFORMANCE. SIZE - TOTAL

NUMBER OF KEYFRAMES. SUC. - SUCCESSFUL RECOVERY. INIT-T./R. -
INITIAL TRANSLATIONAL/ROTATIONAL DIFFERENCE. FINAL-T./R. -

FINAL TRANSLATIONAL/ROTATIONAL DIFFERENCE.

F. Performance of Pose Evaluation

For our proposed pose evaluation criterion (Sec. V) based
on the joint-likelihood, we compare the performance of the
threshold λc for the joint-likelihood and the original thresh-
old for ICP residual. based on the previously constructed
20,000 pairs of frames, and the 〈1cm,1◦〉 criterion, we use the
6-DOF normal distribution to randomly generate positive and
negative relative poses with approximately equal numbers
(nearly 50,000 for each). Then, we test the performance
of different configurations of parameters, and record their
accuracy, precision and recall as shown in Fig. 4. As shown
in Fig. 4(a), the best accuracy is around 55% obtained with
the geometric threshold set to 10−4, which is also chosen
by many reconstruction approaches [4] for constructing loop
constraints. However, the performance of our proposed like-
lihood evaluation through the threshold λv (Fig. 4(b)) can

reach almost 69% accuracy, demonstrating that the criterion
based on the consistency tracking is a suitable choice for
assessing estimated poses.
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Fig. 4. Performance (y-axis) of different pose evaluation criteria w.r.t. the
chosen threshold (x-axis).

G. Limitations

Our proposed method suffers from the following limita-
tions. First, our system does not construct distributions of
color measurements. Although it can be inferred similarly
using a Gaussian mixture model, the uncertainty of raw
measurements is hard to be quantified and such models
are not applicable to specular and highlight surface regions.
Second, although our probabilistic form of associations has
considered different types of features, we only use the
geometric information for computing residuals during reg-
istration, where a better choice would be jointly considering
all available residuals together.

VII. CONCLUSION

In this paper, we presented a real-time dense mapping
system which uses the predicted 2D semantic labeling re-
sults for enhancing the geometric reconstruction quality. For
registering frames and models, we propose a probabilistic
projective data association approach that constructs possible
correspondences between pixels, where the confidence of an
association is quantified by the joint likelihood considering
geometric, semantic and photometric information together.
Such joint likelihood is also used for evaluating the valid-
ity of an estimated transformation. For detecting candidate
loops through a database of keyframes, we incorporate these
predicted labels into the original coding to obtain a more
effective representation that better retrieves candidates for
loop refinement.
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