
A Two-Watched Literal Scheme for First-Order
Logic
Martin Bromberger1, Tobias Gehl1, Lorenz Leutgeb1,2 and
Christoph Weidenbach1

1Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
2Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
The two-watched literal scheme for propositional logic is a core component of any efficient
CDCL (Conflict Driven Clause Learning) implementation. The family of SCL (Clause Learning
from Simple Models) calculi also learns clauses with respect to a partial model assumption built
by decisions and propagations similar to CDCL. We show that the well-known two-watched
literal scheme can be lifted to SCL for first-order logic.

Keywords
CDCL, SCL, two-watched literal scheme, first-order logic

1. Introduction

The two-watched literal scheme is an indispensable part of any CDCL SAT solver
implementation [1, 2]. CDCL SAT solvers build an explicit partial model assumption,
called a trail, and check whether clauses with respect to this model assumption propagate
or whether they are falsified. Propagation here means the clause is false except for one
undefined literal. This literal needs then to be propagated in order to satisfy the clause.
For example, with respect to the partial model assumption [Q] the clause P ∨ ¬Q ∨R is
neither false nor does it propagate. With respect to propagation and falsification, there
is no need to do any update on the status of a clause, as long as it has two undefined
literals or it is true in the current model assumption. This leads to the two-watched
literal scheme. In any clause two literals are watched, e.g., we can watch P and R in the
above clause represented by the triple (P ∨¬Q∨R;P ;R). Then only the watched literals
are indexed with respect to the trail, i.e., for a trail [Q] the above clause is not visited
because ¬Q is not watched in the clause. The first benefit of the two-watched literal
scheme is that the clause only needs to be considered on trail extensions if a watched
literal is concerned. For a trail [¬P] the above clause is visited, P is false with respect to
the trail [¬P] and the watched literals are updated resulting in (P ∨¬Q∨R;¬Q;R). Now

PAAR’22: 8th Workshop on Practical Aspects of Automated Reasoning, August 11–12, 2022, Haifa, Israel
email: mbromber@mpi-inf.mpg.de (M. Bromberger); tgehl@mpi-inf.mpg.de (T. Gehl);
lorenz@mpi-inf.mpg.de (L. Leutgeb); weidenb@mpi-inf.mpg.de (C. Weidenbach)
orcid: 0000-0001-7256-2190 (M. Bromberger); 0000-0003-0391-3430 (L. Leutgeb); 0000-0001-6002-0458
(C. Weidenbach)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mbromber@mpi-inf.mpg.de
mailto:tgehl@mpi-inf.mpg.de
mailto:lorenz@mpi-inf.mpg.de
mailto:weidenb@mpi-inf.mpg.de
https://orcid.org/0000-0001-7256-2190
https://orcid.org/0000-0003-0391-3430
https://orcid.org/0000-0001-6002-0458
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

if the trail is extended to [¬PQ] the clause will be visited again and it will be detected
that it propagates R. The general invariant kept by the watched literal scheme for a
clause with respect to a trail is: either one of the watched literals is true or if there is a
watched false literal then there are no literals in the clause that are true or undefined
and not watched. The second benefit is that the two-watched literal scheme invariant is
invariant with respect to a shrinking trail, because this just turns true/false literals into
undefined literals.

In this paper we lift the propositional two-watched literal scheme to first-order logic
without equality. Our trail consists of ground first-order literals and clauses are full first-
order clauses containing implicitly universally quantified variables. Again we want to detect
propagating and false clauses by the two-watched literal scheme by only considering the
watched literals for trail extensions. For first-order logic the two-watched literals scheme
gets more sophisticated because of variable instantiation. The first extension concerns
universally quantified variables. Variable instantiation may result in merging literals and
different clauses may produce identical instances by variable instantiation. For example,
the first-order clause R(x, y) ∨ R(a, z) ∨ R(u, b) where a, b are constants and x, y, z, u
are variables represents already the propagating ground instance R(a, b). Therefore, our
two-watched literal scheme contains the rule FactorizeWatched for considering common
instances of watched literals and assumes that all starting units, including units built
by instantiation are performed right from the start. Furthermore, updates on the trail
induce further instances of clauses, in general, represented by the rule CreateInstance.
The second extension addresses potentially infinite trails. Consider the trail [P (a)] and
the clause ¬P (x) ∨ P (g(x)). Already this clause produces an infinite trail if propagation
is done exhaustively [P (a), P (g(a)), P (g(g(a))), . . .]. Even in a first-order setting without
non-constant function symbols, the trail may grow exponentially with respect to the
maximal arity of a predicate symbol. Thus exhaustive propagation cannot be afforded in
first-order logic, in general. On the other hand any CDCL style calculus typically breaks
if a decided (guessed) literal immediately results in a false clause, a conflict. Our solution
to this is a one step propagation look-ahead, represented by the rule DetectPropLiteral
and by separating the trail from a set of potentially propagating literals. This way our
two-watched literal scheme serves the SCL family of calculi considering a first-order
language [3, 4].

The paper is organized as follows: after a section on preliminaries, Section 2, we present
the TWFO calculus and prove that it detects all conflicts and propagations, Section 3.
Then we present some intuitive example runs of TWFO, Section 4. Next we show in
Section 5 that TWFO finds all conflicts and propagations with a minimal amount of
overhead: it only needs to check a clause instance for propagations and conflicts if the
clause instance was recently derived or if an instance of one of its watched literals was
assigned to false. Following this, we show how the interaction between the TWFO calculus
and the SCL calculus works in detail. The paper ends with a discussion of the obtained
results and directions for future work, Section 7.

2. Preliminaries

We assume a first-order language without equality where N denotes a clause set; C,D
denote clauses; L,K,H denote literals; A,B denote atoms; P,Q,R denote predicates;
t, s terms; f, g, h function symbols; a, b, c constants; and x, y, z variables. Atoms, literals,
clauses and clause sets are considered as usual, where in particular clauses are identified
both with their disjunction and multiset of literals. The complement of a literal is denoted
by the function comp. Semantic entailment |= is defined as usual where variables in clauses
are assumed to be universally quantified. Substitutions σ, τ are total mappings from
variables to terms, where dom(σ) := {x | xσ 6= x} is finite and codom(σ) := {t | xσ =
t, x ∈ dom(σ)}. Their application is extended to literals, clauses, and sets of such objects
in the usual way. A term, atom, clause, or a set of these objects is ground if it does not
contain any variable. A substitution σ is ground if codom(σ) is ground. A substitution
σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is ground, respectively. A
substitution σ is the minimally grounding substitution for a term/atom/literal/clause Z
if Zσ is ground and there exist no substitutions τ and ρ such that τρ = σ and Zτ is
ground.

The function mgu denotes the most general unifier of two terms, atoms, literals. We
assume that any mgu of two terms or literals does not introduce any fresh variables and is
idempotent. The function vars(Z) returns the set of variables in a term/atom/literal/clause/clause
set Z.

Let ≺B denote a well-founded, total, strict ordering on ground literals such that for
any ground literal L there are only finitely many ground literals K with K ≺B L. For
example, a Knuth-Bendix ordering has this property [5]. Let L be a ground literal L and
let K be a non-ground literal. Then we write K ≺B L in order to denote that there exists
a grounding τ for K such that Kτ ≺B L and C ≺B L in order to denote that there exists
a grounding τ for C such that Kστ ≺B L for all K ∈ C.

3. The Two-Watched Literal Calculus for First-Order Clauses

The Two-Watched Literal Calculus for First-Order Clauses (TWFO) calculus is a lazy two-
watched literals scheme for first-order logic without equality. Its purpose is to efficiently
detect propagations and all immediate conflicts with respect to a ground partial model
M and a set of first-order clauses without equality N . The calculus works on a tuple
(M ;β;O;F ;D) called a state where M is a sequence of ground literals called a trail, β is
the limit of the state, i.e., a ground literal limiting the considered ground literals and
clause instances, O is a set of triples (C;L1;L2) where C is a first-order clause and L1
and L2 are the two literals that are watched in C, F is a set of annotated literals LC;K

that can be propagated with the clause instance C, and D is the conflict clause or >.
Annotations for literals in F mark the leftmost literal in the trail such that the respective
clause propagates and > if the literal is propagated by a (implicit after factoring) unit
clause. Annotations are only explicitly written where they are needed or changed.

The literals on the trail M are annotated either with a positive natural number or with a

clause instance. These annotations are just the standard annotations used in CDCL [1, 2, 6]
and SCL [3, 4]. So a literal annotated with a positive natural number k means that this
literal is a decision literal of level k and a literal annotated with a clause instance Cσ
means that this literal is a propagated literal and that the clause instance Cσ propagates
that literal. A literal L is called assigned with respect to a sequence M of ground literals,
if either L ∈ M or comp(L) ∈ M , i.e., it is either true or false, otherwise it is called
unassigned. A ground clause {L1, . . . , Ln} is called assigned with respect to a sequence
M of ground literals, if either {L1, . . . , Ln} ∩M 6= ∅ or {comp(L1), . . . , comp(Ln)} ⊆M ,
i.e., it is either true or false, otherwise it is called unassigned. A clause C can propagate
the literal L with respect to a trail M if C = C ′ ∨ L ∨ . . . ∨ L and L is unassigned
with respect to M and M |= ¬C ′. In the following the watched literals L1 and L2
are considered interchangeably. A literal Ljσ is fresh out of (C;L1;L2) if Ljσ ∈ Cσ,
Ljσ 6= L1σ, Ljσ 6= L2σ.

TWFO is called lazy because: (i) TWFO does not check literals for all its instances, i.e.,
a literal with variables may be watched although all its instances are false. (ii) TWFO
does not propagate all propagatable literals it detects but only stores them in the set
of detected propagations F ; this is useful for first-order logic because there are infinitely
many ground instances per predicate.

For a finite set of clauses N , also called the initial clauses, the start state for TWFO is
(ε;β;O;F ;>) where (i) we choose the starting limit β such that C ≺B β for all clauses
C ∈ N , (ii) the starting set O consists of exactly one instance (C;L1;L2) for all starting
clauses C ∈ N such that L1 ∈ C and L2 ∈ C and L1 6= L2 if possible, and (iii) the
starting set F consists of all literals LC,> we can propagate from starting units C in N ,
including units Cσ = L∨· · ·∨L (where Cσ ≺B β) that we can build by factoring a clause
C ∈ N , e.g., if N contains the clause P (x) ∨ P (a), then P (x) ∨ P (a) can be factored to
P (a) ∨ P (a) so the starting F must contain the literal P (a) . Note that we only allow
non-empty clauses in N . The rules of the calculus are as follows:

CreateInstance (M ;β;O] {(C;L1;L2)};F ;>) ⇒TWFO (M ;β;O ∪ {(C;L1;L2),
(Cσ;Ljσ;Lkσ)};F ;>)
provided comp(L1σ) ∈M for some minimal grounding substitution σ,
Cσ ≺B β, Ljσ ∈ Cσ,
if possible Ljσ ∈M otherwise if possible Ljσ unassigned otherwiseM = M ′1 comp(Ljσ)M ′′1
and for all literals Lσ ∈ Cσ holds comp(Lσ) 6∈M ′′1 ,
if comp(L2σ) 6∈M then Lk = L2 else Lkσ ∈ Cσ and if possible Lkσ 6= Ljσ and if possible
Lkσ ∈M otherwise if possible Lkσ unassigned otherwise M = M ′2 comp(Lkσ)M ′′2 and for
all literals Lσ ∈ Cσ \ {Ljσ} holds comp(Lσ) 6∈M ′′2 ,
there exists no K1σ,K2σ ∈ Cσ such that (Cσ;K1σ;K2σ) ∈ O.

CreateInstance creates an instance as long as a watched literal gets false by instantiation
and the created instance is new.

UpdateWatched (M ;β;O]{(C;L1;L2)};F ;>) ⇒TWFO (M ;β;O∪{(C;Lj ;L2)};
F ;>)
provided comp(L1) ∈M ,

L2 6∈M ,
fresh Lj ∈ C where Lj ∈M or if no such Lj exists Lj is unassigned.

UpdateWatched exchanges a false watched literal as long as the other watched is not
true. It is replaced by a true or if such a literal does not exist, an unassigned literal.

FactorizeWatched (M ;β;O] {(C;L1;L2)};F ;>) ⇒TWFO (M ;β;O′ ∪ {(C;L1;L2),
(Cσ;Ljσ;Lkσ)};F ;>)
provided L1σ = L2σ for mgu σ,
Cσ ≺B β, fresh Ljσ ∈ Cσ,
if possible Ljσ ∈M otherwise if possible Ljσ unassigned otherwiseM = M ′1 comp(Ljσ)M ′′1
and for all literals Lσ ∈ Cσ holds comp(Lσ) 6∈M ′′1 ,
if comp(L2σ) 6∈M then Lk = L2 else Lkσ ∈ Cσ and if possible Lkσ 6= Ljσ and if possible
Lkσ ∈M otherwise if possible Lkσ unassigned otherwise M = M ′2 comp(Lkσ)M ′′2 and for
all literals Lσ ∈ Cσ \ {Ljσ} holds comp(Lσ) 6∈M ′′2 ,
there exists no K1σ,K2σ ∈ Cσ such that (Cσ;K1σ;K2σ) ∈ O.

DetectPropLiteral (M ;β;O]{(C;L1;L2)};F ;>) ⇒TWFO (M ;β;O∪{(C;L1;L2)};F∪
{LC;K

2 };>)
provided comp(L1) ∈M ,
C = C0 ∨ L2 ∨ . . . ∨ L2,
L2 unassigned,
M |= ¬C0,
M = M ′KM ′′ and comp(K) ∈ C, and for all L ∈ C holds comp(L) 6∈M ′′,
there is no HD;K′ ∈ F such that Hτ = L2 for some τ with Dτ ≺B β and K ′ ∈M ′K.

So DetectPropLiteral factorizes implicitely on the unassigned literal and propagates
as long as the literal is not known to be propagating. Note that we annotate the literal
that we propagate with the last literal on the trail that falsifies a literal in the clause. As
we will see below in a reasonable strategy this will be the last literal on the trail, that
equals comp(L1), except directly after backtracking. Also only in a reasonable strategy
the condition that L2 is assigned can only occur directly after backtracking, because
DetectPropLiteral is complete for a reasonable strategy, as we will see.

Conflict (M ;β;O]{(C;L1;L2)};F ;>) ⇒TWFO (M ;β;O∪{(C;L1;L2)};
F ;C)
provided comp(L1) ∈M and comp(L2) ∈M ,
M |= ¬C.

ConflictF (M ;β;O;F] {LC1
1 , LC2

2 };>) ⇒TWFO (ML1σ
C1σ;β;O;

F ∪ {LC1
1 , LC2

2 };C2σ)
there is a grounding unifier σ such that L1σ = comp(L2σ),
L1σ 6∈M , L2σ 6∈M ,
C1σ ≺B β and C2σ ≺B β

Note that in the ConflictF rule we do not need the prerequisites that comp(L1σ) 6∈M
and comp(L2σ) 6∈M hold because comp(L1σ) = L2σ 6∈M and comp(L2σ) = L1σ 6∈M
hold.

DecLiteral(Lk) (M ;β;O;F ;>) ⇒TWFO (MLk;β;O;F ;>)
provided L ground and not defined in M ,
there is no L′ ∈ F and grounding substitution σ such that comp(L) = L′σ and Lσ ≺B β

PropLiteral(LσCσ) (M ;β;O;F ;>) ⇒TWFO (MLσCσ;β;O;F ;>)
provided Lσ ground and not defined in M ,
there is a literal LC ∈ F , Cσ ≺B β

RemoveLiteral (ML;β;O;F ;D) ⇒TWFO (M ;β;O;F ′;D)
provided F ′ ⊆ F ,
for all L′C;K ∈ F ′ holds that L 6= K,
for all L′C;K ∈ F \ F ′ holds that L = K,
D 6= >

The clause D is the original conflict clause and the clause C in the rule Backtrack(C)
below is the clause that we get from resolution in the SCL(T) calculus and learn as a
new clause. The learned clause C in Backtrack(C) is a new clause and not an instance of
an already existing clause, as we know from the SCL(T) calculus, and is therefore not
already in O.

Backtrack(C) (M ;β;O;F ;D) ⇒TWFO (M ;β;O′ ∪ {(C;L1;L2)};F ′;>)
provided D 6= >,
there is a grounding σ such that Cσ can propagate L1σ, Cσ ≺B β
there is no τ and M = M ′M ′′ where M ′′ is non-empty such that Cτ can propagate with
respect to M ′, Cτ ≺B β
L1, L2 ∈ C,
L1 6= L2 if C contains different literals,
L1 unassigned,
if possible L2 unassigned otherwise M = M ′ comp(L2)M ′′ and for all literals L ∈ C holds
comp(L) 6∈M ′′,
if there is a minimal substitution τ with Cτ ≺B β such that Cτ = Lτ ∨ . . . ∨ Lτ then
F ′ = F ∪ {LτCτ ;>} else F ′ = F

The learned clause C in the Backtrack rule is a clause with a ground instance that
propagates directly. So there are no true literals in C and at least one unassigned literal,
the one that propagates. All other literals can be unassigned if not ground or false if
ground. So we can watch one unassigned literal and the other watched literal can be
unassigned or false.

Forget(V) (M ;β;O;F ;>) ⇒TWFO (ε;β;O′;F ′;>)
provided O′ = {(C;K1;K2) ∈ O | C 6∈ V } and F ′ = {LCσ;> ∈ F}

Note that the Forget rule only keeps clause instances annotated with >. Also we only
forget clauses when we restart and therefore the rule Forget(V) not only removes the
given clauses V but also restarts with an empty trail and removes all clause instances
that are not original instances. It also removes all literals in F that can not be directly

propagated from the kept clauses, i.e. literals that can be propagated from factorized
unit instances.

Grow(β′) (ε;β;O;F ;>) ⇒TWFO (ε;β′;O;F ;>)
provided β ≺B β′.

The TWFO-calculus is part of a larger calculus to efficiently detect propagations and
conflicts. So the rules DecLiteral(Lk), PropLiteral(LσCσ), RemoveLiteral, Backtrack(C),
Forget(V) and Grow(B′) are rules that are used to update the TWFO-calculus such that
it has the same trail, uninstantiated clauses and the same state of the conflict clause, if it
is > or not, as the larger calculus. Therefore the rules DecLiteral(Lk), PropLiteral(LσCσ),
Backtrack(C), Forget(V) and Grow(B′) have arguments.

CDCL-like calculi typically only forget clauses after a restart. Hence, Forget(V) not
only removes the clauses V but also restarts with an empty trail and removes all clause
instances that are not original instances. It also removes all literals in F that can not
be directly propagated from the kept clauses, i.e. literals that can be propagated from
factorized unit instances.

The TWFO-calculus is supposed to efficiently detect propagations and conflicts for a
larger calculus. The intended larger calculus is the SCL calculus presented in [3], but
there are also other calculi to which it could be adapted, e.g., the SCL(T) calculus [4].
The rules DecLiteral(Lk), PropLiteral(LσCσ), RemoveLiteral, Backtrack(C), Forget(V),
and Grow(β′) are rules that are used to update the TWFO calculus such that it has
the same trail, uninstantiated clauses and the same state of the conflict clause, if it is
> or not, as the larger calculus. Therefore the rules DecLiteral(Lk), PropLiteral(LσCσ),
Backtrack(C), Forget(V), and Grow(β′) have arguments. In order to keep TWFO in sync
with the SCL calculus, it has to detect all propagations and conflicts before SCL can
change the trail with the rules DecLiteral(Lk) and PropLiteral(LσCσ). We ensure this
with the help of a strategy:

Definition 1 (Reasonable Strategy). A strategy is called reasonable if the rules CreateIn-
stance, UpdateWatched, FactorizeWatched, DetectPropLiteral, and Conflict are preferred
over the rules DecLiteral(Lk) and PropLiteral(LσCσ). To newly created instances by Cre-
ateInstance, UpdateWatched, FactorizeWatched, Backtrack(C) these rules are exhaustively
applied before any other rule is applied. The rules ConflictF, RemoveLiteral, Backtrack(C)
may be applied without further restrictions.

Given this strategy TWFO actually finds all propagations and conflicts before SCL can
change the trail. But in order to prove this, we first must ensure some invariants that
each state reachable by TWFO from a starting state must fulfill:

Definition 2 (Consistent State). A state (M ;β;O;F ;D) is called consistent if all of the
following properties hold:

1. Every instance (D;L1;L2) ∈ O is an instance of an initial clause or of a learned
clause.

2. For every clause C there is at most one instance (C;L1;L2) ∈ O.

3. For every instance (C;L1;L2) ∈ O it holds that L1 ∈ C and L2 ∈ C.
4. For a clause instance (C;L1;L2) ∈ O it holds that either all literals in C are equal

or L1 6= L2.
5. The trail M only contains ground literals and does define a literal at most once.
6. For all literals LC,K ∈ F with K 6= > it holds that M = M ′KM ′′, C = C0 ∨ L ∨
· · · ∨ L, M ′K |= ¬C0, and L is undefined in M ′K.

7. For all literals LC,> ∈ F it holds that C = L ∨ · · · ∨ L.
8. For all literals LC,K ∈ F there exists an instance (D;L1;L2) ∈ O, a literal L′ ∈ D,

and a substitution σ such that C = Dσ and L = L′σ.
9. For all literals LC1 ∈M it holds that there exists a literal LD,K2 ∈ F and a substitution

σ such that L1 = L2σ, C = Dσ, D = D0 ∨L2 ∨ · · · ∨L2, and if K is a literal, then
M = M1KM2L1M3.

10. For every instance (C;L1;L2) ∈ O for which there exists a substitution σ such that
Cσ = L∨· · ·∨L and Cσ ≺B β, there also must exist a KD,> ∈ F and a substitution
τ such that L = Kτ and Dτ = L ∨ · · · ∨ L.

11. For every instance (D;L1;L2) ∈ O, D ≺B β.
12. For all literals LC1 ∈M it holds that there exists a clause instance (C;K1;K2) ∈ O,

a literal L′ ∈ C, and a substitution σ such that L1 = L′σ and L1 ≺B β.
13. For every literal LD,K2 ∈ F , L2 ≺B β.

Lemma 1 (Consistency of Starting States). A starting state (ε;β;O;F ;>) for clause set
N is consistent.

Lemma 2 (Preservation). Let (M ;β;O;F ;D) be a consistent state. Then any state
reachable from (M ;β;O;F ;D) by a sequence of TWFO reasonable rule applications is
consistent.

Theorem 1 (Correctness). The following properties hold for a consistent state (M ;β;O;F ;D)
and every clause instance (C,L1, L2) ∈ O:

1. If D = > and there is a ground instance Cσ ≺B β such that M |= ¬Cσ, then
Conflict or ConflictF is applicable to Cσ after a series of rule applications that
consist only of the rules CreateInstance, UpdateWatched, and FactorizeWatched.

2. If D = > and there is a ground instance Cσ ≺B β such that M |= ¬Cσ, then
any sequence of rule applications that follows a reasonable strategy will apply one
of the rules Conflict, ConflictF, or Forget(V), before the rules DecLiteral(Lk) and
PropLiteral(LσCσ) are applicable. This means if there is a clause in conflict with
the trail, then the calculus will detect a conflict clause or forget/reset the trail, before
it can propagate or decide new literals onto the trail.

3. If D = > and there is an instance Cσ = C ′σ ∨ Lσ ∨ · · · ∨ Lσ where Cσ ≺B β, C ′σ
is ground, M |= ¬C ′σ and Lσ is unassigned with respect to M , and there exists no
H ∈ F and substitution τ such that Hτ = Lσ, then DetectPropLiteral is applicable
to Lσ or a literal H that can be instantiated to Lσ after a series of rule applications
that consist only of the rules CreateInstance, UpdateWatched, and FactorizeWatched.

4. If D = > and there is an instance Cσ = C ′σ∨Lσ∨· · ·∨Lσ where Cσ ≺B β, C ′σ is
ground, M |= ¬C ′σ and Lσ is unassigned with respect to M , and there exists no H ∈
F and substitution τ such that Hτ = Lσ, then any sequence of rule applications that
follows a reasonable strategy will apply one of the rules DetectPropLiteral, Conflict,
ConflictF, or Forget(V), before the rules DecLiteral(Lk) and PropLiteral(LσCσ)
are applicable. This means if there exists a propagatable literal that has not been
detected yet, then the calculus will detect a new propagatable literal or a conflict or
forget/reset the trail, before it can propagate or decide new literals onto the trail.

5. If D = >, then exhaustively applying CreateInstance, UpdateWatched, Factor-
izeWatched, and DetectPropLiteral will terminate after a finite number of rule
applications.

6. If there is a transition (M ;β;O;F ;>) ⇒Conflict
TWFO (M ;β;O;F ;Dσ) then there is a

conflict M |= ¬Dσ and Dσ ≺B β is a ground instance of an initial clause or of a
learned clause.

7. If there is a transition (M ;β;O;F ;>)⇒ConflictF
TWFO (ML;β;O;F ;Dσ) then there is a

conflict ML |= ¬Dσ and Dσ ≺B β is a ground instance of an initial clause or of a
learned clause.

8. If there is a transition (M ;β;O;F ;>)⇒DetectPropLiteral
TWFO (M ;β;O;F ∪{LD};>) then

there is a propagation where D = D′ ∨ L ∨ · · · ∨ L, D ≺B β, and M |= ¬D′, D is
an instance of an initial clause or of a learned clause, and D′ is ground.

Let (M ;β;O;F ;>) be a consistent state. Together the above properties show that
our calculus is correct. That means in any reasonable run starting from (M ;β;O;F ;>),
TWFO tries to exhaustively apply the rules CreateInstance, UpdateWatched, Factor-
izeWatched, and DetectPropLiteral. This can end in one of three ways (Theorem 1.1
and 1.3): (i) TWFO finds a conflict and interrupts the exhaustive exploration with
Conflict or ConflictF, (ii) TWFO finds all literals that can be potentially propagated, and
(iii) TWFO interrupts the exhaustive exploration by resetting the trail with rule Forget(V).
Either way, the exhaustive exploration for trail M will terminate (Theorem 1.5). With
regard to DecLiteral(Lk) and PropLiteral this means that TWFO will detect any conflicts
and any literals that can be potentially propagated before the trail can be extended by
DecLiteral(Lk) and PropLiteral (Theorem 1.2 and 1.3). Moreover, all detected conflicts
and propagatable literals are sound (Theorem 1.6–8).

4. Examples

We now present some examples that intuitively show how each rule of the TWFO calculus
is used. Note that the trails in the examples are not annotated with the clauses that
propagated the literals to shorten the notation. Also instead of writing down the tuple
(C;L1;L2) for elements in the set O we will annotate watched literals with ∗.

Example 1 (Example run 1). Let N = {(1)P (x)∨¬Q(x)∨R(x, y), (2)P (x)∨Q(a), (3)P (a)∨
¬R(x, b)} be the set of starting clauses and let ≺B be an ordering and β be a ground
literal such that L ≺B β iff the predicate of L is P , Q, or R and const(L) ⊆ {a, b}. Let

O0, O1, and O2 be sets of clause instances such that
O0 = {(1)P (x)∗ ∨ ¬Q(x)∗ ∨R(x, y), (2)P (x)∗ ∨Q(a)∗, (3)P (a)∗ ∨ ¬R(x, b)∗},
O1 = O0 ∪ {(1.1)P (a) ∨ ¬Q(a)∗ ∨R(a, y)∗},
O2 = O1 ∪ {(4)P (a)∗ ∨ P (x)∗}
O0 is our starting set of clause instances and the others will be reached during the run.

Then the following is a run of the TWFO calculus:

(ε;β;O0; ∅;>)

⇒DecLiteral(¬P (a)1)
TWFO (¬P (a)1;β;O0; ∅;>)

⇒CreateInstance(1)
TWFO (¬P (a)1;β;O1; ∅;>)

⇒DetectPropLit(2)
TWFO (¬P (a)1;β;O1; {Q(a)P (a)∨Q(a);¬P (a)};>)

⇒DetectPropLit(3)
TWFO (¬P (a)1;β;O1; {Q(a)P (a)∨Q(a);¬P (a),¬R(x, b)P (a)∨¬R(x,b);¬P (a)};>)

⇒PropLiteral(Q(a))
TWFO (¬P (a)1Q(a);β;O1; {Q(a)P (a)∨Q(a);¬P (a),

¬R(x, b)P (a)∨¬R(x,b);¬P (a)};>)

⇒DetectPropLit(1.1)
TWFO (¬P (a)1Q(a);β;O1; {Q(a)P (a)∨Q(a);¬P (a),¬R(x, b)P (a)∨¬R(x,b);¬P (a),

R(a, y)P (a)∨¬Q(a)∨R(a,y);Q(a)};>)

⇒PropLiteral(R(a,b))
TWFO (¬P (a)1Q(a)R(a, b);β;O1; {Q(a)P (a)∨Q(a);¬P (a),

¬R(x, b)P (a)∨¬R(x,b);¬P (a), R(a, y)P (a)∨¬Q(a)∨R(a,y);Q(a)};>)

⇒Conflict(3)
TWFO (¬P (a)1Q(a)R(a, b);β;O1; {Q(a)P (a)∨Q(a);¬P (a),

¬R(x, b)P (a)∨¬R(x,b);¬P (a), R(a, y)P (a)∨¬Q(a)∨R(a,y);Q(a)};

P (a) ∨ ¬R(a, b))

⇒RemoveLiteral
TWFO (¬P (a)1Q(a);β;O1; {Q(a)P (a)∨Q(a);¬P (a),¬R(x, b)P (a)∨¬R(x,b);¬P (a),

R(a, y)P (a)∨¬Q(a)∨R(a,y);Q(a)};P (a) ∨ ¬R(a, b))

⇒RemoveLiteral
TWFO (¬P (a)1;β;O1; {Q(a)P (a)∨Q(a);¬P (a),¬R(x, b)P (a)∨¬R(x,b);¬P (a)};

P (a) ∨ ¬R(a, b))

⇒RemoveLiteral
TWFO (ε;β;O1; ∅;P (a) ∨ ¬R(a, b))

⇒Backtrack(4)
TWFO (ε;β;O2; {P (a)P (a)∨P (x);>};>)

In the last step the notation for the rule Backtrack(P (a) ∨ P (x)) was shortened to
Backtrack(4). Note that in the last step where we use the rule Backtrack(P (a) ∨ P (x))
we got the clause P (a) ∨ P (x) just from resolving the conflict clause with the propagating
clauses and fully factorizing the resulting clause. We use the original uninstantiated
clauses to resolve.

Example 2 (Example run 2). Let the clause set N = {P (x)∨Q(a)∨Q(x), P (x)∨¬Q(x)∨

Q(b),¬Q(a) ∨ ¬Q(b)} be the set of starting clauses and and let ≺B be an ordering and β
be a ground literal such that L ≺B β iff the predicate of L is P or Q and const(L) ⊆ {a, b}.
Let O0, O1, O2, and O3 be sets of clause instances such that
O0 = {(1)P (x) ∨Q(a)∗ ∨Q(x)∗, (2)P (x)∗ ∨ ¬Q(x) ∨Q(b)∗, (3)¬Q(a)∗ ∨ ¬Q(b)∗},
O1 = O0 ∪ {(1.1)P (a)∗ ∨Q(a)∗ ∨Q(a)},
O2 = O1 ∪ {(2.1)P (a) ∨ ¬Q(a)∗ ∨Q(b)∗},
O3 = O2 ∪ {(4)P (a)∗}
O0 is our starting set of clause instances and the others will be reached during the run.
Then the following is a run of the TWFO calculus:

(ε;β;O0; ∅;>)

⇒FactorizeWatched(1)
TWFO (ε;β;O1; ∅;>)

⇒DecLiteral(¬P (a)1)
TWFO (¬P (a)1;β;O1; ∅;>)

⇒CreateInstance(2)
TWFO (¬P (a)1;β;O2; ∅;>)

⇒DetectPropLit(1.1)
TWFO (¬P (a)1;β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a)};>)

⇒PropLiteral(Q(a))
TWFO (¬P (a)1Q(a);β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a)};>)

⇒DetectPropLit(2.1)
TWFO (¬P (a)1Q(a);β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a),

Q(b)P (a)∨¬Q(a)∨Q(b);Q(a)};>)

⇒DetectPropLit(3)
TWFO (¬P (a)1Q(a);β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a),

Q(b)P (a)∨¬Q(a)∨Q(b);Q(a),¬Q(b)¬Q(a)∨¬Q(b);Q(a)};>)

⇒ConflictF
TWFO (¬P (a)1Q(a)Q(b);β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a),

Q(b)P (a)∨¬Q(a)∨Q(b);Q(a),¬Q(b)¬Q(a)∨¬Q(b);Q(a)};¬Q(a) ∨ ¬Q(b))

⇒RemoveLiteral
TWFO (¬P (a)1Q(a);β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a),

Q(b)P (a)∨¬Q(a)∨Q(b);Q(a),¬Q(b)¬Q(a)∨¬Q(b);Q(a)};¬Q(a) ∨ ¬Q(b))

⇒RemoveLiteral
TWFO (¬P (a)1;β;O2; {Q(a)P (a)∨Q(a)∨Q(a);¬P (a)};¬Q(a) ∨ ¬Q(b))

⇒RemoveLiteral
TWFO (ε;β;O2; ∅;¬Q(a) ∨ ¬Q(b))

⇒Backtrack(4)
TWFO (ε;β;O3; {P (a)P (a),>};>)

Here the notation for the rule Backtrack(P (x) ∨ Q(a) ∨ P (y) ∨ Q(y)) was shortened
to Backtrack(4). To get the clause for backtracking we resolve ¬Q(a) ∨ ¬Q(b) · ∅ with
P (x)∨¬Q(x)∨Q(b) · {x 7→ a} resulting in P (x)∨¬Q(x)∨¬Q(a) · {x 7→ a} and then we
factorize this to P (a) ∨ ¬Q(a) · ∅. Finally we resolve with P (x) ∨Q(a) ∨Q(x) · {x 7→ a}
and factorize again.

Example 3 (Example run 3). Let the clause set N = {P (a)∨P (b)∨Q(a)∨R(x), P (a)∨
¬P (x), P (a) ∨ ¬Q(a)} be the set of starting clauses and and let ≺B be an ordering

and β be a ground literal such that L ≺B β iff the predicate of L is P , Q, or R and
const(L) ⊆ {a, b}. Let O0, O1, and O2 be sets of clause instances such that
O0 = {(1)P (a)∗ ∨ P (b)∗ ∨Q(a) ∨R(x), (2)P (a)∗ ∨ ¬P (x)∗, (3)P (a)∗ ∨ ¬Q(a)∗},
O1 = {(1)P (a) ∨ P (b)∗ ∨Q(a)∗ ∨R(x), (2)P (a)∗ ∨ ¬P (x)∗, (3)P (a)∗ ∨ ¬Q(a)∗},
O2 = {(1)P (a) ∨ P (b) ∨Q(a)∗ ∨R(x)∗, (2)P (a)∗ ∨ ¬P (x)∗, (3)P (a)∗ ∨ ¬Q(a)∗}
O0 is our starting set of clause instances and the others will be reached during the run.
The only difference between the three sets are the selected watched literals. Then the
following is a run of the TWFO calculus:

(ε;β;O0; ∅;>)

⇒DecLiteral(¬P (a)1)
TWFO (¬P (a)1;β;O0; ∅;>)

⇒UpdateWatched(1)
TWFO (¬P (a)1;β;O1; ∅;>)

⇒DetectPropLit(2)
TWFO (¬P (a)1;β;O1; {¬P (x)P (a)∨¬P (x);¬P (a)};>)

⇒DetectPropLit(3)
TWFO (¬P (a)1;β;O1; {¬P (x)P (a)∨¬P (x);¬P (a),¬Q(a)P (a)∨¬Q(a);¬P (x)};>)

⇒PropLiteral(¬P (b))
TWFO (¬P (a)1¬P (b);β;O1; {¬P (x)P (a)∨¬P (x);¬P (a),

¬Q(a)P (a)∨¬Q(a);¬P (x)};>)

⇒UpdateWatched(1)
TWFO (¬P (a)1¬P (b);β;O2; {¬P (x)P (a)∨¬P (x);¬P (a),

¬Q(a)P (a)∨¬Q(a);¬P (x)};>)

⇒PropLiteral(¬Q(a))
TWFO (¬P (a)1¬P (b)¬Q(a);β;O2; {¬P (x)P (a)∨¬P (x);¬P (a),

¬Q(a)P (a)∨¬Q(a);¬P (x)};>)

⇒DetectPropLit(1)
TWFO (¬P (a)1¬P (b)¬Q(a);β;O2; {¬P (x)P (a)∨¬P (x);¬P (a),

¬Q(a)P (a)∨¬Q(a);¬P (x), R(x)P (a)∨P (b)∨Q(a)∨R(x);¬Q(a)};>)

Note that the trail at the end can be extended to a satisfiable valuation as DetectPro-
pLiteral rule was applied to every clause instance and there are no contradicting literals
in F .

5. Efficient Detection of Propagations and Conflicts

There are multiple reasons why the original two-watched literals scheme for SAT solving
is so efficient. The most important reason is that it only has to check a clause for
propagations and conflicts if one of its watched literals was assigned false. This means
whenever a new literal L has been added to the trail, it only has to check clauses where
comp(L) is a watched literal. For our two-watched literals scheme for first-order logic, we
can prove similar properties that we assume will lead to an efficient implementation as in
the SAT case.

Lemma 3 (Single Check). Let (M ;β;O0;F0;>) ⇒TWFO (M ;β;O1;F1;>) ⇒TWFO
. . .⇒TWFO (M ;β;On;Fn;>) be a reasonable run starting from a consistent state, where
n may be 0 and Forget(V) was not applied.

1. Then if none of the rules CreateInstance, UpdateWatched, FactorizeWatched, De-
tectPropLiteral, and Conflict are applicable to clause instance (C,L1, L2) ∈ Oi ∩Oj
in state (M ;β;Oi;Fi;>) then they are also not applicable to (C,L1, L2) in state
(M ;β;Oj ;Fj ;>) with 0 ≤ i < j ≤ n. (Hence, TWFO does not have to check a
clause instance again after it was fully processed and before the trail has changed.)

2. CreateInstance is applied at most twice to a clause instance C with (C,L1, L2) ∈ Oi.

3. UpdateWatched is applied at most twice to a clause instance C with (C,L1, L2) ∈ Oi
independently of which literals are watched.

4. FactorizedWatched and DetectPropLiteral are applied at most once to a clause
instance (C,L1, L2) ∈ Oi.

The above lemma guarantees that TWFO only has to check each clause instance once
before it changes the trail again. Moreover, for a fixed trail M the maximum number of
rule applications per clause instance is at most 6. Note that this does not include the
rule applications to clause instances that were derived from this one.

Lemma 4 (Empty Trail Exploration). Let (ε;β;O0;F ;>) be a consistent state. Then Cre-
ateInstance, UpdateWatched, DetectPropLiteral and Conflict are not applicable. (However,
all clauses have to be checked for potential applications of FactorizeWatched.)

The above lemma guarantees that only FactorizeWatched can be applied on the empty
trail.

Lemma 5 (New Literal Exploration). Let (M ;β;O0;F0;>) be a consistent state such that
CreateInstance, UpdateWatched, FactorizeWatched, DetectPropLiteral, and Conflict are not
applicable in state (M ;β;O0;F ;>). Let (M ;β;O0;F0;>)⇒TWFO (ML;β;O0;F0;>)⇒TWFO
(ML;β;O1;F1;>)⇒TWFO . . .⇒TWFO (ML;β;On;Fn;>) be a reasonable run (where n
may be 0):

1. Then in state (ML;β;On;Fn;>) UpdateWatched is only applicable to clause in-
stances (C,L1, L2) ∈ On where comp(L) = L1.

2. Then in state (ML;β;On;Fn;>) CreateInstance, DetectPropLiteral, and Conflict
are only applicable to clause instances (C,L1, L2) ∈ On if there exists a substitution
σ such that comp(L) = L1σ or if (C,L1, L2) 6∈ O0, i.e., the instance was added or
its watched literals were modified after the trail was extended.

3. Then in state (ML;β;On;Fn;>) FactorizeWatched is only applicable to clause
instances (C,L1, L2) ∈ On \ O0, i.e., only to those clause instances that where
modified or added after the trail was extended.

The above lemma guarantees that after TWFO adds a new literal L to the trail, we
only have to check those clause instances (C,L1, L2) for rule applications, where comp(L)
is a ground instance of one of its watched literals (i.e., there exists σ and i ∈ 1, 2 so
Liσ = L) and those clause instances that were added or modified after L was added to
the trail.

Lemma 6 (Backtrack Exploration). Let (MM ′L;β;O0;F ′0;>) be a consistent state.
Let (MM ′L;β;O0;F ′0;>)⇒Conflict/ConflictF

TWFO (MM ′L;β;O0;F ′0;D)⇒RemoveLiteral∗
TWFO

(M ;β;On;F ′n;D)⇒Backtrack(D’)
TWFO (M ;β;O1;F1;>) be a reasonable run from one application

of Conflict/ConflictF to the first subsequent application of Backtrack(D′).
Let (M ;β;O1;F0;>) ⇒TWFO (M ;β;O2;F2;>) ⇒TWFO . . . ⇒TWFO (M ;β;On;Fn;>)
be a reasonable run (where n may be 1) and Forget was never applied. Then in state
(ML;β;On;Fn;>) UpdateWatched, FactorizeWatched, CreateInstance, DetectPropLiteral,
and Conflict are only applicable to clause instances (C,L1, L2) ∈ On where (C,L1, L2) 6∈
O0.

The above lemma guarantees that after TWFO applies Backtrack(D′), we only have to
check those clause instances (C,L1, L2) for applications of the rules that were (i) either
added by the last Backtrack (i.e., C = D′) or (ii) derived after Backtrack by an application
of the rules UpdateWatched, FactorizeWatched, and CreateInstance.

6. Interaction between TWFO and SCL

The TWFO calculus is a calculus to help detect propagations and conflicts efficiently for
the SCL calculus. So we have to keep certain aspects of the state of both calculi equal,
these are the trail, the clauses and the state of the conflict clause, that is if it is > or not.
So for all rule applications of SCL we have to show that we can simulate them with rule
applications of TWFO. We do this only for a regular run of SCL and a reasonable run of
TWFO.

A SCL-state has the form (M ;N ;U ;β; k;D) and a TWFO-state has the form (M ′;β;O;F ;D′).
We have to show that we can keep M and M ′ equal as well as that D = > iff D′ = >
and that for every C ∈ N ∪ U there are L1 and L2 such that (C;L1;L2) ∈ O.

The start state of SCL is (ε;N ; ∅;β; 0;>) and then the start state of TWFO is
(ε;β;O;F ;>) such that for every C ∈ N∪U there are L1 and L2 such that (C;L1;L2) ∈ O
holds.

So now we show for every rule application in SCL how we can simulate them with
TWFO. First we look at the rule propagate:

(M ;N ;U ;β; k;>)⇒Propagate
SCL (MLσCδ·σ;N ;U ;β; k;>)

We know that Lσ is undefined in M . Because we can propagte Lσ in TWFO, either
DetectPropLiteral was already applied or can be applied after applications of CreateIn-
stance, UpdateWatched and FactorizeWatched. This holds because DetectPropLiteral is
complete, Theorem 1.3, and F always contains all literals that we can propagate from
(factorized) unit clauses, Def 2.10. So we can do the following rule applications in TWFO:

(M ;β;O;F ;>)

(⇒CreateInstance, UpdateWatched, FactorizeWatched,∗
TWFO (M ;β;O′;F ;>)

⇒DetectPropLiteral
TWFO (M ;β;O′;F ∪ {LσCσ;K};>))

⇒PropLiteral(Lσ)
TWFO (MLσCσ;β;O′;F ′;>)

Note that the rules CreateInstance, UpdateWatched and FactorizeWatched do not add
a clause instance (C;L1;L2). So the rule Propagate can be simulated. Moreover, TWFO
never adds a literal to F that cannot be propagated by Propagate, Theorem 1.8.

The next rule we look at is the Decide rule:

(M ;N ;U ;β; k;>)⇒Decide
SCL (MLσk+1;N ;U ;β; k + 1;>)

We know that Lσ is undefined in M .
For DecLiteral to be applicable we need that there is no contradicting literal L′ ∈ F

such that there is a τ where comp(Lσ) = L′τ . To show this we need that the SCL run is
regular. We assume that there is such an L′C ∈ F . From Definition 2.6 we know that
C = C0 ∨ L′ ∨ · · · ∨ L′ and M |= ¬C0. Because the SCL run is regular we know that
there is no conflict before the application of Decide because Conflict is preferred over
every other rule. In a regular run an application of Decide does not create a conflict so
there is also no conflict after the application of Decide. So especially M 6|= ¬Cτ and
MLσ 6|= ¬Cτ for all grounding substitutions τ . But because M |= ¬C0 we can follow
that MLσ 6|= ¬L′τ for all grounding substitutions τ . Therefore there is no τ such that
comp(Lσ) = L′τ contradicting our assumption.

So we can do the following rule application in TWFO:

(M ;β;O;F ;>)⇒DecLiteral(Lσk+1)
TWFO (MLσk+1;β;O;F ;>)

So the rule Decide can be simulated.
Now we look at the rule Conflict:

(M ;N ;U ;β; k;>)⇒Conflict
SCL (M ;N ;U ;β; k;D · σ)

We know that M |= ¬Dσ holds. For TWFO we know from the completeness of the
Conflict rule, Theorem 1.1, that Conflict either is applicable or will be applicable after
applications of CreateInstance, UpdateWatched and FactorizeWatched. So we can do the
following rule applications in TWFO:

(M ;β;O;F ;>)

⇒CreateInstance, UpdateWatched, FactorizeWatched,∗
TWFO (M ;β;O′;F ;>)

⇒Conflict
TWFO (M ;β;O′;F ;Dσ)

So the rule Conflict can be simulated.
The next rules are Resolve and Factorize. Both these rules only change the conflict

clause but before the rule application it holds that the conflict clause is not > and this
does not change after the rule application. So we do not have to change anything in the
state of TWFO.

Then we look at the rule Skip:

(ML;N ;U ;β; k;D · σ)⇒Skip
SCL (M ;N ;U ;β; l;D · σ)

We can just remove a literal with the rule RemoveLiteral in TWFO:

(ML;β;O;F ;D′)⇒RemoveLiteral
TWFO (M ;β;O′;F ′;D′)

So we can simulate the rule Skip.

Now we look at the rule Backtrack:

(MKi+1M ′;N ;U ;β; k; (D ∨ L) · σ)⇒Backtrack
SCL (MLσC·σ;N ;U ∪ {D ∨ L};β; i;>)

In TWFO we first have to remove the literals with RemoveLiteral until the trail is M
and then use Backtrack(D ∨ L) to add the new clause to O. Finally we have to apply
CreateInstance, UpdateWatched and FactorizeWatched to apply DetectPropLiteral and
then we can apply PropLiteral(LσCσ).

(MKi+1M ′;β;O;F ;D′)

⇒RemoveLiteral,|M ′|+1
TWFO (M ;β;O1;F 1;D′)

⇒Backtrack(D∨L)
TWFO (M ;β;O2;F 2;>)

⇒CreateInstance, UpdateWatched, FactorizeWatched,∗
TWFO (M ;β;O3;F 2;>)

⇒DetectPropLiteral
TWFO (M ;β;O3;F 3;>)

⇒PropLiteral(Lσ(D∨L)σ)
TWFO (MLσ(D∨L)σ;β;O3;F 3;>)

Note that after the application of Backtrack(D ∨ L) it holds again that for every
C ∈ N ∪ U there are L1 and L2 such that (C;L1;L2) ∈ O. Note also that Backtrack
checks whether the new clause can be factorized to a unit and adds the resulting literal
to F . So Backtrack can also be simulated.

The last rule that we have to look at is the Grow rule:

(M ;N ;U ;β; k;>)⇒Backtrack
SCL (ε;N ;U ;β′; 0;>)

To simulate this rule we have to use the rule Forget(∅) to restart and then use Grow(β′).

(M ;β;O;F ;>)

⇒Forget(∅)
TWFO (∅;β;O′;F ′;>)

⇒Grow(β′)
TWFO (∅;β′;O′;F ′;>)

So Grow can also be simulated.
So all rule applications in the SCL calculus can be simulated with rule applications in

the TWFO calculus and therefore the states can stay similar.
We also want to show how we can simulate an application of the rule ConflictF with

rules in SCL.

(M ;β;O;F] {LC1
1 , LC2

2 };>)⇒ConflictF
TWFO (ML1σ

C1σ;β;O;F ∪ {LC1
1 , LC2

2 };C2σ)
We know that L1σ = comp(L2σ) and L1σ, L2σ 6∈M hold. From Definition 2.6 we know
that C1 = C ′1 ∨ L1 ∨ · · · ∨ L1 and M |= ¬C ′1 as well as C2 = C ′2 ∨ L2 ∨ · · · ∨ L2 and
M |= ¬C ′2 hold. So L1σ

C1σ can be propagated on the trail and because L1σ = comp(L2σ)
holds that ML1σ

C1σ |= ¬C2σ and therefore Conflict in the SCL calculus is applicable.

(M ;N ;U ;β; k;>)

⇒Propagate
SCL (ML1σ

C1σ;N ;U ;β; k;>)

⇒Conflict
SCL (ML1σ

C1σ;N ;U ;β; k;C2σ)
So the ConflictF rule can be simulated with rules in SCL. Note that the only other rule

in TWFO that is no rule to synchronize TWFO with SCL and that does affect elements
that we have to keep consistent between the two calculi is the Conflict rule. But this
can just easily be simulated with an application of the Conflict rule in SCL is a direct
implication of the Soundness of the Conflict rule, Theorem 1.6.

We also must guarantee that for a reasonable strategy an application of the rule
DecLiteral(Lk) does not create a conflict.

Lemma 7 (DecLiteral does not enable Conflict). In a reasonable run starting from a
consistent start state (∅;β;O;F ;>) an application of the rule DecLiteral(Lk) does not
enable an application of the rule Conflict.

7. Conclusion

We have generalized the two-watched literal principle from propositional logic to a finite
domain first-order logic (fixed β). The lifting is involved and we managed to keep the
main properties of the principle: first, only watched literals need to be considered for
trail changes, and, second, after backtracking no updates are needed except for the
newly learned clause. We are confident that these properties will guarantee that an
implementation of TWFO for first-order logic will be efficient in practice.

There is still some future work left before we can implement an efficient version of
TWFO. First and foremost, we need to develop efficient indexing structures for TWFO.
For instance, in the propositional case, we put all clauses with watched literal L into a
vector watched[L]. This allows us to efficiently iterate through all clauses that need to
be checked when the negation of watched literal comp(L) is added to the trail. However,
when comp(L) is added to the trail in the first-order case, it is not enough to just check
all clause instances C where L is watched. Instead, we have to check all clause instances
C with a watched literal L′ that can be instantiated to L (i.e., there exists τ with
L′τ = L). So we need an efficient data structure that finds all watched literals that can
be instantiated to L. Work on indexing in first-order logic can here be a good starting
point [7].

Although model building through trails has been considered in first-order logic, e.g. [8, 9,
10], we are not aware of any work adapting the propositional two-watched literal principle
to this setting. This might also be due to the fact that exhaustive propagation, as done
in propositional logic, cannot be afforded in more expressive logics [3] and therefore the
two-watched literal scheme needs an additional laziness component, as suggested in this
work.

References

[1] J. P. M. Silva, K. A. Sakallah, Grasp - a new search algorithm for satisfiability,
in: International Conference on Computer Aided Design, ICCAD, IEEE Computer
Society Press, 1996, pp. 220–227.

[2] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering
an efficient sat solver, in: Design Automation Conference, 2001. Proceedings, ACM,
2001, pp. 530–535.

[3] A. Fiori, C. Weidenbach, Scl clause learning from simple models, in: P. Fontaine
(Ed.), 27th International Conference on Automated Deduction, CADE-27, volume
11716 of LNAI, Springer, 2019, pp. 233–249.

[4] M. Bromberger, A. Fiori, C. Weidenbach, Deciding the bernays-schoenfinkel fragment
over bounded difference constraints by simple clause learning over theories, in:
F. Henglein, S. Shoham, Y. Vizel (Eds.), Verification, Model Checking, and Abstract
Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings, volume 12597 of Lecture Notes in Computer Science,
Springer, 2021, pp. 511–533.

[5] D. E. Knuth, P. B. Bendix, Simple word problems in universal algebras, in: I. Leech
(Ed.), Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp.
263–297.

[6] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability -
Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2021.

[7] R. Nieuwenhuis, T. Hillenbrand, A. Riazanov, A. Voronkov, On the evaluation of
indexing techniques for theorem proving, in: R. Goré, A. Leitsch, T. Nipkow (Eds.),
Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena,
Italy, June 18-23, 2001, Proceedings, volume 2083 of LNCS, Springer, 2001, pp.
257–271.

[8] P. Baumgartner, A. Fuchs, C. Tinelli, Lemma learning in the model evolution
calculus, in: LPAR, volume 4246 of Lecture Notes in Computer Science, Springer,
2006, pp. 572–586.

[9] K. Korovin, Inst-gen - A modular approach to instantiation-based automated
reasoning, in: A. Voronkov, C. Weidenbach (Eds.), Programming Logics - Essays in
Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science,
Springer, 2013, pp. 239–270.

[10] M. P. Bonacina, U. Furbach, V. Sofronie-Stokkermans, On first-order model-based
reasoning, in: N. Martí-Oliet, P. C. Ölveczky, C. L. Talcott (Eds.), Logic, Rewriting,
and Concurrency - Essays dedicated to José Meseguer on the Occasion of His 65th
Birthday, volume 9200 of Lecture Notes in Computer Science, Springer, 2015, pp.
181–204.

	1 Introduction
	2 Preliminaries
	3 The Two-Watched Literal Calculus for First-Order Clauses
	4 Examples
	5 Efficient Detection of Propagations and Conflicts
	6 Interaction between TWFO and SCL
	7 Conclusion

