
Security Assessment

SafeMoon

May �rd, ����



Summary

This report has been prepared for SafeMoon smart contracts, to discover issues and vulnerabilities in

the source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We

suggest recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

SafeMoon Security Assessment



Overview

Project Summary

Project Name SafeMoon

Description
The SafeMoon contract is a mixture of RFI tokenomics with the added function

of an auto-liquidity generating protocol.

Platform BSC

Language Solidity

Codebase https://github.com/safemoonprotocol/Safemoon.sol

Commits a�a�b���b����b���������ec�d����d��cf�daf

Audit Summary

Delivery Date May ��, ����

Audit Methodology Static Analysis, Manual Review, Testnet Deployment

Key Components Safemoon.sol

Vulnerability Summary

Total Issues ��

Critical �

Major �

Medium �

Minor �

Informational �

Discussion �

SafeMoon Security Assessment



Audit Scope

ID file SHA��� Checksum

SSL Safemoon.sol ����e�c��d���aec�dd��a���ddc��e�addc���f�f��af�cfb���c�����f��ab

SafeMoon Security Assessment



Understandings

Overview

The SafeMoon Protocol is a decentralized finance (DeFi) token deployed on the Binance smart chain

(BSC). SafeMoon employs two novel features in its protocol; static rewards for each user as well as an

LP acquisition mechanism. The static reward (also known as reflection) and LP acquisition mechanisms

function as follows:

Each SafeMoon transaction is taxed two �% fees totalling ��% of the transaction amount. The first fee

is redistributed to all existing holders using a form of rebasing mechanism whilst the other �% is

accumulated internally until a sufficient amount of capital has been amassed to perform an LP

acquisition. When this number is reached, the total tokens accumulated are split with half being

converted to BNB and the total being supplied to the PancakeSwap contract as liquidity.

LP Acquisition

The LP acquisition mechanism can be indirectly triggered by any normal transaction of the token as all

transfers evaluate the set of conditions that trigger the mechanism. The main conditions of the

mechanism are whether the sender is different than the LP pair and whether the accumulation

threshold has been breached. Should these conditions be satisfied, the swapAndLiquify  function is

invoked with the current contract's SafeMoon balance.

The swapAndLiquify  function splits the contract's balance in two halves properly accounting for any

truncation that may occur. The first half is swapped to BNB via the PancakeSwap Router using the

SafeMoon-BNB pair and thus temporarily driving the price of the SafeMoon token down. Afterwards,

the resulting BNB balance along with the remaining SafeMoon balance are supplied to the SafeMoon-

BNB liquidity pool as liquidity via the Router. The recipient of the LP units is defined as the current

owner  of the SafeMoon contract, a characteristic outlined in more depth within finding SSL-��.

Static Reward (Reflection)

Balances in the SafeMoon token system are calculated in one of two ways. The first method, which

most users should be familiar with, is a traditional fixed number of units being associated with a user's

address. The second method, which is of interest to static rewards, represents a user's balance as a

proportion of the total supply of the token. This method works similarly to how dynamic rebasing

mechanisms work such as that of Ampleforth.

Whenever a taxed transaction occurs, the �% meant to be re-distributed to token holders is deducted

from the total "proportion" supply resulting in a user's percentage of total supply being increased.

Within the system, not all users are integrated in this system and as such the �% fee is rewarded to a

SafeMoon Security Assessment



subset of the total users of the SafeMoon token. The owner  of the contract is able to introduce and

exclude users from the dynamic balance system at will.

Privileged Functions

The contract contains the following privileged functions that are restricted by the onlyOwner  modifier.

They are used to modify the contract configurations and address attributes. We grouped these

functions below:

Account management functions for inclusion and exclusion in the fee and reward system:

excludeFromReward(address account)

includeInReward(address account)

excludeFromFee(address account)

includeInFee(address account)

Modification of liquidation, tax and max transaction percents of the system:

function setTaxFeePercent(uint��� taxFee)

function setLiquidityFeePercent(uint��� liquidityFee)

function setMaxTxPercent(uint��� maxTxPercent)

Toggle feature of the LP acquisition mechanism:

function setSwapAndLiquifyEnabled(bool _enabled)

SafeMoon Security Assessment



Findings

ID Title Category Severity Status

SSL-�� Incorrect error message Logical Issue Minor Acknowledged

SSL-�� Redundant code Logical Issue Informational Acknowledged

SSL-��

Contract gains non-withdrawable

BNB via the swapAndLiquify

function

Logical Issue Medium Acknowledged

SSL-�� Centralized risk in addLiquidity
Centralization /

Privilege
Major

Partially

Resolved

SSL-��
Variable could be declared as

constant
Gas Optimization Informational Acknowledged

SSL-�� Return value not handled Volatile Code Informational Acknowledged

SSL-�� �rd party dependencies Control Flow Minor Acknowledged

SSL-�� Missing event emitting Coding Style Informational Acknowledged

SSL-��
Function and variable naming doesn't

match the operating environment
Coding Style Informational Acknowledged

SSL-�� Privileged ownership
Centralization /

Privilege
Minor

Partially

Resolved

SSL-�� Typos in the contract Coding Style Informational Acknowledged

SSL-�� The purpose of function deliver Control Flow Informational Acknowledged

SafeMoon Security Assessment

��
Total Issues

Critical � (�.��%)

Major � (�.��%)

Medium � (�.��%)

Minor � (��.��%)

Informational � (��.��%)

Discussion � (�.��%)



ID Title Category Severity Status

SSL-��
Possible to gain ownership after

renouncing the contract ownership

Logical Issue,

Centralization /

Privilege

Minor Acknowledged

SafeMoon Security Assessment



SSL-�� | Incorrect error message

Category Severity Location Status

Logical Issue Minor Safemoon.sol: ��� Acknowledged

Description

The error message in require(_isExcluded[account], "Account is already excluded")  does not

describe the error correctly.

Recommendation

The message "Account is already excluded" can be changed to "Account is not excluded" .

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



11  
22  
33  

SSL-�� | Redundant code

Category Severity Location Status

Logical Issue Informational Safemoon.sol: ���� Acknowledged

Description

The condition !_isExcluded[sender] && !_isExcluded[recipient]  can be included in else  .

Recommendation

The following code can be removed:

......  elseelse  ifif  ((!!_isExcluded_isExcluded[[sendersender]]  &&&&  !!_isExcluded_isExcluded[[recipientrecipient]]))  {{  
        _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;  
}}  ......

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



SSL-�� | Contract gains non-withdrawable BNB via the swapAndLiquify
function

Category Severity Location Status

Logical Issue Medium Safemoon.sol: ���� Acknowledged

Description

The swapAndLiquify  function converts half of the contractTokenBalance  SafeMoon tokens to BNB.

The other half of SafeMoon tokens and part of the converted BNB are deposited into the SafeMoon-

BNB pool on pancakeswap as liquidity. For every swapAndLiquify  function call, a small amount of BNB

leftover in the contract. This is because the price of SafeMoon drops after swapping the first half of

SafeMoon tokens into BNBs, and the other half of SafeMoon tokens require less than the converted

BNB to be paired with it when adding liquidity. The contract doesn't appear to provide a way to

withdraw those BNB, and they will be locked in the contract forever.

Recommendation

It's not ideal that more and more BNB are locked into the contract over time. The simplest solution is to

add a withdraw  function in the contract to withdraw BNB. Other approaches that benefit the SafeMoon

token holders can be:

Distribute BNB to SafeMoon token holders proportional to the amount of token they hold.

Use leftover BNB to buy back SafeMoon tokens from the market to increase the price of

SafeMoon.

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



11  
22  
33  
44  
55  
66  
77  
88  
99  

SSL-�� | Centralized risk in addLiquidity

Category Severity Location Status

Centralization / Privilege Major Safemoon.sol: ���� Partially Resolved

Description

// add the liquidity// add the liquidity  
uniswapV2RouteruniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((  
        addressaddress((thisthis)),,  
    tokenAmount    tokenAmount,,  
        00,,  // slippage is unavoidable// slippage is unavoidable  
        00,,  // slippage is unavoidable// slippage is unavoidable  
        ownerowner(()),,  
    block    block..timestamptimestamp  
));;

The addLiquidity  function calls the uniswapV2Router.addLiquidityETH  function with the to  address

specified as owner()  for acquiring the generated LP tokens from the SafeMoon-BNB  pool. As a result,

over time the _owner  address will accumulate a significant portion of LP tokens.If the _owner  is an EOA

(Externally Owned Account), mishandling of its private key can have devastating consequences to the

project as a whole.

Recommendation

We advise the to  address of the uniswapV2Router.addLiquidityETH  function call to be replaced by the

contract itself, i.e. address(this) , and to restrict the management of the LP tokens within the scope of

the contractʼs business logic. This will also protect the LP tokens from being stolen if the _owner

account is compromised. In general, we strongly recommend centralized privileges or roles in the

protocol to be improved via a decentralized mechanism or via smart-contract based accounts with

enhanced security practices, f.e. Multisignature wallets.

Indicatively, here are some feasible solutions that would also mitigate the potential risk:

Time-lock with reasonable latency, i.e. �� hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to

the private key;

Introduction of a DAO / governance / voting module to increase transparency and user

involvement.

SafeMoon Security Assessment



Alleviation

[SafeMoon Team]: In regards to owner control, we are a fair launch governed by a central board which

is subject to governmental regulations and law. We are a legally registered entity in accordance to the

law and jurisdictions in which we operate. SafeMoon is very different from other projects, and our

differences provide more security for the community vs. anonymous teams and projects. Risks in regard

to “rug-pulls” or anything else is mitigated due to the fact that every member of SafeMoon would be

subject to litigation and likely a swift prison sentence. Additionally, outside of the law, our social lives

would be in ruin, and we would not be able to show our faces in public again, let alone get another job.

This should be taken into account when looking at the SafeMoon project as a whole.

Additionally, we have taken serious steps towards further risk mitigation by initially starting this project

with a fair launch hosted on DxSale, where the LP being immediately locked out of the gate. SafeMoon

quickly brought in a team willing to go public with their identities to build trust with the community and

for the project. SafeMoon was quickly registered as a legal entity. We locked the �nd, �rd, �th LPʼs etc

etc etc and will continue to do so when the LP is not needed. We locked $��� million recently via

Unicrypt. We have publicly expressed our goals and intentions of why we will retain custody of the

contract. The functions allow additional control for the SafeMoon team to make continued strategic

plays in regards to long term growth of the community and the project.

Here is a list of the transactions associated with the locked LPs:

https://unicrypt.network/amm/pancake/pair/�x�adc�fb��cefa��e��e����f���c�e�c�dd���c�

https://dxsale.app/app/pages/dxlockview?

id=�&add=�xC�����D������f�����A��C�A�E��c�D���dfc��&type=lplock&chain=BSC

https://dxsale.app/app/pages/dxlockview?

id=�&add=�xC�����D������f�����A��C�A�E��c�D���dfc��&type=lplock&chain=BSC

https://dxsale.app/app/pages/dxlockview?

id=�&add=�xC�����D������f�����A��C�A�E��c�D���dfc��&type=lplock&chain=BSC

SafeMoon Security Assessment

https://unicrypt.network/amm/pancake/pair/0x9adc6fb78cefa07e13e9294f150c1e8c1dd566c0
https://dxsale.app/app/pages/dxlockview?id=2&add=0xC95063D946242f26074A76C8A2E94c9D735dfc78&type=lplock&chain=BSC
https://dxsale.app/app/pages/dxlockview?id=1&add=0xC95063D946242f26074A76C8A2E94c9D735dfc78&type=lplock&chain=BSC
https://dxsale.app/app/pages/dxlockview?id=0&add=0xC95063D946242f26074A76C8A2E94c9D735dfc78&type=lplock&chain=BSC


SSL-�� | Variable could be declared as constant

Category Severity Location Status

Gas Optimization Informational Safemoon.sol Acknowledged

Description

Variables _tTotal , numTokensSellToAddToLiquidity , _name , _symbol  and _decimals  could be

declared as constant  since these state variables are never to be changed.

Recommendation

We recommend declaring those variables as constant .

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



11  
22  
33  
44  
55  
66  
77  
88  

SSL-�� | Return value not handled

Category Severity Location Status

Volatile Code Informational Safemoon.sol: ����~���� Acknowledged

Description

The return values of function addLiquidityETH  are not properly handled.

        uniswapV2Router        uniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((  
                        addressaddress((thisthis)),,  
            tokenAmount            tokenAmount,,  
                        00,,  // slippage is unavoidable// slippage is unavoidable  
                        00,,  // slippage is unavoidable// slippage is unavoidable  
                        ownerowner(()),,  
            block            block..timestamptimestamp  
                ));;

Recommendation

We recommend using variables to receive the return value of the functions mentioned above and

handle both success and failure cases if needed by the business logic.

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



SSL-�� | �rd party dependencies

Category Severity Location Status

Control Flow Minor Safemoon.sol Acknowledged

Description

The contract is serving as the underlying entity to interact with third party PancakeSwap protocols. The

scope of the audit would treat those �rd party entities as black boxes and assume its functional

correctness. However in the real world, �rd parties may be compromised that led to assets lost or

stolen.

Recommendation

We understand that the business logic of the SafeMoon protocol requires the interaction PancakeSwap

protocol for adding liquidity to SafeMoon-BNB pool and swap tokens. We encourage the team to

constantly monitor the statuses of those �rd parties to mitigate the side effects when unexpected

activities are observed.

Alleviation

[SafeMoon Team]: Renouncing ownership of the contract will result in an inability to adapt to �rd party

changes to include exchanges. The team had the foresight to understand this, as our understanding of

the SafeMoon smart contract is the best. We already have contingency plans for likely upcoming �rd

party changes and growth.

SafeMoon Security Assessment



SSL-�� | Missing event emitting

Category Severity Location Status

Coding Style Informational Safemoon.sol Acknowledged

Description

In contract Safemoon , there are a bunch of functions can change state variables. However, these

function do not emit event to pass the changes out of chain.

Recommendation

Recommend emitting events, for all the essential state variables that are possible to be changed during

runtime.

SafeMoon Security Assessment



SSL-�� | Function and variable naming doesn't match the operating

environment

Category Severity Location Status

Coding Style Informational Safemoon.sol Acknowledged

Description

The SafeMoon contract uses Pancakeswap for swapping and add liquidity to Pancakeswap pool, but

naming it Uniswap. Function swapTokensForEth(uint��� tokenAmount) swaps SafeMoon token for BNB

instead of ETH.

Recommendation

Change "Uniswap" and "ETH" to "Pancakeswap" and "BNB" in the contract respectively to match the

operating environment and avoid confusion.

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



SSL-�� | Privileged ownership

Category Severity Location Status

Centralization / Privilege Minor Safemoon.sol Partially Resolved

Description

The owner of contract Safemoon  has the permission to:

�. change the address that can receive LP tokens,

�. lock the contract,

�. exclude/include addresses from rewards/fees,

�. set taxFee , liquidityFee  and _maxTxAmount ,

�. enable swapAndLiquifyEnabled

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig

governing procedure and let the community monitor in respect of transparency considerations.

Alleviation

[SafeMoon Team]: Consider the critical security concern about privileged ownership, the contract

doesn't have an update function, thus it will be impossible to update directly. Our plan is to create a

periphery multisig contract for contract owner functions and assign contract owner to it.

As of now, there will be no transfer of ownership, more of an extra check for security with keys split

between the current board members. It will require �/� keys to do an action on the contract. Board

Members are the individuals already disclosed and KYC'd by entities like exchanges we listed with, and

they would not have listed SafeMoon if the team had not passed KYC. Additionally, The project and its

team are subject to laws and regulations, meaning any action not done in good faith or illegal will result

in a swift prison sentence. The MultiSig is underway and will be completed as soon as possible, and we

are adding the multisig as an act of good faith.

SafeMoon Security Assessment



11  
22  
33  
44  
55  

SSL-�� | Typos in the contract

Category Severity Location Status

Coding Style Informational Safemoon.sol: ���, ��� Acknowledged

Description

There are several typos in the code and comments.

�. In the following code snippet, tokensIntoLiqudity  should be tokensIntoLiquidity .

eventevent  SwapAndLiquifySwapAndLiquify((  
                uint256uint256 tokensSwapped tokensSwapped,,  
                uint256uint256 ethReceived ethReceived,,  
                uint256uint256 tokensIntoLiqudity tokensIntoLiqudity  
        ));;

�. recieve  should be receive  and swaping  should be swapping  in the line of comment //to

recieve ETH from uniswapV2Router when swaping .

Recommendation

We recommend correcting all typos in the contract.

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment



SSL-�� | The purpose of function deliver

Category Severity Location Status

Control Flow Informational Safemoon.sol Acknowledged

Description

The function deliver  can be called by anyone. It accepts an uint��� number parameter tAmount . The

function reduces the SafeMoon token balance of the caller by rAmount , which is tAmount  reduces the

transaction fee. Then, the function adds tAmount  to variable _tFeeTotal , which represents the

contract's total transaction fee. We wish the team could explain more on the purpose of having such

functionality.

Alleviation

The team acknowledged the finding and had tested the functionality under different scenarios. Given

the deployed contract cannot be updated, decided to retain the code base unchanged.

SafeMoon Security Assessment



SSL-�� | Possible to gain ownership after renouncing the contract

ownership

Category Severity Location Status

Logical Issue, Centralization / Privilege Minor Safemoon.sol: (Ownable) Acknowledged

Description

An owner is possible to gain ownership of the contract even if he calls function renounceOwnership  to

renounce the ownership. This can be achieved by performing the following operations:

�. Call lock  to lock the contract. The variable _previousOwner  is set to the current owner.

�. Call unlock  to unlock the contract.

�. Call renounceOwnership  to leave the contract without an owner.

�. Call unlock  to regain ownership.

Recommendation

We advise updating/removing lock  and unlock  functions in the contract; or removing the

renounceOwnership  if such a privilege retains at the protocol level. If timelock functionality could be

introduced, we recommend using the implementation of Compound finance as reference. Reference:

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol

Alleviation

The team acknowledged the finding, and given the deployed contract cannot be updated, decided to

retain the code base unchanged.

SafeMoon Security Assessment

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol


Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Centralization / Priviledge

SafeMoon Security Assessment



Centralization / Priviledge findings refer to the logic or implementation of the code exposing to

concerns or scenarios that would go against decentralized manners.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to

compile using the specified version of the project.

SafeMoon Security Assessment



Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiKʼs prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiKʼs position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiKʼs goal is to help reduce the attack vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

SafeMoon Security Assessment



About

Founded in ���� by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, weʼre able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

SafeMoon Security Assessment


