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Challenges

For regulatory constraints, insurance companies are asked to assess
the risks they are exposed to. Among them: the financial risk,
managed thanks to mathematical financial models.

@ Financial evaluation of Assets and Liabilities for strategic
management (ALM)

e Computation of the Solvency Capital Requirement
(Solvency Il European legislation):

o through Nested Simulations
o through Least Squares Monte-Carlo (~ Longstaff-Schwarz)

~ Intensive calibrations of the models.
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option on swap rate)
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The DD-SV-LMM
Insurer's portfolio: mainly composed of bonds, but also derivatives
on interest-rates
~> Models dedicated to interest rates are decisive, some may

be complex to handle. An issue is the pricing of swaptions (call
option on swap rate)

PS(0,K) = BS(O)ES[(SY™ — K),]

o Displaced Diffusion with Stochastic Volatility Libor
Market Model (Normal version): under the probability
measure P°

asy™™ = d(s{™™ +8) = \/Vi Z 7j(t) - AW

@ The stochastic factor is modelled through a 'quasi-CIR'":
AV, = k(0 — E()V,)dt + eA/V,d Z7
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The DDSVLMM model
Overview: calibration procedures

@ Heston type computations can be adapted to calibrate the
model. Essentially, the moment generating function is
analytically known (affine model).

@ Basic issue: this procedure is very long = need of an
innovative method for calibration.

e [ABBD2017] proposes to perform an approximation of the
density of S(Tm’n) = computation of approximated prices

mim BS((SP — K1) = [ (- K1 fr(s)ds
R

A J (s — K)+f¥v>(s)ds —: (V)
R
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Density approximation

Gram-Charlier expansion

@ The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density f is 'projected’ onto a
Gaussian distribution (reference distribution) g

Theorem (Cramer [C1926])

If f is of finite variation in every finite interval and is such that

J 1£(s)|e¥/4ds < o0
R

then f™)(z) = g(z) XN, cpHy(x) —— f(z) at every
n=0 N—+o0

continuity point x of f.

e H, polynomial function (n-th degree), explicitly known
(Hermite polynomials)

@ The coefficients ¢,, are linear combination of moments of
the unknown density f: need a way to compute the needed
moments



Density approximation

Gram-Charlier and stochastic volatility ? (1/2)

X :=VV xa@
with G ~ N(0,02) and V ~ x2(d), G and V being independent.

Gram-—Charlier expansion
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Figure 1: Gram-Charlier expansion of the density of X up to order 10 -
02=025&d=4



Density approximation

Gram-Charlier and stochastic volatility ? (2/2)

XM .= /min(V, M) x G

Gram—Charlier expansion (bounded vol.)
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Figure 2: Gram-Charlier expansion of the density of X(™) up to order 30
-M=4
Condition: oM < 2
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Introduction of the Jacobi model

Based on a work of D. Ackerer, D. Filipovi¢ and S. Pulido
([AFP2018]), we introduce the Jacobi dynamic:

AS™™ = AN QUAAZS +\/V, — P Q) Sk (1) - aZ
v, — 1 (0 — £(t) tht+e\/7‘/}dz

° Q( ) U Umin)(Umas ) — vV as ('Uminavma:t) - (0,00)

\/ VUmaz —+/ 'Umzn)

@ The scaling correlation factor p:

d(V, §tmm),
VAV V) fd (S, gemm),

o Feller condition: P(Vt = 0,V9min < Vi < vmam) =1

@ if Vo T maxs<r A?(t) < 2, a Gram-Charlier expansion is

theoretically allowed for the density of S}m’”)

= p\/Q(V1)/ Vi

@ Polynomial model: we can compute the moments of Séﬂm’n)
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