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Challenges

For regulatory constraints, insurance companies are asked to assess
the risks they are exposed to. Among them: the financial risk,
managed thanks to mathematical financial models.

Financial evaluation of Assets and Liabilities for strategic
management (ALM)
Computation of the Solvency Capital Requirement
(Solvency II European legislation):

through Nested Simulations
through Least Squares Monte-Carlo (« Longstaff-Schwarz)

⇝ Intensive calibrations of the models.
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The DD-SV-LMM

Insurer’s portfolio: mainly composed of bonds, but also derivatives
on interest-rates
⇝ Models dedicated to interest rates are decisive, some may
be complex to handle. An issue is the pricing of swaptions (call
option on swap rate)

PSp0,Kq “ BSp0qES
“

pS
pm,nq

T ´ Kq`

‰

Displaced Diffusion with Stochastic Volatility Libor
Market Model (Normal version): under the probability
measure PS

dS
pm,nq
t “ dpS

pm,nq
t ` δq “

a

Vt

n´1
ÿ

j“m

γjptq ¨ dWS
t

The stochastic factor is modelled through a ’quasi-CIR’:

dVt “ κpθ ´ ξptqVtqdt ` ϵ
a

VtdZ
S
t
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Overview: calibration procedures

Heston type computations can be adapted to calibrate the
model. Essentially, the moment generating function is
analytically known (affine model).

Basic issue: this procedure is very long ñ need of an
innovative method for calibration.

[ABBD2017] proposes to perform an approximation of the

density of S
pm,nq

T ñ computation of approximated prices

π :“ ESrpS
pm,nq

T ´ Kq`s “

ż

R
ps ´ Kq`fT psqds

«

ż

R
ps ´ Kq`f

pNq

T psqds “: πpNq
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Gram-Charlier expansion

The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density f is ’projected’ onto a
Gaussian distribution (reference distribution) g

Theorem (Cramèr [C1926])

If f is of finite variation in every finite interval and is such that
ż

R
|fpsq|es

2{4ds ă 8

then f pNqpxq “ gpxq
řN

n“0 cnHnpxq ÝÝÝÝÝÑ
NÑ`8

fpxq at every

continuity point x of f .

Hn polynomial function (n-th degree), explicitly known
(Hermite polynomials)
The coefficients cn are linear combination of moments of
the unknown density f : need a way to compute the needed
moments
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If f is of finite variation in every finite interval and is such that
ż

R
|fpsq|es

2{4ds ă 8

then f pNqpxq “ gpxq
řN

n“0 cnHnpxq ÝÝÝÝÝÑ
NÑ`8

fpxq at every

continuity point x of f .

Hn polynomial function (n-th degree), explicitly known
(Hermite polynomials)

The coefficients cn are linear combination of moments of
the unknown density f : need a way to compute the needed
moments



Introduction The DDSVLMM model Density approximation Bounded volatility References End of Presentation

Gram-Charlier expansion

The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density f is ’projected’ onto a
Gaussian distribution (reference distribution) g

Theorem (Cramèr [C1926])
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Gram-Charlier and stochastic volatility ? (1/2)

X :“
?
V ˆ G

with G ∼ N p0, σ2q and V ∼ χ2pdq, G and V being independent.
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Figure 1: Gram-Charlier expansion of the density of X up to order 10 -
σ2 “ 0.25 & d “ 4
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Gram-Charlier and stochastic volatility ? (2/2)

XpMq :“
a

minpV,Mq ˆ G
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Figure 2: Gram-Charlier expansion of the density of XpMq up to order 30
- M “ 4

Condition: σ2M ă 2
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Introduction of the Jacobi model

Based on a work of D. Ackerer, D. Filipović and S. Pulido
([AFP2018]), we introduce the Jacobi dynamic:

#

dS
pm,nq
t “ ρλptq

a

QpVtqdZ
S
t `

a

Vt ´ ρ2QpVtq
řn´1

j“m γjptq ¨ dZS,K
t

dVt “ κ pθ ´ ξptqVtq dt ` ϵ
a

QpVtqdZ
S
t

Qpvq “
pv´vminqpvmax´vq

p
?
vmax´

?
vminq2

Ñ v as pvmin, vmaxq Ñ p0,8q

The scaling correlation factor ρ:

d
⟨
V, Spm,nq

⟩
t

a

d ⟨V, V ⟩t
b

d
⟨
Spm,nq, Spm,nq

⟩
t

“ ρ
a

QpVtq{Vt

Feller condition: P
`

@t ě 0, vmin ď Vt ď vmax

˘

“ 1

if vmaxT maxtďT λ2ptq ă 2, a Gram-Charlier expansion is

theoretically allowed for the density of S
pm,nq

T

Polynomial model: we can compute the moments of S
pm,nq

T
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[C1926] H. Cramèr, On some classes of series used in
mathematical statistics (1926).



Introduction The DDSVLMM model Density approximation Bounded volatility References End of Presentation

Thank You !
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