Fast calibration of the Libor Market Model with Jacobi stochastic volatility model 11*th* European Summer School in Financial Mathematics

Sophian Mehalla

CERMICS & Milliman

August $28th$, 2018

For regulatory constraints, insurance companies are asked to **assess the risks they are exposed to**. Among them: the financial risk, managed thanks to **mathematical financial models**.

Financial evaluation of **Assets and Liabilities for strategic management (ALM)**

- Financial evaluation of **Assets and Liabilities for strategic management (ALM)**
- Computation of the **Solvency Capital Requirement** (*Solvency II European legislation*):

- Financial evaluation of **Assets and Liabilities for strategic management (ALM)**
- Computation of the **Solvency Capital Requirement** (*Solvency II European legislation*):
	- through **Nested Simulations**

- Financial evaluation of **Assets and Liabilities for strategic management (ALM)**
- Computation of the **Solvency Capital Requirement** (*Solvency II European legislation*):
	- through **Nested Simulations**
	- through Least Squares Monte-Carlo (\approx Longstaff-Schwarz)

- Financial evaluation of **Assets and Liabilities for strategic management (ALM)**
- Computation of the **Solvency Capital Requirement** (*Solvency II European legislation*):
	- through **Nested Simulations**
	- through Least Squares Monte-Carlo (\approx Longstaff-Schwarz)

For regulatory constraints, insurance companies are asked to **assess the risks they are exposed to**. Among them: the financial risk, managed thanks to **mathematical financial models**.

- Financial evaluation of **Assets and Liabilities for strategic management (ALM)**
- Computation of the **Solvency Capital Requirement** (*Solvency II European legislation*):
	- through **Nested Simulations**
	- **through Least Squares Monte-Carlo** (\approx Longstaff-Schwarz)

 \rightarrow Intensive calibrations of the models.

The DD-SV-LMM

Insurer's portfolio: mainly composed of *bonds*, but also derivatives on interest-rates

⇝ **Models dedicated to interest rates are decisive**, some may be complex to handle. An issue is the pricing of swaptions (call option on swap rate)

$$
PS(0, K) = B^{S}(0) \mathbb{E}^{S} \left[(S_T^{(m,n)} - K)_{+} \right]
$$

The DD-SV-LMM

Insurer's portfolio: mainly composed of *bonds*, but also derivatives on interest-rates

⇝ **Models dedicated to interest rates are decisive**, some may be complex to handle. An issue is the pricing of swaptions (call option on swap rate)

$$
PS(0, K) = B^{S}(0) \mathbb{E}^{S} \left[(S_T^{(m,n)} - K)_{+} \right]
$$

Displaced Diffusion with Stochastic Volatility Libor Market Model (*Normal* version): under the probability measure \mathbb{P}^S

$$
dS_t^{(m,n)} = d(S_t^{(m,n)} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{W}_t^S
$$

The DD-SV-LMM

Insurer's portfolio: mainly composed of *bonds*, but also derivatives on interest-rates

⇝ **Models dedicated to interest rates are decisive**, some may be complex to handle. An issue is the pricing of swaptions (call option on swap rate)

$$
PS(0, K) = B^{S}(0) \mathbb{E}^{S} \left[(S_T^{(m,n)} - K)_{+} \right]
$$

Displaced Diffusion with Stochastic Volatility Libor Market Model (*Normal* version): under the probability measure \mathbb{P}^S

$$
dS_t^{(m,n)} = d(S_t^{(m,n)} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{W}_t^S
$$

The stochastic factor is modelled through a 'quasi-**CIR**': $dV_t = \kappa(\theta - \xi(t)V_t)dt + \epsilon \sqrt{V_t}dZ_t^S$

Overview: calibration procedures

Heston type computations can be adapted to calibrate the model. Essentially, **the moment generating function is analytically known** (affine model).

Overview: calibration procedures

- Heston type computations can be adapted to calibrate the model. Essentially, **the moment generating function is analytically known** (affine model).
- Basic issue: this procedure is very long \Rightarrow need of an innovative method for calibration.

Overview: calibration procedures

- Heston type computations can be adapted to calibrate the model. Essentially, **the moment generating function is analytically known** (affine model).
- Basic issue: this procedure is very long \Rightarrow need of an innovative method for calibration.
- [ABBD2017] proposes to perform an **approximation of the** $\textbf{density of}\ S_{T}^{(m,n)}\Rightarrow \textbf{computation of approximated prices}$

$$
\pi := \mathbb{E}^{S}[(S_T^{(m,n)} - K)_{+}] = \int_{\mathbb{R}} (s - K)_{+} f_T(s) ds
$$

$$
\approx \int_{\mathbb{R}} (s - K)_{+} f_T^{(N)}(s) ds =: \pi^{(N)}
$$

The approximating density is built thanks to a Gram-Charlier expansion: the unknown density *f* is 'projected' onto a Gaussian distribution (reference distribution) *g*

The approximating density is built thanks to a Gram-Charlier expansion: the unknown density *f* is 'projected' onto a Gaussian distribution (reference distribution) *g*

Theorem (Cram`er [C1926])

If f is of finite variation in every finite interval and is such that

$$
\int_{\mathbb{R}} |f(s)| e^{s^2/4} \mathrm{d}s < \infty
$$

then $f^{(N)}(x) = g(x) \sum_{n=0}^{N} c_n H_n(x) \xrightarrow[N \to +\infty]{} f(x)$ at every *continuity point x of f.*

The approximating density is built thanks to a Gram-Charlier expansion: the unknown density *f* is 'projected' onto a Gaussian distribution (reference distribution) *g*

Theorem (Cram`er [C1926])

If f is of finite variation in every finite interval and is such that

$$
\int_{\mathbb{R}} |f(s)| e^{s^2/4} \mathrm{d}s < \infty
$$

then $f^{(N)}(x) = g(x) \sum_{n=0}^{N} c_n H_n(x) \xrightarrow[N \to +\infty]{} f(x)$ at every *continuity point x of f.*

Hⁿ polynomial function (*n*-th degree), explicitly known (**Hermite polynomials**)

The approximating density is built thanks to a Gram-Charlier expansion: the unknown density *f* is 'projected' onto a Gaussian distribution (reference distribution) *g*

Theorem (Cram`er [C1926])

If f is of finite variation in every finite interval and is such that

$$
\int_{\mathbb{R}} |f(s)| e^{s^2/4} \mathrm{d}s < \infty
$$

then $f^{(N)}(x) = g(x) \sum_{n=0}^{N} c_n H_n(x) \xrightarrow[N \to +\infty]{} f(x)$ at every *continuity point x of f.*

- *Hⁿ* polynomial function (*n*-th degree), explicitly known (**Hermite polynomials**)
- The coefficients *cⁿ* are **linear combination of moments** of the unknown density *f*: need a way to compute the needed moments

Gram-Charlier and stochastic volatility ? (1/2)

 $X :=$ $\overline{}$ $V \times G$

with $G \sim \mathcal{N}(0, \sigma^2)$ and $V \sim \chi^2(d)$, G and V being **independent**.

Figure 1: Gram-Charlier expansion of the density of *X* up to order 10 - $\sigma^2 = 0.25$ & $d = 4$

Gram-Charlier and stochastic volatility ? (2/2)

$$
X^{(M)} := \sqrt{\min(V, M)} \times G
$$

Figure 2: Gram-Charlier expansion of the density of $X^{(M)}$ up to order 30 $-M = 4$

Condition: $\sigma^2 M < 2$

Introduction of the Jacobi model

$$
\begin{cases} \mathrm{d}S_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} \mathrm{d}Z_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot \mathrm{d}Z_t^{S,\perp} \\ \mathrm{d}V_t &= \kappa \left(\theta - \xi(t) V_t \right) \mathrm{d}t + \epsilon \sqrt{Q(V_t)} \mathrm{d}Z_t^S \end{cases}
$$

Introduction of the Jacobi model

$$
\begin{cases} dS_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} dZ_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{Z}_t^{S,\perp} \\ dV_t &= \kappa (\theta - \xi(t)V_t) dt + \epsilon \sqrt{Q(V_t)} dZ_t^S \end{cases}
$$

•
$$
Q(v) = \frac{(v-v_{min})(v_{max}-v)}{(\sqrt{v_{max}-\sqrt{v_{min}}})^2} \to v
$$
 as $(v_{min}, v_{max}) \to (0, \infty)$

Introduction of the Jacobi model

$$
\begin{cases} dS_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} dZ_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{Z}_t^{S,\perp} \\ dV_t &= \kappa (\theta - \xi(t)V_t) dt + \epsilon \sqrt{Q(V_t)} dZ_t^S \end{cases}
$$

\n- $$
Q(v) = \frac{(v-v_{min})(v_{max}-v)}{(\sqrt{v_{max}}-\sqrt{v_{min}})^2} \to v
$$
 as $(v_{min}, v_{max}) \to (0, \infty)$
\n- The scaling correlation factor ρ :
\n

$$
\frac{\mathrm{d}\left\langle V, S^{(m,n)}\right\rangle_t}{\sqrt{\mathrm{d}\left\langle V, V\right\rangle_t} \sqrt{\mathrm{d}\left\langle S^{(m,n)}, S^{(m,n)}\right\rangle_t}} = \rho \sqrt{Q(V_t)/V_t}
$$

Introduction of the Jacobi model

Based on a work of D. Ackerer, D. Filipović and S. Pulido ([AFP2018]), we introduce the Jacobi dynamic:

$$
\begin{cases} dS_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} dZ_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{Z}_t^{S,\perp} \\ dV_t &= \kappa (\theta - \xi(t)V_t) dt + \epsilon \sqrt{Q(V_t)} dZ_t^S \end{cases}
$$

\n- $$
Q(v) = \frac{(v-v_{min})(v_{max}-v)}{(\sqrt{v_{max}}-\sqrt{v_{min}})^2} \to v
$$
 as $(v_{min}, v_{max}) \to (0, \infty)$
\n- The scaling correlation factor ρ :
\n

$$
\frac{\mathrm{d}\left\langle V, S^{(m,n)}\right\rangle_t}{\sqrt{\mathrm{d}\left\langle V, V\right\rangle_t} \sqrt{\mathrm{d}\left\langle S^{(m,n)}, S^{(m,n)}\right\rangle_t}} = \rho \sqrt{Q(V_t)/V_t}
$$

Feller condition: $\mathbb{P}(\forall t \geq 0, v_{min} \leq V_t \leq v_{max}) = 1$

Introduction of the Jacobi model

$$
\begin{cases} dS_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} dZ_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{Z}_t^{S,\perp} \\ dV_t &= \kappa (\theta - \xi(t)V_t) dt + \epsilon \sqrt{Q(V_t)} dZ_t^S \end{cases}
$$

\n- $$
Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \to v
$$
 as $(v_{min}, v_{max}) \to (0, \infty)$
\n- The scaling correlation factor ρ :
\n

$$
\frac{\mathrm{d}\left\langle V, S^{(m,n)}\right\rangle_t}{\sqrt{\mathrm{d}\left\langle V, V\right\rangle_t} \sqrt{\mathrm{d}\left\langle S^{(m,n)}, S^{(m,n)}\right\rangle_t}} = \rho \sqrt{Q(V_t)/V_t}
$$

- Feller condition: $\mathbb{P}(\forall t \geq 0, v_{min} \leq V_t \leq v_{max}) = 1$
- if $v_{max}T\max_{t\leqslant T}\lambda^2(t) < 2$, a Gram-Charlier expansion is theoretically allowed for the density of $S_T^{(m,n)}$ *T*

Introduction of the Jacobi model

$$
\begin{cases} dS_t^{(m,n)} &= \rho \lambda(t) \sqrt{Q(V_t)} dZ_t^S + \sqrt{V_t - \rho^2 Q(V_t)} \sum_{j=m}^{n-1} \gamma_j(t) \cdot d\mathbf{Z}_t^{S,\perp} \\ dV_t &= \kappa (\theta - \xi(t)V_t) dt + \epsilon \sqrt{Q(V_t)} dZ_t^S \end{cases}
$$

\n- $$
Q(v) = \frac{(v-v_{min})(v_{max}-v)}{(\sqrt{v_{max}}-\sqrt{v_{min}})^2} \to v
$$
 as $(v_{min}, v_{max}) \to (0, \infty)$
\n- The scaling correlation factor ρ :
\n

$$
\frac{\mathrm{d}\left\langle V, S^{(m,n)}\right\rangle_t}{\sqrt{\mathrm{d}\left\langle V, V\right\rangle_t} \sqrt{\mathrm{d}\left\langle S^{(m,n)}, S^{(m,n)}\right\rangle_t}} = \rho \sqrt{Q(V_t)/V_t}
$$

- Feller condition: $\mathbb{P}(\forall t \geq 0, v_{min} \leq V_t \leq v_{max}) = 1$
- if $v_{max}T\max_{t\leqslant T}\lambda^2(t) < 2$, a Gram-Charlier expansion is theoretically allowed for the density of $S_T^{(m,n)}$ *T*
- **Polynomial model**: we can compute the moments of $S_T^{(m,n)}$ *T*

References

[ABBD2017] P.-E. Arrouy, and P. Bonnefoy, A. Boumezoued, L. Devineau, *Fast calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion* (2017). [AFP2018] D. Ackerer, D. Filipović and S. Pulido, *The Jacobi stochastic volatility model* (2018). [C1926] H. Cramèr, *On some classes of series used in mathematical statistics* (1926).

Thank You !