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ABSTRACT

If the magnetic field for an exact
gauge group H (assumed compact and connected)
exhibits an inverse square law behaviour at
large distances then the generalized magnetic
charge, appearing as the coefficient, complete-
ly determines the topological quantum number
of the solution. When this magnetic charge
operator is expressed as a linear combination
of mutually commuting generators of H, the
components are uniquely determined, up to the
action of the Weyl group, and have 1o be
weights of a new group HY whichis explicitly
constructed out of H. The relation between
the "electric" group H and the 'magnetic"
group HY is symmetrical in the sense that
(H")V=H. The results suggest that H mono-
poles are HY multiplets and vice versa and
that the true symmetry group is H® "', In
this duality topological and Noether quantum
numbers exchange r8les rather as in Sine-Gordon
theory. A physical possibility is that H and
HY be the colour and weak electromagnetic
gauge groups.
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1. - INTRODUCTION

1)

electromagnetic gauge group. Recent developments

was associated with the U(1)

Dirac's magnetic monopole
2),3)

have made it easier
to consider monopoles associated with any exact, compact gauge symmetry
group H rather than just U(1). There is some reason to think that the
less familiar case that H Dbe non-Abelian can be physically interesting

as a means of relating strong interactions to unified theories of weak and
electromagnetic interactions 4). It appears that finite energy, singular-
ity free models for monopoles can be found by embedding H 1in a larger
gauge symmetry group G which is broken back to H by the vacuum. These
states resemble the solutions of Sine-Gordon theory 5) and may inherit some
of the interesting properties and provide viable candidates as hadrons or

quarks (if H is non-Abelian).

In order to investigate this possibility we need a much better
understanding of monopole theory and the aim of this paper is so directed.
We shall take as our definition of magnetic monopole, a solution in which
the magnetic (space-space) components of the gauge field tensor take the

form

e.. r
- gék k ) . .
G',;\"- G(x ¢,0=,23 (1.1)
r3
at large spatial distances from the central region of the monopole in a
suitable Lorentz frame. Thus the magnetic field is asymptotically radial,

and obeys a generalized inverse square law, since the magnetic charge G(;)

is assumed, in addition, to be covariantly constant

D; G(r)z 2wGlr)-ce [W;lz), G ()} =0 (.

where the adjoint representation indices of Wz, GZV, the gauge potential
and gauge fields, are understood to be contracted with the generators of G.
Equations (1.1) and (1.2) are gauge covariant and certainly consistent with

the equations of motion and may well be implied by them for finite energy

2),3)

solutions within the 't Hooft-Polyakov framework but we do not have

a satisfactory proof of this 6).
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Our purpose will be to analyze the structure of G(r) as much
as possible for general, compact, connected H., The first result in Section

2),3)

2 is that in the 't Hooft-Polyakov framework G(g) must satisfy the

"qguantization condition™

.e,xp(z,rri.e G)) = 12 (1.3)

3)

Further the "topological quantum number" associated with the solution is
shown to be specified by the following path, closed by virtue of (1.3),

and within H since G(r) is actually a generator of H

TJ = _{_.,,,.(ze.fl G(x)); o5 s4] (1.4)

For example if H=U(1), eG-gQ and (1.3) is the conventional Dirac

quantization condition.

The first lesson then is that the magnetic charge, G(z),
contains all the information about the topological quantum number., However,
it contains yet more gauge invariant structure which will interést us as of
being of possible physical significance. In Section 3 we show that G(;)

can always be gauge transformed into the form

! r
eG> e G=2 BT, (1.5)
ezl :

where the Ti are any appropriately normalized set of mutually commuting
generators of H. The B, are a set of r (= rank of H) numbers which
we shall call the '"magnetic weights". They are not quite uniquely deter-
mined by G(r) : there is a finite discrete degeneracy, characterized, we
shall show, by the action of the "Weyl group" of H. These equivalence
classes of values of B (under the Weyl group) are gauge invariant and
hence the most economical way of characterizing the solution. Presumably

they are also measurable, and hence of physical significance.

The "quantization condition" (1.3) will indeed quantize the
B's. Under the assumption that H is semi-simple (as well as compact and
connected) this is carried out in Sections 4 and 5, following an idea of

Englert and Windey 7). The result is that, up to a normalization, the
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possible values of the 51"'Br are the weights of a new group Hv, expli-
citly constructed out of H. [} weight of H 1is a possible set of eigen-
values of (T1"‘Tr> in a single valued representation of ﬂ]. We may think
of H and H' as being "electric'" and "magnetic'" groups, respectively.

The relation is symmetric since

(Hv}v = H (1.6)

In this work we have to use mathematical ideas which are perhaps
unfamiliar to physicists but we have been impressed (and guided) by the way

mathematical structures acquire a physical meaning.

In Section 6 the above result is extended by relaxing the condi-
tion that H be semi-simple, thereby incorporating the previous results of
8)

Corrigan and Olive who considered H locally like U<1)EM ® Kcolour

Section 7 illustrates the relation between H and HV.

Section 8 discusses the results. One interpretation is that the

H monopoles be " multiplets (and vice versa). The further work needed
to establish this is discussed. If this is correct, H could be the weak
and electromagnetic gauge group and H' the colour group, with the H
monopoles the ;0 guarks. This situation in which there may be two equi-
valent formulations of the theory based alternatively on H or H  with
Noether and topological gquantum numbers éxchanging r6les could be the
natural generalization of the Sine-Gordon Thirring model duality in two

space-time dimensions.

2. - TOPOLOGICAL QUANTUM NUMBERS AND THE QUANTIZATION OF MAGNETIC CHARGE

Suppose ¥ (x) is a Higgs' field transforming under a represen-
tation D of the "big" gauge group G, assumed simply connecfed, connected
and compact. Far away from the centre of a finite energy solution (taken to
be at the origin) ¢ must lie in MO the set which minimizes the self-
interaction of . Suppose G acts transitively on Mo‘ Then

Mo=:{D(g)WO;g€(H' for any fixed ¢ _€ M_ . Let HW be the little group
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of YE€M, ; H¢= {ge G:D(g)y =¢}. Then we may identify M, with the coset
space G/HW' We shall assume H¢ is connected ; 1t is necessarily compact

but not in general simply connected. Also, at large distances,

m"")b‘ = a"}ﬁ' +ieD(Wwr)Yr=0 (2.1)

where W = W; 1%, {1®} ©being the Lie algebra of G and W; the gauge
potentials. By definition, if G“v=LaG";v where @YV is the gauge field

tensor,

[Dr =] - te D(6")

>(2.2)

At large distances, by (2.1) MY is a generator of H which is therefore

the observed exact gauge group.

Now according to the theory of "topological gquantum numbers" 3)
the asymptotic behaviour of the Higgs fields constitutes a map from the

sphere at infinity S into MO==G/H s Wwhich defines a homotopy class

2
which is an element of nz(Mo)=1T2(G/H¢>' This is the group of topological

quantum numbers 3). Since n1(G)= 0

™ (G /HV') = TN (Hy) (2.3)

We shall now show by explicit construction that if the monopole exhibits
the generalized inverse square law (1.1) and (1.2) then the magnetic
charge G(r) defined by those equations, alone determines the appropriate

element of n1(H*).

Let us parametrize S, with co-ordinates (s,t) by considering
a map x(s,t) from the unit square in the (s,t) plane onto S, such that
x(s,t) =P, a fixed point of S,, wvhenever (s,t) 1lies on the boundary of
the unit square (either s or t=0 or 1) and is otherwise one to one.

Define g(s,t) by

q(s,e) = 1 (2.4)
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It is always possible to choose linear combinations of the

Ti’s so that gij is the unit matrix, and we shall do so :

i3 = au (3.8)
There still remains a freedom to rotate the Ti's and hence the roots.

All this is well known for semi-simple groups and follows from

(3.1) in the more general, compact case.

The T1,T2...Tr generate a compact Abelian subgroup of H,
called T, which is a "maximal torus'". Since H is compact and connected
T enjoys an important property 12 ; any element of H is conjugate to at

least one element of T

i ‘16 H, 3 Se€ H,te.r Such tAaT ’1'-‘5'('5-. (5.9)

Immediate corollaries which we 'shall use later on are
a) any generator of H is conjugate to at least one generator of T

b) any element of H which commutes with all other elements of H

lies in T, di.e.,

2(H) & T (3.10)

where Z(H) denotes the "centre" of H (and is an invariant

subgrbup).

It follows from a) that we can always find a gauge transform-

ation S € H such that

e G (p) =S ‘_21/5.,—"; Sq (3.11)

We shall call these coefficients B1'°°Br the magnetic weights of the

monopole. In terms of them the quantization condition (2.12) reads
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e_.xp(é-'n":é’/si-r.) =1 (3.12)

while the element of ﬂ1(H) specifying the topological quantum number is

T, - .{-&.xp i.ﬂ.;/eiTs',' OS.QSL.T\'} (3.13)

since gauge transformed paths are homotopic if H is connected by Eq. (2.13).

Are these magnetic weights in (3.11) uniquely determined ? The

answer is clearly no because if o is a root the gauge transformation Sa

S« =¢-=P[”"(E«*E-¢)//§‘] €EH (54

has the effect

v - r ]
5.((?-/31 Ti)s,‘ = 2/5; T, (3.15)

where

,g' = O, (/3)_:_/3_‘20( “'/@/"‘1 (3.16)
)

In these formulae the scalar products «.p denote i§1 aiﬁi corresponding
to our choice (3.8), and so only involve the first £ components. The
linear transformation (3.16) is called a "Weyl reflection', and consists

of a reflection in the hyperplane w.x=0, perpendicular to the root «.
It can be realized by a gauge transformation within H by (3.14). The

operators

{(Ed *E-.‘)/JZ_:‘ ,(E.g- E-.g)AF:‘ , LT/ 5 (3.17)

generate an SO0(3) subalgebra of .C(H) associated with each root «,
and (3.14) is a rotation through m within the corresponding group which

reverses «o.T.
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Notice that the Abelian magnetic weights B£+1'°'Br are invae-
riant under (3.16) (since the corresponding components of the root vanish),
The ambiguity (3.16) is a new phenomenon associated with the non-Abelian
components B....B,. Let us illustrate it when H= S0(3). Then T,=t

1773
and the possible roots are *1, The corresponding Weyl reflection (3.16)

/81 > /Kﬁ, = "'/81

corresponding to a gauge rotation through ﬁ about the two-axis.

is

So, if B is a possible magnetic weight corresponding to a
given magnetic charge G(P), then so is °a1(5), °a1(0a2(5)) and so on,
Since the Weyl group so generated from the Weyl reflections, is finite
there are a finite number of possibilities for the magnetic weight, B.
Are these the only possibilities ? I.e., if SP.T S_1 =B'.T SeH, is
B! obtained from B only by a finite sequence of Weyl reflections
(3.16) ? Then the answer is yes, and is proved in Appendix A, The proof

is simple but depends on notions developed in the following sections.

The equivalence class of magnetic weights B, related by the
action of the Weyl group and obtained from the magnetic charge G is
therefore a gauge invariant entity which contains all the detectable in-
formation carried asymptotically by the magnetic field, and therefore, we

claim, is the correct object to think about.
Let us mention that this class is independent of r, for a
given G(r) . satisfying (1.2), as well as of the gauge frame of reference

and the choice of T.

Finally, let us note that the set of roots, denoted &(H) of

the algebra of H, enjoy the following properties 13) :

8(H) is finite, spans R, and does not contain O (3.18a)

ir ol € @(H) ) Mo € @(H) only 1# L (3.18b)
2 0, feP(R) 2wpl/xr € Z (3.180)
it ok € @(H) oy ( @) = @ (3.184)
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where ca(B) is the Weyl reflection (3.16). Equation (3.18c) is a conse-
Quence of the two facts that aT/a2 is a component of angular momentum
,(3.17) and so always has eigenvalues which are integers or half-integers,
and that 'a.B/a2 is such an eigenvalue. Equation (3.18d) follows from

the fact that s;1

[see (3.15]].

E Sa is the step operator for the eigenvalue Ga(B)

Let us call a finite set of points simple if it cannot be split
into two mutually orthogonal subspaces. In Appendix B we shall show that a
simple set of points & satisfying (3.18a) and (3.184) must satisfy

2 oy oy = /“‘1 dis (3.19)
.£¢;§§

Then by rescaling o-pex (3.18a) and (3.184) remain true while (3.8)
becomes valid, If the set is not simple cx§§ aiaj is a diagonal positive
definite matrix M2, say, with eigenvalues constant in each simple subspace.

Then the set {Ma,x€%} satisfies (3.18a), (3.18d) and (3.8).

Given a set of points &, satisfying (3.18), we can define a
new set satisfying both (3.18) and (3.8), and write down the Lie algebra
(3.2), (3.3) (teking r=4). It is a fundamental theorem that this exists
and that there is therefore a correspondence between semi-simple Lie algebras
and root systems satisfying (3.8) and (3.18). The problem of constructing
all possible semi-simple ILie algebras is a geometric one of constructing all

possible root systems (3.18). We shall return to this later.

4. - WEIGHT LATTICES AND THE STRUCTURE OF THE CENTRE OF H
(H SEMI-SIMPLE)

We wish to find the magnetic weights B satisfying the quanti-

zation condition (3.12) :

€zp):47\’;:2I3;-r;] =1 (4.1)

For the present we shall assume H is semi-simple as well as compact and

connected. Then the roots span a space whose dimension is the rank of H, (r).
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The global structure of H will be relevant, and is specified

by

H - ':l' /k(H) (4.2)

where H is the ™universal covering group" of H. It is simply connected
and is uniquely determined by the algebra, L(H). k(H), the kernel of
the homomorphism HK-H, is a subgroup of z(H), the centre of H, the
set of elements commuting with all elements of H. Since H is semi-
simple and compact its centre is a finite Abelian group and the number of

possibilities for k(H) is finite 14).

Another, more physical way of specifying the global structure
of H is to specify the "weights" of single valued representations of H,
A weight (W1,W2,...,Wr) is the eigenvalue of (T1,T2,...,Tr) correspond-
ing to one common eigenvector in a single valued representation of H. The
set of these weights will be denoted A(H). A(H) must be a subset of RY,
and be closed under addition and negation since these correspond to the phy-

sical operations of assembling two particles and antiparticle conjugation.

For example k(SU(2))=1, k(so(3))=z2= {1,-1}

Alsu@) = {o, 21,21, x¥%, . ]
N (50@3)) =Asumi,)= {0,21,+2,+3, ... }

[the normalization T, = t; is not the standard one (3.8) since &= {1,-1}
by =5].
and Qaiaj é]

Since by (3.17) oz.T/oz2 is the generator of an angular momentum
subgroup of H, 20:.W/oz2 must be an integér for any weight w and any root

. It turns out that th%s condition is also sufficient for w to be a weight
13

of H (see Humphreys , section 13) ; so

AR)={w:2wa/a*€Z: e @(H}} (4.3)

and

CA(R) S A(H) (4.4)
\



- 14 -

The topological quantum number (3.1%) is an element of

T, (H) = k(H) (0.5)

where the isomorphism follows by general theorems 14 .

In solving the quantization condition (4.1) we shall general-

7)

ize the analysis of Englert and Windey who considered H to be simple

and k(H) to be either 1 or Z(H). At the same time our treatment will
be more self-contained.

Now let us consider the quantization condition (4.1) in H
rather than in H, and denote exp the exponential mapping in H (ieea,

for arbitrary representations of H which can be multivalued representa-

tions of H). Equation (4.1) becomes

&5p m T € k(b)) <2(H)

As a preliminary step we shall solve the problem of finding
all B such that

«Q,:(f A-'ﬂ'v‘-ﬁ,.r € zlﬁ) (4.7)

Note that all elements of Z(H) must be so expressible by (3.10).
Now any element of Z(H) must commute with all the generators

of CL(H) and in particular with the step operators E, [see (3.2]].
Commuting By with (4.7) and using (3.2) yields

exp lm'iﬁ_.o( s ] “€§(“) (4.8)

where &(H)=28(H) denotes the set of roots of H. Equivalently,

2 ,gl_.'é c Z ol € @U") (4.9)
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This condition resembles (4.3). Now the set {a/d2;a( 3(H)}
constitutes a system of roots in the sense of satisfying (3.18) but not
the standard normalization condition (3.8). As shown in Appendix B they
can always be rescaled to obtain a "dual root system" satisfying both (3.8)
and (3.18) :

@ V(H) = {Q(Vg-_ N”g{/x‘; &€§(H)j (4.10)

If H 4is a simple group N is a number, calculated in Section 7. If H
is semi-simple, N is a diagonal matrix, aésuming these numerical values

in each simple subspace.

By the standard contruction theorems it is possible to cons-

truct a simply connected Lie group H' such that

é("?) = @V(H) (4.11)

The algebra f(H') is specified by replacing « by &' in (3.2), (3.3),
etc. Notice that

(c(v)v = (4.12)

Therefore

A(ﬁ):{w ;2w N eZ .("e@(f:l')ﬁ
;{w ; 2w Ny eZ ) xe@(H)_I, (4.13)

Hence the most general solution to (4.9) and hence (4.7) is

B=Nw we A(RY) (4.14)

and the magnetic weight is indeed a weight (in an unconventional normali-
zation), but not all 8 ea(HE) satisfy (4.6) in addition to (4.7). We
shall return to this in the next section, but first we must analyze in
more detail the relation between Z(H) and A(H').
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Now A(H), A(E) and A(H') are all examples of what we shall

call a "lattice" A : a set of points spanning RY such that

o(,/B eEA S N*F € (4.158)
A EN D —w« €N (4.15b)

A has no point of accumulation (4.15¢)

In Appendix C we shall prove that any lattice A has a basis

19 Epreeest, in the sense that

"
N = -( 12‘7\;5; ;i mi e/ ﬁ (4.16)

A convenient basis for A(ﬁ) is {LJ,LZ...&I}, the set of "fundamental
weights" of H, defined by 13)

2 AL ooy /u(," = Sij ) %5 € A(H) (4.17)

where A(H) is a "basis of r simple roots" ; so that
r
A(H) spent R ‘ (4.18a)

éG@“"’) =3£’2"‘-t‘.‘ ; 5€A(H) (4.18Db)

with the coefficients n, integers either all 20, or all <0 . Corres-

pondingly we can define A(H')

-1
A ( m) < { S't'v = N _‘_l; /Jgt ; ol GA(H)} (4.19)

and fundamental weights

L - (4.20)
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Notice that

29_(. N _)_\: = SQJ = 29_(: NZ\J (4.21)

[N

The results up to now tell us that Eq. (4.7) furnishes a mapping
from A(ﬁv) onto Z(H) which is a homomorphism between the group structure
of addition for the weights in A(H') and the group structure of multipli-
cation in Z(H). What is the kernel ? I.e., what subset of A(ﬁv) is
mapped onto the unit element of Z(ﬁ) ? Clearly it consists of those 8

for which

2£_|f_1 c z J-Fcr all WGA()"T/ (4.22)
To solve, expand |

v
é = E. m N ol
A(H)
Choosing W=l sd,e+el, 1in turn in (4.22) we find that the m; must be

integers, i.e.,

Wwe 2 S N",_l_? e A, (F7) (4.23)

where Ar(ﬁ) is the "root lattice" whose basis is A(H), and is obviously

a subset of A(H). In fact we have proved

AF)/AF) = 2(F)

This is our first main result.

An element of A(ﬁv)/Ar(Hv) is an equivalence class of points

of A(H') under the equivalence relation

ol ~/G ; u,/@ 6/\(":) vﬂ-ﬁ €/, (H)(4.25)
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We shall call these equivalence classes '"sublattices", understanding that
Ar(ﬁ) itself is the only sublattice which is also a lattice (4.15). The
isomorphism in (4.24) equates the addition of sublattices to multiplication

in Z(ﬁ).

Note that every vector of an irreducible representation can be
obtained from one eigenvector corresponding to weight w by applying step
operators Ea‘ Hence by (3.2), all weights of an irreducible representation

of H belong to only one sublattice of A(H),

5. - THE DUAL OR MAGNETIC GROUP H' (H SEMI-SIMPLE)

Now we can return to solving the quantization condition (3.12),

(441) or (4.6) which is equivalent to

Qé,yeZ for all weA(H) (.0

Let A(H)* denote the set of points (N'1B) satisfying (5.1).

Now A(H) is a lattice in the sense (4.15) since it satisfies
(4.15a,b) and by (4.4) has no accumulation point. We prove in Appendix C
that if A is a lattice then so is A* and that

(i/(*)a* =N (5.2)

So A(H)* 4is a lattice which by the results of the previous section is
contained within A(H'). We shall now show that A(H)* is the weight

e

lattice of a specific group Hv, locally isomorphic to H by construct-

ing ;0 explicitly.

Consider the subgroup of Z(H') :

k (H7)={ &% amiwNI  weam),

= A(H)/NA.(H) (5.4)
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by the isomorphism theorem (4.24) applied to a subgroup. Define

HY = gv/k(Hv) (5.5)

Then since k(H') C Z(H') and is the kernel of the homomorphism

K (Hv) = '("—?P LrcwNTY - we /\(H")7(5.6>

Comparing (5.6) with (5.3) we see that
*x
A(RY) = A(H)

since both are lattices. Finally by (5.2)

AR = N (HY) (5.1

and so the most general possibility for the magnetic weight B satisfying

the quantization condition (3.12) is

N"ﬁ e A (HU) (5.8)

is the Weight of the group H which we shall

So up to a normalization B
H,

call the 'magnetic group" in contrast to the original "electric'" group,

whose weights defined '"electric" charges.

is the kernel of the homomorphism of HE onto H

‘Now since k(H)
k(H) =

{ <P amiwNT | we AR
{GF emiwNT o we N(H*) Y

By the isomorphism theorem (4.23)

= /\ (Hb///\y (Hv) (5.9)

by (5.7).
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Comparing with (5.3) we see that the relation between the magnetic and

electric groups H and H is symmetrical in the sense

(H")v = H (5.10)

These then are the main results of this paper.

How does the topological quantum number (3.13) appear in this
framework ? Let us "raise" the path I, (3.13) from H to H. Its

Q= 4nm endpoint becomes

N .

- 2% \9 ‘(’ﬁ& E'T
which by the quantization condition, lies in k(H)§n1(H), by (4.5).

Equation (5.9) tells us that the particular element is determined just by

the particular sublattice on which N—1B lies.

6. - EXTENSION TO THE GENERAL COMPACT CASE

In this section we extend the results of Sections 4 and 5 to
the case where H 1is a connected compact group. We dealt first with
the case of a semi-simple group because the presence of U(1) subgroups
in the centre Z(H) of H results in the universal covering group of H,
ﬁ, being non-compact. In consequence the set of weights of ﬁ, that is
the set of eigenvalues of (T1,T2,...,Tr), is non-denumerable and so not a

lattice in the sense of Section 4.

More specifically, the semi-simple algebra in Eq. (3.1)
Ce(u), £(H)], generates a compact semi-simple subgroup of H, which we
will call H', This group has a compact universal covering group Hr,
The universal covering group of H, ﬁ, is isomorphic to R x H H
roughly speaking we get a factor of R for each' U(1) in 2(H). The
problem is that the components of the weights of H corresponding to

T£+1"‘°’Tr will not be quantized.

Our strategy for circumventing this difficulty is to use a

compact covering group of H,
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———

H = cH)® A (6.1)

for the purposes for which we used H in the semi-simple case. Here C(H)
is the compact Abelian subgroup of H generated by the subalgebra ( G{)
occurring in Bq. (3.1). In other words, C(H) is the subgroup of H

generated by T£+1""Tr' We may write

H = -F'l/k(H) (6.2)

where k(H) is the kernel of the homomorphism H—H and has the structure

) (H)={ (MK b e Ciia H'] o

where m is the homomorphism H'»H'. Using exp to denote the exponential

mapping in H, the quantization condition Eq. (4.1) becomes

cxp 4O t/;‘I ¢ k(R) < _2-(5) (6.4)

where

5 (A)=(CmaHI®2MR)

is not the centre of B [which is C(H)X z(H') and so not a finite group]

but a subgroup of the centre.

Following Section 4 we first consider the problem of determi-

ning those B satisfying

Zxp é,r\-i./_l_..I € —?.(ﬁ) (6.6)
2)

Because of the direct product structure of Z(H), we write 2::2(1),2(
1 2 - s aa
where T )= (T1,...,T£) and TI'°7= (Tz+1""’Tr)' Similarly dividing

6= (17,608 so that
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() () (v —1a)
/§I=/§_I +/g-_r_-. (6.7)

condition (6.6) factors into [cf. Ref. 8)]

(6.8a)

by (QTrC/é(‘.)I(“) e C(H)N .

and
( 03
sl TN 2 (),

Since H' is semi-simple, the general solution to condition (6.8b) was

obtained in Eq. (4.14) and it may be written

A{v - N(z) -ly(\-l’. ?y: 6/\(,.(") (6.9)

where the normalization matrix N(2> is a multiple of the identity when

restricted to each simple subspace.

Condition (6.8a) defines a lattice of vectors E(1) in Br'z
which we will temporarily denote by A(1). Following Section 5, we define

*
A(1) to be the lattice of points ﬂ(1) satisfying

{ {1) 0
2 W eZ teratl fle ANV

[Clearly A(1)=A(C(H)n H'), the weight lattice of C(H)a Hi],

Now consider the compact Abelian group

| e '*
CV(H) = ’Rr /“-“'/\“ (6.11)

T witn 54—4nﬂ(1) for all ﬂ(1)‘ A(1)*). The

(where we identify =xe R*~
map 5—*exp(i§.g(1 ) defines a representation of C'(H) if and only if
5(1)e A 1). thus A1) is the weight lattice of C'(H). This leads us

to write
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I_l_" = CV(H'/@D T"T;v

(6.12)

so that the solutions of condition (6.6) are of the form

A = N‘:’ wk:v« _M_J G/\(m) (6.13)

and Nﬂ: (E(1)’N(2)E(2))°
To derive a generalization of the isomorphism (4.24) we consi-
der the kernel of the homomorphism from A(H') onto Z(H). For B to

be in this kernel we require

. oM —_ . p () ,i2)
e xp (QTT" £ .IN)" "‘P(“’“"/‘g . -.-rl)’J (6.14)

The condition on E(Z) is just N(Z)-1&(2)e Ar(ﬁ'). The condition on
1(1) defines a sublattice of A(1)==A(CV(H)) which extending our notation
we will denote by Ar(Cv(H)). So if we define Ar(Hv) to be the direct
sum of the lattices Ar(Cv(H)) and Ar(ﬁ'), condition (6.14) is seen to

be equivalent to

/é = N W u‘\-(f& w G/‘r (Hv) (6015)

Consequently

3 (A) T NHY) /A (WY

(6.16)
Now we define k(H') by the analogue of Eq. (5.3),
V) = cxp LTV W.NTY » wen(H
k ( HY) = {<xp ¢ - ‘ )-5 (6.17)

= A(H)/A(H) (6.18)
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*
where Ar(H) is the direct sum of A1) and Ar(H'). As before we

define

HY = m/k(Hv) (6.19)

and by the reasoning of Section 5 see that the quantization condition

becomes again (5.8).

7. - EXAMPLES OF THE DUAL RETLATIONSHIP BETWEEN "ELECTRIC" AND
"MAGNETIC" GROUPS H AND H'

Fifst we shall discuss the relationship between the local

structure of H and H' for H simple., This is essentially the rela-

tion between the root systems specified by (4.10). Assuming o and o

are both normalized, (3.8), we can calculate the rescaling parameter N.

S, =2 8 =2 °<LV°(_;V
i &

Contracting i with

S ot

¥
3
»
M
'S

(7.1)
But by (4.10)
2 ‘ 1
") r 3
(d) «* N =
so
2 1 )

N z (:EL /Z(z';t/ﬂéf Lt = Q;E ut )//;' (7.2)
where r is the rank.,

. A1l possible root systems for simple groups were classified

by Cartan (and are determined up to a rotation), and it turns out that

the roots have at most two distinct lengths. The system is uniquely
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characterized by r and the number of generators, m, except in the case
of B = so(2r+1) and C_= sp(2r). The algebras A= SU(r+1 ), D,=so0(ar)
together with the exceptional ones E6’ E7, and EB have roots of equal
length and therefore their root systems are self-dual under (4.10). @

2

and F4 must be self-dual up to a rotation while it turns out that the

root systems of Br and Cn transform into each other under (4.10),
For A, D, By B, and Eg, (7.1) and (7.2) tell us that

N = (m- r) /r (7.3)
while (7.2) and the explicit formulae for roots imply

N(B.,)= N (¢c.) = \/Q_(V-l-\)(ZV—\)
N(G) = «J3

N(Fq) = 7\)—£

Now let us turn to the relationship between the global structure of H

and H' as given by (5.3) and (5.5). In practice it is often more con-

venient to use

k(HY) = Z(H) (7.4

This follows from

Z(H) = Z(R)/(H)
| ALEY) /A ()

n

(7.5)

by (4.23) and (5.9) while by (5.7)
» 3
< /\r (H’) //\ (H)

Now in Appendix C we prove that if A1 and A, are lattices such that
* * L _ A
Ay < Az, then A, & A7 and /\2/./\1 _A1/A2. So .

2 1
= A(RH)/A,(H
s K(HY)

by (5.4).
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Equations (7.4) and (7.5) are useful if Z(H) 4is cyclic
because then any subgroup is cyclic and is unique, given its order [@hich
must be a divisor of the order of Z(HZ]. Further the quotient group is
cyclic. This then applies to all simple groups, except for D_ (r even).

So we have

(S « (NM)/‘;N)V = SUu(M) /Znm
SoCzr+) Sp(2r)/Z,

n

So(2r+1)Y = Sp(C2-)
v /
C’z = G'z
FA,-V _ F(*l

E.’ = E./Zq. , ré33.

using the known structure of the centre., The prime denotes that the roots

are rotated. For the detailed treatment of Dr see Appendix D.

For semi-simple groups it may be helpful to use
(A®B) = P'OTT
All other cases must be worked out explicitly from our general formulae

(5.3) and (5.5). For example if x(C) is the diagonal subgroup of
C=su(2) ® su(2) we find C=0C/k(C) is self-dual.

8. - DISCUSSION AND SPECULATION

We now wish to explain what we think could be the signifi-
cance and meaning of the results obtained in this paper. The ideas to
be presented have stimulated this research but are of necessity specula-

tive in view of the work necessary to substantiate them.

We have seen that the magnetic weights are indeed weights of
the group H'., This suggests two possibilities : in some future reformu-

lation of the theory in terms of new field operators (maybe monopole fields)
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it will be possible to explicitly construct the generators of Hv so that
either (a) the monopoles will be eigenstates of the commuting generators
v, with the magnetic weights as eigenvalues, or (b) the magnetic weights

label not eigenvalues, but rather irreducible representations of u.

The fact that the gauge transformations in H induce the action
of the Weyl group on the magnetic weights (Section 3) suggests to us that
the latter interpretation, (b), is correct. Then H monopoles are H
(irreducible) multiplets (and vice versa)., A difficulty with this idea,
that we shall return to later, is that the label for the components of the

multiplet is missing, or at least hidden.

If the idea is correct it can be checked by examining the
rules for the combination of two monopoles. It should be given by the
Clebsch-Gordan series for HY which tells precisely which irreducible
representations can be formed out of two given ones. Thus the total
magnetic weight ought to belong only to a restricted range, the particular

value depending on precisely how the two constituent magnetic weights are

put together.

Let z and I be the vectors from monopoles 1 and 2 to the

field point in question. Suppose that if T and r, are large enough

A Rk A Kk
G.:y= €iie ( "6 RE Galr)

b
r‘ Y:.’

%L G"ﬂ- =0 (8.2)

(8.1)

and that

If further

[6.(), Gatx)]] =0 o

most of the analysis of Sections 2 and 3 can be repeated, e.g., to find

h(S) = &1[’[ ¢ 6'1(5)_/2‘4-': G'z(!m,]
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are the solid angles subtended by the contour of integration
0<t<1 for given s, at monopoles 1 and 2,

'At distances large compared to the distances between the two
monopoles the magnetic fields (8.1) will take the form (1.1) with

G(ﬁ) = C:"z(L) + G'z (-:)

G1 and G2

T with magnetic weights B, and B,. So

B = R +B

and is automatically @ A(H') by (4.15a). Before "putting" the two mono-

can be simultaneously gauge transformed to be generators of

poles together one could gauge rotate one independently of the other and

instead obtain

4 = /ﬂ + 9_'(/8;) (8.4)

where o is an element of the Weyl group. If H==SU(2) we have the pos-

B = 1th24)

which are indeed the extremal terms of the Clebsch-Gordan series

sibilities

|B1+ﬁ2l,..o,|51-52]. We suspect, but have not proved, that (8.4) is always
a principal weight in the Clebsch-Gordan series (B1)®(B2) for any semi-
simple group. We are uncertain whether the missing terms in the Clebsch-
Gordan series can be found by relaxing (8.1), (8.2) or (8.3) at the

present classical level of discussion.

At any rate it is interesting to see how the Weyl group part-
ially supplies the structure that is missing owing to the lack of a label
for the component of the H' multiplet, This label should be missing
since it would be connected with the quantum mechanical superposition
principle for monopoles which, at the present level of discussion, are

treated in a purely classical way.
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The ultimate statement of our conjecture would be that the true
invariance group of the theory is H69HV. All states would be classified
acocording to this and their interactions would be invariant. The "topolo-
gical quantum" number '"now appears as the generalized triality" of the ;0
multiplets and is certainly conserved, but our statement is much stronger,
with further consequences, and would require much further work to prove,
if true. For example, our conjecture implies that a monopole which is an
HY multiplet cannot decay into the vacuum, even if it is topologically

trivial, since the Clebsch-Gordan law would be violated.

This conjecture somehow generalizes the "soliton" property of
two-dimensional Sine-Gordon theory which can be reformulated in terms of
the Thirring model. There the '"kink" or "soliton" state of Sine-Gordon
theory possesses a topological quantum number with corresponding current
proportional to epvbvﬂ. It can equally well be described as an ordinary
state of the Thirring model with an ordinary Noether charge with current
ﬁva which is proportional to epvbvﬁ, according to the transformation
between the two theories. The secret of the relationship is quantum me-
chanics ¢ has to be a quantized Sine-Gordon field. This ingredient is
missing so far from our treatment of monopoles and we suspect that only |
when it is supplied will our conjecture be verifiable. The results so far
at the classical level are just a vestigial indication of the true quantum

structure.

Let us comment on possible physical applications of the idea
that H and H' both play a rdle. H could be the unified weak and
electromagnetic group and ' the colour group of strong interactions.
All interactions would then be unified with the disparity in strength
being nevertheless quite natural. Further the different parity transform-
ation properties of H and Hv could be a simple consequence of the fact
that monopoles violate parity. This sort of ildea dates from Dirac

1)
was recently revived by Faddeev 4) and others. Paddeev 15) has recently

and

objected that monopoles cannot be hadrons because (a) they would be too
heavy and (b) they would have long range forces. Now (a) was only proved

if the Higgs field was in the adjoint representation 16) which prohibits

H and H' from being semi-simple. Maybe the monopoles are gquarks rather
than hadrons since then the long range forces are the colour forces res-
colour Hv==SU(3)/Z3'
This agrees with the proposal that leptons constitute a weak electromagnetic
SU(3) octet 17)

ponsible for confinement. To illustrate, if H=8U(3)

, but not with the quark assignment of (3,3) wunder HxH .
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Maybe our analysis requires modifications for dyons. We admit the idea
is extremely speculative and raises many new questions. For example, are
weak and colour forces indeed Lorentz transformable with each other 9

What about the spontaneous breaking of the weak symmetry ?

Let us conclude that the theory of monopoles opens up inte-
resting possibilities and deserves further study, particularly with

respect to the full quantization.
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APPENDIX A : MAGNETIC WEIGHT AMBIGUITY

The magnetic charge is invariant with respect to gauge rotations
within the Abelian part of H [generated by C(H) in (3.1)] and the Abelian
magnetic weights BZ+1"“’Br are completely gauge invariant. Hence, we
need only consider the effect of the semi-simple part of H on the non-Abelian
magnetic weights 51,...,52, and so, without loss of generality can take H

to be semi-simple of rank 4. We shall prove that if

SET s7 = /;(;'.I ; Se H (a.1)

then

gl = o (p)

—

(A.2)

where o is in the Weyl group W(H).

The hyperplanes o.x=0, og é(H), divide the £ dimensional
space into a finite number of hypercones, called Weyl chambers, whese pro-
perties are presented in Section 10 of Humphreys 13 .

Consider the Weyl chamber KX(A) containing B (it may not be
unique if g.a=0 for some o but this does not matter). It can be

written

K(a)= {2 X%, denmy

where A is the corresponding basis of simple roots (4,18). Any one
Weyl chamber can be transported into any other by a unique element of

the Weyl group, W(H). Hence we can find o € W(H) such that

B 2o (8] € K(d) (2.4)

Now let us consider (A.1) in some D dimensional irreducible
representation o of the group H with weights gg,gz,...,gg. Now B.T
and B'.T are DxD matrices related by a similarity transformation (A.1).
They must therefore have the same sets of eigenvalues, A and A!', say,

where
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[

But these also equal the set

. /
A, '(/é'-'f‘:) /K_".g\,‘(, /?’. ms §
since
,3”. m = g‘(/@'/.p;_“ - £' o (m)
and the Weyl group permutes the weights of an irreducible representation.

It is a property of irreducible representations that amongst
the weights there is a 'highest" dominant weight, m?, let us say,
¢ K(A), to be dominant. Highest means that any other weight must
satisfy

m = = m% -3 n My%0, iz
oA

It follows that Q,g$ and gﬁ.gﬁ assume the maximum values in the sets

A and A" respectively, and must therefore be equal, since the sets are.

Repeating the argument for 4 irreducible representations

whose highest dominant weights g%, a=1...4 are linearly independent.

It follows that
g = /@".-. = (£)

and (A.2) is proved.

The situation can be summarized by saying that the set of
eigenvalues of e G(g) is gauge invariant. The individual eigenvalues
are not gauge invariant, since they may be permuted by special gauge

transformations, namely the elements of the Weyl group.
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APPENDIX B : PROOF OF Eq. (3.19) FROM (3.18a) AND (3.184d)
FOR SIMPLE SETS OF ROOTS

By (3.184)

Z = ("‘)e Celx); = ZNLNS =2 30),8n
<€ P £ g “€P J b

3Lk/gkIBJ + 3&|</3k/3; -2, B, S 3,“/&//3».

Let vy be any vector satisfying vy.f=0. Then

Yl 33k/@k =0

. 2 /3) :
ik B = PR
where the number pz(ﬁ) is positive but may depend on ' B. But

i Yk Br = pHUAI B 2 pra) g

Hence pz(o[)=p,2(ﬁ) if .8 #£0. So if & spans gt (3.8a), and cannot

be decomposed into orthogonal subspaces gij =éijp.2, which is the

So

and so

desired result.
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APPENDIX C : USEFUL PROPERTIES OF LATTICES (4.15)

Theorem C1 Any lattice A can be written A={i§1nigi j ny € 2} (the

set of vectors €,,6,,...,¢, 1is called a basis for A).

The proof is by induction on the dimensions of A. If r=1
let x be the least positive element of A ; such an element exists
because A has no point of accumulation. Iet A' be the lattice
{nx;ne z}. Clearly A' &€ A, But if there is a y€A and f A'  the set
{y-nx;ne z}€ A will contain a positive number 1e.ss than x. Consequently
A=A' and the theorem holds for r=1.

Suppose inductively that the theorem holds if the dimension
of A does not exceed r, and that A has dimension r+1., Take r
linearly independent elements of A, These span an r dimensional linear
subspace whose intersection with A is a lattice Ar, For this lattice
we may take a basis 91,32,...,31‘, Consider any other element of A,

linearly independent of Ar’ f say. Consider

P =y{Z it +&trnd ; esusl} (o)

This contains a finite number of points of A as this set has no accumu-
lation point. TLet e be the point in AN P for which « is the
=r+1 r+1

smallest positive number. Consider the lattice A!'! for which 31,32,...,

e . . . A .
i is a basis. Given Yy € write

v +1

Z /8;_ e. (c.2)

It Br+1€ Z, ‘X'Br+1gr+1€ AL and so the remaining ﬁie Z. If Br+1f‘ Z
we may choose integers m;, so that 0 < Bi-mi <1 and 0< Br+1 -m < 1.

r+1
Then

v+ r+1

Y- m; e; =_21(/3;-m-.)gae AnP (c.3)
- (| (X

contradicting the fact that is the point in AAP with least posi-

e
—r+1
tive (r+1) co-ordinate. Hence 219853000 0e, 15 a basis for A,
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Note there is great freedom of choice in choosing such a

basis.

Theorem C2 If A 1is a lattice and A¥= {y:oxNy € Z2 for all xe A}
then (i) A¥* is a lattice, (ii) (A*)* =1,

Proof Let _<5_1,...,§r be a basis for A and define vectors &¥,,,.,eX

A
2 €. Nf—j = S._J (c.4)

so that
Then y=2ari_e'_?fe A¥ if and only if zozini € Z for all n, € Z, This is
equivalent to 011 € 72 for each i, So A* is a lattice with basis

* _ .
€, seeeseX. Since (e¥)*=g;, (A%)*=4.

-1
@.lr_l_e_gggg_l_gé If A1 and A2 are two n dimensional lattices with
Ay &A,. Then A¥ 2 A% and /\2//\1 is a finite Abelian
group isomorphic to A%‘/A;.
Proof If ye A’2‘, 2xNy € z for all x € A2, and since AZE A1
for /\1. Only a finite number of points of /\2 can be in the region

0)
Z =i e, 0 «; <1 (c.5)

But each point of A2 differs from at least one such point by an element

of A and the result follows.

1’

To show that /\2/./\.1 = /\*1‘//\.92e is less direct. For each x € IRr,

< > e-ar(trT“;‘:‘:N;‘.‘) (c.6)

defines a one-dimensional representation of A,. X, eand x will give

=2
the same representation if and only if 2. -X,€ AS' (We may identify the
irreducible representations of A, with IRr/A’Z‘.) Now (C.6) defines a

representation of the finite group /\2//\1 if and only if

2& N § e Z “." d‘, “‘A“ (0.7)
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that is EeA?' Consequently we may identify A%*/A"z“ with a group of
one~dimensional representations of A2/A1. But since every representa-
tion of A2/A1 induces a representation of A2, A?/AgJ contains all the
representations of A2/A1o Now the one-dimensional representations of

any finite Abelian group G form a group isomorphic to G. It is not
possible to set up this isomorphism in a natural way. It is necessary

to appeal to the structure theorem for finite Abelian groups which states
that every such group is the direct product of cyclic groups of prime
power order. It is easy to check the result for a cyclic group and deduce

the result by taking direct products.
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APPENDIX D : EXPLICIT CALCULATION OF MAGNETIC WEIGHTS FOR THE
D(n) OR S0(2n) GCASE

To illustrate, we take the most complicated possibility among

the simple groups, the case when (7.3) is not necessarily helpful.

The 2n(n-1) non-zero roots of the D(n) algebra are

d(in,im)=l(i_sni_sm) mfm

where (21,.0.,2?) constitute an orthonormal basis in R". We shall keep
the Euclidean length, JEX , of each root arbitrary. By the argument

leading to (7.1), the Cartan metric is

g3 = S xXiwy = A)\z(“")gij

The "standard" normalization (3.8) would require

A = 2 Jn-1 (D.1)

s

Solving (4.3) we find that the weights, W= 5 1m(i)§(i)’ fall

into four sublattices (4.25)

m. T . Ap. PLE€Z 2P even

13

]
mi

A(L+P) Pied [ 2Zpieven

m-.D] = ANP. ; pi€Z ;2p °4d

m;“] AL +P:) pieZ ; 2p:odA

.

(D.2)

The sddition law for theuc four sublattices, ), w-o0,1,2,3,

depends on the parity of n.

If n dis odd, [@] [}'] = [k"], mod 4, and the compouition group

a(§o(zn))/n (50 (2n))

,‘..
~

- Z4o
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If n 1is even, the composition group can be represented by the Table

M ] ] [} 1

0 41y 2 v 3
) ' 1 {
--‘.-—:-—‘.—-_f---'
O ro 1t 2 b3y
--L--l—-‘——d—--l
' 1 t )

1T Y1 vo0 3 o2
PR I S I
, . ' { {
2,2 V300 01 4
AL S S
303 420 1 10
T S e T P

—— 2
so A(SO(2n))/Ar(SO(2n)) = Z,Xx Ly, now, and is not cyclic.

In view of the difference between the two cases, n even or

odd, we must treat them separately.

n odd

The universal covering group, corresponding to the algebra
O~
D(n) (n=2p+1), is the covering S0(4p+2) of the orthogonal group
S0(4p+2). 1Its centre is Z,. There are three groups with the same algebra
=) 4 ~ =0 ~
D(2p+1) : S0(4p+2) ; S0(4p+2) = so(4p+2)/z2 ; so(4p+2)/z2= SO(4p+2)/Z4
with weights

/\(SO(AP-H-)):{i m[:Je; © ks0,7,2,3 3

N (SO (4p+2))= {':ZMEne; ; k=0,2 ]

e  [«]
N(so (4P+7-)/Za.)={.2"'i k'ei , k=@ } (D.3)

Solving (5.1) explicitly for the magnetic weights B we find,
comparing with (D.2) and (D.3)

/g({o (zp+r)) =33 N\ (Sotar+) /2,)
ﬁcso(‘ﬂ""’-)) /N ( SO(&..p-o-'z))
g (€o (Trp-ﬁ)/?a.h;';:/\(sm)/

N
>
Y

"
|-

¢
b4
~
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The results confirm our general result ; B(H) = NA(HV) in
the standard normalization since then, by (D.1), (1/2A2) = 2(n-1) which
is indeed N, by (7.3). Alternatively we see that if we had chosen the
roots to have unit length, 2°=1, we would get B(H)=A(H"). This is

valid in general if all the roots have equal length,

n 1is even
The universal covering group corresponding to D(n), n=2p
is the covering §0(4p , of the orthogonal group ‘SO(4p). Its centre is

Z2 Y Z20 Since there are five distinct subgroups of Z2 Y Z2, namely
the identity, three Z2 type groups and Z2'® 22 itself, there are five
diffe€ent quotient groups. The weights of these quotient groups are
o (k) . )
i§1 m; (i)’ with Xk given by
/—\'
Solar) : k=0,1,2,3
P
. -o
SO(P)/Z, TorI : k=0T
P . k=02
Sorn /2, TopeI -
k=03

Sowp /2, TypeIm
50(4?)/21@22 : k=9

After some computation one finds that the magnetic charges B

of these groups depend on the parity of p itself. Hence there are two

subcases

(b1) P:ZQ m= 2P =442

— . .SO(SLC)
/-'”> ( Socsz)) =75 N ( = NCER
Soc(s2) Y
//E; ZA 'TH;'»CI - )FL //\\ 2 .Ttsya.jt
ﬁ ( S ©(92) -——L?/\ So(se)
-zz Typ T 22 2.,_T~a?¢_-n—

u

/5( S 0(32) A Sor3a)
2, an.m N szav-cm



- 40 -

(bz) p=22+1 n=2p =4&la2

/’

_.__/\(50(844-«)
2 \* Z,0 2

/g(s o (32+4))

STDC ge+wy) ) 1 S (o) (g_e.pc.)

( L
/tg ;E}_ qrna"ctl- '7LNF' EEE -rEjl*‘:[[I

ﬁ 30(9{%1) - _1_/\ So(se-w)
Z, Type T 2 'Z . Typedl

/5( So (88+4) | __)_/\ SO (84+)
Z, TopII= / 2N 2 2 Tape T

So(gety) L
/5( Z ©2Z, ) - 27\1/\ (SO(Q-€+4)

Note the subtlety of the inter-relationships.
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