
C
ER

N
-T

H
ES

IS
-2

01
3-

00
4

11
/0

1/
20

13

Universitatea “POLITEHNICA” Bucures, ti

Facultatea de Electronică, Telecomunicat,ii s, i Tehnologia Informat,iei

Teză de doctorat

Analiza s, i modelarea predictivă a performant,ei
ret,elei de achizit, ie de date a detectorului ATLAS

Analysis and predictive modeling of the
performance of the ATLAS TDAQ network

Doctorand ing. Lucian LEAHU

Conducător s, tiint,ific prof. dr. ing. Dan Alexandru STOICHESCU

prof. dr. ing. Vasile BUZULOIU

2013

Abstract
After almost twenty years of research, development and installation, the Large Hadron
Collider (LHC) accelerator at CERN produced its first collisions in 2008, planning to
run until the end of 2012. ATLAS (A Torroidal LHC ApparatuS) is the biggest exper-
iment built and operated on the LHC ring. Being a general purpose detector, it studies
a wide range of physics aspects, out of which the search for the “God particle” - Higgs
boson - is its most significant mission. In 2012 ATLAS already recorded collisions
data, called events, which were, with a big probability, candidates for proving the ex-
istence of this particle. Capturing this type of “interesting” events is the task of the
ATLAS detector, however filtering them from the huge amount of data being generated
is the purpose of the Trigger and Data Acquisition system (TDAQ).

ATLAS TDAQ is implemented as a three layer filter, reducing in real-time the rates of
the events (1.6 Mbytes big) down to a level which can be written to mass storage: from
40 MHz (64 Tbytes/s) to 200 Hz (320 Mbytes/s). This real-time selection is performed
using dedicated hardware in the first level and large farms of computers in the next two
levels, interconnected by a dedicated high speed Ethernet network. The efficiency of
the TDAQ system is given by the continuity of the events flow and by its capability of
sustaining the design rates. Level-2 is a key filtering system because it applies physics
algorithms to a 100 KHz rate of events and clears 97% of the read-out buffer space,
critical to the flow continuity. The high rate of event processing in Level-2, involving
data analysis and data transport over the network, places strict requirements on the total
processing time. A contributing factor to this is the network delay and loss, for which
requirements weren’t strictly established from the design stage.

We set upper limit requirements for the network delay and loss as being the total Level-
2 processing time. This is obtained by employing a mathematical queuing model on the
Level-2 system. One of the limitations of this model is that it cannot differentiate the
delay and loss caused by the network only. In order to overcome this, we introduce an
approach applicable to any communicating systems, hence Level-2 network as well, in-
corporating both loss and delay into a central concept named quality attenuation (∆Q).
For data networks we propose a component-wise view of ∆Q allowing us to perform
topological compositions which, for the Ethernet case, are easily applicable. We show
how this method of finding contributors to the overall ∆Q is a lightweight, cheap and
non-intrusive technique, applicable in system’s operational phase.

We obtain on one hand performance indicators for entire network paths and for individ-
ual network devices, called Structural Delay and on the other hand a prediction on how
the Level-2 network’s ∆Q scales with the load placed on the system. For this we quan-
tified the degree of correlation of the traffic pattern placed on the network by the TDAQ
software. The ∆Q dependency on the load will then serve as a requirement trade-off
space between the network and the software generating a type of traffic pattern.

iii

Acknowledgments

At the beginning and continuously during the work for this thesis I was told
that a PhD is something that pushes the knowledge further. My attempt in
achieving that wouldn’t have been possible if it wasn’t for the help, guidance,
mentoring and patience received from great people during these years.

I would like to dedicate this thesis to the regretted Professor Vasile Buzuloiu
who guided my very first steps in career and was my supervisor for many
years until he sadly disappeared. His young spirit, energy, determination and
remarkable mind were and still are of great inspiration for me. I would like
to thank Professor Dan Alexandru Stoichescu for accepting the role of super-
visor for the last stage of my thesis and for his advices and final reviews of
my work.

I am especially grateful to Dr. Neil Davies for mentoring me during all these
years and leading me into an exciting domain he and his team at PNSol pi-
oneered. Although remotely, our long and numerous discussions gave shape
to this thesis and modeled my way of perceiving performance, networks, en-
gineering and mathematics.

My friends and former colleagues at CERN played a key role in the birth
and evolution of this thesis. During four years I had the chance to work and
learn in a very challenging and special environment, mainly driven by the
philosophy of managing people of Mr. Brian Martin. I would like to express
my sincere gratitude to him for all the effort invested in this work and, I need
to mention, for the patience. Many of the practical aspects of this thesis were
discussed and refined with him.

I would also like to thank Silvia, Stefan, Wainer, Eukeni for their thorough
reviews, technical debates and practical help in the last phases of the thesis. I
had memorable moments with them and with Adina, Matei, Lavinia, Marius,
Laura, Mihai during my work and years spent at CERN. I want to mention
and thank Mihai Ciuc from the LAPI laboratory in Bucharest for his help and
guidance on both theoretical and administrative sides of the thesis.

I am equally grateful to my family and friends for their continuous support
and encouragment.

A big “Thank you!” to all.

v

Contents

Abstract iii

Acknowledgments v

List of figures xiii

List of tables xvii

1 Introduction 1

1.1 CERN . 1

1.1.1 Physics . 1

1.1.2 The Large Hadron Collider . 2

1.1.3 Operational costs . 4

1.2 The ATLAS Detector . 5

1.2.1 Architecture and event detection . 5

1.2.2 Trigger and Data Acquisition System 6

1.3 Performance in TDAQ . 8

1.4 Contributions and outline . 9

1.4.1 Thesis contributions . 9

1.4.2 Outline . 10

2 Buffering and Flow-Control in ATLAS TDAQ 13

2.1 Context . 13

2.2 Level-1 Trigger . 14

2.2.1 Flow Control . 16

vii

2.2.2 ROB Resource . 19

2.3 Level-2 Trigger . 19

2.4 Event Builder and Level-3 Trigger . 23

2.4.1 Flow Control . 26

2.5 ATLAS TDAQ Data Network . 26

2.6 Performance coupling . 28

3 Mathematical model for Level-2 33

3.1 Context . 33

3.1.1 Resources . 33

3.2 Approach . 34

3.3 Assumptions . 35

3.3.1 Exponential distribution in Level-2 . 36

3.3.2 Other queuing characteristics . 38

3.4 M/G/c/c queuing model . 38

3.5 Results . 40

3.5.1 Dependencies and model scaling . 41

3.5.2 Particular case study - 1/2 of the system 43

3.6 Fidelity analysis . 45

3.6.1 M/G/c/c and M/G/c/K models . 45

3.6.1.1 Error in the blocking probability 46

3.6.2 Abstraction . 46

3.7 Conclusions . 48

4 Observational model 49

4.1 Introduction . 49

4.1.1 General context . 50

4.1.2 Etymology . 50

4.2 Approach . 50

4.2.1 Performance . 51

4.2.2 ∆Q . 51

4.2.2.1 Mathematical support . 52

viii

4.2.3 Design . 53

4.3 Concepts . 54

4.3.1 Abstraction . 56

4.3.2 Resource utilization . 57

4.4 ∆Q in data networks . 58

4.4.1 Particularities . 58

4.4.1.1 Resources . 58

4.4.1.2 Tasks and observables . 58

4.4.2 Components . 59

4.4.3 Properties . 61

4.4.4 Ethernet case study . 63

4.4.4.1 G component . 63

4.4.4.2 S component . 63

4.4.4.3 V component . 64

4.4.4.4 Convolution . 64

4.4.5 Methodology for obtaining G, S, V . 65

4.5 Conclusions . 67

5 Performance in ATLAS TDAQ Network 69

5.1 Context . 69

5.2 Chapter goals . 69

5.3 Ethernet standard . 70

5.3.1 Evolution . 70

5.3.1.1 Physical layer . 71

5.3.2 Ethernet Frame . 72

5.4 Structure . 73

5.4.1 Network elements . 73

5.4.2 Connectivity & redundancy . 73

5.4.3 The Level-2 network paths . 75

5.5 Performance assessment at design time . 75

5.6 Observational model implementation . 76

5.6.1 Measurement . 76

ix

5.6.1.1 Generating probes . 77

5.6.1.2 Capturing observables . 77

5.6.2 Computation and source of errors . 78

5.7 Structural Delay . 79

5.7.1 Differential paths approach . 80

5.7.1.1 Core switch . 80

5.7.1.2 Core switches - different models 83

5.7.1.3 Concentrator switch . 86

5.7.2 Level-2 network . 88

5.7.3 Non-dependency on load . 89

5.8 V - load dependent performance indicator . 90

5.8.1 Network traffic dependency . 90

5.8.1.1 Contention, patterns and queueing 90

5.8.1.2 XPU-ROS path . 91

5.8.2 Queueing models . 94

5.8.3 Inferring on queue sizes . 96

5.8.4 Results from theoretical models . 99

5.8.5 Traffic patterns . 101

5.8.5.1 Comparison to Poisson process 101

5.8.5.2 Real traffic captures . 102

5.8.5.3 Packets not fragmented . 102

5.8.5.4 Packets requiring fragmentation 103

5.8.5.5 Additional delay caused by bursts 104

5.8.5.6 Additional burstiness . 106

5.8.6 Conclusions on V . 106

5.9 Predictive model . 107

5.9.1 Extrapolation of V with load . 108

5.9.1.1 Non-linearity . 108

5.9.2 Level-2 delay . 111

5.9.3 Other aspects . 111

6 Conclusions, original contributions and future steps 113

x

6.1 Conclusions . 113

6.2 Original contributions . 114

6.3 Future research . 116

Bibliography 119

A Queuing Theory 125

A.1 PASTA Property . 125

A.2 Blocking probabilities in M/M/1/K and M/M/1 systems 126

B Support for Observational Model 127

B.1 Dirac delta functions convolution . 127

B.2 Clock synchronization . 129

B.3 Python random number generators . 131

B.3.1 Uniform distribution . 131

B.3.2 Exponential distribution . 132

xi

List of Figures

1.1 The LHC and its experiments . 3

1.2 LHC run example . 4

1.3 The ATLAS Detector . 5

1.4 Collision detected in ATLAS - Higgs candidate event 6

1.5 ATLAS TDAQ Diagram (rates as per design [24]) 7

2.1 Buffering and Flow Control in the Level-1 Trigger and TDAQ readout system . . 15

2.2 Flow Control effect for an extreme case in Level-1 Trigger 18

2.3 Data volume requested by Level-2 . 20

2.4 Level-2 Trigger components . 20

2.5 Level-2 Iterations . 22

2.6 Event Builder and Event Filter . 25

2.7 The ATLAS TDAQ hierarchical network . 28

2.8 Flow control points in ATLAS TDAQ . 29

3.1 Level-2 Probabilistic tree and resource consumption 34

3.2 Bernoulli choice in Level-1 . 37

3.3 M/G/c/c queuing model for Level-2 . 39

3.4 Service time vs. Blocking probability - different (c, arrival rate) 41

3.5 Service time sensitivity with the number of servers for 100KHz rate 42

3.6 Service time/probability sensitivity with the number of servers for 100KHz rate . 43

3.7 Service time vs. Blocking probability . 44

3.8 Absolute error and its derivative between M/M/1 and M/M/1/K 47

4.1 Improper CDF exemplified . 53

4.2 Design flow stages . 54

xiii

4.3 Improper CDF as a metric . 55

4.4 Abstraction exemplified in observational model 56

4.5 Tasks and observables in data networks . 59

4.6 Topology-based convolution . 62

4.7 Obtaining G, S and V . 66

4.8 V independence on frame size . 67

5.1 ATLAS TDAQ Network - Level-2 traffic paths 74

5.2 Same clock rate on the end-nodes . 78

5.3 Clock drift detected between end-nodes . 79

5.4 Network paths for core switch type 1 . 80

5.5 G and S for the first path . 81

5.6 G and S for the second path . 82

5.7 Core switch latency measured using a different method 83

5.8 Network paths differential for core switch types 1 & 2 84

5.9 G and S for the EF1 path . 84

5.10 G and S for the EF2 path . 85

5.11 Structural Delay with the frame size . 86

5.12 Differential network paths for concentrator switch 87

5.13 Level-2 network path: XPU-ROS . 88

5.14 G, S and the network load . 89

5.15 V(mean and standard deviation) evolution with the network load 92

5.16 V moments evolution with the network load - normalized values 93

5.17 Coefficient of variation for V . 93

5.18 V (Mean and CV) vs. load . 94

5.19 ROS-XPU queueing . 97

5.20 ROS-XPU network path loaded . 98

5.21 ROS-ROS path . 98

5.22 Packets not requiring fragmentation - inter-arrival time distribution 102

5.23 Packets requiring fragmentation - size distribution 103

5.24 Packets requiring fragmentation - inter-arrival time distribution 104

5.25 Simulated distribution after packets fragmentation 107

xiv

5.26 V mean and percentiles with load . 108

5.27 V mean and percentiles extrapolation with load 109

5.28 WG dependency on load . 110

5.29 V mean and percentiles non-linear extrapolation with load 110

A.1 Load seen by Deterministic and Poisson arrivals 125

B.1 Delta functions convolution exemplified for GA and GB 128

B.2 Measuring the delay with clock skewness . 129

B.3 PRNG in Python - uniform distribution . 131

B.4 PRNG in Python - exponential distribution . 132

xv

List of Tables

2.1 Number of ROLs, ROS computers and event data 16

2.2 Level-1 rates . 17

3.1 Queuing model results . 42

5.1 Ethernet evolution . 71

5.2 Evolution of medium speed and delay/bit . 72

5.3 Ethernet frame sizes . 72

5.4 G and S values with differences between paths 82

5.5 G and S values - switch type 2 . 86

5.6 G and S values for concentrator switches . 87

5.7 V for different loading factors . 99

5.8 Queue sizes for different loading factors . 99

5.9 Loading factors for theoretical models . 100

5.10 Coefficient of variation (arrival traffic) for two loading factors 101

5.11 Statistical properties of inter-arrival times of small packets 103

5.12 Statistical properties of groups . 105

5.13 V at increased loads . 111

xvii

Chapter 1

Introduction

1.1 CERN

The second decade of the twenty-first century witnessed a huge accomplishment in particle
physics science through the implementation and successful operation of the largest particle ac-
celerator in the world: the LHC (Large Hadron Collider) [37] hosted at CERN [8]. It is the result
of almost twenty years of international collaboration which involved research, development and
construction of the 27 km long accelerator ring and of four major detectors accommodated by it.

The history of CERN goes back to 1949 when the French physicist Louis de Broglie put the first
official proposal for the creation of an European collaboration laboratory, followed in 1952 by the
foundation of a provisional body Council from which CERN takes its name: Conseil Européen
pour la Recherche Nucléaire. In 1954 the Council was dissolved and, although its original
name of CERN was retained, it was replaced by a different consortium called the European
Organization for Nuclear Research. Nowadays, as the current understanding of matter goes
beyond the level of nucleus, CERN is more frequently referred to as the European Laboratory
for Particle Physics.

1.1.1 Physics

Keeping its main and initially stated mission to “provide for collaboration among European
States in nuclear research of a pure scientific and fundamental character” CERN’s central ac-
tivity of today is to exploit the LHC and its experiments for studying high energy proton-proton
collisions. Its greater purpose is to find the missing pieces in the current description of the fun-
damental structure of matter, called the Standard Model.

Physics theories dating from the past century have converged into an understanding of the Uni-
verse as being made from twelve fundamental particles and four fundamental forces: gravity,
electromagnetism, the weak nuclear force and the strong nuclear force. The Standard Model
was developed in the seventies and consolidates the theories on these twelve particles and three

1

CHAPTER 1. INTRODUCTION

of the forces. Although it is able to predict and explain many phenomenons and experimental
results it does not capture the entire picture. It omits one fundamental force - gravity and it didn’t
experimentally confirmed the existence of a particle called the Higgs boson [36] which would
explain the origin of particle mass.

The formalization of the electromagnetism took place in the 1860s and a century later theoretical
links between electromagnetic and the weak force were developed, confirmed by the discovery
of W and Z particles at CERN. This discovery was possible only under high-energy conditions
such as produced by a particle accelerator. Further experiments showed that the effect of the
strong force becomes weaker with the energy increase, hence at some point the electromagnetic,
weak and strong forces are likely to be the same, i.e. they are unified. The theories say that the
energies required in this case are extremely high and were reached only at the very beginning of
the Universe: 10−34s after the Big Bang. By extrapolating this behavior physicists look at the
possibility of adding gravity to the mix, thereby unifying all the fundamental forces into a single
“super force”.

Energies high enough to test these ideas directly are impossible to be created at present, how-
ever the effects of the grand unification could be studied at lower energies. Using the idea of
Supersymmetry (often abbreviated SUSY), which states that for each known particle there is a
supersymmetric partner (superpartner), the detection of one particle could be done through the
detection of its superpartner. This is possible at the energy scale of tera-electronvolts (TeV)
which is currently achievable at the LHC.

1.1.2 The Large Hadron Collider

The LHC is the largest and most powerful particle accelerator built to date aiming to produce
the physics required energy scale by proton-proton collisions. It consists of a 27 km ring of
9300 superconducting magnets accommodated in the tunnel of the former LEP (Large Electron-
Positron Collider) accelerator, located 100 m underground and crossing the France-Switzerland
border in Geneva area.

An accelerator’s provided energy is directly related to its size and in the case of a circular one
its energy is dependent on the radius: 4.3 km for LHC. By design the LHC accelerates two
counter-rotating beams of protons of 7 TeV each, developing at collision an energy of 14 TeV1.
The energy density and temperature provided by LHC are similar to those that existed a few
moments after the Big Bang.

Obtaining this energy requires bringing and maintaining the particles at a speed close to the
speed of light. This is achieved by the use of powerful electromagnetic systems and vacuum
cavities2 which will operate at extremely low temperatures: 4.5K (−268.7oC) for the cavities
and 1.9K (−271.3oC)3 for the magnets. These low temperatures are required by the LHC mag-

11TeV is the approximate energy of a flying mosquito, LHC however focuses this energy into a 1013 times
smaller space

2eight per beam
3lower than the temperature of outer space (2.7 K or –270.5°C)

2

1.1. CERN

nets as they are made from niobium-titanium cables which become superconducting (conduct
electricity without resistance) below a temperature of 10K (−263.2C). The electrical current
flowing through the magnets is 11850 A to create the magnetic field of 8.33 T, required to main-
taining a circular path for the beams.

In order for collisions to occur the counter-rotating beams are intersecting in four locations called
experiments. LHC hosts four major experiments, each built around a particle detector machine,
as pictured in Figure 1.1:

1. ATLAS – A Toroidal LHC ApparatuS

2. ALICE – A Large Ion Collider Experiment

3. CMS – The Compact Muon Solenoid

4. LHCb – Large Hadron Collider beauty experiment

Each detector studies the results of particle interactions by specific means and purposes.

Figure 1.1: The LHC and its experiments

ATLAS and CMS are general purpose detectors and will investigate similar aspects, but having
two independently designed detectors is required for cross-confirmations of new discoveries.
ALICE and LHCb are specialized detectors for analyzing specific phenomena.

3

CHAPTER 1. INTRODUCTION

The LHC has been operated in 2010 and 2011 with collisions at half of the design energy, i.e. 3.5
TeV protons and in 2012 the proton energy has been increased to 4 TeV. It is expected that either
the full or almost the full nominal proton energy can be reached after the long shutdown foreseen
for 2013 and 2014. The maximum nominal instantaneous luminosity for proton-proton collisions
was initially (i.e. in 2008) 1027cm−2s−1and has increased with time up to a maximum value of
6.7 1033cm−2s−1in May 2012, being the closest to the design luminosity (1034cm−2s−1).

The screen-shot in Figure 1.2 shows a typical run profile with stable beams (B1 andB2) reaching
energies of maximum 4 TeV at the beginning of the run and linearly decreasing until 2.7 TeV at
the end of the run. This also displays the state of the detectors on the LHC ring as the beams will
be delivered only when all four are in STANDBY mode, hence ready for collisions.

Figure 1.2: LHC run example

1.1.3 Operational costs

The LHC and its experiments are a big investment in knowledge expansion both from an intel-
lectual and financial point of view. On top of the fixed cost demanded by the entire system in
the design and implementation phases there is the operational cost of running the LHC. This
encompasses human resources, infrastructure and most importantly power consumption.

A large portion of the electrical power is required to keep the temperatures in the LHC and the
detectors at nominal values, that is, for cryogenic systems. The total power consumption for
LHC is around 120 MWH (230 MWH for all CERN), which corresponds more or less to the
power consumption for households in the Canton (State) of Geneva4.

4assuming an average of 270 working days for the accelerator the estimated yearly energy consumption of the
LHC is about 800 000 MWH

4

1.2. THE ATLAS DETECTOR

Figure 1.3: The ATLAS Detector

1.2 The ATLAS Detector

ATLAS [5] is one of the four major experiments accommodated at CERN and placed on the
LHC ring. Started in 1992, the ATLAS detector has reached its final installation stages syn-
chronously with the completion of the LHC accelerator, in September 2008. ATLAS is capable
of investigating a wide range of physics due to it’s general purpose construction, it’s main goals
are nonetheless the search for the Higgs boson, extra dimensions and particles that could make
up the dark matter.

1.2.1 Architecture and event detection

ATLAS is accomplishing its objectives through four different sub-detectors which capture the
momentum and energy of particles. Figure 1.3 displays the cylindrical architecture of the ATLAS
detector in which the sub-detecting systems are placed on different layers. A collision takes place
in the center of the detector. In this way the generated sub-particles will traverse and leave their
“signatures” in all sub-detectors, from the innermost to the outermost layer:

Tracking chamber→ Electromagnetic calorimeter→ Hadron calorimeter→Muon chamber

The physics term for the whole set of traces belonging to a single proton-proton collision is an
event and the data recorded by the detector is referred to as event data.

5

CHAPTER 1. INTRODUCTION

The first collisions at low energies were detected in 2009. At the beginning of 2010, proton-
proton collisions were successfully performed at 7 TeV and currently ATLAS is taking data from
collisions at high luminosity levels. In 2012 a number of events were considered as candidates
for the identification of the Higgs boson. Figure 1.4 shows a three-dimensional view of one of
the Higgs candidate events with two electrons & two muons.

Figure 1.4: Collision detected in ATLAS - Higgs candidate event

The multilayer detector translates the huge amount of information generated by the proton-proton
collisions into digital data. This amount is given by two main factors: the number of “sensors”
(of the order of 108) spread across its entire volume - about half that of the Notre Dame Cathedral
in Paris, measuring 25 meters high and 45 meters long - and the frequency at which collisions
occur. The result is a 1.6 Mbytes event data occurring each 25 ns (40 MHz frequency), resulting
in a total data output rate of 64 Tbyte/s. Dealing with the huge amount of data is the mission of
another sub-system in the ATLAS experiment which will be introduced next.

1.2.2 Trigger and Data Acquisition System

One of the main goals ATLAS hopes to achieve is finding the Higgs boson. The associated
Higgs field would explain why some particles have mass and others don’t by the fact that mass
is a consequence of the interactions with this field. This new particle, postulated theoretically by
Peter Higgs in 1964, is expected to occur in extremely rare situations. It occurs for a very short
period of time, as it rapidly decays into other particles, as a result of other particle’s decay. The
only way to detect its presence is to look for its predicted decay products and identify those that

6

1.2. THE ATLAS DETECTOR

can’t be accounted for by other processes, i.e. to capture them and to deliver them for offline
analysis and validation.

The frequency at which events holding useful information occur is extremely low (∼ 10−14% of
the total number of events, i.e. ∼ 4 · 10−5Hz). Given the huge amount of data generated by the
detector - technically impossible to be retained, the biggest challenge for the Trigger and Data
Acquisition (TDAQ) system becomes the efficiency in selecting those rare events and discarding
the rest. The TDAQ system can thus be viewed as a real-time digital filter responsible with
physics data selection and delivery.

This difficult task is accomplished at present by the use of three filtering levels: Level-1, Level-2
and Level-3. Each of them selects “interesting” events from the ones provided by the previous
level through the use of specific algorithms applied on the event data.

The final selection and analysis will be performed offline at CERN but also remotely by the
contributing universities and laboratories around the globe, hence the selected events must be
written to mass storage for later use. As depicted in Figure 1.5, the input for Level-1 is the
data coming directly from the detector, whereas the output for Level-3 is the mass storage - also
known as the Tier-0 center at CERN.

LEVEL-1

40MHz

100KHz

LEVEL-2

3.3KHz

LEVEL-3

200Hz Mass Storage / Tier-0

O
nl

in
e

an
al

ys
is

O
ffl

in
e

an
al

ys
is

10
Tier-1s

30
Tier-2s

ATLAS detectorLHC

A
TL

A
S

TD
A

Q

Figure 1.5: ATLAS TDAQ Diagram (rates as per design [24])

From this point the data is shipped to 10 Tier-1 and 30 Tier-2 centers distributed worldwide over
long haul connections. The Computational Model for this activity which involves the hardware
and software resources, the Grid paradigm and the network connections is thoroughly described
in [23].

7

CHAPTER 1. INTRODUCTION

The ATLAS TDAQ system contains all the elements needed to both filter the events and to sus-
tain the data flow from the detector to mass storage: dedicated hardware, commodity hardware
(industrial PCs [19]), network resources, software packages, algorithms. The level-wise sepa-
ration of the system is done depending on which type of on-line analysis/filtering an event is
passed through. The higher the Level, the higher the complexity of the physics algorithms and
the lower the rate of events flowing through that Level, as suggested in Figure 1.5. The rates of
events are expressed as maximum values and are used as design criteria for the entire ATLAS
Detector [24].

The online filtering of events is accomplished by three trigger levels5. Next we will summa-
rize the design requirements for each of them but also the real measurements taken from the
operational phase of the ATLAS detector:

• Level-1 - is built using dedicated hardware for filtering and buffering. By design it receives
a 40 MHz rate of events and delivers 100 KHz to the next level. In the operational phase
Level-1 received 40MHz and delivered a 60-65 KHz output rate.

• Level-2 - is built using commodity PCs for more complex algorithms which use partial
event data. By design it receives 100 KHz from Level-1 and delivers 3.3 KHz to the next
level. In the operational phase it received 60-65 KHz and delivered a 5-6 KHz output rate.

• Level-3 - is built using commodity PCs for the most complex algorithms which use full
event data. By design it receives 3.3 KHz from Level-2 and delivers 300 Hz to mass
storage. In the operational phase it received 5-6 KHz and delivered a 500-600 Hz output
rate.

1.3 Performance in TDAQ

Although data rates between filtering levels have changed with respect to the design, most of the
ATLAS TDAQ logic and interactions required for the selection process remain as described in
[24]. In order to efficiently perform its job while collisions take place a filtering level requires
a continuous flow of data from the upstream level and from other elements in the system, on
request.

A thorough analysis of these aspects will be done later in the thesis, at this moment we only
want to emphasize that TDAQ is by design a highly coupled and inter-dependent system. This
characteristic is amplified in the higher levels (2 and 3) by sharing the same infrastructure: the
interconnecting network, the processing power and/or memory. In such a system a design flaw
can wholly disrupt it either as a complete failure or as a decrease of event processing rates in all
parts of the system. A complex monitoring system has been put in place surveying the detector
specific hardware, the computer farm, the network, the algorithms and many more. This is done

5The name trigger comes from the fact that a certain Level is activated - triggered - only by an event who has
reached it and requires processing

8

1.4. CONTRIBUTIONS AND OUTLINE

for the purpose of understanding any potential disruption or for giving confidence that the system
performs as designed.

At each level the TDAQ system’s performance criteria are related to the rates of delivering de-
cisions on events to the next element in the TDAQ chain. These rates depend on how fast and
reliable individual event data analysis is performed. Analyzing an event involves: obtaining the
required event data, processing it, potentially executing these two steps multiple times and fi-
nally forwarding the result. This process is characterized by a cyclic behavior and will basically
produce, by its repetitive nature, the rates discussed above.

In the context of the high operational costs (mentioned in 1.1.3) for running the LHC and the
ATLAS experiment, the cost per detected interesting event is also substantial. It clearly becomes
a major factor in constraining the efficiency of the TDAQ system which is directly proportional
to the rate of interesting events delivered by it. Furthermore, given the low probability of an event
to be the one which, after offline analysis, is the evidence of new discoveries, the TDAQ system
has to minimize the risk of missing one such event due to bad performance: losing packets in the
network, discarding events due to buffer over-flow, hardware failures etc. All of these are related
to the aforementioned reliability and speed of executing the cycles needed for processing events.

1.4 Contributions and outline

In this section we identify the main contributions of the current work in the effort of understand-
ing the performance of communicating systems in general, the ATLAS TDAQ in particular. We
will then guide the reader through the thesis by presenting its outline.

1.4.1 Thesis contributions

The very high and complex demand placed on the TDAQ system requires a deep understanding
of the dependencies between its components. A lot of effort was invested in establishing the
required performance in terms of event rates and data bandwidth e.g. in [11, 56, 24]. We are
doing an analysis of the TDAQ system focused on the flow control and back-pressure mecha-
nisms which act as strong couplings between sub-systems, e.g. filtering levels. We identify a
compelling aspect in the system (the event buffers) which will be a consideration point for the
rest of the work. The Level-2 trigger was mathematically modeled with respect to the aspect
identified above because Level-2 is responsible for clearing a large portion of these buffers. This
was done by applying a queuing theory model called M/G/c/c [1] which gave us an indication on
the allowed time for Level-2 analysis.

The Level-2 analysis involves running algorithms and transferring data over the network, but the
focus of this thesis is the data network component of the TDAQ system. The mathematical model
is not able to separate the contribution of the network to the overall Level-2 analysis time. Due
to this and other limitations we continue by introducing the observational model and the concept
of quality attenuation as a method of characterizing network performance.

9

CHAPTER 1. INTRODUCTION

We also proposed a generic design flow approach in which the quality attenuation is able to assist
the design stages. Although TDAQ reached the final phase, i.e. the operational one, this approach
can be used to confirm that TDAQ is meeting its goals or to (re)define them. Furthermore, it can
be considered as a design approach for the envisaged upgrade of the TDAQ system.

We then showed how the observational model works for data networks and how to apply it in
the case of ATLAS TDAQ. Based on this model we identified three components for the quality
attenuation in the data networks case, which can be treated as independent random variables. We
continued by presenting a methodology of obtaining these components for networks and network
devices alone based on statistical measurements. This methodology is cheap, non-intrusive and
easy to implement as it uses commodity devices (PCs) and standard Linux tools, hence it can be
used in a system in all the design stages, including the operational phase.

Finally we obtain a link between the load of the network and its performance by studying the
variability of the quality attenuation. Based on this we are able to obtain the traffic pattern
correlation factor as the relative deviation from the Poisson pattern and show that the traffic inside
the TDAQ network is more correlated (bursty) than Poisson. We then make an extrapolation of
the network quality attenuation for an increased load while keeping the same traffic pattern. We
also indicate that from a networking point of view a constraint on the quality attenuation becomes
a requirement for the applications placing traffic on that network, i.e. the ATLAS TDAQ software
in our case.

1.4.2 Outline

Chapter 2 contains an analysis of the TDAQ’s read-out component and its filtering levels empha-
sizing the buffering and flow control mechanisms implemented in all sections. The flow control
is designed in such a way that it can propagate upstream up to the detector level. Based on this
we will identify a main coupling factor in the TDAQ system, which has the potential of causing
event discards in the detector specific read-out part, to be the buffers holding the event data.

Because Level-2 is the place where 97% of those buffers are cleared, in Chapter 3 we apply a
mathematical model on the Level-2 in order to see what are is the probability of saturating it and
thus block the process of freeing the mentioned buffers. We will show that the M/G/c/c queuing
model is the closest to the real system and mathematically tractable in the same time. Although
assumptions and simplifications will be made in order to fit this model, the results obtained by
simulating it indicate the scale of the allowed Level-2 processing time. The sensitivity of this
value to the number of Level-2 processors and with the probability of saturation will be obtained.

The contribution of the network delay to the total Level-2 processing time is not extractable from
the mathematical model introduced in Chapter 3. The focus of this thesis is on the network
component of the TDAQ system, therefore a different approach is needed. In Chapter 4 we will
introduce the observational model which is applicable to any communicating system - including
data networks. A central concept in this approach is the quality attenuation which captures both
the delay and the loss in a network. For the specific case of data networks we identify here a de-
composition of the quality attenuation in three independent random variables and show a method

10

1.4. CONTRIBUTIONS AND OUTLINE

of obtaining them.

Chapter 5 shows how this method is employed for the ATLAS TDAQ network - an Ethernet
based network. We perform the component-wise decomposition of the quality attenuation for
the Level-2 network and use a differential approach for obtaining the performance indicators for
individual network devices. We then show how one of the components obtained for the Level-2
network is an indicator for the traffic pattern from the point of view of correlation factor and how
we can use it to predict network behavior as a function of its load.

Chapter 6 concludes the thesis work emphasizing its contributing aspects, identifies future re-
search steps and suggests further applications of the concepts and methodologies introduced in
the thesis.

11

Chapter 2

Buffering and Flow-Control in ATLAS
TDAQ

This chapter introduces the ATLAS TDAQ multilevel system, designed to filter and move the
events from the detector’s read out system towards the mass storage facilities. It emphasizes the
techniques employed as back-pressure mechanisms, allowing the system to temporary accom-
modate rates larger than the design specifies.

2.1 Context

ATLAS, the biggest experiment hosted at CERN started to collect data from proton-proton col-
lisions generated inside the Large Hadron Collider. Although many cutting-edge technical chal-
lenges have been overcome, there is still a need to understand and quantify the performance of
its data acquisition system (TDAQ) in order to both optimize its current use and guide the next
steps of improvements and upgrades.

Predictions of different metrics for performance are currently based on “paper models” ([24] -
Appendix A) and Discrete Event Simulation (DES) models [32, 21]. The “paper model” is a
static model of TDAQ, used for estimating:

• the processing requirements, expressed as the required number of computers in different
parts of the system

• the rates of relevant data passing through the system, computed for two scenarios: low
intensity and design intensity of the proton beams

The results obtained are given only as average values or as ratios between average and maximum
(or minimum) values. The model assumes fixed values for the CPU load in computers (77%)
and the network links load (60%). There is no knowledge of what happens when these values are
reaching saturation, or what is the response to random fluctuations of the rates inside the system.

13

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

The other approach was to create a DES model of the ATLAS TDAQ system. The shortcoming
of this approach is that the DES paradigm is capable of sampling only discrete loading points of
the system, rendering it a descriptive (interpolative), but not predictive (extrapolative) approach.
Using the model to extrapolate loading points close to saturation is risky in DES, as there is no
knowledge of how close to congestion the resources of the system are. The philosophy of a DES
approach is to create a computerized model of the system. It aims to “copy” the functionality
and implementation details of the system, effort which can become overwhelming for a complex
system like ATLAS TDAQ.

A system’s saturation conditions are normally managed through the implementation of flow-
control mechanisms whereas the fluctuations of rates inside the system are smoothed out through
the use of buffers. These create a coupling between the elements of the system which is difficult
to predict using a paper or a DES model. We will study these aspects in the current chapter
keeping the values for rates as they are specified in the design document [24].

2.2 Level-1 Trigger

In ATLAS, collisions occur with a constant frequency of 40 MHz, controlled by a global clock
signal. Each 25 ns, as result of these collisions, particles decay into sub-particles leaving an
instantaneous splash of traces in the detector. As soon as the millions of “sensors” inside the
ATLAS detector finish converting these traces into digital values, an event is ready to be pro-
cessed by the first Trigger Level.

Level-1 Trigger’s high level functionality is to reduce the rate of interesting events from 40 MHz
to 100 KHz. This selection is based on trigger menus, which are sets of conditions combined
in a Boolean logic returning an ACCEPT/REJECT decision. Only a very small fraction of the
event data is verified against the trigger menu (i.e. if it passes or not the thresholds specified in
the conditions) for each event in order for a decision to be made [13].

During the latency period introduced by these operations, the continuous flow of events has to be
buffered in a large number of pipeline memories (of the order of 108). As their cost is proportional
to the depth of these memories, the delay allowed for Level-1 to make a decision of whether to
accept or reject an event has been limited to 2.5 µs. This small latency is achievable by using
dedicated hardware and purpose-built processors inside Level-1.

For each accepted event, the Level-1 Trigger is designed to:

1. send a L1A (Level-1 Accept) signal via the TTC(Timing, Trigger and Control) system [60]
towards the front-end electronics and towards the readout drivers (RODs), which causes
the data from the pipeline memories to be pushed into the derandomizers [25]. These are
buffers meant to fulfill multiple tasks:

• to average out the high instantaneous data rate at the output of the pipeline memories
in order to match the available input bandwidth of the next elements in the chain: the
RODs .

14

2.2. LEVEL-1 TRIGGER

• to temporally align the event fragments arriving with different delays from parts of
the detector, due to the different distances they have to travel.

2. provide information, called Region of Interest (RoI), to the next level to guide the data
analysis performed there. The RoI information is sent to the RoI Builder (RoIB) [50]
which packs this data into RoI records. The size of this type of record does not exceed 512
bytes. Knowing the maximum rate of Level-l 1 accepts (100KHz), the maximum cross
sectional throughput generated by the RoI records becomes 51.2 MB/s.

Figure 2.1 illustrates the flow of data from the detector through all the buffers in the readout
system, as well as the Level-1 roles and placement in the ATLAS TDAQ system. Sizes of the
involved buffers, the number of the links between elements and the cross-sectional required
bandwidth are also presented.

�

����

����	
�

�������	
���� ��� ���
��

�������� ���������

���
�
���

����
���
���

	�	��
��

�
�
�

�����

��
����

��������

 ��!��

��"��"�������

���

 /'��
��

)���

��
3

� �
�
���

� ��
�������	
�

4��%��� 4���
�
���

�

�
�
�1
�
#�

�
�

�5

�
#�

�
�
*�
�+

�
#�

)���)���

Figure 2.1: Buffering and Flow Control in the Level-1 Trigger and TDAQ readout system

The RODs act both as multiplexers (from∼ 50, 000 Front End Links to∼ 1, 600 Read Out Links)
and as an interface between the sub-detectors and the TDAQ system - the output of the RODs are
homogeneous, following the S-LINK specifications ([55]), although the RODs are implemented
differently in the sub-detectors. RODs also perform data processing for the purpose of reducing
the event size.

From the RODs data is transported over the Read-Out Links (ROLs) into the 1583 Read-Out
Buffers (ROBs), which are the last dedicated pieces of hardware from the ATLAS detector. The
RODs add control words indicating the begin and the end of the fragment and a check-sum to

15

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

Detection system Sub-detector
No. of
ROLs

No. of
ROSs

Data per
L1 accept (kB)

Inner Detector
Pixels 132 12 60
SCT 90 8 110
TRT 192 18 307

Calorimetry
LAr 762 68 576
Tile 65 8 48

Muon Spectrometer
MDT 204 16 154
CSC 16 2 10

LVL1

Calorimeter 54 7 28
Muon RPC 32 4 12
Muon TGC 24 2 6
MUCTPI 1 1 0.1

CTP 1 1 0.2

Forward detectors

BCM 3 1 1
LUCID 1 1 1
ALFA 2 1 1
ZDC 4 1 1

Total 1583 151 1239

Table 2.1: Number of ROLs, ROS computers and event data

each fragment. These are discarded by the ROBs, after checking for errors. They are mounted on
so-called ROBIN boards having the standard PCI connector, hosted in standard PCs called Read-
Out Systems (ROSs) [22]. The numbers of ROLs and ROSs per sub-detector are summarized in
Table 2.1.

2.2.1 Flow Control

The readout chain illustrated above contains many levels of buffering and information can be lost
at any of these stages if buffers become saturated. In order to avoid uncontrolled loss of data,
different flow control strategies are adopted:

• systematic dead-time in Level-1([13], Section 20.2). For four bunch crossings after each
Level-1 Accept no other accept is issued. This limitation is imposed by the front-end
systems hardware. The minimum interval between two Level-1 Accepts is thus 5 x 25ns
= 125ns. This happens because on receipt of a Level-1 Accept most of the sub-detector
front-end systems (the FE pipeline memories in Figure 2.1) are sending data for several
consecutive bunch crossings. The number of these bunch crossings varies and the maxi-
mum value is five, characteristic to only one sub-detector.

• Level-1 limitation on the number of accepted events in a given interval. If this limit is

16

2.2. LEVEL-1 TRIGGER

reached, dead-time veto is introduced until the required interval passes, inhibiting all pos-
sible Level-1 Accepts during that time. The purpose is to avoid derandomizers overflow.
An example of usage is 8 events allowed in a 80µs time window, i.e. an instantaneous
average of 1 event in a 10µs time window, equivalent to the 100KHz maximum design
rate. The two values, number of accepted events and time interval, are parameters for the
Level-1 Trigger.

• Vetoing a Level-1 decision with an external signal to prevent saturation of the RODs. An
event that has passed the Level-1 criteria for being accepted will be vetoed as rejected if at
least one of the RODs occupancy has exceeded a certain threshold.

The first two strategies have an impact on the Level-1 accept rates calculated in two ways: in-
stantaneously and over the interval given as parameter for the dead-time veto. The limit for these
numbers is given in Table 2.2.

Item Rate Comments
Proton-proton

collisions 40 MHz
25 ns interval - given by the

LHC global clock signal
Max.

instantaneous
Level-1 Accepts

8 MHz
125 ns interval - limited by
the systematic dead-time

Level-1 Accepts 100 KHz
given by the dead-time veto -

max. accepted events in a
given interval

Table 2.2: Level-1 rates

The extreme case when all the events could be accepted by the Level-1 is presented in Figure
2.2. The purpose of this example is to better explain the effect of the first two strategies on the
outcome of Level-1 Accepts in this particular case.

One can notice that even if Level-1 Accepts could be issued at each 25 ns, the systematic dead-
time spaces out the possible accepted events 125 ns apart. Furthermore, even if 8 of these con-
secutive accepts could occur, the dead-time veto inhibits the rest of them until the 80µs interval
elapses. The average rate of events calculated over the 80µs interval is 8/80µs = 100 KHz.

17

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

pR
O

S
Po

ol

. . .

BUSYIDLE

L2PU
Request

L2 Physics
Finished?

L2 Decision

ROS
Reply1 .. 3

L2PU
CPU

L2
Network

IDLEBUSY

YES

NO

L2PU
Request

L2 Done?L2 Decision

ROS
Reply

YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES

BUSYIDLE

L2PU
CPU

L2
Network

IDLEBUSY

BUSYIDLE

IDLEBUSY

BUSYIDLE

IDLEBUSY

80 µs

125ns

40 MHz

Detector Level-1

8 accepts

time
25ns

BUSYIDLE

L2
SV

 P
oo

l

< 16
L2SV

. . .

L2SV L2SV

L2
PU

 P
oo

l

500

L2PU

. . .
L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

RoI
Builder

LVL-1
Trigger

pROS

R
O

Ss

ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB

Event
Builder

3.3 KHz

100 KHz

3.3 KHz

100 KHz

3.2 GB/s

L2SV Pool R
O

Ss

ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB

pROS

SF
I P

oo
l

100
SFI

. . .

SFI SFI

D
FM

 P
oo

l

12
DFM

. . .

DFM DFM

CLEARS

EF
P

Po
ol

1500
EFP

. . .

EFP EFP

SF
O

 P
oo

l

10
SFO

. . .

SFO SFO

3.3 KHz 5.2 GB/s

3.3 KHz 5.2 GB/s

200 Hz 320 MB/s

Average accept rate = 100 KHz

pROS4

pROS

...

Event Builder

Event Filter

Figure 2.2: Flow Control effect for an extreme case in Level-1 Trigger

Furthermore, we will quantify the overall effect of the systematic dead-time by calculating the
probability of missing interesting events in the Level-1 Trigger. At 40 MHz input rate in LVL1
and at 100 KHz acceptance rate, we can calculate the probability of an event being accepted:

Paccept =
100KHz

40MHz
= 2.5× 10−3 = 0.25% (2.1)

and then the probability of an event being rejected:

Preject = 1− 2.5× 10−3 = 99.75% (2.2)

Next, the probability that four consecutive events are rejected is:

Preject−4 = (1− 2.5× 10−3)4 = 99% (2.3)

Knowing that four events are deliberately missed, we want to calculate the probability that at
least one of these four events is interesting for LVL1, i.e. the probability of accepting one of
these four events:

Paccept−1 = 1− Preject−4 = 1% (2.4)

Following these calculations we can state that 1% of the interesting events for LVL1 will be
missed due to the systematic dead-time mechanism.

All the mechanisms introduced above force the Level-1 to limit the amount of accepts issued by
the first filtering level, meaning that they are limiting the Level-1 accept rate and perform arrival
pattern shaping.

18

2.3. LEVEL-2 TRIGGER

2.2.2 ROB Resource

The first two mechanisms can be considered pro-active measures because they are meant to
prevent system overload. Only the third strategy is a reactive approach, being applied as response
to a saturated system. When back-pressure is issued by the RODs the flow control mechanism
is carried out by the use of veto signals to the Level-1. Vetoing doesn’t take into account the
physics measurements on events and the fact that a Level-1 Accept was issued for them. In this
situation, the chances that good and rare events are discarded at this level increase.

From the RODs the next elements in the flow of event data are the ROBs, which are buffers
32,000 events deep. This number is a result of paging ROB’s 64 Mbytes memory in pages large
enough to accommodate the maximum event fragment in each ROB, which is 1.6 Kbytes, hence
the page size was set to 2 Kbytes. Knowing the Level-1 rate we can calculate the time required
to fill the ROBs: 320 ms for 100 KHz and 426 ms for 75 KHz Level-1 rate.

ROBs also have the possibility to send back-pressure signals to the RODs. The S-LINK protocol
employs XON-XOFF signaling to prevent buffer overflow. Assertion of XOFF by the ROB
results in the ROD to stop outputting data and to raise its BUSY signal, which may halt the
Level-1 Trigger.

ROBs form a demarcation line between Level-1 and the following levels: Level-2 and Event
Builder, introduced in the next sections. Based on their positioning in the system and the back-
pressure they can generate upstream towards the RODs and consequently towards Level-1, they
become a critical point in terms of buffering in ATLAS TDAQ. The availability of space in the
ROBs is thus a key resource for the performance of the system. For this reason the time needed
by the system to clear an event from the ROBs becomes the measure for the service time used in
the models presented next.

2.3 Level-2 Trigger

Following a Level-1 accept an event is moved from the detector into the ROBs on the path de-
scribed earlier and illustrated in Figure 2.1. Simultaneously, the Level-1 Trigger passes Region-
of-Interest (RoI) information to the Level-2 on a dedicated path, using the RoI Builder. The
RoI represents a set of coordinates in the detector’s space based on the energy deposits in the
calorimeters and muon track segments found.

The RoI instructs the Level-2 what fraction of event data to analyze for a decision to be made.
As a result, the Level-2 will interrogate the ROBs for fetching only an estimated ∼ 2% of the
full event data when algorithms will run. However, the RoI guided Level-2 data requests are not
uniformly distributed towards the readout systems. The ROSs most in demand are referred to as
“hot”. The amount of requested data differs also from event to event. In Figure 2.3 we present
the data volume requested by Level-2 for two classes of events obtained from real collisions.

19

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

Figure 2.3: Data volume requested by Level-2

pR
O

S
Po

ol

. . .

BUSYIDLE

L2PU
Request

L2 Physics
Finished?

L2 Decision

ROS
Reply1 .. 3

L2PU
CPU

L2
Network

IDLEBUSY

YES

NO

L2PU
Request

L2 Done?L2 Decision

ROS
Reply

YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES

BUSYIDLE

L2PU
CPU

L2
Network

IDLEBUSY

BUSYIDLE

IDLEBUSY

BUSYIDLE

IDLEBUSY

80 µs

125ns

40 MHz

Detector Level-1

8 accepts

time
25ns

BUSYIDLE

L2
SV

 P
oo

l

< 16
L2SV

. . .

L2SV L2SV

L2
PU

 P
oo

l

500

L2PU

. . .
L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

RoI
Builder

LVL-1
Trigger

pROS

R
O

Ss

ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB

Event
Builder

3.3 KHz

100 KHz

3.3 KHz

100 KHz

3.2 GB/s

L2SV Pool

R
O

S
Po

ol ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB
pROS

SF
I P

oo
l

100
SFI

. . .

SFI SFI

D
FM

 P
oo

l

12
DFM

. . .

DFM DFM

CLEARS

EF
P

Po
ol

1500
EFP

. . .

EFP EFP

SF
O

 P
oo

l

10
SFO

. . .

SFO SFO

3.3 KHz 5.2 GB/s

3.3 KHz 5.2 GB/s

200 Hz 320 MB/s

Average rate over 80 µs =
100 KHz

pROS4

Figure 2.4: Level-2 Trigger components

20

2.3. LEVEL-2 TRIGGER

The input rate of RoIs into the Level-2 is equal to the output rate of the Level-1 Trigger, i.e.
100 KHz by design. At this frequency, the RoI mechanism provides a substantial reduction in
required carrying capacity, which is crucial knowing that a single event is 1.6 Mbytes. Using full
event data at 100 KHz would imply a required bandwidth of 160 GB/s only in Level-2, while
with the RoI mechanism reduces it to ∼3.2 GB/s.

The Level-2 Trigger is designed to make an on-line selection of events, reducing the rate from
100 KHz to 3 KHz. Figure 2.4 depicts the components which are used to implement this trigger
level:

• up to 16 Level-2 Supervisors (L2SVs) computers, number limited by the output ports of the
RoI Builder. The L2SVs receive RoI data for events from the RoI Builder in a round-robin
manner. Based on a load balancing algorithm an L2SV dispatches its assigned event to one
of the processing unit under its coordination and waits for an accept or a reject decision
for it. Regardless of the decision obtained, the L2SV forwards it to the next sub-system,
the DFM (2.4), in groups of 100.

A unique subset of the L2PUs is assigned to each L2SV. The list is initially ordered such
that successive entries are for L2PUs running on different nodes. The list is used to assign
events to the L2PUs: for each event the RoI information received from the RoI Builder is
sent to the first L2PU in the list, after which the entry is removed. When the L2SV receives
the L2 decision information, the identifier of the L2PU that sent it is added to the end of
the list, making a new processing slot available.

• approximately 500 Level-2 Processing Units (L2PUs) - 8 x CPU core computers1. An
L2PU runs a Level-2 Process (L2P) on each of its CPU core2, which gives us the total
number of L2Ps to be 4000 3. An L2P receives RoI data corresponding to an event with
the task of deciding whether this event is still interesting or not. Guided by the RoIs, the
L2P starts an iterative process in which it interrogates data from only a small fraction of
the total number of ROBs4.

The minimum data granularity is a ROB; requests usually span several ROS PCs and
amounts in ranges from a few to 50 KB per event. An iteration consists of three steps,
each involving a certain type of resource being used, as illustrated in Figure 2.5:

1The number of CPUs per computer increased with time since the design stage. The Level-2 cluster is heteroge-
neous comprising also 12 x CPU computers.

2Or hyper-thread, as newer computers have this option. For each processor core that is physically present, the
operating system addresses two virtual or logical cores

3This number is around 7000-8000 at present due to the new generations of computers introduced in the system
and due to their heterogeneity

4In the operational phase a different type of Level-2 request was added: L2 Etmiss. L2 requests only to the ROBs
specified in the request, whereas L2 Etmiss requests are forwarded to all ROBs in the ROS PC. These data contain
sums of energy deposits calculated in the calorimeter RODs. Only these energy sums, 6 words for each ROB, are
passed to the L2PU sending an L2 Etmiss request and are used for the second-level missing energy trigger. This
trigger is in use since the beginning of 2012 and runs at a rate of about 10 kHz.

21

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

1. L2PU sends a request for event data to a number of ROSs. Resource used: the Level-2
network (upstream).

(a) ROSs reply with partial event data. Resource used: the Level-2 network (down-
stream).

(b) L2PU runs algorithms on the received data and decides if it needs to go on the next
iteration or the event is rejected. Resource used: L2PU CPU.

BUSYIDLE

L2PU
Request

L2 Physics
Finished?

L2 Decision

ROS
Reply1 .. 3

L2PU
CPU

L2
Network

IDLEBUSY

YES

NO

L2PU
Request

L2 Done?L2 Decision

ROS
Reply

YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES

BUSYIDLE

L2PU
CPU

L2
Network

IDLEBUSY

BUSYIDLE

IDLEBUSY

BUSYIDLE

IDLEBUSY

80 µs

125ns

40 MHz

Detector Level-1

100 KHz

8 accepts

time
25ns

BUSYIDLE

Figure 2.5: Level-2 Iterations

The maximum number of iterations is 3 (see [24] - Appendix A, Section 2.1) and an event
is considered accepted if it passes all the required steps. Finally, the L2PU sends the result
back to the L2SV, but if the decision is an accept, the result of the Level-2 analysis goes to
the pseudo ROS.

• up to 4 pseudo ROS (pROS)5 computers. For an accepted event, the pROS receives detailed
record of the L2 analysis from the Level-2 processors and keeps it until the data is requested
by the next level. At a latter stage this information will be used, the pROS being seen as
a readout system component. The L2 Result contains the L1 Result and details of the L2
decision process in the form of a ROD fragment. The computational effort consumed at
this level is not wasted in this way.

In terms of performance, the pROS pool has to sustain both an input and output rate of 3.3
KHz of L2 analysis records, i.e. the Level-2 accept rate.

5currently this type of node is referred to as L2 Result Handler (L2RH) and their number is set to three -
configurable

22

2.4. EVENT BUILDER AND LEVEL-3 TRIGGER

In terms of buffering the L2PU is allowed to queue a certain number of events, a programmable
parameter and currently is set to 2. With respect to the flow-control the L2SV has a central role in
handling it in the Level-2 Trigger. If an L2SV doesn’t have an available L2PU to send a task to it
issues back-pressure to the RoI Builder by asserting XOFF on the S-LINK connection. This can
cause the RoI Builder to relay an XOFF further to the L1 system when it receives a fragment that
can not be accepted due to the builder’s output FIFO being full or bus transfers being blocked.

A key role of the Level-2 Trigger emerges from its main mission: to reduce the rate of events
from 100KHz to 3.3KHz, i.e. a rejection factor6 of 30. Approximately 97% of the events have to
be discarded at this level which involves clearing them from the ROBs. Although the clearance
signal is sent at the next level, Level-2 is the place where the decision is made.

The time spent in processing an event and eventually reaching the reject decision roughly gives
the time an event has to stay in the ROBs. The distribution of the time an event stays in the ROBs
is the emergent property of the entire operation of the Level-2 Trigger that has to be characterized.
Taking into consideration the effect of the space in the ROBs on the Level-1 functionality, we
identify this to be the main coupling factor of the Level-1 and Level-2 Triggers.

2.4 Event Builder and Level-3 Trigger

The last filtering level performed on-line, the Level-3 Trigger, is the first place in the system
where analysis is applied on full event data, reason for which this level is also referred as the
Event Filter (EF). The component which constructs the full events and provides them to the
Event Filter is called the Event Builder (EB) [34]. An illustration of what elements reside inside
these sub-systems and the flow of data passing through them is given in Figure 2.6.

The Event Builder receives the LVL2 decisions and, based on the type of these decisions, it issues
clearing of the events from the ROBs - in case of a reject, or it assembles the full event data - in
case of an accept. The most resource consuming operation is the latter, due to the LVL2 accept
rate which generates a total of 3.3KHz ×1.6MB w 5.3GB/s7 transfer rate from the Read-Out
System to EB. These tasks are accomplished by two types of elements in the Event Builder:

• DFM - Data Flow Manager - receives the LVL2 decisions in blocks of 100. A rejected
event is added by the DFM into a pool of events to be cleared. When this pool reaches
a certain number of entries (100) or a preset time interval has passed, the DFM sends a
multicast [35] message to all the ROSs and pROSs (2.3) informing them that the hosted
ROBs (or buffers in case of a pROS) can clear the corresponding event fragments from
their memory.

For an accepted event the DFM chooses one SFI to which it assigns the job of collecting
the full event data and from which it expects a confirmation when the assembly of data is

6The numbers obtained from a running system with real collision data are different from the design: the rate had
to be reduced from 60-65 KHz to 5-6KHz, i.e. a rejection factor of 10-13

7during data taking a rate of ~6 KHz was observed, hence the data rate for assembling events was 9.6 GB/s

23

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

finished. The assembled events for which a confirmation has been received by the DFM
enter in the same pool of events to be cleared. Estimations indicate that one DFM suffices
to perform all the required tasks.

From the point of view of redundancy, there is a pool of 12 DFM computers available
in the system, but the DFM application can be run on only a single computer at a given
time. In case the active DFM fails, the ATLAS data taking software has an online recovery
mechanism in order for a different computer to become the active DFM.

• SFI - Sub Farm Interface. When an event is assigned to it by the DFM, the SFI sends
requests for data to all the ROSs and the pROS, in a sequential manner. Since the next
elements in the chain could potentially request input from very many ROS sources there
is the risk that all the responses would concurrently converge at the egress port of the
network core, create congestion and possible data loss. To avoid this the SFI employs
traffic shaping using a credit based flow control technique. There is a parameter called
the number of outstanding requests representing the number of randomly chosen ROSs to
which requests are sent in a batch by the SFI. Currently this value is set to 15. After all the
chosen ROSs finish replying with data, the same operation is performed on a different set
of ROSs, until all the ROSs send their data to the SFI.

After all event fragments are received a confirmation is signaled to the DFM, called an
End of Event (EoE) message. The assembled events are buffered inside the SFI for a short
interval until they are requested by the Event Filter. The estimated number of SFIs required
in the system is 100 and currently there are 90 nodes installed.

24

2.4. EVENT BUILDER AND LEVEL-3 TRIGGER

pR
O

S
Po

ol

. . .

BUSYIDLE

L2PU
Request

L2 Physics
Finished?

L2 Decision

ROS
Reply1 .. 3

L2PU
CPU

L2
Network

IDLEBUSY

YES

NO

L2PU
Request

L2 Done?L2 Decision

ROS
Reply

YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES NO

L2PU
Request

L2 Done?

ROS
Reply

L2 Decision
YES

BUSYIDLE

L2PU
CPU

L2
Network

IDLEBUSY

BUSYIDLE

IDLEBUSY

BUSYIDLE

IDLEBUSY

80 µs

125ns

40 MHz

Detector Level-1

8 accepts

time
25ns

BUSYIDLE

L2
SV

 P
oo

l

< 16
L2SV

. . .

L2SV L2SV

L2
PU

 P
oo

l
500

L2PU

. . .
L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

L2PU

L2P L2P
L2P L2P
L2P L2P
L2P L2P

RoI
Builder

LVL-1
Trigger

pROS

R
O

Ss

ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB

Event
Builder

3.3 KHz

100 KHz

3.3 KHz

100 KHz

3.2 GB/s

L2SV Pool R
O

Ss

ROS

. . .ROBROBROBROB

ROS

ROBROBROBROB

ROS

ROBROBROBROB

pROS

SF
I P

oo
l

100
SFI

. . .

SFI SFI

D
FM

 P
oo

l

12
DFM

. . .

DFM DFM

CLEARS

EF
P

Po
ol

1500
EFP

. . .

EFP EFP
SF

O
 P

oo
l

12
SFO

. . .

SFO SFO

3.3 KHz 5.2 GB/s

3.3 KHz 5.2 GB/s

200 Hz 320 MB/s

Average accept rate = 100 KHz

pROS4

pROS

...

Event Builder

Event Filter

Figure 2.6: Event Builder and Event Filter

At this point, full events validated by the Level-2 Trigger are held inside SFIs, waiting for the last
filtering level to collect them. The Level-3 Trigger, known as the Event Filter (EF) performs this
selection step before the events are sent to the mass storage. Its purpose is to further reduce the
amount of data written on disks, from a rate of events of 3.3 KHz, as it is received from LVL2,
down to 200 Hz. In this case, the data written on storage is around 320 Mbytes/s8.

The Event Filter is composed of ~800 EF nodes each running an Event Filter Dataflow - EFD
process and a number of Event Filter Processor Units (EFPUs) equal to the number of CPU
cores. The SFIs are balanced to serve an equal number of EF nodes. The EFD is a multi-threaded
application and deals with data flow operations while the EFPUs deal with running the filtering
algorithms. In this way the Event Filter ensures a decoupling between the event processing and
data flow operations.

The total number of EFPUs is configurable and is around 6000-8000. After the Event Filter

8in data taking conditions at an observed rate of 600 Hz the data rate was 960 Mbytes/s

25

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

accepts an event its corresponding data is sent to 5 SFO (Sub-Farm Output) machines. An EFD
acts as a client while the SFI and SFO act as servers because the EFD is either requesting data
from the SFIs or requesting one of the SFOs to accept event data.

2.4.1 Flow Control

The flow control mechanisms at this level is controlled by the DFM which may send back-
pressure messages to the L2SV in case the Event Building cannot proceed. This may happen
if all the SFIs are busy or the Event Filter and/or the data recording cannot keep up with the
rate. An SFI can be busy because either the maximum number of outstanding assignments by
the DFM (typically 10) has been reached or the number of events not yet dispatched to the EF is
at the upper limit (typically 100).

An EFD is able to slow down the event request rate proportionally to an internal SharedHeap
memory occupancy and hence provides an upstream back-pressure mechanism, i.e. towards the
SFI. The increase in SharedHeap occupancy can be caused by two things: EFPU processing is
not coping with the incoming rate and/or the SFOs are not receiving events fast enough. The
latter case is due to either the network bandwidth or writing to disk. The SFOs are equipped with
a total storage space of 30 Tbytes, designed to store events for maximum 24 hours in case of lost
communication with the mass storage, but also to average out the bursts of events towards the
mass storage.

2.5 ATLAS TDAQ Data Network

The task of the ATLAS TDAQ system ends here, the events will be available from now on for
offline analysis and remote distribution to a much wider “audience” all around the globe. In order
to provide a continuous flow of interesting events during an entire run - lasting up to 20 hours -
the TDAQ system has to sustain the designed rates of events sent between its elements. In this
context, one of the key components of the TDAQ system is the network which interconnects the
v3000 computers, more precisely the data network carrying all the information related to event
data and physics algorithms.

The ATLAS TDAQ holistic network [57] is a multipurpose, multilevel and hierarchical network,
incorporating two independent networks:

• the Control Network - responsible with carrying traffic related to: network booted oper-
ating systems, file servers access, maintenance operations, monitoring information. This
network can also be used for in-band management of the network devices.

• the Data Network - supports all the communication required by the exchange of messages
and the transport of data between: Read-Out System, Level-2, Event Builder, Level-3, as
described above.

26

2.5. ATLAS TDAQ DATA NETWORK

These networks are physically separated by the use of different network devices and links. In-
terference between them is thus avoided, allowing for an independent study and performance
analysis. Due to the distinctive type of information transported - data produced by proton-proton
collisions - the Data Network in the ATLAS TDAQ system is required to deliver real-time, loss-
less and large bandwidth traffic and consequently falls under the scope of this work.

The Data Network carries all the messages between the elements belonging to the readout system,
Level-2, Event Builder and Level-3 (Event Filter) over a high speed Ethernet network [17] build
out of commodity devices. There are incontestable motivations for why Ethernet was chosen as
standard over the other options, e.g. ATM: exponential increase of the supported speeds, multi-
vendor, pervasive, low price per port, support for Virtual LANs [56, 17, 14]. In addition, at the
time the standards were analyzed, Ethernet was introducing Gigabit over standard CAT-5 copper
cables and TenGigabit over optical fiber, which made Ethernet suitable to offer the bandwidth
required by ATLAS TDAQ.

Because of different requirements in terms of latency and loss, the Data Network is physically
separated into:

• the DataFlow Network - the network interconnecting the Read-Out System, the Level-2
and the Event Builder. It transfers a large amount of data with a latency limited by the time
the events are allowed to stay inside the ROBs.

• the BackEnd Network - the network which distributes the fully built events from the SFIs
(Event Builder) to the EFs (Level-3) and finally to the SFOs. Given the low rate of events at
this level and the localized data for an event on a single PC, the performance requirements
of this network are less demanding.

The current version of the TDAQ data network involves two classes of network devices (switches)
mapped on two hierarchical layers: the core network belonging to the core layer, and the con-
centration network belonging to the aggregation layer. In Figure 2.7 the aggregation layer is
represented by the ROS Concentrators and the Level-2 and Level-3 Concentrators - while the
core network is made up of four chassis switch-routers. The core of the DataFlow network con-
sists of two redundant chassis switches placed on different VLANs, hence different IP subnets as
depicted in Figure 2.7. In case of one chassis switch failure this architecture offers full connec-
tivity for the Read-Out System on the redundant links but only half of the connectivity for the
Level-2 processors (i.e. odd or even racks of computers).

In this context, the L2PU and EF computers are denoted using the same name: Exchangeable
Processing Units (XPUs) because of their capability of being designated to run either Level-2 or
Level-3 software. By simply using addresses from different classes and multiple VLANs on the
same physical connection, the applications - regardless of their type - are able to communicate
properly with the rest of the system. This explains the overlapping area between the BackEnd
and the DataFlow networks consisting of the Level-2 and Level-3 aggregation switches in 2.7.

The network described and depicted above introduces an inevitable quantity of delay and loss in
the ATLAS TDAQ system. They represent a part of the amount of the loss and delay a certain

27

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

10G - fibers

ROSs

10G10G

10G 10G

DFM / pROS / L2SV

18

...A A A
B B B

ROS Concentrators

R

O

B

R

O

B

R

O

B

R

O

B

R

O

B

R

O

B

35

...

Level-2 & Level-3 Concentrators

EVENODD

XPU – ODD Racks XPU – EVEN Racks

10.147.x.x / 10.150.x.x

(Data Collection / Event Builder)

SFI

CORE-DC-02CORE-DC-01

10.148.x.x / 10.151.x.x

(Event Filter)

DFM / pROS / L2SV

CORE-BE-01 CORE-BE-02

SFO

Figure 2.7: The ATLAS TDAQ hierarchical network

trigger level is allowed to introduce. As an example the ATLAS TDAQ Level-2 Trigger inten-
sively uses the network by dispatching events to L2PUs, requesting and receiving data from the
Read-Out System in multiple iterations and finally sending back the decisions. The potential in-
creased delay introduced by the network is reflected on the increased LVL2 total processing time.
The loss of packets can cause incomplete events to occur and for these a forced decision is made
after a certain time-out, increasing too the processing time. Adding to this the limited latency
allowed in the Level-2 Trigger it becomes obvious why the emergent network performance has
to be well understood and pro-actively managed.

2.6 Performance coupling

Under different data taking conditions and configurations, the rates of events may vary abruptly.
The implemented buffering allows variations of rates for short period of time (seconds) com-
pared to the long run time (hours), hence the system has to have a mechanism to self regulate.
This is achieved through the complex flow control mechanisms implemented in all the data flow

28

2.6. PERFORMANCE COUPLING

L2SV

RoI

Builder

LVL-1

Trigger

XOFF

L2PU

DFM SFI

EF

SFO CERN

Mass Storage

9

8

1

2

3

4

5

6

7

ROB/ROS

BUSY ROD

XOFF

10

11

XOFF
12

8-24 hours

214-640 s

1.5-2.8 s

320-492 ms

5-8 ms

210-320 ms

80-123 µs

210-320 ms

Figure 2.8: Flow control points in ATLAS TDAQ

components, pinpointed in Figure 2.89.

When we say flow control we include both direct and indirect effects on the upstream com-
ponents. We classified them indicating which of the points in diagram 2.8 belongs to which
categories:

• flow control signals: XOFF on the S-LINK connections or dedicated BUSY signals - hard-
ware level - {9, 10, 11, 12} in the diagram

• erroneous or busy connection links - operating system level - {1, 2, 3, 4, 5, 6, 7, 8} in the
diagram

• I/O (disk) busy status - operating system level - {1, 2} in the diagram

9As the flow-control is normally an upstream oriented mechanism we intuitively numbered the points in the
reverse direction

29

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

• back-pressure from a job by not clearing a buffer fast enough - application level - {5, 9,
10} in the diagram

• back-pressure from a job by not returning a confirmation of job completion or a reply fast
enough - application level - {2, 3, 4, 7, 8} in the diagram

• back-pressure from a job by not requesting data fast enough - application level - {2, 3, 4}
on the diagram

The rates of events flowing between the elements depicted in Figure 2.8 depend on the perfor-
mance of each individual segment but also on the performance of the rest of the system in two
directions. The downstream one is the normal flow of data which represents the workload fed to
that particular segment: e.g. the rate Level-1 accepted events gives the amount of work served to
the next level and so on. The upstream one manifests under the form of inhibiting factors who
can diminish the amount of work performed within a particular segment: e.g. if Level-2 becomes
saturated the events will be queued inside it until the Level-1 is eventually affected by the RoIB
who is issuing XOFF messages.

We will detail each point in Figure 2.8. We will also mention, where possible, the time allowed
by the system - typically by the upstream elements - for the causing element to completely
malfunction without affecting the flow of events10:

1. This back-pressure occurs if there are link failures between the SFOs and CERN mass
storage system or if the latter exhibits application limitations (e.g. writing to disk). The
immediate effect is that the SFOs are forced to store events locally. The flow of events is
disturbed when the SFOs local disk space (detailed in Section 2.4) is exhausted, meaning
an allowed time of 8-24 hours.

2. This back-pressure manifests itself if the SFOs are not requesting or receiving events fast
enough. This results in an increase of the SharedHeap utilization on the EF nodes which
automatically causes the Event Filter to decrease the rate of event processing rate. The
size of the SharedHeap is 256 MB, the event size is 1.6 MB, hence at a rate of 200-600Hz
events not sent to SFOs the allowed time for completely malfunctioning SFOs is 214-640
seconds.

3. This back-pressure occurs if the EFDs (introduced in Section 2.4) are not requesting, re-
ceiving or confirming to the SFIs the completed event data transfer fast enough. This
causes the SFIs not to clear the full events stored in local buffers. At a rate of 3.3-6 KHz
Level-2 accepted events, 1.6 MB event size and 90 SFIs the amount of data entering a SFI
is 57-106 MB/s. The time allowed here depends on the configurable number of events not
yet dispatched to the EF, currently 100 per SFI, hence the time until all SFIs will get full
and won’t be able to accept any assignments is 1.5-2.8 seconds.

10considering two scenarios for data rates: design and maximum (as observed during the runs)

30

2.6. PERFORMANCE COUPLING

4. In case the SFIs are not able to accept any work assigned by the DFM for any reason, this
back-pressure mechanism is not affecting DFM’s functionality, but it triggers 5 and 6 in
Figure 2.8.

5. This back-pressure manifests itself by filling the ROBs. The reason is that the ROB
CLEAR messages do not reach the ROSs due to communication problem or because they
are not sent by the DFM. The CLEAR messages are sent in packets reaching all the ROSs.
A single faulty link can cause a global problem because a single full ROB can trigger
back-pressure mechanism 9 in Figure 2.8. The maximum time allowed for a DFM to not
communicate CLEARs to ROSs is the time required to fill the empty ROBs, which is
320-492 ms.

6. The back-pressure towards the L2SVs occurs if the Event Building cannot proceed, i.e.
there is no SFI available. The time allowed here is the time it takes to fill the 5 L2SVs
buffers for decisions to be sent to DFMs, typically 100 large. This buffers are filled at
Level-1 rate, hence the allowed time is 5-8 ms.

7. The back-pressure from the L2PUs towards the L2SVs occurs when an L2PU is not pro-
cessing events fast enough and consequently its queue of 2 events becomes full or there
is a fault on the link between the two elements. In this case, the particular L2PU will no
longer be considered an available resource by the L2SV. The time allowed in this back-
pressure scenario is the time to fill all the L2PUs queues and processing room (2+1 events
for ~7000 L2PUs) at the Level-1 accept rate, i.e. 210-320 ms.

8. If the ROSs do not reply with ROB data to the L2PUs fast enough the Level-2 processing
is queued on the latter. Given the small queue on the L2PU, which is 2 events, the time
allowed for a ROS to answer to it with data is the time to fill a L2PU queue and processing
room (2+1 events) at the Level-1 accept rate divided by the number of L2PUs, which
results in the same value as for point 7 in Figure 2.8: 210-320 ms.

9. This back-pressure is implemented in the S-LINK protocol as an XOFF signal and occurs
when a ROB cannot receive additional data. The ROD DSP has an input buffer where it
is possible to store up to 16 events. The BUSY (10 in Figure 2.8) is raised towards the
Level-1 Trigger when the input buffer has more than 8 events and is freed when it has less.
The maximum time allowed by the system is the time required to reach the ROD threshold
(8 events) at Level-1 accept rate: 80-123 µs.

10. The BUSY signal immediately vetoes any Level-1 accept (see subsection 2.2.1).

11. This back-pressure occurs when the L2SV doesn’t have an L2PU available for event pro-
cessing and it sends XOFF to the RoI Builder on the S-LINK connection.

12. The RoIB will relay an XOFF to the L1 system when it receives a fragment that can not
be accepted due to the builder’s output FIFO being full or bus transfers being blocked.
The allowed times for both 11 and 12 in Figure 2.8 are extremely small due to the limited
amount of space in the output FIFO for the S-LINKs (512 words, 32 bits each) [55].

31

CHAPTER 2. BUFFERING AND FLOW-CONTROL IN ATLAS TDAQ

From the back-pressure mechanisms detailed above we draw the conclusion that the ATLAS
TDAQ is a tightly coupled system in which, in a long run scenario, performance in one part has
the potential of influencing the whole system. Furthermore, the TDAQ implementation allows
for tuning the rates of events in all three trigger levels by changing the filtering thresholds. This
leads to the necessity of quantifying the effect on the rest of the system especially from the
perspective of bottlenecks.

The back-pressure directions converge towards the Level-1 Trigger by means of the ROBs and the
RoI Builder, both directly connected to the Level-2 filter. Because of this and due to the stringent
delay requirements in terms of Level-2 processing, of the order of hundreds of milliseconds, this
thesis will focus on the Level-2 subsystem, mainly on its data network performance analysis.

32

Chapter 3

Mathematical model for Level-2

This chapter presents a mathematical model applied to the Level-2 trigger system. Due to its
complexity and essential role in clearing a large portion of the events buffers, this level is of
interest to us from the perspective of its performance. We will present the results of the math-
ematical model from two perspectives: their usefulness and their limitation with respect to the
data network, thus justifying the need for a different approach.

3.1 Context

An undesirable situation for ATLAS TDAQ is the incapability of processing events although they
are successfully generated by the detector. This can happen in a trivial situation: the system is
saturated and the rate of processing events is lower than their arrival rate. In this case, the feed-
back mechanisms immediately signal the Level-1 to inhibit accepted events, increasing thus the
rate of discarded events and the chances that interesting events are dropped. This is accomplished
by employing a veto mechanism driven by the flow control signals (see subsection 2.2.1).

3.1.1 Resources

The Level-2 trigger is an extremely important level because it is the point where ∼97% of the
events are filtered out and will consequently be cleared from the ROBs. The functionality of
Level-2 has to be aimed at minimizing the probability of ROBs filling up (for a given Level-1
acceptance rate) and thus avoiding the back-pressure mechanism mentioned above. Hence, the
time needed for Level-2 to process events has to be properly controlled, as it is directly linked
with the clearing time from the ROBs.

Figure 3.1 shows that the Level-2 trigger functionality follows a probabilistic tree until a decision
is made. We are concerned by two types of resources being used: L2PU CPU and L2 Network,
both accounting for a certain time budget. An individual Level-2 process is essentially a serial

33

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

process: when the BUSY periods are added together, they form the total Level-2 processing
time. One can notice that out of these, the network BUSY periods have the potential of being
significant, as they present in two out of three states in each Level-2 iteration.

L2PU

Request

L2 Done?
L2 Decision

(Accept/Reject)

ROS

Reply

YES NO

L2PU

Request

L2 Done?

ROS

Reply

YES NO

L2PU

Request

L2 Done?

ROS

Reply

YES

BUSYIDLE

L2PU

CPU

L2

Network

IDLEBUSY

BUSYIDLE

IDLEBUSY

BUSYIDLE

IDLEBUSY

L2 Decision

(Accept/Reject)

L2 Decision

(Accept/Reject)

Figure 3.1: Level-2 Probabilistic tree and resource consumption

3.2 Approach

The goal of this chapter is to introduce a mathematical approach for quantifying the average
event processing time in Level-2, as a function of the number of L2 processors available and the
probability of the system being full. The approach is based on a Queuing Theory model, chosen
to properly fit the architecture and the functionality of the Level-2 subsystem.

The corresponding mathematical terms for the mentioned parameters which we will use from
now on are:

34

3.3. ASSUMPTIONS

• the service time for the event processing time in Level-2

• the server for the L2 processor

• the blocking probability for the probability of system being full

Knowing that the service time in Level-2 comprises the transmission delay and the computing
delay, the mathematical approach we introduce returns important indications:

• the maximum bound of the accumulated network delay, i.e. the aggregated network delay
has to be less than the indicated value of the service time.

• the sensitivity of the service time to the number of processors, indicating for example the
maximum allowed number of computers that can go offline without exceeding a certain
value for the service time for an imposed blocking probability.

• the sensitivity of the blocking probability to the service time. The formulas used later in
the analytical model state that zero probability of system being full requires an infinite
number of processors or zero service time, unfeasible in both cases.

3.3 Assumptions

In order to choose the correct model for the Level-2 but also a mathematically tractable one, the
queuing model applied on the Level-2 trigger requires a good knowledge of the system and some
assumptions to be made.

The input for a Queuing Theory [2][1] consists of: arrival pattern of customers into the queue,
service time distribution (the time needed to serve a customer), number of servers and queuing
discipline (e.g. first come first served, last come first served, random order).

The working assumptions for the Level-2 system refer to the type of these characteristics:

• the distribution of the inter-arrival time is exponential

• the service time distribution is general

• the number of servers equals the number of Level-2 processes available for handling
events. The important assumption here is that the servers have no queue in front of them,
i.e. if all the servers are busy, the next event which arrives will be dropped.

Furthermore, in order for the model to be analytically tractable, we abstract away from the pres-
ence and role of the Level-2 Supervisors. In the real system the L2SVs receive Level-1 events
in a round robin manner from the RoIB (see 2.3) and an L2SV dispatches its assigned events to
only a pre-allocated pool of Level-2 Processors. The Level-2 system is thus made up of a number
of parallel queuing systems, much more difficult to be captured in a mathematical model. We
thus need to simplify the model and consider that the events are dispatched directly to one of the
available Level-2 Processors.

35

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

3.3.1 Exponential distribution in Level-2

The first assumption concerns the events arrival distribution into the Level-2. We will approx-
imate the inter-arrival time distribution for the events entering the Level-2 with an exponential
distribution1. The logical steps we will follow to justify this approximation are:

1. identify the source of events entering Level-2 as being the Level-1 accepts

2. show that the Level-1 process is a sequence of Bernoulli trials characterized by the proba-
bility paccept of accepting an event

3. explain that the probability of having an accepted event after n consecutive trials follows a
geometric distribution, characterized by n and paccept

4. explain that for large n � 1 and small paccept � 1 the geometric distribution becomes its
continuous analogue: the exponential distribution

5. show that the conditions above are met in Level-1, hence the distribution of Level-1 accepts
is exponential in the limit.

Step 1

As explained in sections 2.2 and 2.3, events accepted by the Level-1 trigger are sent into the 1600
ROBs over dedicated paths. Simultaneously, on a separate path, Level-1 instructs the RoI builder
(RoIB) to construct the RoI records for the accepted events, which are immediately sent to the
Level-2. What Level-2 receives from Level-1 and identifies as an event2 is the RoI record only,
hence the arrival distribution we are interested in is the arrival pattern of RoI records.

The RoIB is a dedicated hardware and requires 2µs to build the RoI record from the moment
when all the event fragments are available. The distribution of events entering Level-2 is not
changed since they left Level-1, because they are only delayed with a fixed interval. Therefore,
the distribution of events entering Level-2 is the distribution of accepted events produced by the
Level-1 trigger.

Step 2

On average, from a constant rate of 40 MHz events generated by the ATLAS detector, only 100
KHz are accepted by Level-1. The output of this filtering level is thus a sequences of Bernoulli
choices occurring at 40 MHz, with two probabilities (see Figure 3.2):

• paccept = 100KHz
40MHz

= 0.25% = p

1Also known as “negative exponential distribution”
2We will use the term “event” for a RoI record because it contains part of the raw event data and the Level-1

identifier for that event

36

3.3. ASSUMPTIONS

• preject = 1− paccept = 99.75% = q

LEVEL-1

40MHz

100KHz

LEVEL-2

3.3KHz

LEVEL-3

200Hz Mass Storage / Tier-0

O
nl

in
e

an
al

ys
is

O
ffl

in
e

an
al

ys
is

10
Tier-1s

30
Tier-2s

ATLAS detectorLHC

A
TL

A
S

TD
A

Q

Derandomizer ROD ROB

FE Links ROLs

~1600
Flow Control

HLT

FE Channels

~1e+7

42 events 50K

32K events

FE pipeline memories

L1
A

LV1
Trigger

8K x 32bits

Level-1

events
40 MHz

p=0.25%

q=99.75%
Reject

Accept

Level-2

Bernoulli choice
each 25ns

free

L2P

free

L2P

Level-1 Accepts

Le
ve

l-2
 p

oo
l

c = 4000

1/λ

busy

L2P

busy

L2P

Arrival distribution
Exponential

Service-time
distribution

General

µ
busy

L2P

Level-2 Results

. . .
Figure 3.2: Bernoulli choice in Level-1

Step 3

Having a sequence of Bernoulli choices, the probability that the first success (i.e. accept in our
case) occurs after n failed trials (i.e. rejects in our case) is:

(1− p)np (3.1)

where p is the probability of success at each trial. If N is the number of failures preceding
the first success, also known as the waiting time to the first success, then N has the geometric
distribution:

P{N = n} = (1− p)np (3.2)

In the case of the Level-1 trigger, this distribution characterizes the number of rejects the Level-1
issues before an accept occurs, with p = paccept.

Step 4

Continuing the Bernoulli choices discussion, the mean number of successes in n trials is np. If n
trials are conducted in a given interval x, the success rate, i.e. the number of successes per unit
time is:

λ =
np

x
(3.3)

37

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

For very small probabilities p � 1 and large n � 1, in such a way that λ remains constant, we
have ([16]):

lim
p→0
n→∞

(1− p)n = lim
n→∞

(
1− λx

n

)n
= e−λx (3.4)

Equation 3.4 shows that the geometric distribution approaches the exponential distribution at the
limit as the trials are taken infinitesimally close together, each with very small probability of
success. The average number of successes per unit time has to remain constant.

Step 5

The conditions enumerated above are met by the Level-1 trigger because: p = paccept = 0.25% =
0.0025� 1, n is given by the rate collision rate in the detector and the average rate of accepts is
100KHz.

In these conditions, we are able to state that the Level-1 accepts occur at exponentially distributed
intervals, with the rate λ = 1 event

10µs
.

3.3.2 Other queuing characteristics

The rest of the characteristics based on which the queuing model is chosen are:

• service time - processing an event in Level-2 can involve a number of iterations on the cy-
cle: ask for data→ receive data→ process data until a decision is made. The distribution
of the event processing time is difficult to describe using a well-known distribution, reason
for which we consider the service time in Level-2 to have a general distribution.

• number of servers - the number of L2PU computers is 500, each with 8 Level-2 processes
(L2P) running in separate threads. The number of servers is thus 4000.

• queuing discipline - we consider a simplified version of the L2PU process where there is
no queue attached to it. The queuing discipline is irrelevant in this case.

3.4 M/G/c/c queuing model

In the extended Kendall’s notation [2, 1] a queuing model is written like A/B/C/K/N/D,
where:

• A is the arrival process

38

3.4. M/G/C/C QUEUING MODEL

• B is the service time distribution

• C is the number of servers

• K is the number of places in the system

• N is the calling population (“customers”)

• D is the queue discipline

In our case we use a simplified notation A/B/C/C because: the number of places in the system
equals the number of servers (C=K), the events are generated uninterruptedly for a long period
of time (N can be considered∞) and D is irrelevant, as there is no queue in front of each server.

Given the premises above, the queuing model becomes theM/G/c/cmodel, which is detailed in
[1] and depicted in Figure 3.3. M stands for exponential/Memory-less/Markovian distribution,
G stands for general distribution and c represents the number of servers/places available in the
system.

LEVEL-1

40MHz

100KHz

LEVEL-2

3.3KHz

LEVEL-3

200Hz Mass Storage / Tier-0

O
nl

in
e

an
al

ys
is

O
ffl

in
e

an
al

ys
is

10
Tier-1s

30
Tier-2s

ATLAS detectorLHC

A
TL

A
S

TD
A

Q

Derandomizer ROD ROB

FE Links ROLs

~1600
Flow Control

HLT

FE Channels

~1e+7

42 events 50K

32K events

FE pipeline memories

L1
A

LV1
Trigger

8K x 32bits

Level-1

events
40 MHz

p=0.25%

q=99.75%
Reject

Accept

Level-2

Bernoulli choice
each 25ns

free

L2P

free

L2P

Level-1 Accepts

Le
ve

l-2
 p

oo
l

c = 4000

1/λ

busy

L2P

busy

L2P

Arrival distribution
Exponential

Service-time
distribution

General

µ
busy

L2P

Level-2 Results

. . .

Figure 3.3: M/G/c/c queuing model for Level-2

In this model, events arrive at exponentially distributed intervals with mean 1/λ = 10µs, equiva-
lent to stating that events arrive according to a Poisson process [16] with rate λ = 1 event/10µs.
The L2Ps event processing times (i.e. service times) are independent and identically distributed
with a general distribution characterized by mean µ. By design, the number of available L2Ps
is c = 4000 3. When a new event arrives, it immediately goes into service if there is an L2P

3In the operational phase this number is ~7000, but for consistency with the design the computations were
performed with 4000 L2Ps

39

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

available, otherwise it will be dropped from the system. We want to obtain the probability of an
event being dropped, called blocking probability, as a function of the mean service time, µ and
the number of servers c.

The situation of an event being rejected from the system occurs when all the places in the system
are occupied at the arrival time. This can be expressed as the state <system is full> in which
the customer finds the system on its arrival. For Poisson arrival processes, it holds an interesting
property, called PASTA (see explanation in Appendix A.1) which states: the probability of oc-
currence of the particular state seen by an event is equal to the blocking probability the system
is actually in, calculated over a long period of time.

It is shown that the probability of an event finding n customers in the Level-2 system is:

pn =
ρn/n!∑c
k=0 ρ

k/k!
, n = 0, 1, ..., c (3.5)

where ρ = λµ is called the occupation rate or server utilization, representing the fraction of time
the system is busy. For a stable system, the condition ρ < 1 needs to be satisfied.

Consequently, the blocking probability B(c, ρ), defined as the probability of an arriving event
finding all the L2Ps busy, is given by:

B(c, ρ) = pc =
ρc/c!∑c
k=0 ρ

k/k!
(3.6)

After some transformations (see [1], section 11.3), relation 3.6 can be written as a stable recur-
sion:

B(c, ρ) =
ρB(c− 1, ρ)

c+ ρB(c− 1, ρ)
(3.7)

with B(0, ρ) = p0 = 1, allowing for a simpler numerical computation for large values of c.

3.5 Results

The relation 3.7 gives us a three-dimensional trade-off space between: the number of servers (c),
the occupation rate (ρ) and the blocking probability (pc). In Level-2 “language” these variables
translate into: the number of Level-2 processes, the average event processing time (encompassing
the network delay) as a function of the arrival rate and the probability that the system is full.

40

3.5. RESULTS

3.5.1 Dependencies and model scaling

In order to quantify and understand the dependencies between these parameters, we applied
formula 3.7 for different pairs of (c, arrival rate) and over a range of blocking probabilities. We
know that by design the arrival rate in Level-2 is 100 KHz and the number of available L2Ps is
4000. The rate of events assigned for a single L2P is thus 25Hz.

Keeping this factor constant, we started the computation from a scaled-down (c, arrival rate)
pair and then continued over exponentially increasing pair values up to the design ones: (4000,
100KHz). The goal was to understand how the queuing model works in small, medium and
large systems and if the same scaling stands for the values of interest: average service time and
blocking probability.

The dependency between the service time and the blocking probability, for a given number of
Level-2 processes and the corresponding arrival rate is presented in Figure 3.4. We can observe
that the bigger the number of servers/associated arrival rate, the greater the average service time
allowed for a fixed (e.g. 1%) blocking probability. This tells us that, from a scaling perspective,
the greatest influence on the average service time is attributed to the number of servers and not
on the arrival rate. Table 3.1 summarizes the results from Figure 3.4:

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●● ●

0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

Service Time vs. Blocking Probability

pc [%]

tim
e

[m
s]

● (c=4,arr=100Hz)
(c=40,arr=1KHz)
(c=400,arr=10KHz)
(c=4000,arr=100KHz)

Figure 3.4: Service time vs. Blocking probability - different (c, arrival rate)

We can also notice the asymptotic trend of the plots towards zero, a confirmation of the the
mathematical formulas, which show us that 0% blocking probability is never reached for positive
values of service time.

41

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

Arrival rate No. of servers
Average service
time (pc = 1%)

100 Hz 4 8.5 ms
1 KHz 40 29 ms

10 KHz 400 37.5 ms
100 KHz 4000 40 ms

Table 3.1: Queuing model results

The next thing we need to examine is the sensitivity of the average service time to the number
of servers available in the system when the arrival rate has a fixed value of 100 KHz. Figure 3.5
indicates the fact that for a fixed blocking probability (i.e. 1%) the values for the average service
time grow linearly with the number of servers available.

As a consequence, in case of Level-2 the mathematical model gives us the impact of losing
a certain number L2Ps on the probability of saturation and on the average Level-2 processing
time. For 1% blocking probability, the variation is:

4µ
∆c

=
1ms

100L2Ps
(3.8)

which means for example that for each 200 L2Ps lost (i.e. 25 physical computers) the allowed
average service time in Level-2 decreases with 2 ms.

●●●●●●●● ●

0.0 0.5 1.0 1.5 2.0

15
20

25
30

35
40

Service Time vs. Blocking Probability
Arrival Rate = 100 KHz

pc [%]

tim
e

[m
s]

● c=2000
c=3000
c=3800
c=4000

Figure 3.5: Service time sensitivity with the number of servers for 100KHz rate

If we extend the range of probabilities to reach much smaller values, we obtain the plots in Fig-

42

3.5. RESULTS

ure 3.6, where the probability axis is logarithmic. It can be observed that the linear behavior
explained before stands for smaller probabilities too. Furthermore, we can compute the sensitiv-
ity of the service time to the blocking probability: for c = 4000, a decrease of pc with 7 orders
of magnitudes, i.e. from 1% to 10−7% introduces a decrease of ∼4 ms on the service time.

● ●●●●●●●●●●
●●●

●●●
●●●
●●●
●

1e−13 1e−10 1e−07 1e−04 1e−01

15
20

25
30

35
40

45

Service Time vs. Blocking Probability
Arrival Rate = 100 KHz

pc [%]

tim
e

[m
s]

● c=2000
c=3000
c=3800
c=4000

Figure 3.6: Service time/probability sensitivity with the number of servers for 100KHz rate

Although simplified and purely mathematical, the model employed above returns also an order
of magnitude for the upper limit of the cumulative network delay allowed in Level-2. For an
imposed probability of saturation this value is of order of tens of microseconds (40 ms for 1%,
36 ms for 10−7%). This happens hypothetically when physics algorithms take zero processing
time in Level-2 and the total service time is composed only by the communication (network)
delay.

3.5.2 Particular case study - 1/2 of the system

We can apply the results above for a particular case which is of special interest from the network-
ing point of view: losing one of the DataFlow core switches. In subsection 2.5 it is mentioned
that the DataFlow network is redundant through the deployment of two core switches, visible in
Figure 2.7. However, this redundant solution protects the entire Read-Out System, but only half
of the Level-2 system.

In the scenario with one core switch failing, the traffic from all the ROS computers will be
transported through the working switch to one half of the XPUs, whereas the other half of the
Level-2 system will lose connectivity. Consequently, all the Level-2 processing tasks will be
taken over by the half of the computers which remained connected. Using the mathematical

43

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

model, we want to quantify the effects of this particular situation, where c = 2000, on the
average service time and on the blocking probability.

Figure 3.7 details the dependency between the service time and blocking probability for c =
2000, with probabilities ranging from 10−13% to 10% and for 100KHz input rate. The probability
axis has logarithmic scale.

1e−13 1e−10 1e−07 1e−04 1e−01

17
18

19
20

21

Service Time vs. Blocking Probability
(c = 2000, Arrival Rate = 100 Hz)

pc [%]

tim
e

[m
s]

Figure 3.7: Service time vs. Blocking probability

We can observe that the relation 3.8 is met for 1% blocking probability, the service time in this
case being obtained from the average service time for 4000 servers and deducting the amount for
2000 of them:

40ms− 2000× 4µ
∆c

= 40ms− 2000× 1ms

100
= 20ms (3.9)

which is confirmed by Figure 3.7. Also, in the “half of the system” case, the sensitivity of the
service time to the blocking probability is smaller than in the case with a full system: a decrease
of pc with 7 order of magnitudes, i.e. from 1% to 10−7% introduces a decrease of ∼2 ms on the
service time, compared to ∼4 ms, as it was in the full system case.

The conclusion we can draw from the results given by the mathematical model is that all the
performance metrics scale with the same factors for server number decrease, 1/2 in our case.

44

3.6. FIDELITY ANALYSIS

3.6 Fidelity analysis

In the previous section we presented a mathematical model for a simplified version of the Level-2
system. The simplifications and assumptions made were required by the process of fitting a com-
putable mathematical model. We have shown that the model has a solution for the performance
measures of interest, i.e. the blocking probability and the average service time, which allowed
us to understand the relationship between key Level-2 aspects:

• average time spent in the Level-2 by an event, directly linked with the time needed to clear
ROB space. The Level-2 network delay contributes to this amount of time.

• probability of saturation of the Level-2, seen as the probability of an event finding all
the L2Ps busy. The higher the average time spent in Level-2 by events, the larger the
probability of system saturation.

• number of Level-2 Processors.

Next we will summarize the assumptions which we exploited in the model and we will analyze
the fidelity of the employed mathematical model to a closer to reality one. The complexity of the
Level-2 system is high compared to what a mathematical model can capture. Trying to bring the
model closer to the real system complicates the mathematics underneath to a level which does
not allow the computation of any performance measure.

However, for some of the changes in the mathematical model we will quantify the absolute
difference which they would introduce. We show in this way that the utilized model offers the
best compromise between accurate results and computational effort.

3.6.1 M/G/c/c and M/G/c/K models

One important simplification that we employed when creating the model is the zero waiting room
in the Level-2 system. In reality, each L2P application incorporates a waiting queue for events,
of programmable size. This parameter is called l2puQueueSize [31], its value being typically
set to 2. The waiting room in the Level-2 system is thus 2 × number of L2Ps, which, added
to the actual processing room, gives a total number of places in the system (the K parameter in
Kendall’s notation) of 3× number of L2Ps = 12, 000.

The M/G/c/c queuing model we exploited is a particular case of a complex problem: the M/G/c/K
model, which would apply better in our situation (i.e. M/G/4000/12000 system). The problem
is that although extensive effort has been put into solving the performance measures for this
queuing system, the solutions can be found only numerically and for small values of c (up to 10)
(see [30] for example). Furthermore, when trying to compute the blocking probability for this
kind of system, the variability of the service time is required, adding another level of complexity
to the problem.

45

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

3.6.1.1 Error in the blocking probability

Given the constraints mentioned above, the M/G/c/c model occurs to be the closest to reality
and mathematically tractable model. In order to quantify its “closeness” to reality we want
to understand the amount of probability mass by which we are wrong, when calculating the
blocking probability in the M/G/c/c case, compared to the M/G/c/K case.

Our approach uses two queuing models which are mathematically solvable: M/M/1/K and M/M/1.
The first is the model of an one-server system with a queue equal to K, while the latter is also
known as the M/M/1/∞, i.e. implies one-server system with an infinite queue. The difference
in probability mass between these two models will give us a good indication on the scale of the
same difference between the M/G/c/c and M/G/c/K models.

The absolute difference between probabilities is given by equation A.3. Figure 3.8 depicts the
dependency of this difference, called the absolute error, on the number of places available in the
system (n - corresponding to K from the notations above) and on the loading factor (ρ). For a
system close to saturation, ρ is close, but smaller than 1.

We can notice that the absolute error between these two queuing models is extremely small for
n=4000, even when ρ→ 1: its order of magnitude varies between 10−180% and 10−14%.

Figure 3.8 contains also the graphical representation of equations A.4 and A.5. They represent
the differentials of the absolute error with respect to n and ρ respectively. We can observe that the
decrease rate of the absolute error (as n grows and the loading factor decreases) is also extremely
small, more pronounced than the absolute error itself.

There are no mathematical means to calculate the blocking probability error between the used
model (M/G/c/c) and the more suitable model (M/G/c/K). We can only infer from the values
obtained above that the absolute error of interest is also extremely small. This gives us a scale of
the error between the M/G/c/c model and the model closer to reality: M/G/c/K.

3.6.2 Abstraction

Another simplification introduced by the mathematical model refers to the Level-2 supervisors.
As mentioned in Section 2.3, a Level-2 supervisor has the role of dispatching the Level-2 pro-
cessing tasks to the Level-2 processors found under its coordination, based on a load balancing
algorithm.

The mathematical model would have become far more complex in this situation. Hence, we
abstracted away from the Level-2 supervisors in our model, considering a general distribution for
the Level-2 processing time. Thanks to the exponential arrival into the Level-2 and to the PASTA
property, the model takes into consideration only the average value of the event processing time
and not the mechanisms underneath.

46

3.6. FIDELITY ANALYSIS

0 1000 2000 3000 4000

1e
−

90
1e

−
71

1e
−

52
1e

−
33

1e
−

14

Absolute Error: M/M/1 − M/M/1/K
Loading Factor = 0.95

n=K

ab
s_

er
ro

r
[%

]

0.90 0.92 0.94 0.96 0.98

1e
−

18
7

1e
−

15
1

1e
−

11
5

1e
−

79
1e

−
43

Absolute Error: M/M/1 − M/M/1/K
K = 4000

loading_factor

ab
s_

er
ro

r
[%

]

0 1000 2000 3000 4000

1e
−

92
1e

−
73

1e
−

54
1e

−
35

1e
−

16

Differential(n) of Absolute Error: M/M/1 − M/M/1/K
Loading Factor = 0.95

n=K

di
ffe

re
nt

ia
l(n

)

0.90 0.92 0.94 0.96 0.981e
−

18
6

1e
−

15
0

1e
−

11
4

1e
−

78
1e

−
42

Differential(a) of Absolute Error: M/M/1 − M/M/1/K
K = 4000

loading_factor

di
ffe

re
nt

ia
l(a

=l
oa

di
ng

 fa
ct

or
)

Figure 3.8: Absolute error and its derivative between M/M/1 and M/M/1/K

47

CHAPTER 3. MATHEMATICAL MODEL FOR LEVEL-2

3.7 Conclusions

The queuing theory model employed for the Level-2 system is able to give us important informa-
tion about the Level-2 system performance such as the probability of saturation and the average
L2 processing time. The queuing theory is used to model the state of the resource that’s be-
ing contended, the Level-2 processing room in our case. From here, the performance measures
mentioned above can be extracted.

One of the limitations of this approach is that the information regarding the performance of the
DataFlow network - a component of the Level-2 - is, however, limited. From the results in
Section 3.5 we can obtain the upper bound on the accumulated network delay assuming that
the processing time is negligible, which, in the current implementation is not the case. Another
limitation comes from the simplifications and assumptions considered when the M/G/c/c model
was chosen and the difficulty of using a different, more complex mathematical model. One aspect
which the mathematical model can not capture is the dependency of the network performance on
the network load.

In the next chapter we will introduce a different approach, applicable to any communicating
systems, therefore to Level-2 as well, which is able to extract performance measures for the data
network and consequently guide its performance analysis. This new approach also addresses the
relationship between load and performance.

48

Chapter 4

Observational model

4.1 Introduction

The real time requirements imposed on the ATLAS TDAQ system, especially on the Level-2
system generate an acute need to comprehend the performance of its data network infrastructure.
A complex and detailed network monitoring system [39, 53, 6] has been put in place and is
currently exploited in ATLAS for post-analysis of performance and real-time fault detection.

The performance indicators are obtained with respect to the requirements imposed on the data
network in the design stage. These refer to the amount of traffic on all the links, as well as lost,
discarded and erroneous packets. Although requirements in terms of delays can be extracted
from the event rates, they concern only the applications, not the data network. Consequently,
the current performance monitoring system doesn’t capture the amount of delay the network
introduces during the system run.

The reason is that the network delay aspect in the context of the ATLAS TDAQ was/is considered
to be of minor importance in terms of impact on the TDAQ performance. It is considered that
a high speed network, located in a single geographical location produces delays with one order
of magnitude lower than the allowed application delays. Likewise, due to the buffering and
allowed latencies detailed in Section 2.6 the system is considered to be highly tolerant to latency
variations.

As introduced in [33], we consider that the amount of time an application spends while waiting
for data transport needs to be properly understood and its evolution with the load of the system
needs to be evaluated. This is required in order to have a predictive model which is able to
describe how the system performs in conditions close to saturation. Applications do not care
about how data is transported, they care only about how promptly and reliably they receive it.
In this chapter we propose an end-to-end description of a communication system from the delay
and reliability perspective aiming to apply it in the end to the ATLAS TDAQ network.

49

CHAPTER 4. OBSERVATIONAL MODEL

4.1.1 General context

Data networks have witnessed a significant growth with respect to both the geographical expan-
sion and the number of incorporated technologies. Internet is the main driving factor for this
process as the end-user’s demand to access the Internet grew continuously in terms of “how
much”, “where” and “when”.

Along with these, a key aspect which the end-user perceives - by means of applications - is
the response time from the communicating peer. We refer to this as the Quality of Experience
(QoE) and it becomes a performance metric when comparing two network access experiences. If
the first aspects: bandwidth, time-of-the-day and location access are usually known beforehand
from e.g. a contract with an ISP (Internet Service Provider), the response time is an instantaneous
measure and is an emergent property of the network itself. Given the number of possible factors
influencing the response time, a uniform approach in describing the network performance is thus
needed.

This description must also incorporate the relationship between the performance and the system
load in order to understand the network behaviour in saturation conditions.

4.1.2 Etymology

The term “observational” that we use for our framework comes from the process algebra paradigm
for modeling communicating systems. It states that a system is defined by its outputs and inputs
only - the black-box philosophy, therefore a comparison of two system is based only on observ-
ing the inputs and outputs. Two systems are behaving the same if they preserve the externally
observable behaviour, e.g. they produce the same output in response to identical input.

This approach is formalized in the observational bisimilarity theory in [40, 41] and provides a
framework for constructing and comparing different models, at different levels of abstraction:

• strong equivalence

• observational equivalence

• observational congruence

Our work is based on an abstraction level which relies only on observation and does not delve into
low-level technical or implementation details, hence we name the framework the observational
model.

4.2 Approach

For a system which relies on interactive communication between its elements there is a funda-
mental cycle of behavior which characterizes it. Examples are the communication protocols,

50

4.2. APPROACH

which have phases exhibiting cycles of behavior, e.g. request-response protocols. Furthermore,
viewing a system as a set of resources, during a cycle the system has to perform is a “walk-
through” a subset of those resources. The cycles, due to their repetitive nature, constrain the
emergent performance of the communication system.

4.2.1 Performance

Performance in this context is a statistical1 measure for answering questions like:

• How quickly you get round that cycle?

• How predictably you get round that cycle?

• What is the probability of getting round the cycle before an event/timer occurs?

In order to answer these questions, we decompose a cycle into so-called interactions which can be
tasks and/or operations, including here potential resources utilization. Using a resource involves:
gaining access to it, using it, releasing it, all operations which influence the executed task. The
tasks can also be concurrently performed, involving the existence of shared resources, which
consequently results in a non-deterministic response time from these resources.

4.2.2 ∆Q

Performing a complete cycle is thus equivalent to “passing through” or “experiencing” all those
interactions. From the point of view of the cyclic process two things can happen when an inter-
action takes place:

• the process is delayed with a time T.

• the process loses all or part of its elements, e.g. bits of information. Although normally ap-
plications recover from lost information by implementing re-transmission protocols, from
the point of view of the interaction we refer to this as failure.

Ideally, a perfect interaction is one which has T = 0 and the probability of losing something
inside it also 0. We define the Quality Attenuation (∆Q) attached to an interaction to be the
deviation from this ideal situation, i.e. a positive value for T and a binary value for failure
(YES/NO). Given the repetitive nature of cycles, ∆Q becomes a statistical measure incorporating
both the distribution of the execution time and the probability of failure.

If we look at a higher level, in order for an application exploiting the system to work the commu-
nication between two specific peers (which can include more interactions) in the system needs

1We use “statistical” to express the fact that we don’t deal with scalar variables when talking about: performance,
delay, time. These are random variables characterized by distributions

51

CHAPTER 4. OBSERVATIONAL MODEL

a certain quality, i.e. a bound on loss and delay characteristics. ∆Q is a method to manage and
capture this bound.

Moreover, the use of ∆Q for evaluating the effect of a network element also extends to the char-
acterization of bandwidth. This can be achieved looking at the effect of the arrival rate exceeding
the service rate (see [2, 1] for an explication of queuing theory terms). If this happens for a
longer period than the buffering allows then packet loss will ensue - in line with the observa-
tional paradigm: excessive offered load results is an observed change in ∆Q.

4.2.2.1 Mathematical support

In the context of communicating systems the probability of failure is fundamentally a time con-
straint on the execution time. From an observational point of view a system which will never
produce a result - a real failure - and a system which produces the results with an excessive delay
are indistinguishable. If the response expected from an interaction exceeded a time limit the exe-
cuted interaction is considered FAILED, otherwise a SUCCESS. This allows us to introduce next
a mathematical support for ∆Q in order to encompass both the execution time and the failure to
execute: the improper CDF 2 .

First of all, we mention that a “proper” CDF for a random variable X is given by a function FX
defined as:

FX(x) = P (X ≤ x), x ∈ (−∞,+∞) (4.1)

with two properties:

lim
x→−∞

FX(x) = 0 (4.2)

lim
x→+∞

FX(x) = 1 (4.3)

A ∆Q is defined as an improper CDF and it differs from a “proper” one in that it is defined only
on the interval (−∞, Tf) and that

FX(Tf) = pf , pf ≤ 1 (4.4)

as depicted in Figure 4.1. An improper CDF is thus not required to meet the property in relation
4.3, allowing an amount of probability of failure: 1 − pf . Tf is called the failure time and
represents the time constraint placed on the execution time - a time-out.

The performance of an entire cycle is thus given by the total accumulated ∆Q. In order to com-
pose the ∆Q back from the individual interactions we need to make use of distribution convolu-
tion as we would do for the normal CDFs. For improper CDFs we can consider the rest of the

2Cumulative Density Function

52

4.2. APPROACH

�

�

��

�������

� �

��

Figure 4.1: Improper CDF exemplified

probability mass to be towards +∞, thus enabling the use of convolution for these distributions
in the interval of interest.

4.2.3 Design

Before moving on with utilizing the ∆Q in a formal framework we need to introduce an approach
for describing the design process for a communicating system as a whole. We will show how the
∆Q concept is also able to assist the system design stages from establishing the requirements to
validating the system, or the other way around, as we will see for ATLAS TDAQ network.

We propose a system design flow terminology which can be expressed by the acronym AREA
(Aspiration → Requirement → Execution/Ensurance → Assurance) depicted in Figure 4.2,
where:

• Aspiration is a goal or a desired set of system behaviors, expressed informally e.g. “I want
a web page to load in less than 2 seconds”.

• Requirement represents that which is required by the entire set of computational and com-
municating tasks - together with their associated cycles - to achieve the aspiration. It is the
process of reification of an aspiration using formal terms, in our case improper CDFs. An
aspiration is thus translated at this stage into a set of requirements on ∆Q distributions.
They will serve as criteria when performing the actual implementation.

• Execution/Ensurance is the implementation stage in a system design process. In an execu-
tion environment, where the desired loading conditions must be simulated or synthesized,
∆Qs of interest are measured and are compared with the requirements. If they are not
met, changes to the system are made until we ensure that all the outcomes’ ∆Qs meet the
requirements. An iterative loop can occur between R and E steps due to the possibility that

53

CHAPTER 4. OBSERVATIONAL MODEL

certain requirements are not achievable, hence they need to be adjusted. This feedback can
be propagated back to the Aspiration step where the goals can be adjusted as well.

• Assurance is the validation stage of the system in a production/commercial environment,
i.e. quality assurance. We measure the ∆Qs of interest and assure that they meet the
requirements.

���

���������	
�������	� �������	��	���	�� �����	��

���

Figure 4.2: Design flow stages

In the particular case of the ATLAS TDAQ network the first three steps were performed con-
sidering the delay and loss as minimal impact for a design criteria and considering only average
values like bandwidth. The design value was set to 60% based on average values since there
weren’t any means of predicting the effects of instantaneous collisions at the design time. Given
the operational stage the system is in at the moment this work is carried on, we can only per-
form the last step, the Assurance, which in this context can be considered more appropriately an
Analysis step. As a result we can deduce backwards what the application (the TDAQ software)
should expect from the network in terms of latencies.

We will introduce next a formal way of manipulating the ∆Qs in order to accomplish the AREA
flow mentioned above.

4.3 Concepts

The decisions which need to be made in the last two design stages are guided by the ∆Q (mea-
sured and required). This is possible because we defined ∆Q with mathematical support which
allows us to use it as a comparison metric.

In order to do that, we need to measure it in a formalized framework, characterized by a set of
concepts:

• an outcome is a task the system has to perform, to which performance measures are at-
tached: time to complete and resource consumption. Outcomes can be viewed at different
levels of abstraction, i.e. they can be decomposed or grouped together.

54

4.3. CONCEPTS

Figure 4.4 depicts a sequential scenario for executing a task which requires: access to
the network, computation and writing to a disk. Each of these steps can be viewed as
individual outcomes or they can be encompassed by one global outcome. We refer to this
technique as abstraction.

• observables are time-aware indicators in the system that are triggered by a particular task.
We use observables to capture when a task has started or ended in order to measure its
execution time. The way of choosing the observables reflects the level of abstraction the
corresponding outcome is captured at.

• the ∆Q (Quality Attenuation), introduced earlier is the measure for an outcome.

• the load on a resource expresses the instantaneous demand on a resource or on a set of re-
sources by all the tasks in the system. It directly influences the outcome’s ∆Q by delivering
a response time dependent on the load.

�

�����������	
���

�

�
�
�

���

���

������������

����

	� 	�

��������������

����

Figure 4.3: Improper CDF as a metric

The formalization introduced earlier allows us to define the goals a system has to achieve and the
method for establishing if they are met or not. We introduce two concepts for ∆Q relative to the
Requirement and Execution/Ensurance stages in the system design flow:

• a requirement ∆Q (R∆Q) is the desired ∆Q, i.e. the design criteria

• an execution ∆Q (E∆Q) is the ∆Q which is measured when the system is put into opera-
tion.

55

CHAPTER 4. OBSERVATIONAL MODEL

A system is considered to have delivered the required performance if all the outcomes have better
E∆Qs than R∆Qs. Figure 4.3 exemplifies how the improper CDF for ∆Q can be used as a metric
for a given task. The required execution time for the exemplified task is expressed by the R∆Q’s
CDF, stating that:

• 50% of the time the task has to finish earlier than T0

• 90% of the time the task has to finish earlier than T1

The outcome meets the imposed requirements on the ∆Q if its execution CDF is always larger
than its requirement CDF. Mathematically, the execution meets its requirement if the relation 4.5
is satisfied:

E(t) ≥ R(t), ∨t > 0 (4.5)

4.3.1 Abstraction

An example for the observational model introduced above is illustrated in Figure 4.4. Consider
a system which relies on three main tasks: transmit data over the network, perform some com-
putation and store data on the disk. One can choose to have one global outcome encompassing
the networking, CPU and disk as one resource. In this case the aggregated response from all of
the resources defines the global ∆Q. Alternatively one can choose to split the system tasks and
associate each of them an outcome and ∆Q.

���

� ��

��� ���

�����������

����

��	
���� ��	
���� ��	
����

��	
���	��	��

����

�

� � � �

%�	&��# �'(�)�#�*+,-�����
��.

Figure 4.4: Abstraction exemplified in observational model

The observation points, i.e. observables are the elements which define the abstraction level of an
outcome. Two scenarios are possible in terms of abstraction levels:

• consider the T0 and T3 observables and obtain one global outcome. The task triggers the T0
observable and may eventually trigger the T3 observable. The ∆Q is the quality attenuation
suffered by the task on its path between the two observables, denoted as:

56

4.3. CONCEPTS

4Q = T0 T3 (4.6)

The network, CPU and disk resources are grouped together into a single “virtual” resource
whose load is a combination of those three.

• look at each T0,..,3 observables and obtain three outcomes. In this case we have three
associated ∆Qs:

4Qi+1 = Ti Ti+1, i ∈ {0, 1, 2} (4.7)

and each outcome is associated with an individual resource consumption.

4.3.2 Resource utilization

In addition to the performance indicators mentioned until now, loss and delay, we need to take
into account the resource consumption. This is important because requirements can be placed
on resource utilization too, we therefore need a method of inferring on the resources utilization
which occurs in the system.

The classical approaches explicitly model the resources in order to extract their consumption.
Extensive work was carried on in this direction, e.g.: QoS-based Resource Allocation Model (Q-
RAM) in [52], scheduling framework for the CPU resource allocation in [12], real-time schedul-
ing theory with different priority schemes in [49, 38]. All these models involve modeling all
the access mechanisms and all the contention mechanisms specific to a shared environment, thus
becoming unmanageable for large systems in which contention for resources occurs with a high
frequency.

When we address the resource utilization aspect, we consider that they are stochastically shared
between a numbers of “consumers”. The philosophy of sharing implies a competition for re-
source, which, from the perspective of the process trying to access it, can be done in three ways:

• preempting the process that currently uses the resource, implying that all other processes
must wait.

• every other process can preempt it

• it fairly shares the resources with the rest of the processes

Regardless of the type of competition for resources, we consider that the amount of contention
(i.e. load) a resource is dealing with is reflected in the ∆Q associated to the outcomes using
those resources. When a task uses a set of resources, the obtained ∆Q (through its statistical
descriptors: mean and variance) is a function of how loaded those resources are. From the point
of view of a particular task, we can abstract away from the rest of the tasks in the system by
looking only at the load they put on the resources of interest.

57

CHAPTER 4. OBSERVATIONAL MODEL

The coupling of the resource load and the outcome’s ∆Q allows a top-down view of a system.
This means that one can start from the set of outcomes a system has to fulfill and derive the set of
constraints on resource consumption, i.e. the set of necessary properties of a system in order to
fulfill the imposed outcomes. Having this knowledge, one can also prioritize access to resources
in an apprehensive manner.

4.4 ∆Q in data networks

We will show how the concepts introduced above apply to a particular type of system, a data
network. Specific to these systems are the resources involved, the type of performed tasks, the
type of observables and the structure of the ∆Q.

4.4.1 Particularities

Data networks are meant to serve a purely shared environment, where a large numbers of users
access them, making a suitable case study for our methodology of extracting performance mea-
sures from complex systems. Furthermore, specific to data networks is the component-wise
structure of the ∆Q which will help us understand the relationship between ∆Q and the load of
the network.

4.4.1.1 Resources

A data network, regardless of its type (Ethernet, ATM, PPP, Token Ring etc), exhibits two fun-
damental types of resources:

• the transmission medium: copper, optical, radio waves

• the devices handling the flow of data: repeaters, hubs, bridges, switches, routers

These resources have different access mechanisms (CSMA/CD, token passing), transporting
speeds (10M, 100M, 1G, 10G, 100G), technologies, protocols and architectures (user plane,
control plane), parameters which create a first classification of resources. Furthermore, in a
shared resource environment these two types of resources have different physical and logical
mechanisms for managing the contention for them, becoming additional criteria for an extended
classification of resources and consequently of the data networks.

4.4.1.2 Tasks and observables

The task a data network has to fulfill in most of the cases is to transport packets between two
points of the network. The associated observables are in this case the time-stamped traces cap-
tured on the network interfaces defining the end points.

58

4.4. ∆Q IN DATA NETWORKS

A B

timeTA one-way TB

round-trip

Figure 4.5: Tasks and observables in data networks

Measuring the difference between the two values yields the delay a packet suffers from source to
destination, and hence the ∆Q for this system. The failure of a task in the data network context
is expressed by an “over-the-threshold” delay, signaled as a packet loss.

There are two possibilities in measuring ∆Q, depicted in Figure 4.5:

• consider only one observation point and measure the ∆Q for the cycle, e.g. A and4Tround−trip
respectively in Figure 4.5. In practice this is called the Round-Trip Time (RTT).

• consider two or more observation points and measure the ∆Q for each segment, e.g. A, B
and4Tone−way respectively in Figure 4.5. This measurement is called the One-Way Delay
(OWD).

From a technical perspective, capturing traces in different points of a network requires the use of
either the use of expensive equipments like traffic analyzers or commodity PCs with dedicated
software (e.g. [20, 59, 62]). The second method is easier and cheaper to be implemented.
Measuring RTT is simpler because both observables are using the same clock for time-stamping.
For OWD however, it requires very precise clock synchronization between the capturing devices
or the implementation of a clock adjustment algorithm.

4.4.2 Components

Each network element - a resource in the system - adds delay and potential loss to the served
packets. The ∆Q introduced in Section 4.2.2 is a function of: physical topology, logical topology,
packet size, the load of the network, time of day and other factors.

Based on these factors ∆Q can be split into components which fall into two distinct categories:
immutable (can’t be influenced, they depend on the system structure) and mutable (manageable,

59

CHAPTER 4. OBSERVATIONAL MODEL

they depend on factors such as the loading of the system). This classification stems from a
limitation of the queuing theory, theory which is the grounds for our analysis and predictions in
Chapter 5. Queueing models cannot properly model a common characteristic of data networks:
fixed delays. This type of delays always occur due to propagation delays, regardless whether they
occur in copper cables, fiber optics or inside electronic components, hence it cannot be avoided.
We thus separate the fixed delays from the rest in order to be able to apply the queueing theory
on the remaining delay.

There are different approaches in separating the delay and loss into components, e.g. in [9] four
major contributors were considered: propagation delay, transmission delay, nodal processing
delay and queuing delay. We consider three basis components which build up the ∆Q to be
sufficient for our model:

1. G - immutable - is the contribution of the physical topology, being constant for a given
network path. It represents the delay introduced by the network on a “zero length” packet,
consisting of: transmission medium delay and the delay introduced by the access to the
medium. G comes from Geographical or Given.

2. S - immutable - is the contribution of the mechanisms for processing packets, being con-
stant for a given logical topology and packet size. It consists of serialization and de-
serialization delays, inter-frame gap and any OSI Layer 2 [3] introduced overheads.

The purpose of S is to compare the differential delay and loss caused by different packet
sizes. This is why, as we will see in Chapter 5, for the particular type of networks analyzed
in this thesis we move the inter-frame gap and the preamble - both fixed values causing a
fixed delay - into G.

For a given network type, topology and configuration, S is dependent only packet size,
hence its name.

3. V - mutable - is the contribution of the contention for resources and in the case of data net-
works it is caused by the queueing mechanisms. V is indirectly dependent on the network
load, but also on other factors such as the time of the day, or the total delay. In the same
time, V is independent on the size and network topology. V comes from Variable.

These components can be viewed as continuous random variables each characterized by a Prob-
ability Density Function (PDF). The decomposition in only three components - as opposed to
four components in other approaches - was done with the purpose of obtaining statistically inde-
pendent components, i.e. any two random variables from the [G,S,V] tuple are independent.

We use here the result which states that for a function f of two random variables with

f(x, y) = x+ y (4.8)

its PDF is the convolution of the individual PDFs for independent random variables, as demon-
strated in [61].

60

4.4. ∆Q IN DATA NETWORKS

Hence, for a given network path, the ∆Q is the convolution of the distributions above, being a
function of the size and load:

4Q(size, load) = G⊗ S(size)⊗ V (load) (4.9)

Furthermore, we denote the convolution in relation 4.10 to be the Structural Delay (SD) for a
network path, incorporating the immutable components only. The Structural Delay can be seen
as the ∆Q obtained when the system is idle, i.e. the load is zero, hence being a function of packet
size:

SD(size) = G⊗ S(size) = 4Q|(load = 0) (4.10)

Conceptually, the SD for a network is a property which can be used as a comparison metric.
Regardless of what type of applications are using the network, this contribution to the overall
∆Q cannot be changed, unless structural changes are made: configurations, connections. Given
the wide range of configuration parameters network devices are offering, we consider them fixed
and we incorporate them within the SD. A different set of values for the configurable parameters
will generate another SD value for the network.

The most important ∆Q component for the analysis performed in this thesis is the one which can
be managed and traded within the system: V. Using relations 4.9 and 4.10, we can obtain V by
“subtracting3” the structural delay from the ∆Q, denoted as:

V (load) = 4Q	 SD (4.11)

V is a function of the load, representing the ∆Q introduced by the contention generated inside the
network, i.e. the queuing mechanisms. In this context we use V to infer on the queues occupancy
in the system, on the traffic pattern and on the load of the network.

4.4.3 Properties

The ∆Q introduced by a network exhibits two important properties:

1. Conservation. ∆Q, as a function of the network elements, is monotonically increasing
from a topological point of view. The ∆Q can only be accumulated, not diminished and
the ∆Q introduced by an element is always a positive value. The operation of “adding”
∆Qs is a composition of distributions.

2. Topology-based convolution. The components of the ∆Q can be convolved based on topol-
ogy. Having a system made by A and B, depicted in Figure 4.6, it is possible to calculate

3mathematically, “subtracting” two known distributions involves a form of deconvolution. In mathematics, de-
convolution is an algorithm-based process used to reverse the effects of convolution on recorded data.

61

CHAPTER 4. OBSERVATIONAL MODEL

the component-wise convolution for G, S and V for a fixed load and packet size. The
aggregate distributions GAB, SAB and VAB can be obtained by:

GAB = GA ⊗GB (4.12)

SAB = SA ⊗ SB (4.13)

VAB = VA ⊗ VB (4.14)

timeTA ∆Tone-way TB

∆Tround-trip

∆QA

GA, SA, VA

∆QB

GB, SB, VB

∆QAB

GAB, SAB, VAB

GA GB, SA SB, VA VBx

L

request
<T1, pkt1>

x

+

x

Figure 4.6: Topology-based convolution

The composition of the two variables can thus be calculated by convolution. In [61] it is men-
tioned that the sum of two random variables ε, η produces a new random variable ζ with the PDF
given by:

ωζ(z) =

+∞̂

−∞

ωεη(z − y, y)dy (4.15)

For independent random variables the following can be applied:

ωεη(x, y) = ωε(x)ωη(y) (4.16)

Relation 4.15 becomes:

ωζ(z) =

+∞̂

−∞

ωε(z − y)ωη(y)dy = (ωε ∗ ωη)(z) (4.17)

which represents the convolution between the ε and η random variables.

Next, using relation 4.9 we obtain the aggregate ∆Q:

62

4.4. ∆Q IN DATA NETWORKS

4QAB = GAB ⊗ SAB ⊗ VAB (4.18)

However, a common mistake in practice is to convolve the topological ∆Q’s directly:

4QAB = 4QA ⊗4QB (4.19)

An example for this mistake could be measuring the delay of each sub-system and adding them
in order to obtain the end-to-end delay. The relations 4.18 and 4.19 do not yield the same result
because of the possible dependencies between ∆Q’s. In conclusion, only piece-wise convolution
of the components gives the end-to-end correct answer for ∆Q.

.

4.4.4 Ethernet case study

In practice, for Ethernet4 networks, given the G, S and frame size characteristics exposed next,
the convolution operation can be simplified.

4.4.4.1 G component

In the case of full-duplex Ethernet G is a constant for a fixed physical topology due to the medium
access technology which no longer relies on CSMA/CD (Carrier Sense Multiple Access with
Collision Detection) protocol. The latter introduced a random time to access the medium in case
of collisions5. The continuous distribution can be thus reduced to a Dirac delta function shifted
with the value of G.

We mention in Section 5.3.2 that specific to Ethernet are the preamble and Inter-Frame Gap
which is constant for each frame, regardless of its size. We incorporate these two, the Ethernet
header, the checksum - all fixed quantities, into G.

4.4.4.2 S component

The Ethernet frame (called generically packet6) sizes can take values from a finite set of discrete
numbers, from 84 to 1542 bytes as shown in Section 5.3.2. Furthermore, S is dependent on
the packet size: the larger the packet, the larger its additional contribution to the ∆Q. This
dependency can be approximated by a linear model for the entire range of possible packet sizes,
as we will see being considered in Section 4.4.5:

4we consider the full-duplex standard, since it became the commonly used one since 1997 as shown in Section
5.3.1

5another example is the Asynchronous Transfer Mode (ATM): the medium access method is cell-based, intro-
ducing thus a random delay until data is put on the wire

6Not related to the OSI [3] model layer denominations, unless specified

63

CHAPTER 4. OBSERVATIONAL MODEL

S(size) = s× size (4.20)

The working assumption that the delay component is linearly dependent on the packet size is uti-
lized for other network performance studies, e.g. in [9]. Furthermore, in [43] it is shown that the
minimum packet transit time through a router is linearly dependent on the packet size. Assuming
that the linearity holds for other network devices we can consider that the linear relation is valid
for a multi-hop network path. This assumption is confirmed by the measurements performed in
Chapter 5.

Knowing that the G component of the minimum packet delay is constant, what remains - S - is
consequently a linear function of packet size, as shown by relation 4.20. This relation expresses
the fact that S is a linear function of a random variable s.

4.4.4.3 V component

In order to obtain V we need to apply relation 4.11. Knowing that, for Ethernet, the G and S are
constants, for each packet size V becomes a transformation of random variables:

V (load) = 4Q(size, load)− [G+ S(size)] (4.21)

In terms of distributions, as mentioned in [61], page 23, the linear transformation of a random
variable η = aξ + b creates a new random variable with the distribution ωη following equation
4.22:

ωη(y) =
1

|a|
ωξ

(
y − b
a

)
(4.22)

which, for a = 1 and b = −[G+ S(size)] becomes:

ωη(y) = ωξ (y + [G+ S(size)]) (4.23)

meaning that the distribution of V for a fixed size is the distribution of ∆Q shifted with a constant
value: G+ S(size).

4.4.4.4 Convolution

In conclusion, for Ethernet, S can be represented by a delay-per-byte value which is a random
variable taking only a constant value for Ethernet networks. Its distribution can thus be reduced
to a shifted Dirac delta function. In Appendix B.1 we show that the convolution of two Dirac
delta distributions, shifted one with value a, one the other one with value b, results in a Dirac
delta distribution shifted with value a+b. The convolution of two constants can thus be expressed

64

4.4. ∆Q IN DATA NETWORKS

by their arithmetic sum. Consequently, for topological convolution, the global G and S are the
arithmetic sum of the G and S for the individual segments.

Relations 4.12 and 4.13 become in the case of Ethernet:

GAB = GA +GB (4.24)

SAB = SA + SB (4.25)

For V, the topological convolution can still be obtained using the generic convolution in relation
4.14.

Concerning the Structural Delay, for a fixed packet size the convolution in relation 4.10 becomes:

SD(size) = G+ S(size) (4.26)

4.4.5 Methodology for obtaining G, S, V

Next we will show a method of extracting the G, S and V characteristics for a path through
a data network. This method uses a sufficiently large number of ∆Q measurements between
the observables which define the path under analysis. As we will see, “sufficient” means a
certain number of samples which is able to differentiate a statistical cloud from which trends and
demarcation lines can be extracted. In our case this number is of the order of thousands.

Measuring the ∆Q for a network path involves capturing the delay between two observation
points for different packet sizes and at randomly chosen and de-correlated moments in time. In
practice, for an Ethernet network we will use:

• size: randomly chosen from interval [50,1508] bytes, uniformly distributed, to which the
Ethernet specific information is added. This is explained in Section 5.3.2.

• time: randomly chosen and the inter-sample interval following a negative exponential dis-
tribution. The negative exponential distribution was chosen due to the PASTA property
explained in [51].

• samples: 4000

The result will be a scattered plot with points characterized by [size; delay] tuples, exemplified
in Figure 4.7. As depicted here, for the same size there is variability in the time values, variability
which is dependent on the system load.

Given the large number of measurements, the minimum values for the same size, from the scat-
tered plot, are obtained when the loading of the network was close to zero, i.e. V ≈ 0. The

65

CHAPTER 4. OBSERVATIONAL MODEL

50

100

150

200

d
e
la

y
(µ

s
)

∆Q

m=tan α; S=m*size

0

50

0 200 400 600 800 1000 1200 1400 1600

frame size(bytes)

m=tan α; S=m*size
G

Figure 4.7: Obtaining G, S and V

statistical model for the points representing minimum values can be approximated by a linear
model:

y = y0 +mx (4.27)

where:

• y0 is the delay introduced by the network on a zero bytes packet, i.e. the intersection be-
tween the regression line through the minimum values and the Y axis. For a zero length
packet, there are no serialization, de-serialization delays, inter-frame gaps and no OSI
Layer-2 ([3]) overheads, as no encapsulation takes place. Hence, y0 represents the G com-
ponent and is measured in time units.

• m is the additional delay dependent on the packet size. Hence, m represents the linear
coefficient for S component - where S(size) = m×size - and is measured in seconds/byte.
In the rest of the work we will simplify S’s notation to express only the non-deterministic
component, i.e. the linear coefficient m.

• the quantity under the drawn line represents the Structural Delay.

The V component represents the distribution of delay for each packet size, purely dependent on
the load of the system. V is thus obtained by normalizing the scattered plot, i.e. deducting the
SD from the plot using equation 4.21. Figure 4.8 displays an example of a measured V, showing
its independence on the frame size.

66

4.5. CONCLUSIONS

40

60

80

100

120

140

d
e

la
y
(µ

s
)

V component

0

20

40

0 200 400 600 800 1000 1200 1400 1600

frame size(bytes)

Figure 4.8: V independence on frame size

4.5 Conclusions

The approach we introduced in this chapter targets the definition and description of a commu-
nicating system performance, the purpose being to study the performance of the ATLAS TDAQ
data network. We showed that in the context of the cyclic behavior these systems exhibit, perfor-
mance is an emergent property of repeatedly running a set of cycles.

In the case of communication protocols overlaid on top of data networks a cycle can be decom-
posed down to the one-way data transport of an element of the protocol (e.g. a SYN-ACK for
TCP as explained in [3, 47]). A result of the task of transporting data is the fact that an element
is delayed and possibly lost. We thus introduced the concept of quality attenuation (∆Q) for the
purpose of capturing both aspects: delay and loss, by means of a mathematical support (improper
CDF).

We then proposed a design flow approach called AREA which incorporates the steps required to
produce a system from the informal requirements gathering until placing it into operation. We
showed how the ∆Q is able to guide this process by acting as a metric when making design
decisions: compare the requirement ∆Q with the execution ∆Q.

The observational paradigm, which has its origins in Stochastic Process Algebra (observational
bisimilarity), gives us the possibility of measuring ∆Q by abstracting away from the implementa-
tion details of a system and by looking only at observation points, called observables. Choosing
particular observables is equivalent to choosing a particular abstraction level, hence the same
concepts work for e.g. a cross continental network as they do for a home network.

We then focused on the particular case of data networks for which ∆Q can be de-composed into
three contributors: G, S and V. These components basically capture the factors which contribute

67

CHAPTER 4. OBSERVATIONAL MODEL

to the total ∆Q, and, at the same time they are independent and manifest some properties for
topological convolution. We exemplified how these contributors work and how they are obtained
for Ethernet data networks which, as we will see, is the adopted standard for ATLAS TDAQ
network.

In the next chapter we will use the concepts introduced above for doing a performance analysis
on the ATLAS TDAQ DataFlow network. We will show how the G and S components can be an
alternative for assessing network devices performance characteristics. We will then indicate how
V offers valuable information for extracting traffic pattern properties and for predicting network
behaviour.

68

Chapter 5

Performance in ATLAS TDAQ Network

5.1 Context

In section 2.5 we introduced the ATLAS TDAQ holistic network as a key component of the
TDAQ system. Its purposes range from managing devices to commuting physics data between
front-end detectors and processing nodes. The latter is the most important task from the per-
spective of the ATLAS experiment’s main goals and is the most demanding in terms of network
performance requirements.

The network in charge of transporting physics related data is called the Data Network and en-
compasses the DataFlow and BackEnd Networks. Based on the Level-2 role exposed in Section
2.3 and due to the limitation of the mathematical approach exercised in Chapter 3, we will use
the Level-2 network (a component of the DataFlow network) as a proof of concept for the obser-
vational model introduced in Chapter 4.

5.2 Chapter goals

In this chapter we will quantify the delay and loss in the Level-2 introduced only by the data net-
work and how it varies with the workload placed on the network by the ATLAS TDAQ software.
We will obtain three categories of results:

• network devices performance measures - usable as comparison metric

• traffic pattern measures as distances from the deterministic or Poisson pattern - extracted
from the ∆Q results for different loading factors of the network

• predictive models for network behavior under increased loads - needed for the next upgrade
phase of the ATLAS TDAQ system

69

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

In order to apply the concepts introduced above on the ATLAS TDAQ network, an understanding
of the supported technologies and the structure of the network is required. We will identify the
points in the system where network traffic can be captured and decide on the observables we will
use to measure the Level-2 network’s ∆Q.

5.3 Ethernet standard

The network of the ATLAS TDAQ system (described in Section 2.5) is an Ethernet based net-
work, standard which “won” the competition with other standards like ATM for multiple reasons:
incontestable market penetration, multi-vendor support, exponential evolution of speed (10M→
100M → 1G → 10G → 100G) and low cost per port [18]. All these facilitated extensive re-
search and testing of multi-vendor Ethernet network equipment in order to identify those which
best meet the ATLAS TDAQ requirements (see [58]).

Ethernet is a widely known standard in computer networks which has become the “de facto”
standard in Local Area Networks. Extensive documentation describing Ethernet is available,
hence what we want to mention here are the aspects which influence the performance analysis
methodology when applied to this type of networks. The key aspect we are following is the delay
introduced by all the components and mechanisms specific to Ethernet.

5.3.1 Evolution

Ethernet was invented in 1973 in Xerox PARC laboratories to address the communication be-
tween hundreds of computer located in the same building and the world’s first laser printer. The
name Ethernet comes from its initial description as a communication technology across differ-
ent “ethers”: cable, telephone, radio waves. Although the 10 Mbps Ethernet running on coaxial
cable was developed in 1978, its standardization occurred only in 1983 under the name IEEE
802.3 [15]. After this moment Ethernet witnessed an exponential growth in terms of speed and
pervasiveness.

Table 5.1 summarizes the key milestones in its evolution in order to understand in which histor-
ical point the ATLAS TDAQ network was designed and what technologies were available. One
of the key moment in the evolution was the standardization of FastEthernet full-duplex, which
changed the way access to the medium is performed, removing the highly non-deterministic
half-duplex access.

At the time this network was designed (2002-2005) the highest standardized speed for Ether-
net was 10 Gigabit over optical fibers. Consequently, the connectivity is implemented using 1
Gigabit copper links and 10 Gigabit optical fibers. The current upgrade stage considers 100 Gi-
gabit optical fibers and 10 Gigabit copper connections, which is a big step forward in terms of
decreasing costs, increasing performance and simplifying the network architecture.

70

5.3. ETHERNET STANDARD

Year Milestone Organization/Company
1973 Ethernet was invented Xerox
1976 2.94 Mbps Ethernet network was built Xerox
1978 X-wire was developed: 10 Mbps Ethernet Xerox
1980 DIX Ethernet released the 10 Mbps standard DIX

1981 Started building Ethernet components
Interlan,
Bridge

Communications
1983 802.3 specification formally approved IEEE
1995 FastEthernet was standardized: 100 Mbps IEEE
1997 FastEthernet full-duplex was standardized IEEE
1998 1 Gigabit Ethernet was released IEEE
2002 10 Gigabit Ethernet was released IEEE
2010 802.3ba standardized: 40/100 Gigabit IEEE
2011 802.3bg standardized: 40/100 Gigabit IEEE

Table 5.1: Ethernet evolution

5.3.1.1 Physical layer

The initial Ethernet implementations used coaxial cables to interconnect devices. A newer form
of Ethernet became more popular as it used twisted pair wiring instead of coaxial cable, followed
by the development of optical fibers. Medium evolution with the Ethernet speed as well as the
time required to place a bit on the wire for each medium type is mentioned in Table 5.2.

The propagation delay introduced by the media type is:

• between 4.32 and 5.64 ns/m for copper. This results from the propagation speed which
ranges from 0.59c to 0.77c, where c ' 3× 108m/s is the speed of light.

• 5 ns/m for optical fiber. This results from the propagation speed in silica glass: v = c/n =
2× 108m/s, where n is the refractive index and is usually around 1.5.

We will consider these values for the purpose of quantifying the delay introduced by the network
connections. In the case of ATLAS TDAQ network, the distances range from few meters to
hundreds of meters.

71

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

Medium Speed Delay/bit
10BASE-5
10BASE-2
10BASE-T

10M 100ns

100BASE-T4
100BASE-TX
100BASE-FX

100M 10ns

1000BASE-LX
1000BASE-SX
1000BASE-CX
1000BASE-T

1G 1ns

10GBASE-SR10
10GBASE-LR
10GBASE-LRM
10GBASE-CX4

10G 0.1ns

100GBASE-SR10 100G 0.01ns

Table 5.2: Evolution of medium speed and delay/bit

5.3.2 Ethernet Frame

The IEEE 802.3 Ethernet frame structure is detailed in [56, section 3.2]. Of interest for our
measurements is the mechanism for sending an Ethernet frame on the wire and the range of
allowed frame sizes.

Before the actual data frame a preamble is sent, containing seven bytes each containing the
sequence 10101010 followed by one byte called Start Frame Delimiter (SFD) containing the
sequence 10101011. After the data frame a minimum Inter-Frame Gap (IFG) of 96 bits (12
bytes) is sent. Each Ethernet frame is thus accompanied by 20 additional bytes.

Instance Size contributors
Total size interval

(bytes)
Ethernet (no VLAN) preamble + SFD + Ethernet header

+ Payload + IFG
[84, 1538]

Ethernet (VLAN) preamble + SFD + Ethernet header
(VLAN) + Payload + IFG

[84, 1542]

∆Q measurement (VLAN) Payload [42, 1500]

Table 5.3: Ethernet frame sizes

Moreover, in the case of the TDAQ network the traffic separation is implemented using VLAN
tagging (standard 802.1q [14]) which adds 4 bytes to each Ethernet frame. The minimum size

72

5.4. STRUCTURE

however is decreased with 4 bytes, hence the frame size allowed interval becomes [64, 1522]
bytes. Adding to this the preamble, the SFD and the IFG we obtain the complete Ethernet frame
sizes with VLAN ranging from 84 to 1542 bytes.

With respect to the G, S and V components of the ∆Q we incorporate the preamble, the SFD, the
IFG, the Ethernet header (18 bytes - including the VLAN tag) and the checksum into G because
it’s a fixed overhead for the Ethernet implementation of a data network. S will thus be a measure
dependent on a size ranging from 42 to 1500 bytes. Table 5.3 summarizes the Ethernet frame
sizes in all the situations exposed above.

5.4 Structure

5.4.1 Network elements

The current architecture of the data network consists of two hierarchical layers:

• the access/concentrator layer, implemented using small switches, called Pizza-box

• the core/central layer, implemented using Chassis based switches.

The connectivity between these layers is done through 10G optical uplinks or 2 x 1G copper
trunks. The ATLAS TDAQ Data Network block diagram emphasizing the main sub-systems is
depicted in Figure 5.1:

• the DataFlow Network, comprising of:

– the ROS Concentrators: pizza-box switches, typically 24 x 1G copper ports and 2 x
10G optical ports

– the Level-2 & Level-3 (XPU) Concentrators: pizza-box switches, typically 48 x 1G
copper ports and 2 x 10G optical ports

– the Data Core switches: chassis based switches

• the BackEnd Network, incorporating:

– the Level-2 & Level-3 (XPU) Concentrators, shared with the DataFlow Network

– the BackEnd Core switches: chassis based switches

5.4.2 Connectivity & redundancy

From the point of view of the latency introduced by the medium, it is important to mention the
cable lengths in ATLAS TDAQ network, because each meter of copper or optical fiber accounts
for approximately 5ns delay, as detailed in Section 5.3.1.1. The lengths of the links between:

73

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

• ROS / XPU computers and their concentrator switches range from 1m to 10m.

• DFM / pROS / L2SV / SFI /SFO computers and the core switches range from 8m to 15m.

• XPU concentrators and core switches range from 8m to 30m.

• ROS concentrators and the core switches range from 150m to 200m. These long distances
are due to underground hosting (closer to the ATLAS detector) of the ROS computers
together with their concentrator layer while the rest of the acquisition system is hosted at
the surface.

• the concentrator switches are 10m.

10G - fibers

ROSs

10G

10G

10G 10G

DFM / pROS / L2SV

18

...A A A
B B B

ROS Concentrators

R

O

B

R

O

B

R

O

B

R

O

B

R

O

B

R

O

B

35

...

Level-2 & Level-3 Concentrators

EVENODD

XPU – ODD Racks XPU – EVEN Racks

10.147.x.x / 10.150.x.x

(Data Collection / Event Builder)

CORE-BE-01CORE-DC-02CORE-DC-01

10.148.x.x / 10.151.x.x

(Event Filter)

DFM / pROS / L2SV

CORE-BE-02

SFI SFO

Figure 5.1: ATLAS TDAQ Network - Level-2 traffic paths

These values indicate that the propagation delays introduced by the cables are of the order of few
nanoseconds (O(10−9) s) up to one microsecond (O(10−6) s).

74

5.5. PERFORMANCE ASSESSMENT AT DESIGN TIME

The network has been designed to offer redundant connectivity to the ROS computers in case one
of the DataFlow core switches or ROS concentrator switches fails. The redundancy is achieved
by connecting each ROS with two links going to different ROS concentrator switches (A, B)
and by inter-connecting the DataFlow core switches with four 10G fiber links. The classes of IP
addresses carried by each link are visible in Figure 5.1.

5.4.3 The Level-2 network paths

In the Level-2 system the communication concerning physics data and algorithms takes place
between (see Figure 5.1 for paths notation):

• L2SVs and L2PUs, both ways - A1/A2

• L2PUs and ROSs, both ways - B1/B2

• L2PU and pROS, one way - A1/A2

• L2SVs and DFMs, one way - C1/C2

Figure 5.1 indicates that all this traffic is over the DataFlow network. The devices support-
ing it are: the Level-2 concentrator switches, the Core-DC switches and the ROS concentrator
switches.

The most demanding traffic from the sequence above is the L2PUs↔ROSs traffic. It is generated
by the physics algorithms running on L2PUs which iteratively ask for event data from the ROBs
until a decision is made on the event of interest (see Section 2.3). The estimated bandwidth
required on this communication path is ∼3.2 GB/s by design1.

Moreover, the total Level-2 processing time, involving up to three L2PU↔ROS iterations, is of
the order of tens of milliseconds, as shown by the mathematical model in Chapter 3, Table 3.1.
This is the only network delay requirement we currently have and is in fact an upper bound on
the L2PU-ROS delay.

5.5 Performance assessment at design time

Prior to the implementation phase of the current network, extensive research and testing of multi-
vendor Ethernet network equipment was carried on in the ATLAS TDAQ Networking group.
This effort was performed in order to identify the network equipment who best meets the ATLAS
TDAQ requirements mentioned in [58] by looking at performance indicators such as throughput,
loss, latency across the device and its sensitivity with the packet size.

1~2 GB/s for a 65 KHz observed Level-1 rate to which we add ~100MB/s, i.e. the L2 Etmiss data explained in
Section 2.3

75

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

The method involved the use of dedicated network traffic generators (called GETB) which could
be installed as PCI boards, providing accurate time-stamping for the boards installed on the same
computer. The design of the GETB and the procedures for testing the devices are thoroughly
described in [11, 10].

The testing of the devices was performed in laboratory conditions with traffic injected by the
GETB. Poisson was chosen as traffic pattern, i.e. exponential inter-packet gap (IPG) in order
to simulate the real traffic conditions. Poisson traffic is widely used for analytical models as a
hypothesis when the number of sources generating the traffic is large enough. The frame sizes
were chosen with respect to the recommendation in [7] but also a few additional values, the
complete set being {64, 65, 135, 512, 1027 and 1518} bytes.

The advantages of this testing approach are: very precise delay measurements, automatic testing
capabilities, flexible traffic patterns, 1 Gigabit line speed and PCI standard compliant. Based on
the results of the tests performed with the GETB the current network devices were acquired.

Disadvantages of this approach were: the costs given by the design of a dedicated board, the set-
up of the testing environment which required a big number of GETB boards and the difficulty
of using them in the operational phase for performing the Assurance step introduced in Section
4.2.3.

In the next sections we will expose the differences concerning the performance analysis between
the GETB and the Observational Model and where the two can become complementary.

5.6 Observational model implementation

This section presents the implementation details of the observational model introduced in Chap-
ter 4 on the ATLAS TDAQ Network: network paths, observation points, tools to measure ∆Q
and the tools to analyze the obtained results. The measurements were performed on the network
in an operational phase, i.e. with load created by real traffic from physics experiments.

5.6.1 Measurement

We employed the One-Way Delay (OWD) approach (detailed in Section 4.4.1.2) for ∆Q mea-
surements because the traffic in ATLAS TDAQ is highly asymmetric. The L2PU-ROS traffic for
example is dominated by the physics data traveling from the ROS to L2PU. Considering that traf-
fic asymmetry also occurs heavily in the Internet traffic (see [44]), going for the OWD approach
makes this method applicable in a much wider context.

Measuring the OWD however requires a very precise clock synchronization between the obser-
vation points, in our case PCs running Linux Operating System (CERN compiled version named:
Scientific Linux for CERN - SLC [54]). On these nodes the clock synchronization is achieved
using the Network Time Protocol (NTP) [42]. For the scale of delay values we are measur-
ing NTP is not accurate enough, yielding offset values of the order of hundreds of microseconds

76

5.6. OBSERVATIONAL MODEL IMPLEMENTATION

(10−4 seconds). To overcome this issue we use a clock correction algorithm detailed in Appendix
B.2.

5.6.1.1 Generating probes

For generating frames with a certain size - called probes - we used the ping Linux tool [45]
which accepts as argument the size of the Internet Control Message Protocol (ICMP) [29] packet
payload. For example, in order to obtain an Ethernet frame of 84 bytes on the wire we give ping
the argument:

s = 84− EthernetHeader − IPHeader − ICMPHeader = 84− (20 + 18)− 20− 8 = 18 (5.1)

For an A to B communication path ping is executed on A, having B’s IP address as argument for
destination.

A typical measurement run involves an automated execution of the methodology explained in
Section 4.4.5. We used the random number generators from Python [48] to obtain the uniform
distribution for sizes and negative exponential distribution for inter-probe gap. Appendix B.3
provides details on the generation of pseudo-random numbers. The number of samples in a run
is 4000 and the average time interval between two consecutive probes is 25 ms.

5.6.1.2 Capturing observables

We use tcpdump [59] Linux tool as packet capturing tool ran on both end-nodes simultaneously.
The time-stamping required by the delay computation is offered by tcpdump itself. The timing
information in tcpdump is obtained from the ioctl SIOCGSTAMP system call which allows
getting the time the packet was received by the network interface card and not by the application
layer. The results are saved in the pcap file format provided by the libpcap [59] library in Linux
- a widely used format for packet captures.

At the operating system level, accurate time-stamping is supported by the use of Time Stamp
Counter (TSC) register2. In addition, recent generation of processors are capable of reading
this register at a constant rate given by the processor’s maximum rate3. The currently installed
processors are running at 2.4 GHz, hence the reads are performed at intervals as small as ~0.42
nanoseconds.

2the Linux kernel configuration parameter is called CONFIG_X86_TSC and is enabled for all the computers
used as observation points

3the setting is called constant_tsc and for Linux it can be found in /proc/cpuinfo

77

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

Figure 5.2: Same clock rate on the end-nodes

5.6.2 Computation and source of errors

The obtained captures are then processed by a tool written in Haskell [28] and provided by PNSol
[46]. This tool computes the delay and loss percentage for a measurement run between config-
ured observables. From the entire set of samples it then obtains the ∆Q and its components: G,
S and V for separately for forward and return directions of the measured path.

The One-Way Delay is computed within bounded error limits by employing a clock correction
algorithm detailed in Appendix B.2. The algorithm is based on the big number of samples offered
to it and assuming the linear model mentioned in Section 4.4.5 (relation 4.27).

An important source for errors still remains the clock synchronization because during a measure-
ment run the ambient conditions (i.e. temperature) change and so do the clock frequencies on the
two end-nodes. A typical measurement run is of the order of minutes, time which we discovered
is enough for the end-nodes clocks to drift apart. This affects the delay measurements because
we use local clocks to time-stamp the packets at each end-node. Between two nodes the clock
has an offset which is corrected by the algorithm mentioned earlier, but also a variable clock
rate.

Looking at the measured delays as time series we spotted linear and non-linear variations of the
clock rate. Ideally, the two end-node’s clocks should have the same rate, case in which the time
series looks like the one depicted in Figure 5.2. In practice, many measurements suffered from
clock rate variations, i.e. clock drift between the end-nodes.

Figure 5.3 depicts some of the encountered situations: positive and negative linear and non-linear.
Of particular interest is the bottom left plot which captures the moment when a data taking run
starts and the clocks start drifting. One of the likely cause of this is the change in temperature
inside the computer’s chassis due to CPU intensive operations, change which can be up to 40
degrees Celsius. Oscillator’s frequency, which gives the clock rate is known to be dependent on
the temperature. Furthermore, the ATLAS TDAQ computers come from different manufacturers
and different generations, hence oscillators come in a wide variety.

78

5.7. STRUCTURAL DELAY

Figure 5.3: Clock drift detected between end-nodes

As seen in Figure 5.3, a variation of tens of microseconds is possible during a run. In a statis-
tically independent manner, it affects the minimum delay points based on which G and S are
calculated using the methodology described in 4.4.5. In order to cancel this effect we perform
many measurements sessions discarding 10% of the results which are furthest from the mean and
considering the average values for G and S.

5.7 Structural Delay

The Structural Delay (SD) of a network is given by the convolution between G and S components,
as defined in relation 4.26. G and S can be extracted from ∆Q by employing the methodology
described in Section 4.4.5. The SD characteristic can be used as a comparison metric between
two networks from the immutable properties point of view, e.g. access to the medium, medium
propagation delays, serialization/de-serialization delays, switching speed.

Due to the topological composition property of G and S expressed in the equations 4.24 and 4.25,
we obtain G and S for segments of the network by arithmetic subtraction, provided that any two
measurements from the set {GA, GB, GAB} are known. This can be achieved by measuring two
network paths which contain a common segment.

Then we can apply relation 4.26 to calculate SD for individual network segments. The finest
granularity for the network segments from the point of view of the observational model imple-
mentation exposed in Section 5.6 is given by the network devices.

We will use different network paths in order to obtain SD for a single network device. Then we
will apply SD metric for comparing two core switches installed in the ATLAS TDAQ network
in different implementation phases. They are made by different manufacturers, the newest one

79

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

1G

1G

DFM

Core 1
SFI - DC1

10G 1G

DFM

Core 1
SFI - DC2

1G

Core 2

B
A

Figure 5.4: Network paths for core switch type 1

being a candidate for the coming upgrade of the network, therefore we will see if the newer
device performs better or worse.

5.7.1 Differential paths approach

We will identify pairs of observation points, i.e. network interfaces in the ATLAS TDAQ network
which communicate between them on paths sharing certain network segments. By measuring G
and S for these paths we are able to extract the SD property for the “ network difference”.

We applied this method for the purpose of obtaining the SD characteristics for all the network
devices in the ATLAS TDAQ network, depicted in Figure 5.1: two types of core switches (first
type represented by: CORE-DC-01/CORE-DC-02/CORE-BE-01 and second type by: CORE-
BE-02) and one type of concentrator switches (Level-2/Level-3/ROS).

5.7.1.1 Core switch

For the first core switch type we identified the paths in Figure 5.4 between DFM and SFI com-
puters. The difference between the two paths is given by a core switch plus an optical fiber few
meters long. The paths separation was possible due to the dual network configuration of the
SFI nodes (known as DC1 and DC2) and due to the configuration of DFM interface with VLAN
logical interfaces, having DC1 and DC2 networks overlaid on the same physical interface.

Probe packets were generated on the DFM node and the observables at both end points (noted
with A and B) were recorded. The measurement consisted in more than 50 runs, each com-

80

5.7. STRUCTURAL DELAY

20

30

40

50

60

70

80

90

G
 [
µ

s
]

Path 1 - G

0

10

20

run_time

15

20

25

30

S
 [

n
s
/b

y
te

]

Path 1 - S

5

10

run_time

0.06

0.08

0.1

0.12

0.14

0.16

0.18

p
ro

b
a

b
il

it
y

 m
a

ss

G distribution - Path 1

Empirical

average: 53.2 µs

CV: 0.14

Theoretical

δ(x - 53.2)

0

0.02

0.04

0.06

0.08

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81

p
ro

b
a

b
il

it
y

 m
a

ss

G [us]

average: 53.2 µs

CV: 0.14

0.05

0.1

0.15

0.2

0.25

p
ro

b
a

b
il

it
y

 m
a

ss

S distribution - Path 1

Theoretical

δ(x - 19)

Empirical

average: 19 ns/byte

CV: 0.06

0

0.05

0.1

15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25

p
ro

b
a

b
il

it
y

 m
a

ss

S [ns/byte]

Figure 5.5: G and S for the first path

prising 4000 probe packets, as detailed above in Section 5.6.1. No loss occurred during our
measurements.

In Figure 5.5 we present the G and S obtained for the first path, comprising only one core switch.
The plots at the top show the G and S evolution with run time (following the pattern day_time),
indicating that they are stationary but not perfectly constant. We stated that, theoretically, G and
S are constants for a network, however this measurement is prone to errors for reasons detailed
in Section 5.6.2.

Plots at the bottom show the corresponding distributions obtained through measurements (em-
pirical) and the theoretical ones (Dirac delta functions shifted with the empirical average values).
We can notice that the coefficients of variation (CV) are small: 0.14 for G and 0.06 for S, meaning
that the errors introduced by measurement have a small magnitude on the two variables.

In Figure 5.6 we present the similar results for the second path, comprising two core switches.
As expected we observe an increase in both G and S, due to the longer network path.

Table 5.4 summarizes the G and S values and shows the differences between the two paths. The
increase in G and S for this longer path is assigned to the second core switch and to the optical
fiber connecting the two core switches. The inter-core fiber is a few meters long. The propagation
delay is 5 ns/m for a 10G fiber, thus yielding a G for the fiber of the order of tens of nanoseconds
(O(10−8) s) , which can be ignored when working with a microseconds scale (O(10−6) s).

The Structural Delay for a core switch is:

81

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

40

60

80

100

120

140

G
 [
µ

s
]

Path 2 - G

0

20

run_time

Path 2 - S

15

20

25

30

S
 [

n
s

/b
y
te

]

Path 2 - S

0

5

10

15

S
 [

n
s
/b

y
te

]

run_time
Bin Frequency

30 2 0.032258 50 0

35 0 0 55 0

40 1 0.016129 60 0

45 0 0 65 0.055556

50 1 0.016129 70 0.055556

55 2 0.032258 75 0.074074

60 1 0.016129 80 0.074074

65 4 0.064516 85 0.203704

70 3 0.048387 90 0.148148

75 4 0.064516 95 0.166667

80 4 0.064516 100 0.166667

85 11 0.177419 105 0.055556

90 8 0.129032 110 0
0.05

0.1

0.15

0.2

0.25

p
ro

b
a

b
il

it
y

 m
a

ss

G distribution - Path 2

Empirical

average: 85.6 µs

CV: 0.12

Theoretical

δ(x - 85.6)

90 8 0.129032 110 0

95 9 0.145161 115 0

100 9 0.145161 120 0

105 3 0.048387

More 0 0

avg std dev

80.42114 17.19294

coef. Of variation0.213786

0

0.05

0.1

50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

p
ro

b
a

b
il

it
y

 m
a

ss

G [us]

0.05

0.1

0.15

0.2

p
ro

b
a

b
il

it
y

 m
a

ss

S distribution - Path 2

Theoretical

δ(x - 21.2)

Empirical

average: 21.2 ns/byte

CV: 0.1

0

0.05

14 15 15 16 16 17 18 18 19 19 20 21 21 22 22 23 24 24 25 25

p
ro

b
a

b
il

it
y

 m
a

ss

S [ns/byte]

CV: 0.1

Figure 5.6: G and S for the second path

SD(size) = 32.4 + 2.2× 10−3 × size[bytes] µs (5.2)

Network segment G [µs] S[ns/byte]
Path 1 53.2 19
Path 2 85.6 21.2

Path 2 - Path 1
Core type 1

32.4 2.2

Table 5.4: G and S values with differences between paths

A verification of this result with the values obtained by the performance assessment techniques
mentioned in Section 5.5 cannot be made too precisely because the latter are calculated as average
values while we look only at minimum values. Figure 5.7 displays the latency results obtained
using this alternative method, mentioning that each point in the scattered plot is an average value.
We observe that a linear model approximating the minimum values in this plot would generate a
G between 20 and 30 µs, compared to 32 µs what we obtained.

The same exercise for S yields values 5-6 times larger than what we obtained. We consider
a few of explanations for this difference. One is the fact that we compare two type of results:
averages against minimums. The second is the extremely precise scale of measurements required
for S, which is of the order of nanoseconds. For our measurements we use a clock correction

82

5.7. STRUCTURAL DELAY

40

50

60

70

la
te

n
cy

 [
µ

s
]

Core switch latency

10

20

30

0 200 400 600 800 1000 1200 1400 1600

frame size [bytes]

Figure 5.7: Core switch latency measured using a different method

algorithm working as an offset compensation between the two observation points, but as we will
see in Section 5.6.2 the clocks also drift in time. These drifts can cause errors of the order of
microseconds, one order of magnitude higher than the measurement scale for S.

The last possible explanation is that the performance measurements performed in the design stage
were executed on an equipment not completely identical with the one measured in operation
(i.e. the same architecture but a lower port density, hence a different switching fabric - see
[56, section 3.3] for architectural details). We additionaly mention the different software and
firmware versions which have undergone several upgrades since the lab testing was performed.
This aspect is very likely to have improved the performance of the operational network device
compared to the one that was tested - and this is what we are observing.

5.7.1.2 Core switches - different models

Another possible application of the SD metric is to compare two or more switch types. This is
important when purchase decisions have to be made in the design stage.

For comparing two core switch models, one installed in the network at a later stage, we identified
the paths in Figure 5.8: EF1 and EF2.

Applying the same methodology as above, we obtained the results in Figure 5.9 for the EF1 path
and in Figure 5.10 for the EF2 path. The differences between the two paths - ∆G and ∆S - yield
the differences between the two core switch types. Moreover, knowing the SD for the first switch
type (relation 5.2) we can deduct the SD for the second type:

83

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

1G 10G 1G

XPU-EF1 “Pizza-box”
Core type 1

SFI-EF1

A B

1G 10G 1G

XPU-EF2

“Pizza-box” Core type 2 SFI-EF2

10G 1G

DFM

Core 1
ROS A“Pizza-box”

1G

Figure 5.8: Network paths differential for core switch types 1 & 2

10

20

30

40

50

60

70

G
 [
µ

s
]

Path EF1 - G

0

10

run_time

10

15

20

25

30

35

S
 [

n
s
/b

y
te

]

Path EF1 - S

0

5

run_time

0.1

0.15

0.2

0.25

0.3

0.35

p
ro

b
a

b
il

it
y

 m
a

ss

G distribution - Path EF1

Empirical

average: 47.8 µs

CV: 0.11

Theoretical

δ(x - 47.8)

0

0.05

0.1

28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

p
ro

b
a

b
il

it
y

 m
a

ss

G [us]

0.05

0.1

0.15

0.2

0.25

0.3

p
ro

b
a

b
il

it
y

 m
a

ss

S distribution - Path EF1

Theoretical

δ(x - 25.5)

Empirical

average: 25.5 ns/byte

CV: 0.07

0

0.05

0.1

20 21 21 22 23 24 24 25 26 26 27 28 28 29 30 31 31 32

p
ro

b
a

b
il

it
y

 m
a

ss

S [ns/byte]

CV: 0.07

Figure 5.9: G and S for the EF1 path

84

5.7. STRUCTURAL DELAY

runId xpu_sfi_G (us) (x-u)^2 xpu_sfi_S(ns/byte) bins_for_G bins_for_S

29-1134 21.23 0.01 28.99 6.45 12 10.00

29-1139 17.11 16.11 35.55 82.73 14 12.00

29-1143 24.83 13.73 24.60 3.44 16 14.00

29-1147 23.67 6.46 25.81 0.41 18 16.00

29-1156 23.83 7.33 27.35 0.80 20 18.00

29-1201 17.32 14.51 27.74 1.67 22 20.00

29-1205 20.70 0.19 30.43 15.86 24 22.00

29-1209 21.01 0.01 25.93 0.27 26 24.00

29-1213 20.99 0.02 12.15 204.51 28 26.00

29-1223 12.98 66.33 23.61 8.09 30 28.00

29-1235 19.59 2.36 26.36 0.01 32 30.00

29-1238 15.75 28.91 28.01 2.42 34 32.00

29-1246 13.76 54.22 28.09 2.70 36 34.00
0

5

10

15

20

25

30

35

40

G
 [
µ

s
]

Path EF2 - G

29-1246 13.76 54.22 28.09 2.70 36 34.00

29-1249 10.69 108.85 28.04 2.53 36.00

29-1253 12.66 71.70 23.99 6.07

29-1257 18.33 7.84 27.12 0.44

29-1308 10.58 111.26 31.47 25.22

29-1311 15.59 30.65 13.67 163.40

29-1323 21.29 0.03 28.15 2.88

29-1327 31.53 108.16 25.85 0.36

29-1330 31.02 97.84 27.51 1.12

29-1334 26.85 32.72 27.98 2.34

29-1338 21.31 0.03 29.56 9.63

29-1341 34.23 171.60 26.24 0.04

29-1345 31.66 110.88 27.65 1.44

29-1352 30.79 93.33 25.90 0.30

0

5

run_time

15

20

25

30

35

40

S
 [

n
s
/b

y
te

]

Path EF2 - S

29-1352 30.79 93.33 25.90 0.30

avg std dev avg std dev

21.13 6.67 26.45 4.58

coef. Of variation 0.32 0.17

0

5

10

15

20

S
 [

n
s
/b

y
te

]

run_time

20.38 25.51

runId xpu_sfi_G (us) (x-u)^2 xpu_sfi_S(ns/byte) bins_for_G bins_for_S

29-1134 21.23 0.01 28.99 6.45 12 10.00

29-1139 17.11 16.11 35.55 82.73 14 12.00

29-1143 24.83 13.73 24.60 3.44 16 14.00

29-1147 23.67 6.46 25.81 0.41 18 16.00

29-1156 23.83 7.33 27.35 0.80 20 18.00

29-1201 17.32 14.51 27.74 1.67 22 20.00

29-1205 20.70 0.19 30.43 15.86 24 22.00

29-1209 21.01 0.01 25.93 0.27 26 24.00

29-1213 20.99 0.02 12.15 204.51 28 26.00

29-1223 12.98 66.33 23.61 8.09 30 28.00

29-1235 19.59 2.36 26.36 0.01 32 30.00

29-1238 15.75 28.91 28.01 2.42 34 32.00

29-1246 13.76 54.22 28.09 2.70 36 34.00
0

5

10

15

20

25

30

35

40

G
 [
µ

s
]

Path EF2 - G

29-1246 13.76 54.22 28.09 2.70 36 34.00

29-1249 10.69 108.85 28.04 2.53 36.00

29-1253 12.66 71.70 23.99 6.07

29-1257 18.33 7.84 27.12 0.44

29-1308 10.58 111.26 31.47 25.22

29-1311 15.59 30.65 13.67 163.40

29-1323 21.29 0.03 28.15 2.88

29-1327 31.53 108.16 25.85 0.36

29-1330 31.02 97.84 27.51 1.12

29-1334 26.85 32.72 27.98 2.34

29-1338 21.31 0.03 29.56 9.63

29-1341 34.23 171.60 26.24 0.04

29-1345 31.66 110.88 27.65 1.44

29-1352 30.79 93.33 25.90 0.30

0

5

run_time

15

20

25

30

35

40

S
 [

n
s
/b

y
te

]

Path EF2 - S

29-1352 30.79 93.33 25.90 0.30

avg std dev avg std dev

21.13 6.67 26.45 4.58

coef. Of variation 0.32 0.17

0

5

10

15

20

S
 [

n
s
/b

y
te

]

run_time

20.38 25.51

Bin Frequency

12 2 0.076923

14 3 0.115385

16 2 0.076923

18 2 0.076923

20 2 0.076923

22 6 0.230769

24 2 0.076923

26 1 0.038462

28 1 0.038462

30 0 0

32 4 0.153846

34 0 0

36 1 0.038462

0.1

0.15

0.2

0.25

p
ro

b
a

b
il

it
y

 m
a

ss

G distribution - Path EF2

Empirical

average: 21.1 µs

CV: 0.31

Theoretical

δ(x - 21.1)

36 1 0.038462

More 0 0

avg std dev

21.12687 6.665317

coef. Of variation0.31549

0

0.05

0.1

12 14 16 18 20 22 24 26 28 30 32 34 36 More

p
ro

b
a

b
il

it
y

 m
a

ss

G [us]

Bin Frequency

10.00 0 0

12.00 0 0

14.00 2 0.076923

16.00 0 0

18.00 0 0

20.00 0 0

22.00 0 0

24.00 2 0.076923

26.00 5 0.192308

28.00 8 0.307692

30.00 6 0.230769

32.00 2 0.076923

34.00 0 0 0.15

0.2

0.25

0.3

0.35

p
ro

b
a

b
il

it
y

 m
a

ss

S distribution - Path EF2

Theoretical

δ(x - 26.5)

Empirical

average: 26.5 ns/byte

CV: 0.17
34.00 0 0

36.00 1 0.038462

More 0 0

avg std dev

26.45232 4.578904

coef. Of variation0.1731
0

0.05

0.1

0.15

10 12 14 16 18 20 22 24 26 28 30 32 34

p
ro

b
a

b
il

it
y

 m
a

ss

S [ns/byte]

Empirical

average: 26.5 ns/byte

CV: 0.17

Figure 5.10: G and S for the EF2 path

Gtype2 = Gtype1 −∆G = 5.7µs (5.3)

Stype2 = Stype1 −∆S = 3.2
ns

byte
(5.4)

SD(size) = 5.7 + 3.2× 10−3 × size[bytes] µs (5.5)

The results are summarized in Table 5.5. The conclusion is that the newer switch type has a
better G, but a slightly worse S that the first switch type. Figure 5.11 shows the difference in
the delay introduced by the SD for the two switch types computed for the entire range of frame
sizes. Although S is slightly better for core type 1 the big difference in G is not canceled even for
large frames, hence for the entire range of Ethernet frame sizes the second switch is better from
the performance point of view. For the maximum frame size, the core type 2 is still faster with
25.2 µs than core type 1.

From the point of view of the envisaged upgrade, our performance assessment validates the
decision to move to a new generation of switches in the core part of the network.

85

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

15

20

25

30

35

40
d

e
la

y
 [
µ

s
]

Structural Delay

Core type 1 & 2

Type 1

Type 2

Type1 - Type 2

0

5

10

15 Type1 - Type 2

frame size [bytes]

Figure 5.11: Structural Delay with the frame size

Network segment G [µs] S[ns/byte]
Path 1 47.8 25.5
Path 2 21.1 26.5

Path 1 - Path 2
(δG, δS)

26.7 -1.0

Switch type 2
(Gtype2, Stype2)

5.7 3.2

Table 5.5: G and S values - switch type 2

5.7.1.3 Concentrator switch

The same type of switch has been installed to perform traffic concentration for: ROSs, Level-2
and Level-3 computers. Since the purpose of this PhD is the description of the Level-2 network,
we need to extract the performance characteristics for all its elements.

In order to “subtract” a concentrator switch, we identified two paths in the same network (DC1)
depicted in Figure 5.12.

The differential contains also an optical fiber which in this case is ten meters long. Given the
propagation delay of 5 ns/m we obtain a G for the fiber of the order of 50 ns which can still be
ignored when working with a microseconds scale (O(10−6) s).

Given the similarity with the differential approach to obtain the SD for core switches we present
only the summary results in Table 5.6. The SD for a concentrator switch is:

86

5.7. STRUCTURAL DELAY

1G

DFM

Core 1
SFI - DC1

1G

BA

1G 10G 1G

XPU
“Pizza-box” SFI-DC1

Core 1

Figure 5.12: Differential network paths for concentrator switch

SD(size) = 8.8 + 7.2× 10−3 × size[bytes] µs (5.6)

Network segment G [µs] S[ns/byte]
Path 1 51.2 18.8
Path 2 60 26

Concentrator
switch

8.8 7.2

Table 5.6: G and S values for concentrator switches

The measurements obtained through the alternative method presented in Section 5.5, keeping
the same observation as above concerning the differences to our method, indicate the following
values: G = 6.6µs and S = 7ns/byte. We consider these values to be close to our results in
acceptable ranges given the differences in approach (averages vs. minimums) but also given the
next aspect which could account for the larger G we obtained. These results are for latencies
between modules of the concentrator switch in two slightly different situations:

• for the alternative method between two copper ports placed on different switch modules

• for our method between one copper port and one optical fiber port (see Figure 5.12).

87

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

5.7.2 Level-2 network

We obtained until now the structural delay characteristic for all the switches involved in the
Level-2 network. The most demanding traffic in this network is caused by the L2PU (XPU) -
ROS communication. As it can be seen in Figure 5.1 this path is made up by two concentrator
switches and one core switch plus the communication links. Figure 5.13 shows this path with the
SD characteristics for each network device.

1G 10G 10G 1G

XPU “Pizza-box”
Core

ROS“Pizza-box”

1G 10G 10G 1G

XPU
“Pizza-box”

Core
“Pizza-box” ROS

10G

Core

G=8.8 µs

S=7.2 ns/byte

G=32.4 µs

S=2.2 ns/byte

G=8.8 µs

S=7.2 ns/byte

Figure 5.13: Level-2 network path: XPU-ROS

Knowing that topological convolution works in a component-wise manner, we can obtain the SD
for the entire path. Adding the G for the links, which in this case are of order of hundreds of
meters4, yielding a few microseconds, we obtain:

G = 2×Gconcentrator +Gcore +Glinks = 51µs (5.7)

S = 2× Sconcentrator + Score = 16.6
ns

byte
(5.8)

SD(size) = 51 + 16.6× 10−3 × size[bytes] µs (5.9)

In our scenario we were also able to measure the end-to-end path directly. We are thus able to
cross-check the results calculated in a component-wise manner with those directly measured.
The obtained SD for the XPU - ROS path was:

SD(size) = 51 + 20× 10−3 × size[bytes] µs (5.10)

meaning a perfect match for G and a difference of 3.4ns/byte for S. The error between the two
approaches is: 0% for G and 19.7% for S. The topology convolution is thus verified for G while
for S we consider the bigger error to be caused by the measurement scale factor mentioned in
Section 5.6.

4due to the ROS computers which are underground in the detector cavern

88

5.7. STRUCTURAL DELAY

0

10

20

30

40

50

60

70

d
e

la
y

 [
μ

s]

G

Run ID[date_time]

0

5

10

15

20

25

30

35

40

n
s/

b
y

te

S

Run ID [date_time]

0

10

20

30

40

50

60

lo
a

d
 [

%
]

Network Load

Run ID[date_time]

Figure 5.14: G, S and the network load

5.7.3 Non-dependency on load

When we introduced the structural delay concept in Section 4.4.2, we stated that the G and
S components are dependent on “structural” factors leaving the network load factor to V. We
implicitly stated that the G and S do not depend on the load. We experimentally proved that this
statement is true measuring G and S on the ROS-XPU path at different loading factors.

Figure 5.14 shows the evolution of G and S with measurement run time along with the network
load extracted for the moments when measurements took place. One can notice that the G and
S trend was not affected by the network load variations, the only effect being on their variance.
The explanation is that, as system gets more loaded, the precision of the measurements decreases
due to the time-stamping of the observables, aspect analyzed in Section 5.6.2.

89

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

5.8 V - load dependent performance indicator

We mentioned in Section 4.4.2 that one important reason for decomposing ∆Q into immutable
and mutable components was to separate the fixed contribution to the ∆Q from the rest. The re-
mainder, called V, is a random variable on which queueing theory models can be applied because
it contains no fixed delays - the latter are not properly modeled by the queueing theory. The
reason why we need these theoretical models is because V is the effect of the queueing inside a
data network. Applying the theoretical formulas for V will allow us to obtain:

• an estimate of the queue occupancy on different loading conditions

• the level of statistical correlation of the input traffic

• the network delay growth with the potential increase of the network load in the same traffic
pattern conditions

Using this information we are able to infer on traffic pattern structure and predict its influence on
the amount of delay the network will induce for an increased load.

In the particular case of the Level-2 network this translates into:

• the size of the ROS output buffers and of the XPU concentrator switches buffers

• the coefficient of variation for the traffic generated by the ROS applications

• the ROS-XPU delay to be expected in case it is planned to increase the utilization on the
network links (e.g. by increasing the event rates).

5.8.1 Network traffic dependency

5.8.1.1 Contention, patterns and queueing

The resources that are competed for in data networks are the physical layer transmission capaci-
ties. In the case of Ethernet, Table 5.2 shows the time required by the different medium types to
generate a bit of information. For example, a 1 Gigabit link requires 1 ns/bit, hence:

T1G = 8× 1542× 10−9s = 12.336× 10−6s (5.11)

i.e. ~12 µs for a full size Ethernet frame. In case information is transmitted faster than a physical
layer can accept, queueing occurs right before being sent on the medium.

In the example before, if an application sends full size Ethernet frames on a 1 Gigabit link at
intervals smaller than 12 µs, the network interface card will buffer them until the link becomes
available again. The subsequent packets will thus suffer additional delay only due to waiting

90

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

in the queue. In queueing theory the time required to serve a “customer” - packet in our case
- is called the service time. We introduce a term for denoting the service time for the largest
packet size: the Packet Service Time (PST). This basically represents the delay suffered by a
packet of maximum size allowed by Ethernet when going through the network. For 1 Gigabit
it is 12.336µs, for 10 Gigabit 1.2336µs and can be used as a worst case scenario (or the most
conservative delay) when the distribution of packet sizes is not known.

The fraction of the time the network medium was busy transmitting something is called the
network load. It is measured as a percentage of the link capacity and is calculated as the number
of transmitted bytes divided by the maximum number of bytes the link can actually transmit.
This metric is calculated as an average value, typically over 30 seconds or more, hence it does
not capture the instantaneous load, e.g. how bursty the traffic really is. We refer to this as the
traffic or arrival pattern. There is a strong dependency - proved mathematically e.g. in [2] -
between the network load, traffic pattern and the time waiting in the queue for a given service
time. Furthermore, if the traffic pattern is constant, what remains is the dependency between the
queueing time and the load.

We stated earlier that the G and S components are not dependent on the load, while V is. Fur-
thermore, V is not dependent on packet size, hence it has stationary statistical properties on the
entire range of sizes. As explained in Section 4.4.5 the method for obtaining V implies the re-
moval from the ∆Q of the immutable aspects, including the dependency on size. For a given
load, the measured V is thus a distribution characterized by mean, variance and higher-order
moments if necessary.

5.8.1.2 XPU-ROS path

The most demanding communication in the Level-2 system is the ROS-L2PU communication.
The Level-2 algorithms require event data stored in the ROSs in up to three iterations until a
decision is made, as detailed in Section 2.3. The allowed Level-2 execution time per event -
including both communication and processing - in order to avoid events filling up the ROBs is
dependent on the number of Level-2 processors available (see Section 3.5) and is of the order of
tens of milliseconds (O(10−2) s). We will quantify what is the fraction of this value caused by
the network and how it increases with the network load.

The infrastructure supporting this communication is depicted in Figure 5.13. ∆Q measurements
were performed in the manner described in Section 5.6.1 having as observation points the net-
work interfaces on the XPU and ROS computers. No lost packets were detected during the
measurements. The tools which compute the measurements automatically extract the mean, the
standard deviation and the improper CDF for V with thirteen percentiles: 10th, 20th, 25th, 50th,
60th, 70th, 75th, 80th, 90th, 95th, 99th, 99.5th and 99.9th. The number D associated with a
percentile P indicates the delay value for which P percent of the total samples have their delay
less than or equal to D. For example, the maximum delay measured for the “fastest” 25% of the
samples is the value of the 25th percentile.

Figure 5.15 presents the results for V measured on the aforementioned path, on the direction

91

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

0

20

40

60

80

100

120

140

160

180

d
e

la
y

 [
μ

s]

V - mean

Run ID [date_time]

0

10

20

30

40

50

60

70

80

90

d
e

la
y

 [
μ

s]

V - standard deviation

Run ID [date_time]

0

10

20

30

40

50

60

lo
a

d
 [

%
]

Network Load

Run ID[date_time]

Figure 5.15: V(mean and standard deviation) evolution with the network load

ROS→XPU, knowing that this is the data flow of interest. In Figure 5.16 we normalized each
plot to 1 in order to fit all three on a single graph and to better show both descriptors for V closely
follow the evolution of the load.

However, during the zero load periods the mean and standard deviation are indeed smaller, but
not zero. This accounts for the errors in measurements which we have to deal with, but also with
other possible aspects in the functioning of the switches which we are abstracting away from in
our analysis: OS scheduling and other randomness in the network devices. Also, the network is
idle from the point of view of a monitoring tool which averages values over 30 seconds, while our
probe packets are sent as a Poisson process with an average of 25 ms. It is thus likely to capture
instantaneous data transfers generated by network protocols, e.g. Spanning Tree Protocol used
for loop prevention.

Figure 5.17 plots V coefficient of variation obtained for the same measurements. The coefficient
of variation (CV) is a dimensionless number representing the fraction of the standard deviation
from the mean. We can observe that CV reflects the significant decrease of the standard deviation
for zero load periods by taking values in the range [0.2, 0.3]. Furthermore, we see that for the
ranges of loadings we were able to capture, i.e. [0%, 50%] CV is less than 1, which is the value
for the exponential distribution (characterizing Poisson processes). The distributions with CV<1

92

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

0.40

0.60

0.80

1.00

1.20

R
a

ti
o

 f
ro

m
 M

a
x

im
u

m

Normalized values

norm_vMean

0.00

0.20

Run ID [date_time]

norm_vStdDev

norm_Load

Figure 5.16: V moments evolution with the network load - normalized values

are considered to be low variance.

0.2

0.4

0.6

0.8

1.0

1.2

V - coefficient of variation

0.0

Run ID [date_time]

Figure 5.17: Coefficient of variation for V

The dependency of the mean and CV with the load is plotted in Figure 5.18, indicating two
things. One is that the increase in V with load follows a linear trend for the entire range of load
values, which indicates the potential increase for larger network loads. The second is that CV
shows an increase from 0% to 25% load but becomes stable for loads between 25% and 50%,
meaning that the standard deviation of V grows with the same amounts as the mean of V does.
The conclusion is that the V random variable has a low variance distribution, regardless of the
network load.

For our network segment of interest (XPU↔ROS), we showed the dependency of V on the
network load. However, since V is the result of waiting in the queues and their occupancy
depends also on the arrival traffic pattern, V offers additionally a valuable insight in what type
of traffic the TDAQ software is generating. Knowing V we are able to quantify the queues
occupancy and the shape of the traffic as a relative distance from the Poisson traffic, metric
which is widely used by network theoreticians.

93

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

80

100

120

140

160

180

d
e

la
y

 [
µ

s
]

ROS-XPU [V-Mean]

0

20

40

60

0 10 20 30 40 50

load [%]

0.6

0.8

1.0

1.2

d
e

la
y

 [
µ

s
]

V- coefficient of variation

0.0

0.2

0.4

0 10 20 30 40 50

load [%]

Figure 5.18: V (Mean and CV) vs. load

5.8.2 Queueing models

We introduce the notations we will use in the following sections, characteristic to the queueing
theory models thoroughly described in [2]. We already applied Kendall’s extended notation
in Chapter 3 for capturing the Level-2 system. In case of the underlying network, we use the
simplified notation A/B/C with:

• A - the arrival process - instantiated as: M for Markovian/Memoryless/Poisson arrival or G
for general arrival. The associated distribution is for the time between two consecutive ar-
rivals. A Poisson arrival is characterized by an exponential distribution of the inter-arrival
times. The inter-arrival times in queueing theory is defined to be the times between the
beginning of two consecutive packet transmission, hence they include packet transmission
times. It must not be mistaken with the inter-packet time (or gap)5, widely used in net-
working, which defines the times between the beginning of a packet transmission and the
end of the transmission of the previous packet.

• B - the service time - instantiated as: M, D or G. The associated distribution is for the time
required by the system to serve a packet. D is the case for deterministic service time, e.g.
constant.

• C - the number of servers. A network segment is described by C=1.

The simplified model implies an infinite number of places in the system, i.e. large enough buffers
in networking terms6. We thus have a limited set of models we will work with, a combination
of: {M,G}/{M,D,G}/1.

In the case of Ethernet the service time is dependent on the medium speed and the frame size. For
a given medium type the service time distribution is the distribution of the frame size measured
and scaled in time units, hence we consider it to be G (general). For the 1 and 10 Gigabit medium
the correspondence is:

5commonly abbreviated as IPG
6this assumption is supported by the extremely low rate of lost packets in the ATLAS TDAQ data network

94

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

T1G−size = size[bytes]× 8

[
ns

byte

]
(5.12)

T10G−size = size[bytes]× 0.8

[
ns

byte

]
(5.13)

We also mention the next set of notations:

• λ - the mean arrival rate of customers into the system. τ = 1
λ

is the mean inter-arrival time.

• µ - the mean service rate per server. In our case, for a single server, it represents the service
rate of the network itself. s = 1

µ
is the mean service time.

• ρ - the server utilization, in our case the load of the network. ρ = λ
µ

• C2
X - squared coefficient of variation of a positive random variable X. C2

X = V ar[X]
E[X]2

• Wq - expected steady state a customer spends in the queue.

• Ws - expected customer service time.

• W - expected steady state a customer spends in the system. W = Wq +Ws

• Lq - expected steady state number of customers in the queue

• L - expected steady state number of customers in the system. In our case L = Lq + 1

The G/G/1 queueing model is the most generic one, with general arrival distribution and service
time, hence applicable to our network. This model cannot be described mathematically by an
equation between the elements above, but only by inequalities ([2, section 5.5]). One of them
is for a particular case for a system loaded close to saturation and it’s called the heavy traffic
approximation. It is not applicable in our case due to the loading factors as high as only 50%
(Figure 5.15). The ones useful to us set the bounds for Wq as a function of load, arrival pattern,
service time pattern and average service time:

Wq ≤
ρWs

(1− ρ)

{
C2
s + C2

τ (2− ρ)/ρ

2

}
(5.14)

Wq ≥ max

{
ρWsC

2
s

2(1− ρ)
− Ws

2
, 0

}
(5.15)

From inequality 5.14 we can obtain after some transformations the lower limit for the C2
τ :

C2
τ ≥

1

2− ρ

[
2Wq(1− ρ)

Ws

− ρC2
s

]
(5.16)

95

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

Other models: M/G/1, M/M/1 and M/D/1 will be used as reference points in establishing how
a different arrival pattern or a different service would make a change in the queue sizes and the
allowed loading of the network.

5.8.3 Inferring on queue sizes

On the ROS-XPU path queueing occurs in the network interface cards on the ROSs and in the
switch output buffers where multiple sources of traffic compete for the corresponding output
link. These places are identified in Figure 5.19 and explained next in a top-down manner.

The traffic sent by the ROS application can oversubscribe the 1 Gigabit output link, hence the
network card has to buffer the instantaneous load. The arrival pattern is given by only one ROS
application per computer which has to respond with data to the L2P processes (hosted on the
XPU) and to the SFIs (for Event Building). The service time in these points is given by the link
speed and the frame size, as in relation 5.12.

The second queueing point is in the output buffers of the ROS concentrator switches. Up to 10
ROSs are sending data through one 10 Gigabit uplink to the core switch and, although the link
is not oversubscribed from the point of view of the bandwidth, instantaneous loads can cause
buffering to occur. The arrival pattern is the result of the aggregated traffic coming from 10 ROS
applications. The service time is in this case specific to the 10 Gigabit line-speed and is given by
relation 5.13, i.e. ten times faster than for a 1 Gigabit link.

The third queueing point is similar to the second one, the only difference being in the arrival
pattern. This is the result of a mixture of Level-2 and Level-3 traffic, knowing that XPUs can be
designated L2PUs or EFs.

The fourth point is defined by the XPU concentrator switch output links towards the XPU com-
puters. In case the XPU is a L2PU type, the arrival traffic is coming from the ROSs with Level-2
event data, which, if sent simultaneously, generate bursts which in turn cause queueing. The
service time is the one for a 1 Gigabit link.

The load for all the links is obtainable from the network monitoring tool and has a 30 seconds
granularity. Figure 5.20 shows a typical loading profile during a data taking run for the links
involved in the ROS-XPU path. The red plots indicate the input load on a port, while the blue
ones indicate the output load. We can notice that the highest load occurs on the ROS link to
the concentrator switch, ~50% and decreases to ~5% towards the XPU. The network load cor-
responds to the ρ in the queueing theory, hence we will use the normalized values: e.g. 0.5 for
50%, 0.05 for 5%.

The ROS-concentrator and concentrator-core links are the most utilized in the whole path, how-
ever a significant difference exists between the two. The amount of queueing in the first case is
controlled by an application which places data on a 1 Gigabit link at a potentially non-regulated
rate. Once the packets are sent on the wire they are reaching the concentrator switch at a rate
limited by the line speed. The 10 Gigabit uplink is able to accommodate all the traffic coming
from 1 Gigabit links. Queueing in the second case can occur only as a result of the switching

96

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

ROSs . . .

. . .XPUs

concentrators

concentrators

. . .

. . .

core

1G

10G

10G

1G

1

2

3

4

Figure 5.19: ROS-XPU queueing

mechanisms which could alter the rate of packets (i.e. group them together).

We thus consider the first queueing point to be the dominant one in the whole queueing chain. It
is also the place where queueing occurs as a direct result of an application sending data over the
network. Furthermore, the queueing models with one server and infinite queueing are mathemat-
ically tractable for only a queue in front of the server. Measuring the queue size in this point is
thus of special interest for the queueing models relations which would allow us to extract ROS
traffic patterns.

The approach we take makes use of the V component extractable from the ∆Q. We explained
that V is a measure of how much queueing a packet suffers between two observation points. We
also observed that for zero load the V component is not zero, which means that it captures also
other random aspects inside the network devices when switching occurs. In order to cancel the
latter we adopt a differential approach between V measured in two different loading conditions.

97

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

XPU
concentrator

Core
ROSconcentrator

1G 1G10G10G

Figure 5.20: ROS-XPU network path loaded

The difference in V will thus indicate the additional queueing delay added by a certain amount
of loading.

We performed the same type of ∆Q measurements as before, having as observation points two
ROS computers connected in the same concentrator switch, as depicted in Figure 5.21. We
sampled different loading factors of the ROS (A) to concentrator switch link, including the zero
loading. The second link, from the switch to the ROS (B) carries “request for data” traffic coming
from the L2PUs and from SFIs, which places a very low load on the network (see Figure 5.20).

ROS

1G

ROS

1G

BA

concentrator

Figure 5.21: ROS-ROS path

Table 5.7 summarizes the V (mean and standard deviation) measured for three different loading
conditions. The relative values are obtained by deducting the zero load values from the absolute
ones.

The difference in the mean of V represents the Wq - the waiting time in the queue. If we would
know the average service time Ws we could infer on the size of the queue:

98

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

ρ
V(mean) (µs) V(std. dev.) (µs)

absolute
relative to
zero load

absolute
relative to
zero load

0 5.5 - 2.6 -
0.25 44 38.5 47 44.4
0.4 67.7 62.2 59 56.4

Table 5.7: V for different loading factors

Lq = L− 1 =
Wq

Ws

− 1 (5.17)

For this purpose we captured more than 300,000 packets from real traffic (snapshot took on the
ROS interface) which showed the following statistical characteristics for the packet size distribu-
tion: average = 433.7 bytes and standard deviation = 834.5 bytes . Knowing that the service
time is linearly dependent on the packet size (relation 5.12) we are able to calculate:

Ws =
433.7× 8

1000
= 3.46µs (5.18)

C2
s =

834.52

433.72
= 3.7 (5.19)

We can now estimate the size of the queue in both loading situations (i.e. how many packets are
waiting in the ROS network buffers) to be:

ρ Lq

0.25 10
0.4 17

Table 5.8: Queue sizes for different loading factors

5.8.4 Results from theoretical models

We considered the queueing model in Figure 5.21 to be the most generic one: G/G/1 because
of the generic distributions for the arrival pattern and service time. We want to quantify the
difference between our system and a theoretical one from the point of view of the arrival traffic.

Having obtained the queue sizes and the coefficient of variation of the service time C2
s we can

insert these values into the formulas for three theoretical models which consider the arrival pat-
tern to be Poisson: M/G/1, M/M/1 and M/D/1. We are thus able estimate the theoretical loading
factors for these models and compare them with what we observed in the network monitoring
tools.

99

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

For the M/G/1 queueing system the relation 5.20 (known as Pollaczek’s formula) applies:

Wq =
ρWs

1− ρ

(
1 + C2

s

2

)
(5.20)

Knowing Lq = λWq and ρ = λWs it follows that

Lq =
ρ2

1− ρ

(
1 + C2

s

2

)
(5.21)

from which we can obtain the load ρ:

ρ =

√
L2
q + 2Lq (1 + C2

s)− Lq
1 + C2

s

(5.22)

For the M/M/1 system the service time is described by a Poisson distribution characterized by
C2
s = 1. ρ becomes

ρ =

√
L2
q + 4Lq − Lq

2
(5.23)

For the M/D/1 system the service time follows a constant distribution characterized by C2
s = 0,

ρ becoming

ρ =
√
L2
q + 2Lq − Lq (5.24)

Computing the load for all the theoretical models above and for the two queue sizes we estimated
in Section 5.8.3 we obtain the results in Table 5.9. We notice a big difference between the
observed load and the theoretical loads. These results say that the queues sizes we calculated
from observation can be obtained by some much higher loading factors if Poisson traffic is used.

Queue size ρ
observed
(G/G/1)

M/G/1 M/M/1 M/D/1

10 0.25 0.83 0.91 0.95
17 0.40 0.89 0.94 0.97

Table 5.9: Loading factors for theoretical models

Applying relation 5.21 on the observed loading factors but for the M/G/1 model, we obtain an
average queue size extremely smaller compared to the measured ones (i.e. smaller than 1), which
confirms that the big difference in queue sizes is made by the arrival pattern into the queueing
system.

100

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

By comparing the results obtained from measurement with the theoretical ones we identified the
cause for the large queues - and consequently for the large V values - to be the type of traffic the
ROS application places on the network. We continue our analysis by showing how far is the real
traffic from the theoretical Poisson traffic.

5.8.5 Traffic patterns

5.8.5.1 Comparison to Poisson process

The statistical property of the arrival patterns which can be used as a metric when comparing
them with respect to the burstiness is the coefficient of variation of the inter-arrival times: Cτ . It
is worth mentioning two aspects regarding the arrival pattern:

1. In order to isolate the effect of packet lengths on the arrival pattern, a comparison was
carried on in [26] between the autocorrelation coefficients of inter-arrival times and those
of inter-packet times, as defined in Section 5.8.2. The outcome of this comparison was that
no noticeable difference was observed between the two, hence no significant correlation
was caused by the packet lengths.

2. A different approach in characterizing the arrival process variability was addressed in [27]
making use of the indices of dispersion for intervals and for counts. It can assist the
comparison of two traffic patterns being applied to different traffic types generated by
computer workstations. Although more complex than the simple coefficient of variation,
we consider the latter to be sufficient when a comparison is made to a theoretical pattern,
i.e. Poisson.

An arrival pattern is considered bursty if the inter-arrival time distribution shows greater variabil-
ity than for a Poisson process, i.e. Cτ > 1. Inequality 5.16 sets the lower limit for the coefficient
of variation - in its squared version - as a function of the load, waiting time in the queue, waiting
time in service and the coefficient of variation of the service time. We can thus calculate this limit
for the two loading situations we captured on the ROS-ROS traffic and which we summarized in
Table 5.10.

ρ Cτ ≥
0.25 2.85
0.4 3.43

Table 5.10: Coefficient of variation (arrival traffic) for two loading factors

These values reveal a very bursty traffic, two-three times more bursty than the Poisson process,
a characteristic which increases with the load. We will investigate next the causes for this by
looking at real traffic samples captured on the ROS interface.

101

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

5.8.5.2 Real traffic captures

We captured approximately 360,000 TCP packets on one of the ROS data interfaces during data
taking using the tcpdump Linux tool. The tool was configured to capture all the traffic having as
source the ROS computer. The load of the ROS network was ~40%, i.e. ρ = 0.4. We were thus
able to observe two things regarding the traffic placed on the network by the ROS: the packet
size variation as received by the network card and the packet inter-arrival time distribution.

We identified two types of packets: small packets which fit an Ethernet frame (marked by the
tcpdump tool with sizes less than or equal to 15147) and large packets which require fragmenta-
tion. Fragmentation is the process by which large blocks of data are split at a certain OSI layer
in smaller pieces in order to fit the underlying layer’s Maximum Transmission Unit (MTU). This
process can be performed inside the operating system or inside the network card for the purpose
of saving CPU processing power. For a TCP segment, in case the operating system passes on
this responsibility to the network card, the process is called TCP offload (detailed in e.g. [4]).

5.8.5.3 Packets not fragmented

We will analyze next the arrival pattern component caused by the first category of packets. Figure
5.22 shows the distribution of the inter-arrival times for packets which fit an Ethernet frame,
hence not requiring fragmentation. The total number of these packets is ~320,000, representing
~88% of the total captured packets.

0.1

0.15

0.2

0.25

0.3

p
ro

b
a

b
il

it
y

 m
a

ss

Inter-arrival time distribution

0

0.05

0.1

p
ro

b
a

b
il

it
y

 m
a

ss

time [µs]

Figure 5.22: Packets not requiring fragmentation - inter-arrival time distribution

71514 is the maximum Ethernet frame size without the preamble, IFG and VLAN tag, as detailed in subsection
5.3.2

102

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

Property Value
Mean 29.73 µs

Standard Deviation 37.66 µs
Coefficient of Variation 1.27

Count 321240

Table 5.11: Statistical properties of inter-arrival times of small packets

The statistical properties of the arrival pattern for the not fragmented packets are summarized
in Table 5.11. The mean value for the inter-arrival times is larger than the Packet Service Time
introduced in Section 5.8.1, which is 12.336µs. This means that the not fragmented packets
arrive on average at intervals larger than the time 1 Gigabit line requires to process a full Ethernet
frame. We can also observe that the coefficient of variation is larger than one but under the
estimated value of 3.43 in Table 5.10. These aspects indicate that there is a different contributor
to the arrival pattern which is the cause for the difference in the coefficient of variation, i.e. in
the amount of burstiness.

5.8.5.4 Packets requiring fragmentation

We continue our investigation by looking at the second type of packets: the ones requiring frag-
mentation. Out of the total number of captured packets, ~40,000 (12%) are larger than the max-
imum Ethernet frame size. Figure 5.23 shows the distribution of the size of these packets. We
can notice a large number of packets of size around 10,000 bytes, more precisely 10,274 bytes,
being the result of the ROS application action of aggregating the event data fragments from all
the hosted ROBs.

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

p
ro

b
a

b
il

it
y

 m
a

ss

Packet size distribution

0.00

0.05

0.10

0.15p
ro

b
a

b
il

it
y

 m
a

ss

size [bytes]

Figure 5.23: Packets requiring fragmentation - size distribution

All the computers in the ATLAS TDAQ system currently have the TCP offload feature enabled,

103

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

meaning that the processing required by the TCP protocol is performed on the network interface
cards and not inside the operating system. For packets larger than the maximum allowed Ethernet
frame the network interface cards deals also with their fragmentation.

Once a packet has been fragmented, all the resulting Ethernet frames are sent back-to-back on
the 1 Gigabit wire, hence queueing occurs in the output buffers of the network interface cards.
This creates an artificial effect on the arrival pattern by inserting groups of packets within the
distribution plotted in Figure 5.22. We will quantify this effect mathematically by calculating the
additional delay added by a queueing system when clustering is performed on the arrival packets.
We will also simulate the modification of the arrival pattern - and implicitly of its coefficient of
variation - introduced by the fragmentation.

5.8.5.5 Additional delay caused by bursts

A packet of size s is split into n =
[

s
1514

]
packets8 of size 1514 and one packet of size s−n×1514,

hence a total group size of n + 1. In order to see the arrival pattern of the groups we plotted
the inter-arrival times of the packets requiring fragmentation in Figure 5.24. Along with this
we fitted a theoretical exponential distribution with the mean of the experimental results, i.e.
1/λ = 280µs. We can observe that the empirical distribution follows closely the theoretical one
within a limited tolerance.

0.10

0.15

0.20

0.25

0.30

0.35

p
ro

b
a

b
il

it
y

 m
a

ss

Inter-arrival time distribution

empirical

theoretical (exponential)

0.00

0.05

0.10

time [µs]

Figure 5.24: Packets requiring fragmentation - inter-arrival time distribution

Considering the arrival of groups to be a Poisson process we can apply a theoretical result men-
tioned in [1, section 10.4]. It states that the additional delay introduced by the clustering of
arrivals, denoted WG, is given by:

8[x] is the integer part of x

104

5.8. V - LOAD DEPENDENT PERFORMANCE INDICATOR

WG =
(E[G2]− E[G])WS

2E[G](1− ρ)
(5.25)

where:

• G - is the random variable characterizing the group sizes. In [61] it is shown that σ2
G =

V ar[G] = E[G2]− E[G]2.

• WS - is the mean service time of 1 Gigabit Ethernet for the packets obtained after frag-
mentation. The average packet size is 1475 bytes.

• ρ - is the loading factor. ρ = λE[G]WS , where λ is the rate of the Poisson process
characterizing the groups arrival.

The statistical properties of G obtained by measurement are summarized in Table 5.12.

Property Value
Mean 4.77

Standard Deviation 2.42
Variance 5.86

Count 34,295
Sum 163,800

Table 5.12: Statistical properties of groups

Knowing also that

λ =
1

280
µs−1 = 3.571× 10−3µs−1 (5.26)

and

Ws = 8× 1475× 10−9s = 11.8µs (5.27)

we obtain the additional delay to be

WG = 36.98µs (5.28)

This value represents the additional time spent in the queue by packets arriving in groups de-
scribed by a Poisson random variable G with rate λ compared to the situation when the same
amount of packets would arrive according to a Poisson process with the rate λE[G].

In our case, at a 40% network load, i.e. ρ = 0.4, at which the real traffic captures took place,
we observed a queueing delay of 120µs - represented by the mean value of V in Figure 5.15.
We thus estimated that 30% (36.98µs) of this is caused by the clustering of packets, which is
produced by the TCP offload mechanism enabled on the ATLAS TDAQ computers.

105

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

5.8.5.6 Additional burstiness

The grouping of packets at the network interface card due to the TCP offload mechanism does
not allow us to capture the inter-arrival time distribution of the packets using the tcpdump tool.
What we observe is only the inter-arrival time distribution of the packets at the Linux kernel
level. We can however estimate this distribution as it is generated by the network interface card,
i.e. after the fragmentation takes place.

As mentioned earlier, each packet requiring fragmentation becomes a group of packets sent back-
to-back by the network card on the output buffer placed right before the 1 Gigabit link. For these
packets we consider an inter-arrival time close to zero. The number of packets generated by the
fragmentation can be calculated from theG random variable introduced above in Section 5.8.5.5.
This number is given in the “Sum” row in Table 5.12: 163,800.

In order to obtain the number of packets sent back-to-back we have to subtract the number of
groups (row “Count” in Table 5.12: 34,295), as they have measurable and larger inter-arrival
times. In the end we obtain ~130,000 packets with inter-packet times close to zero. Estimat-
ing the arrival distribution as seen by the network card output buffers involves modifying the
distribution shown in Figure 5.22 in two ways:

• adding the 130,000 number in the first bin characterizing the smallest inter-arrival times.

• overlapping the empirical distribution of the groups arrivals in Figure 5.24.

The result is depicted in Figure 5.25. The change in the tail of the distribution is caused by the
inter-arrival times of the packets requiring fragmentation, exhibiting values larger than 100µs

The polarization of the simulated values in the two extremes increases the dispersion of the
arrival pattern. This accounts for the missing component in the coefficient of variation identified
in Section 5.8.5.3 where we noticed a difference between the one measured for the packets not
requiring fragmentation and the theoretically estimated value.

5.8.6 Conclusions on V

The investigation on the traffic pattern was triggered by the significant discrepancy between the
theoretical results for queueing models and our measurements by means of V component of the
∆Q. In a network the mean value of V represents the average time of waiting in the queues - in
the ATLAS TDAQ case the ROS output buffers. From V we deduced the size of the queue and
we could use this value to show that the theoretical models indicate a much higher loading factor
than the one measured if Poisson arrival traffic is to be used.

We thus identified the cause of this discrepancy to be the arrival pattern distribution. By looking
at a short sample of real traffic we deducted a lower bound of the coefficient of variation of the
arrival pattern which revealed a traffic between two and three times more bursty than the Poisson
one. The examination of the real traffic indicated that one of the important causes for burstiness

106

5.9. PREDICTIVE MODEL

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a

b
il

it
y

 m
a

ss

Inter-arrival time distribution

- all packets -

simulated distribution

original distribution

0.00

0.05

0.10

p
ro

b
a

b
il

it
y

 m
a

ss

time [μs]

Figure 5.25: Simulated distribution after packets fragmentation

in the system is the TCP offload setting caused by large TCP fragments generated by the ROS
application. We quantified the additional delay caused by this mechanism to be around 30% of
the total delay suffered by a packet.

The traffic pattern was investigated using the ROS-ROS measurements as depicted in Figure
5.21 because it represents a single queue system, easy to model mathematically. However, the
discoveries on the traffic pattern are affecting the performance of the entire ROS-XPU path,
which is the main Level-2 communication path. Next we will predict network behaviour for our
path of interest for increased loads, under the same arrival traffic patterns. A change in the arrival
pattern changes the V caused by the ROS output buffers and, due to the topological convolution
properties of ∆Q, affects the entire ROS-XPU path.

5.9 Predictive model

Measuring ∆Q of different network paths and under different loading conditions offered us cog-
nitive insights into performance measurements of the ATLAS TDAQ network. We were able
to apply the observational model with its particularities for an Ethernet network from which we
identified two types of network performance characteristics: fixed (Structural Delay) and vari-
able (dependent on running conditions and thus manageable). We will use their compositional
properties to capture predictive aspects of the network behaviour.

107

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

5.9.1 Extrapolation of V with load

An important result mentioned in Section 5.8.1 refers to the dependency of V on the network
load and traffic pattern. Moreover, the network load and the traffic pattern are dependent on each
other. This dependency was captured in Table 5.10 by showing that the coefficient of variation
of the arrival pattern increases with the load.

We also learned that the coefficient of variation of V is constant with the load, meaning that the
standard deviation of V grows with the same amount as its mean does. At higher loads we thus
have “wider” variations which translate into increased delays for packets. In order to describe
this effect for the ROS-XPU path we extracted three percentiles from the measurements on V:
90th, 95th and 99th. We plotted them along with the mean against the network load in Figure
5.26 and fitted a linear trend for each of them.

y = 4.3x + 36.9

y = 5.1x + 41.5

y = 7x + 48.7

200

250

300

350

400

450

d
e

la
y

 [
µ

s
]

V and 90th, 95th and 99th percentiles

ROS-XPU [V-Mean]

90th percentile

95th percentile

99th percentile

Linear (ROS-XPU [V-Mean])

Linear (90th percentile)

Linear (95th percentile)

Linear (99th percentile)

y = 2.3x + 24.4

0

50

100

150

0 10 20 30 40 50

load [%]

Figure 5.26: V mean and percentiles with load

This graph exposes the lower bounds of the V component of the overall delay for 10%, 5% and
1% of the packets. For the highest captured load we notice that 1% of the packets have their
queueing delay larger than 400µs.

5.9.1.1 Non-linearity

Using the linear trends obtained so far for network loads under 50%, one could extrapolate the
network behaviour for increased loads. Figure 5.27 depicts the extrapolative area above 50%
network load if linear trends are considered.

However, we showed in Section 5.8.5.5 that an important portion of the overall delay is caused

108

5.9. PREDICTIVE MODEL

0

60

120

180

240

300

360

420

480

540

600

660

720

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

d
e

la
y

 [
µ

s
]

Load [%]

Linear extrapolation of V

V mean

90th percentile

95th percentile

99th percentile

extrapolative area

Figure 5.27: V mean and percentiles extrapolation with load

by the clustering of packets as result of the TCP fragmentation at the network interface card.
We called this amount of delay to be WG, i.e. the waiting in the queues due to grouping, and
is expressed by relation 5.25. This relation reveals the fact that WG is a function of load of the
type:

WG =
k

1− ρ
(5.29)

where k captures the structure of the groups generated by fragmenting the large packets. For the
ATLAS TDAQ type of traffic, we measured it to be:

k =
(E[G2]− E[G])WS

2E[G]
= 29.54µs (5.30)

Relation 5.29 represents a non-linear dependency of the waiting time on the load, and is depicted
in Figure 5.28. We can observe that for loads up to 50% the WG can be approximated by a
linear dependency on the load, confirming the measurements in Figure 5.26. For increased loads
however, the non-linear contribution of the WG becomes more dominant and hence the linear
extrapolation in Figure 5.27 does not hold.

Instead, Figure 5.29 depicts the non-linear extrapolation of V considering the contribution of the
WG component obtained above. At design network load (60%) and higher the Level-2 network
should expect the delays in Table 5.13 for the slowest 10%, 5% and 1% of the packets.

On top of these values we need to add the Structural Delay component in order to obtain the total
ROS-XPU delay characteristic. The measured Structural Delay is given by relation 5.10, which
for the extreme packet size cases they yield an additional delay of: 51µs and 81µs. These values

109

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

120

180

240

300

360

d
e

la
y

 [
μ

s]

Waiting time due to grouping

0

60

120

load [%]

Figure 5.28: WG dependency on load

0

120

240

360

480

600

720

840

960

1080

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

d
e

la
y

 [
µ

s
]

Load [%]

Non-linear extrapolation of V

V mean

90th percentile

95th percentile

99th percentile

extrapolative area

Figure 5.29: V mean and percentiles non-linear extrapolation with load

110

5.9. PREDICTIVE MODEL

Load [%]
V mean

[µs]
percentiles [µs]

90th 95th 99th
60 173 306 359 480
70 205 358 418 558
80 257 430 499 658
90 526 719 796 974

Table 5.13: V at increased loads

need to be inserted into the Level-2 overall processing delay in the network BUSY intervals
depicted in Figure 3.1.

5.9.2 Level-2 delay

An L2 algorithm iteratively requires on average 2% of the full event data from the Read-Out
System, meaning an average value of 32 KB. The amount of data ranges from a few to 50 KB
per event. From the networking point of view this translates into a minimum 34 packets sent on
the ROS-XPU path.

The L2 process has to wait for all the packets to be received in order to re-assemble the data and
run the algorithm on it, process which is denoted as last-to-finish synchronization. This implies
that the delay of the event data transfer from the L2 process perspective is given by the “slowest”
received packet. One out of 30 packets, representing 3.3%, falls under the 95th percentile delay.
Thus, the Level-2 processing depends on the ROS-XPU delay given by the values in Table 5.13
for the 95th percentile to which we add the Structural Delay: 51µs for smallest packet size and
81µs for the largest.

5.9.3 Other aspects

Many of the aspects discovered by looking at the ∆Q can be seen as means of predicting network
behaviour in case different conditions are set.

One of them makes use of the topological composition of ∆Q. We showed in Section 5.7 how
we can obtain the end-to-end Structural Delay by convolving this characteristic of each network
element. We can thus predict the effect on the end-to-end performance by the replacement of a
single network component without re-evaluating the entire network path. All we need to to is to
measure its Structural delay and replace it in the end-to-end one.

Another aspect is related to the queue sizes. We have the means of inferring on queue sizes and
hence dimension the system or change some settings (e.g. TCP offload) accordingly. The next
upgrade of the ATLAS TDAQ network makes use of newly introduced 10 Gigabit copper links
which will change the mean service time of the network by an order of 10. This will have a direct
effect on the queueing delays and using the V component of the ∆Q we are able to capture that.

111

CHAPTER 5. PERFORMANCE IN ATLAS TDAQ NETWORK

Equally, a change in the TDAQ software has a quantifiable effect on the arrival pattern into the
network, hence the amount of delay to be expected can be extracted.

112

Chapter 6

Conclusions, original contributions and
future steps

This final chapter summarizes the work carried on in this thesis in the context of the ATLAS
TDAQ operational experiment, emphasizes the original contributions brought by the author in
the domain of network performance and proposes ideas and future research steps based on the
current work.

6.1 Conclusions

Particle physics reached an inflection point in its history potentially marking a big step in the
discovery of new particles and of the missing parts of the current physics models. We are wit-
nessing a moment in history when computer science, networking and physics are converging in
the sense that there is theoretically enough processing power and speed of communication in the
commodity equipments required to run high-energy physics algorithms in real time.

This great purpose placed an extremely high demand on the tools which were designed to ac-
complishing it, hence on the data acquisition system of the ATLAS experiment. Its design and
implementation took almost twenty years in a epoch described by increasingly fast developments
of communication and computing technologies. An example is the Ethernet standard. When
ATLAS TDAQ network was designed 10 Gigabit Ethernet on optical fiber was only emerging,
but by the time the system was operational the 40/100 Gigabit and 10 Gigabit on copper were al-
ready standardized. It thus became obvious that the ATLAS TDAQ system could perform faster,
hence an upgrade is envisaged soon.

In this ever-changing context the current work addresses the need of understanding the perfor-
mance of such a complex system. A method of modeling the ATLAS TDAQ system using a
Discrete Events Simulator [32, 21] is not able to keep up with this evolution, while a pure mathe-
matical description of the system offers only limited information. This thesis proposes a method
of describing performance using high level statistical metrics which provides a manageable ab-

113

CHAPTER 6. CONCLUSIONS, ORIGINAL CONTRIBUTIONS AND FUTURE STEPS

straction level for complex systems like ATLAS TDAQ. It also employs mathematical queueing
models as reference points or as offering bounds on performance aspects, where applicable.

After having introduced the ATLAS TDAQ system we started with a description focused on the
performance coupling and strong dependency between the system components, all putting perfor-
mance constraints on the interconnecting data network. We emphasized the fact that the design
and current network performance metrics relied on average values like bandwidth, because loss
and delay were considered to have a limited impact on the global performance. Equally, loss and
delay are instantaneous characteristics which were difficult to capture or predict at design stage.
We addressed them considering that these aspects have an impact on the scalability of the system
and also on its behaviour close to saturation. We also made use of a system in its operational
phase, hence access to valuable real traffic samples.

We obtained some useful, yet limited results of a mathematical model applied on a critical sub-
system called the Level-2 trigger, justifying the need for a different approach in case a more thor-
ough performance description is desired. We incorporated this approach in the framework called
the observational model, name coming from the stochastic process algebra paradigm which relies
on observational congruency between systems. Applying this model for data networks, Ethernet
in particular, we introduced a mathematically supported concept which encapsulates both loss
and delay: the quality attenuation or ∆Q.

The method of obtaining ∆Q is a cheap, non-intrusive one and, although exposed to measurement
errors due to the time-stamping process, a statistical approach in performing it is able to yield
good results if enough samples are used. We exploited ∆Q - a component-wise metric - in
multiple ways:

• as a comparison metric between network devices. We used a differential approach in order
to obtain individual performance characteristics.

• as an end-to-end network description, using its piece-wise convolution properties.

• as a measure of the delay caused by queueing. A comparison with theoretical models lead
us to investigating the traffic pattern structure.

• as a model able to capture predictive aspects in case different running conditions are set,
e.g. increased network loading conditions

6.2 Original contributions

We can classify the original contributions of this thesis in two categories: theoretical (by defining
novel theories, methods and concepts) and practical (by obtaining new results using already
existing work or our introduced theories).

114

6.2. ORIGINAL CONTRIBUTIONS

Theoretical

The first theoretical aspect consists of the mathematical description of the Level-2 system as a
queueing model. We proved that the M/G/c/c model is the most accurate and yet mathematically
tractable description of the second filtering level of the ATLAS TDAQ.

Following the conclusions on the pure mathematical model we introduced the observational
model - a generic framework made up by a set of concepts: outcomes, tasks, observables and
the central one: quality attenuation (∆Q), aimed to describe performance of any communication
system. ∆Q is mathematically sustainable by improper CDFs, concept which is able to capture
loss, delay as well as constant values through the Dirac delta function.

For data networks we decomposed ∆Q into three basis, statistically independent random vari-
ables for which we presented their properties. The most important one is the compositional
property, computable using the results for the convolution of random variables distributions.
Furthermore, we defined a methodology to extract the ∆Q components from a large number of
measurement samples using a linear statistical dependency of the delay on the packet size.

The mentioned observation model is able to assist a design flow process described by the acronym
AREA (Aspiration − Requirements − Ensurance/Execution − Assurance/Analysis), newly in-
troduced in the thesis. It proposes a high level description of processes and interactions from the
system design stage until putting it into an operational/commercial environment.

Practical

A new description of the ATLAS TDAQ system was introduced, being the result of synthesizing
the buffering and back-pressure mechanisms inside the system. Consolidated on these aspects,
we created a performance coupling description with allowed times for back-pressure mechanisms
to occur, which are indicators of the allowed latencies per sub-systems. We showed that the
Level-2 system has two mechanisms of issuing back-pressure towards the Level-1 trigger, hence
towards the detector, rendering it a highly sensitive filtering level.

Applying a mathematical description to the Level-2, we were able to obtain and analyze a rela-
tionship between the number of Level-2 processors, the probability that the system is full and the
time required by Level-2 to process an event. We applied this relationship for different configura-
tion and requirements scenarios, obtaining for the current system structure a Level-2 processing
time of the order of tens of milliseconds.

Measuring the ∆Q for the ATLAS TDAQ data network allowed us to initially achieve a perfor-
mance assessment of its network devices by employing a differential approach on the network
paths and by making use of the compositional properties of ∆Q. The measurement process itself
- a statistical one - is applicable in an operational environment, i.e. when physics data taking was
running, utilizing lightweight tools negligible from the point of view of resources consumed.

The most important set of results is related to the V component of the ∆Q. We showed how it
captures the queueing delay experienced by a packet, being a component dependent on the load

115

CHAPTER 6. CONCLUSIONS, ORIGINAL CONTRIBUTIONS AND FUTURE STEPS

of the network and on the traffic creating that load, i.e. its pattern. We thus had the grounds
and the means to initiate and carry on investigations on queue sizes and on the ATLAS TDAQ
traffic pattern being generated by the ROS application. We utilized V with theoretical queueing
models results revealing a big difference between the ATLAS traffic and the Poisson one, hence
quantifying its level of burstiness.

The ∆Q allowed us in the end to identify predictive aspects of the network performance, mainly
the traffic delay shaping at increased loads than the ones captured, showing the non-linearity of
the waiting time with the load. Based on this information we obtained the delay characteristics
at the network design average load (60%) and we showed that the Level-2 events processing is
dependent on a small fraction of packets, falling under the fraction of 5% most delayed.

6.3 Future research

The practical results introduced earlier are exploiting only a small portion of the potential the
observational model exposes. First of all, this model can be employed more widely to e.g.
Internet Service Providers, fixed or mobile operators, where the absolute values for loss and
delay are higher, though the same principles apply.

In this thesis, we applied it in a very particular context - the ATLAS TDAQ - characterized by
unique requirements, structure and running conditions. The latencies and loss inside this system
are extremely low and the tolerance for larger delays is manageable. These results however
can be used to study system scalability and vicinity to saturation, mainly in the context of the
envisaged system upgrade.

As future research steps, with applicability to the ATLAS TDAQ system, we identify:

• integration with the network and system monitoring tools or with an expert system used
for fault analysis by picking the key observables and capturing their moving time series
trend. This would allow a proactive detection of application degradation as opposed to
the current tools which offer averaged values with a lag larger than 5 minutes. A certain
increase in the instantaneous delay or delay variation is a sign that data suffers increased
queueing and alarms or actions can be triggered.

• application of this type of performance analysis to other parts of the ATLAS TDAQ net-
work, like the Event Building, which is heavily utilized and with a different traffic profile
than Level-2. Network load reaches peak values of 90% which can be used efficiently
to cross-check our results for Level-2. Also, in the Event Building sub-system the traffic
shaping mechanism could be adjusted in a more knowledgeable manner, having as direct
feedback the change in the ∆Q.

• refinement of the measurement tools, with a correction for clock drift, not only clock offset.
The challenge would be to fit a function through the time series plots, which, as we saw,
are non-linear.

116

6.3. FUTURE RESEARCH

• implementation of different and more precise observation points, like optical taps on the
network devices, yielding a complete image of the network performance. Although an
additional cost, this solution would allow constant and out-of-band performance analysis,
with the associated benefits.

117

Bibliography

[1] Ivo Adan and Jacques Resing. Queueing Theory. Department of Mathematics and Com-
puting Science, Eindhoven University of Technology, February 2002.

[2] Arnold O. Allen. Probability, Statistics, and Queuing Theory. Academic Press, Inc., 1250
Sixth Avenue, San Diego, CA 92101, second edition, 1990.

[3] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle River, New
Jersey 07458, fourth and international edition, 2003. ISBN 0-13-038488-7.

[4] Herbert H. Hum Jaidev P. Patwardhan Greg J. Regnier Annie P. Foong, Thomas R. Huff.
Tcp performance re-visited. Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), March 2003.

[5] ATLAS – A Toroidal LHC ApparatuS. http://atlas.web.cern.ch/Atlas.

[6] S M Batraneanu, D H Campora, B Martin, D O Savu, S N Stancu, and L Leahu. Advanced
Visualization System for Monitoring the ATLAS TDAQ Network in real-time. In 18th
IEEE Real-Time Conference 2012, Berkeley, California, Jun 2012.

[7] S. Bradner and J. McQuaid. Benchmarking Terminology for Network Interconnect Devices.
RFC2544, May 1999. http://www.ietf.org/rfc/rfc2544.txt?number=2544.

[8] CERN – European Organization for Nuclear Research. http://public.web.cern.
ch/public/.

[9] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and Christophe
Diot. Analysis of Point-To-Point Packet Delay In an Operational Network. IEEE INFO-
COM, 2004.

[10] Matei Ciobotaru, Stefan Stancu, Micheal LeVine, and Brian Martin. GETB, a Gigabit
Ethernet Application Platform: its Use in the ATLAS TDAQ Network. In Proc. IEEE Real
Time Conference 2005, Stockholm, Sweden, June 2005. in press.

[11] M.D. Ciobotaru. Characterizing, managing and monitoring the networks for the ATLAS
Data Acquisition System. PhD thesis, Universitatea “Politehnica” Bucureşti, 2007.

119

http://atlas.web.cern.ch/Atlas
http://www.ietf.org/rfc/rfc2544.txt?number=2544
http://public.web.cern.ch/public/
http://public.web.cern.ch/public/

BIBLIOGRAPHY

[12] Hideyuki Tokuda Clifford W. Mercer, Stefan Savage. Processor capacity reserves for mul-
timedia operating systems. 1994.

[13] ATLAS Collaboration. ATLAS Level-1 Trigger Technical Design Report. CERN/LHCC/-
98-014, 1998.

[14] LAN MAN Standards Committee. IEEE Std 802.1Q – Virtual Bridged Local Area Net-
works. IEEE Computer Society.

[15] LAN MAN Standards Committee. IEEE Std 802.3 – Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications. IEEE
Computer Society.

[16] Robert B. Cooper. Introduction to Queueing Theory. North Holland, 2nd edition, 1981.

[17] R.W. Dobinson, M. Dobson, S. Haas, B. Martin, M. J. LeVine, and F. Saka. IEEE 802.3
Ethernet, Current Status and Future Prospects at the LHC. CERN open-2000-311, Octo-
ber 2000. http://doc.cern.ch/archive/electronic/cern/preprints/
open/open-2000-311.pdf.

[18] R.W. Dobinson, S. Haas, and B. Martin. Ethernet for the ATLAS Second Level Trigger?
March 1998.

[19] M Dobson, M Ciobotaru, E Ertorer, H Garitaonandia, L Leahu, M Leahu, I M Malciu,
E Panikashvili, A Topurov, and G Ünel. The Architecture and Administration of the ATLAS
Online Computing System. In 15th International Conference on Computing In High Energy
and Nuclear Physics, pages 114–119, Mumbai, India, Feb 2006.

[20] Ethereal. http://www.ethereal.com/.

[21] Golonka P., Korcyl K., Saka F. Modeling large Ethernet networks for the ATLAS high
level trigger system using parameterized models of switches and nodes. CERN-OPEN-
2001-061, June 2007.

[22] Green B., Misiejuk A., Strong J.A, Kieft G., Krause E., Kugel A., Mï¿½ller M., Yu M.,
Wasen J.v. ATLAS TDAQ/DCS ROS ROBIN Design Document (RDD). May 2004.

[23] ATLAS Computing Group. ATLAS Computing Technical Design Report.
CERN/LHCC/2005-022, July 2005. http://atlas-proj-computing-tdr.
web.cern.ch/atlas-proj-computing-tdr/PDF/
Computing-TDR-final-July04.pdf.

[24] ATLAS HLT/DAQ/DCS Group. ATLAS High-Level Trigger Data Acquisition and Controls
Technical Design Report. CERN/LHCC/2003-022, October 2003.

[25] ATLAS TDAQ Steering Group. Trigger & Daq Interfaces With Front-end Systems: Re-
quirement Document. DAQ-NO-103, JUN 1998.

120

http://doc.cern.ch/archive/electronic/cern/preprints/open/open-2000-311.pdf
http://doc.cern.ch/archive/electronic/cern/preprints/open/open-2000-311.pdf
http://www.ethereal.com/
http://atlas-proj-computing-tdr.web.cern.ch/atlas-proj-computing-tdr/PDF/Computing-TDR-final-July04.pdf
http://atlas-proj-computing-tdr.web.cern.ch/atlas-proj-computing-tdr/PDF/Computing-TDR-final-July04.pdf
http://atlas-proj-computing-tdr.web.cern.ch/atlas-proj-computing-tdr/PDF/Computing-TDR-final-July04.pdf

BIBLIOGRAPHY

[26] Ricardo Gusella. The Characterization of Variability of Packet Arrivals in Networks of
High-Performance Workstations. PhD thesis, Computer Science Division (EECS), Univer-
sity of California, 1990.

[27] Riccardo Gusella. Characterizing the variability of arrival processes with indices of disper-
sion. TR-90-051, September 1990.

[28] Haskell. http://www.haskell.org/haskellwiki/Haskell.

[29] ICMP. http://tools.ietf.org/html/rfc792/.

[30] J. MacGregor Smith. M/G/c/K blocking probability models and system performance. De-
partment of Mechanical and Industrial Engineering, University of Massachusetts, Marston
Hall, Room 111B, Amherst, MA 01003, USA, September 2002.

[31] J. Schlereth. Level 2 Supervisor Design. DC-046, July 2002.

[32] Golonka P. et al Korcyl K., Cranfield R. Computer modeling the atlas trigger/daq system
performance. ATL-DAQ-2003-040, May 2005.

[33] L Leahu, N Davies, and D A Stoichescu. Performance vectors for data networks obtained
through statistical means. The Scientific Bulletin, University POLITEHNICA of Bucharest,
Series C. In Press.

[34] G. Lehmann. Data Acquisition and Event Building Studies for the ATLAS Experiment.
PhD thesis, Universität Bern, JUN 2000.

[35] Reqirements for Multicast Protocols. http://www.faqs.org/rfcs/rfc1458.
html.

[36] The Higgs Boson. http://www.exploratorium.edu/origins/cern/ideas/
higgs.html.

[37] The Large Hadron Collider Project. http://lhc.web.cern.ch/lhc/general/
gen_info.htm.

[38] J. W. Layland; C. L. Liu. Scheduling algorithms for multiprogramming in a hard real time
environment. Journal of ACM, 20:46–61, 1973.

[39] B. Martin, A. Al-Shabibi, S.M. Batraneanu, M.D. Ciobotaru, G.L. Darlea, L. Leahu, and
S.N. Stancu. Advanced monitoring techniques for a large scale data processing network.
TERENA Newtorking Conference, 2008.

[40] R. Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag, 1980.

[41] R. Milner. Communication and Concurrency. Number ISBN 0 13 115007 3 in PHI Series
in Computer Science. Prentice Hall, 1989.

121

http://www.haskell.org/haskellwiki/Haskell
http://tools.ietf.org/html/rfc792/
http://www.faqs.org/rfcs/rfc1458.html
http://www.faqs.org/rfcs/rfc1458.html
http://www.exploratorium.edu/origins/cern/ideas/higgs.html
http://www.exploratorium.edu/origins/cern/ideas/higgs.html
http://lhc.web.cern.ch/lhc/general/gen_info.htm
http://lhc.web.cern.ch/lhc/general/gen_info.htm

BIBLIOGRAPHY

[42] NTP: the Network Time Protocol. http://www.ntp.org.

[43] Konstantina Papagiannaki, Sue Moon, Chuck Fraleigh, Patrick Thiran, and Christophe
Diot. Measurement and Analysis of Single-Hop Delay on an IP Backbone Network. Pro-
ceedings of INFOCOM, 2002.

[44] Vern Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis,
University of California, Berkley, April 1997.

[45] Ping Linux Manual. http://linux.die.net/man/8/ping.

[46] Predictable Network Solutions Ltd. http://www.pnsol.com.

[47] J. Postel. Transmission Control Protocol. RFC0793, September 1981. http://www.

ietf.org/rfc/rfc0793.txt?number=793.

[48] The Python Programming Language. http://www.python.org/.

[49] R. Rajkumar. Synchronization in real-time systems: A priority inheritance approach. Tech-
nical report, Kluwer Academic Publishers, 1991.

[50] Robert Blair, John Dawson, Gary Drake, William Haberichter, James Schlereth, Jinlong
Zhang. The ATLAS High Level Trigger Region of Interest Builder. ATL-DAQ-PUB-2007-
001, November 2007.

[51] R.W.Wolff. Poisson arrivals see time averages. Opns. Res, 1982.

[52] R. Rajkumar; C. Lee; J. Lehoczky; D. Siewiorek. A resource allocation model for qos
management. 1997.

[53] R Sjoen, S Stancu, M Ciobotaru, S M Batraneanu, L Leahu, B Martin, and A Al-Shabibi.
Monitoring individual traffic flows within the ATLAS TDAQ network. In 17th International
Conference on Computing in High Energy and Nuclear Physics, volume 219, page 052013,
Prague, Czech Republic, 2010.

[54] Scientific Linux @ CERN. http://linux.web.cern.ch/linux/scientific.
shtml.

[55] CERN S-LINK homepage. http://hsi.web.cern.ch/HSI/s-link/.

[56] S. Stancu. Networks for the ATLAS LHC Detector: Requirements, Design and Validation.
PhD thesis, Universitatea “Politehnica” Bucureşti, JUL 2005.

[57] S Stancu, M Ciobotaru, L Leahu, B Martin, and C Meirosu. Networks for ATLAS Trigger
and Data Acquisition. In 15th International Conference on Computing In High Energy and
Nuclear Physics, pages 605–608, Mumbai, India, Feb 2006.

122

http://www.ntp.org
http://linux.die.net/man/8/ping
http://www.pnsol.com
http://www.ietf.org/rfc/rfc0793.txt?number=793
http://www.ietf.org/rfc/rfc0793.txt?number=793
http://www.python.org/
http://linux.web.cern.ch/linux/scientific.shtml
http://linux.web.cern.ch/linux/scientific.shtml
http://hsi.web.cern.ch/HSI/s-link/

BIBLIOGRAPHY

[58] Stefan Stancu, Matei Ciobotaru, and David Francis. Relevant features for dataflow
switches, April 2005. http://sstancu.home.cern.ch/sstancu/docs/sw_
feat_noreq_v0-5.pdf.

[59] Tcpdump. http://www.tcpdump.org/.

[60] TTC System. http://ttc.web.cern.ch/TTC/.

[61] M. Ciuc; C. Vertan. Prelucrarea Statistica a Semnalelor. Editura MatrixRom, Bucharest,
2005.

[62] Wireshark. http://www.wireshark.org/.

123

http://sstancu.home.cern.ch/sstancu/docs/sw_feat_noreq_v0-5.pdf
http://sstancu.home.cern.ch/sstancu/docs/sw_feat_noreq_v0-5.pdf
http://www.tcpdump.org/
http://ttc.web.cern.ch/TTC/
http://www.wireshark.org/

Appendix A

Queuing Theory

A.1 PASTA Property

In a queuing system, each newly arriving “customer” finds the system in a particular state - S.
A possibility is to consider this state as given by the number of busy servers. A very interesting
property, true only for Poisson arriving streams but for a general distribution of service time, is
called PASTA (Poisson Arrivals See Time Averages).

It states that customers which arrive in the system find on average the same situation as an
external observer which looks at the system at arbitrary points in time. In terms of system states,
this property says that the fraction of customers finding the system in state S is equal to the
fraction of time the system is actually in that state S. Through the “eyes” of Poisson arriving
customers, we can obtain mean values for the situation of the system itself, reason for which this
property is also referred as ROP (Random Observer Property)

We mentioned that this property holds only for Poisson streams. Let’s look at an example for
deterministic arrivals: users come to work on a computer at the beginning of each hour and each
of them always uses it for half an hour. The busy periods for the computer are illustrated in the
top part of Figure A.1. Although the computer is busy for 50% of the total time, each arriving
customer finds the computer idle, hence 0% of the time is loaded from its point of view.

t-k t-k+1 t0 t1

r00

r01

80 µs

125ns

100 KHz

Deterministic arrival

Poisson arrival

t

Figure A.1: Load seen by Deterministic and Poisson arrivals

125

APPENDIX A. QUEUING THEORY

Due to the nature of Poisson processes, the long-term probability of an user finding the computer
busy increases, see the bottom part of Figure A.1. It is rigorously proved in [51] that this proba-
bility equals the fraction of time the system is really busy. The very basic idea is that a Poisson
arrival process “scans” the state space of the system in such a way that for long term it reveals
the correct proportion of states.

A.2 Blocking probabilities in M/M/1/K and M/M/1 systems

The blocking probability for a finite queuing system is the probability that there is no room in
the system for an arriving customer. For the M/M/1/K system, the blocking probability is the
probability of having K=n customers in the system:

P (N = n) =
(1− ρ)ρn

1− ρn+1
(A.1)

where ρ < 1 is the loading factor, i.e. the arrival rate multiplied by the average service time.

For the M/M/1 queuing system there is no blocking probability because the queue size is infinite
and there will always be room for another customer. In order to compare it with the M/M/1/K
system, we can compute the probability of having more than K=n customers in the system.

P (N > n) = ρn+1 (A.2)

The probability of having more than n customers in a infinite queue system is equivalent to the
probability of having a finite queue system, of size n, full. Therefore, the difference between
relation A.2 and A.1 gives us the absolute error between the two models, with respect to the
probability masses:

ε = ρn+1 − (1− ρ)ρn

1− ρn+1
(A.3)

The absolute error depends on two variables: n and ρ. The differentials with respect to each of
the variables are:

δε

δn
=
ρn ln ρ(2ρ− ρn+2 − 1)

(1− ρn+1)2
(A.4)

δε

δρ
=

ρn+1

(1− ρn+1)2
[
2(n+ 1)ρ2n+3 − (n+ 1)ρ2(n+1) − 2(n+ 1)ρn+2 − ρn+1 + 2(n+ 1)ρ− n

]
(A.5)

126

Appendix B

Support for Observational Model

B.1 Dirac delta functions convolution

A Dirac delta function δ is defined by:

δ(x) =

{
+∞, x = 0

0, x 6= 0
(B.1)

A delta function shifted with a is consequently defined by:

δ(x− a) =

{
+∞, x = a

0, x 6= 0
(B.2)

Relation B.2 defines the distribution associated to a random variable taking value a only. For the
particular case of G component introduced in Section 4.4.2, if G is a constant GA for a particular
network segment, its PDF is defined by:

fA(x) = δ(x−GA) (B.3)

Topologically convolving two network segments which have their G constant is reduced to the
convolution of e.g. fA and fB:

fAB = fA ⊗ fB (B.4)

defined by:

fAB(x) =

+∞̂

−∞

fA(τ)fB(x− τ)dτ (B.5)

127

APPENDIX B. SUPPORT FOR OBSERVATIONAL MODEL

GA

1

GB

1

GAB=GA+GB

1

x

δ(x-GA) δ(x-GB)

δ(x-GAB)

Figure B.1: Delta functions convolution exemplified for GA and GB

Knowing that fA(τ) and fB(τ) take a non-zero value, i.e. 1, only when τ = GA and τ = GB

respectively, we obtain:

fAB(x) = fB(x−GA) =

{
+∞, x−GA = GB

0, x−GA 6= GB

(B.6)

equivalent to:

fAB(x) =

{
+∞, x = GA +GB

0, x 6= GA +GB

(B.7)

This proves that convolving the distributions of two constants results in the distribution of the
sum of those constants, as presented in Figure B.1 for GA and GB, meaning that:

GAB = GA +GB (B.8)

128

B.2. CLOCK SYNCHRONIZATION

B.2 Clock synchronization

When measuring the delay of a packet sent from A to B we use the local clocks for time-stamping.
These exhibit skewness due to an independent relativity to an absolute clock. A typical measure-
ment of the delay is illustrated in Figure B.2 for both directions, where:

• ti is the relative clock at A when sample i was sent

• ti +4 is the relative clock at B when sample i was sent. 4 is thus the skew between A
and B at a given moment in time.

• δi is the real delay suffered by the sample in transit.

i i

j j

i

j

Figure B.2: Measuring the delay with clock skewness

The observed transit time
−−→
ABi for ith packet is:

T−−→
ABi

= (ti +4)− ti + δi + χi = 4+ δi + χi (B.9)

while in the reverse direction for jth packet is:

T−−→
BAj

= tj − (tj +4) + δj + χj = −4+ δj + χj (B.10)

where χ is a random variable capturing the randomness from the rest of the transit.

We present an algorithm to calculate the skew4 using a large number of samples and under the
following assumptions:

• the clock skew is varying slowly as compared with the sampling rate

• the end-to-end delay is a linear function of some quantization or the packet length, i.e.:

δ = c+m× length (B.11)

129

APPENDIX B. SUPPORT FOR OBSERVATIONAL MODEL

or

δ = c+m× quantizationlength (B.12)

The strategy is to sample sufficiently often the random component χ in order to capture moments
when it yields “zero” values. We also consider that in the absence of any other information the
minimum delay is symmetric, i.e. equal in both directions.

We gather a collection of One-Way Delay values for both the directions:
−→
AB and

−→
BA, each con-

sisting of a population of

4+ δi(size) + χi

for
−→
AB and

−4+ δi(size) + χi

for
−→
BA respectively.

On each set of data we apply a procedure which we name it Fit, for
−→
AB consisting of the

following steps:

• arrange the population by the packet size and obtain an array of

{pktsize, [4+ δi(size) + χi|size = pktsize]}

• construct the sample population

{pktsize, min [4+ δi(size) + χi|size = pktsize]}

• under the assumption that we will sample a χi = 0, we obtain a population for analysis of

{(pktsize, 4+ δi(pktsize)}

• we use linear regression to fit a line through this population:

y = y0 +m× x

with the parameter y0 = 4+ c and m from the equation B.12.

Running this procedure for both directions, we obtain y0 in both cases:

Fit(
−→
AB)→ y0AB = 4+ c

130

B.3. PYTHON RANDOM NUMBER GENERATORS

Fit(
−→
BA)→ y0BA = −4+ c

From here we can calculate:

4 =
y0AB − y0BA

2

c =
y0AB + y0BA

2

4 represents the clock skew and c represents the G component of the ∆Q introduced in Chapter
4.

B.3 Python random number generators

Python provides Pseudo-Random Number Generators (PRNGs) in a module called random. We
will show the generator accuracy for two distributions: uniform and exponential.

B.3.1 Uniform distribution

A random number with uniform distribution in the interval [a, b] is generated by the function:

random . un i fo rm (a , b)

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

5
8

9
4

1
3

1

1
6

7

2
0

3

2
3

9

2
7

6

3
1

2

3
4

8

3
8

4

4
2

0

4
5

7

4
9

3

5
2

9

5
6

5

6
0

2

6
3

8

6
7

4

7
1

0

7
4

7

7
8

3

8
1

9

8
5

5

8
9

1

9
2

8

9
6

4

1
0

0
0

1
0

3
6

1
0

7
3

1
1

0
9

1
1

4
5

1
1

8
1

1
2

1
7

1
2

5
4

1
2

9
0

1
3

2
6

1
3

6
2

1
3

9
9

1
4

3
5

M
o

re

p
ro

b
a

b
il

it
y

size (bytes)

PRNG in Python

- uniform distribtion -

PRNG generated

theoretical

Figure B.3: PRNG in Python - uniform distribution

131

APPENDIX B. SUPPORT FOR OBSERVATIONAL MODEL

Figure B.3 presents the Python’s PRNG results for uniform distribution in the interval [36, 1514].
These number were used as probe frame sizes when performing the methodology described in
Section 4.4.5. We can notice the small deviation from the theoretical distribution, acceptable for
our purposes.

B.3.2 Exponential distribution

A random number following an exponential distribution with parameter λ is generated in Python
by the function:

random . e x p o v a r i a t e (lambd)

Figure B.4 presents the Python’s PRNG results for exponential distribution having a λ = 0.4ms−1.
These number were used as inter-probe intervals when performing the methodology described in
Section 4.4.5.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.7 1.3 2.0 2.7 3.4 4.0 4.7 5.4 6.0 6.7 7.4 8.0 8.7 9.4 10.1 10.7 11.4 12.1 12.7 13.4

p
ro

b
a

b
il

it
y

inter-packet interval (miliseconds)

PRNG in Python

- exponential distribtion -

PRNG generated

theoretical

Figure B.4: PRNG in Python - exponential distribution

132

