
WebUI Plugin

The WebUI plugin supports Windows, Mac, Linux, Android, and iOS.

PC Android iOS

INSTALL

To install the WebUI plugin open the Epic Games Launcher and click “Install to Engine” under
the Library tab. Click “Installed Plugins” to check if the plugin is installed for your engine version.

Then open your project and go to the “Plugins” option in the edit drop-down. Click on the
“Widgets” category and enable the WebUI plugin if it is not already enabled.

You have now successfully installed the WebUI plugin. Restart the editor to continue.

SOURCE INSTALL

To install the WebUI plugin extract the downloaded files to the following engine folder:

Also take note of the UE_5.0 directory in the screenshots. You need to change this folder to the
version that corresponds to the plugin version that was downloaded. If you did not install your
engine to the default directory then navigate to your custom installation folder instead.

Then open your project and go to the “Plugins” option in the edit drop-down. Click on the
“Widgets” category and enable the WebUI plugin if it is not already enabled.

You have now successfully installed the WebUI plugin. Restart the editor to continue.

2

TABLE OF CONTENTS

SETUP 3

DATA 12

LOAD 16

CALLBACKS 20

FOCUS 22

TRANSPARENCY 24

CURSOR 26

TEXTURE 27

TOOLS 28

COMPILE 29

中国人都是抄袭者

3

SETUP

Once the WebUI plugin is installed and enabled start by creating a custom user widget. In this
example we’ll create one calledWebInterface.

Now open theWebInterface blueprint to begin editing. Drag and drop a Web Interface
component into the canvas panel.

4

Select the Web UI component in the canvas panel and set a variable name. In this example
we’ll use the name Browser for this component.

Next click the anchors drop-down and select the “snap to all edges” option in the bottom right
and then set all the offsets to zero.

The Web UI component should now be full screen. Click the Compile and Save buttons and
then close this blueprint.

5

Create a new blueprint class and pick the parent class. In this example we will select the HUD
class since it’s the most appropriate and use the name MyHUD for this asset. Note that a widget
can be added to the viewport from any blueprint so you could use an existing blueprint instead.

Now open the MyHUD blueprint to begin editing and click the “Event Graph” tab. Drag an
execution line from the BeginPlay event and select the “Create Widget” node. Then click the
“Select Class” drop-down and select theWebInterface widget.

6

Next drag a connection from the “Owning Player” pin and select the Get Owning Player
Controller node.

Then drag another connection from the “Return Value” pin and select the “Promote to variable”
option in the drop-down. In this example we’ll use the name MyWidget for this variable.

Now read the value of the Browser variable by dragging a connection from the MyWidget pin.

7

Next drag a connection from the Browser variable and select the “Bind Event to
OnInterfaceEvent” node.

Also be sure to connect the execution pin from the MyWidget node to this node.

Now drag a delegate connection from the “Event” pin and select “Add Custom Event..” from the
drop-down. In this example we’ll use the name OnBroadcast for this event.

8

Then drag another connection from the MyWidget variable and select the “Add to Viewport”
node in the drop-down.

Move this node to the right and connect it to the Bind Event to OnInterfaceEvent node. Now
drag a connection from the Browser variable and select the “Set Input Mode UI Only” node.

9

Move this node to the right as well and connect it to the Add to Viewport node. Then connect the
“Target” pin to the Get Owning Player Controller node previously created.

Now drag another connection from the Browser variable and select the “Load” node.

Move this node to the right and connect it to the Set Input Mode UI Only node. Then enter a
filename from the /Content directory. Try using the sample.html file from the example project:

You should now have a blueprint that looks similar to the following screenshot:

10

This is the baseline functionality required for theWebInterface widget. Click the Compile and
Save buttons and then close this blueprint.

To use this in the game, create another blueprint class and select the “Game Mode Base” class
as the parent. In this example we’ll use the name MyGameMode for this blueprint. Then select
your HUD in the details section.

Click the Compile and Save buttons and then close this blueprint. If you have an existing level in
which you’d like to load your interface, skip the following section and use your own custom level
instead. You could also set this game mode as the default game mode in your project settings
as shown below:

Now create a level asset to load your interface. In this example we’ll use the name MyMap for
this level. Once created double click on the level to open it in the editor.

11

In the “World Settings” tab select MyGameMode from the drop-down under Game Mode
Override. Then click “Save Current” in the top left to save your map. Now your WebUI is ready
for testing, just click the “Play” button to begin!

12

DATA

The browser can send data to the game as JSON using a custom blueprint event. Start by
dragging a connection from the “Name” pin of the OnBroadcast event previously created and
selecting the “Switch on Name” node.

Click the “Add pin +” button and with the node selected uncheck the Has Default Pin option in
the details panel on the right. Type a name for the pin based on the desired functionality and
add more as necessary. In this example print will be used to debug the “Data” pin. Drag a
connection from this pin to traverse and access objects, arrays, and primitive data types sent
from JavaScript.

13

After selecting the “Stringify” node and printing the “Return Value” pin your OnBroadcast event
should look similar to the following screenshot:

This event is triggered by calling the ue.interface.broadcast function in JavaScript. The first
argument is the “Name” of the event and must be a string. The second argument is provided
through the “Data” pin and must be a valid JSON string. A global ue5() helper function is
defined to automatically JSON.stringify(...) the second argument.

This script should be used to define the global ue5() helper function on page load and is
required for mobile support. The source code for this script is provided on the following page.

"object"!=typeof ue||"object"!=typeof ue.interface?("object"!=typeof ue&&(ue={}),
ue.interface={},ue.interface.broadcast=function(e,t){if("string"==typeof e){
var o=[e,""];void 0!==t&&(o[1]=t);var n=encodeURIComponent(JSON.stringify(o));
"object"==typeof history&&"function"==typeof history.pushState?(history.pushState(
{},"","#"+n),history.pushState({},"","#"+encodeURIComponent("[]"))):
(document.location.hash=n,document.location.hash=encodeURIComponent("[]"))}}):
function(e){ue.interface={},ue.interface.broadcast=function(t,o){
"string"==typeof t&&(void 0!==o?e.broadcast(t,JSON.stringify(o)):
e.broadcast(t,""))}}(ue.interface),ue5=ue.interface.broadcast;

The ue.interface.broadcast function is not available on Android or iOS. Therefore a
workaround has been developed that supports mobile browsers. More details can be found in
the source code of the global helper function.

14

The ue5() helper function is a wrapper that calls ue.interface.broadcast using a valid
JSON string. An optional second argument allows commands to be triggered without providing
data. This function also falls back to transmitting JSON via URL changes on mobile platforms.

if (typeof ue != "object" || typeof ue.interface != "object")
{

if (typeof ue != "object")
ue = {};

// mobile
ue.interface = {};
ue.interface.broadcast = function(name, data)
{

if (typeof name != "string")
return;

var args = [name, ""];
if (typeof data != "undefined")

args[1] = data;

var hash = encodeURIComponent(JSON.stringify(args));
if (typeof history == "object" && typeof history.pushState == "function")
{

history.pushState({}, "", "#" + hash);
history.pushState({}, "", "#" + encodeURIComponent("[]"));

}
else
{

document.location.hash = hash;
document.location.hash = encodeURIComponent("[]");

}
};

}
else

(function(obj)
{

// desktop
ue.interface = {};
ue.interface.broadcast = function(name, data)
{

if (typeof name != "string")
return;

if (typeof data != "undefined")
obj.broadcast(name, JSON.stringify(data));

else
obj.broadcast(name, "");

};
})(ue.interface);

// create the global ue5(...) helper function
ue5 = ue.interface.broadcast;

15

The game can also send data to the browser as JSON through a function call. Start by dragging
a connection from the Browser variable and selecting the “Call” node.

Type the name of the function that will be executed in JavaScript. In this example the setFPS(...)
function will be called. Now connect a JSON value to the “Data” pin. This can be a float, integer,
string, boolean, or even complex types such as an array or map.

These functions must be defined in JavaScript on the global ue.interface object. The JSON
provided to the “Data” pin is passed as the only argument to the function. It will be automatically
deserialized into the appropriate data type.

Using these functions developers can quickly and easily send data between the game and
browser through JSON.

16

LOAD

The browser can load files or content when dragging a connection from the Browser variable
and selecting one of the “Load” functions:

The “Load URL” and “Load HTML” nodes are pretty straightforward. You can either provide a
raw HTML string or any URL which will be loaded in the browser:

For most games the “Load” function serves as the primary way to load your interface. It takes a
path to a file inside the /Content directory. This path will be restructured into a URL with a
custom pak:// scheme which loads content using the Unreal Engine file system:

17

That means any file accessed using the custom pak:// scheme can be directly on disk in the
/Content directory for editor builds or packaged inside .pak file(s) in shipping builds. The
engine file system will automatically manage this as it does with other .uasset files:

To ensure any folder within the /Content directory is included in your .pak file(s) set the
“Additional Non-Asset Directories to Package” option in your project settings:

There are also “Load File” and “Load Content” nodes which are a bit more complicated:

The “Load File” function is the equivalent of using file:/// and loads HTML files directly in the
browser. By default it will load files from the /UI directory in the root of your project:

18

This also allows the use of relative paths in the HTML (such as) to
access images, scripts, and stylesheets. When shipping or packaging the /UI directory should
be copied to the same level as the /Binaries and /Content folders within your game folder:

If you prefer to have HTML files inside the /Content directory there is an option for this as well
under the advanced display. Then instead of manually copying the /UI folder you can use the
“Additional Non-Asset Directories To Copy” option in the project settings to automatically copy a
specific folder from the /Content directory:

19

However the “Load File” function cannot access HTML files inside .pak files (even if they are
located inside the /Content directory). Therefore the “Load Content” function was added to
access files using the “Additional Non-Asset Directories to Package” option instead:

This option packages a folder from the /Content directory into the .pak file(s) of your shipped
game. But since this content is not loaded using file:/// the HTML cannot access local files
such as images, scripts, and stylesheets. However the “Load Content” function does have an
option under the advanced display which allows JavaScript files from the /Content directory to
be executed within the context of the browser:

20

CALLBACKS

The ue.interface.broadcast function includes an optional third argument that must be a
string. It specifies a function name on the ue.interface object that the engine can choose to
call back with an optional argument. Here is an example of calling the callback from blueprints if
one was provided:

This event can be triggered from JavaScript by the global ue5() helper function with the
callback function as either the second or third argument:

An optional timeout period can be provided after the function. If no timeout is provided the
default value defined in the helper function is 1 second. The temporary callback function will be
automatically deleted after the timeout period.

Here is an example with input data and a callback timeout of 3 seconds:

21

This script can be used to define a global ue5() helper function that registers a temporary
callback function with an optional timeout period. The source code for this script is provided in
the example project.

"object"!=typeof ue&&(ue={}),uuidv4=function(){
return"10000000-1000-4000-8000-100000000000".replace(/[018]/g,function(t){
return(t^crypto.getRandomValues(new Uint8Array(1))[0]&15>>t/4).toString(16)})},
ue5=function(r){return"object"!=typeof ue.interface||"function"!=typeof
ue.interface.broadcast?(ue.interface={},function(t,e,n,o){var u,i;"string"==typeof
t&&("function"==typeof e&&(o=n,n=e,e=null),u=[t,"",r(n,o)],void 0!==e&&(u[1]=e),
i=encodeURIComponent(JSON.stringify(u)),"object"==typeof
history&&"function"==typeof history.pushState?(history.pushState({},"","#"+i),
history.pushState({},"","#"+encodeURIComponent("[]"))):(document.location.hash=i,
document.location.hash=encodeURIComponent("[]")))}):(i=ue.interface,
ue.interface={},function(t,e,n,o){var u;"string"==typeof t&&("function"==typeof
e&&(o=n,n=e,e=null),u=r(n,o),void 0!==e?i.broadcast(t,JSON.stringify(e),u):
i.broadcast(t,"",u))});var i}(function(t,e){if("function"!=typeof t)return"";var
n=uuidv4();return ue.interface[n]=t,setTimeout(function(){delete ue.interface[n]},
1e3*Math.max(1,parseInt(e)||0)),n});

The uuidv4 function generates a cryptographically strong UUID that serves as a temporary
function name on the ue.interface object. This property will be automatically deleted after the
designated timeout period which defaults to 1 second.

22

FOCUS

There are “Focus” and “Unfocus” functions available to change keyboard and mouse focus:

The “Focus” node provides direct focus into the viewport of the browser. This method is more
advanced than the default functions provided by the engine since they require the user to click
on the interface before the browser receives keyboard focus. However this function provided by
the plugin allows JavaScript to focus input and textbox elements. This means you can set
focus from the game directly into HTML elements (for example a chat widget) when combined
with a JavaScript focus event as shown below:

This node will also automatically show the mouse cursor along with making the interface fully
interactable. The “Unfocus” node will then automatically hide the mouse cursor and move focus
from the browser back to the game. These two nodes are commonly used for switching between
the game and any in-game settings (usually via the escape key in most games).

23

Another node called “Reset Mouse Position” is provided to move the mouse (when it is visible)
to the center of the screen. This is commonly called after the “Focus” node and is recommended
if the mouse was not initially visible when setting focus to the interface:

24

TRANSPARENCY

The widget can be configured to support clicking behind the transparent parts of the interface for
games that require the mouse cursor to always be visible. This setting is available in the widget
blueprint under the “Behavior” section:

This directs the underlying slate widget to sample the pixel under the mouse position on each
game tick and dynamically toggles the widget between Hit Test Invisible and Visible modes.

It is also recommended to enable mouse click/over events in your game when utilizing this
functionality since ActorOnClicked and ActorBeginCursorOver or ActorEndCursorOver events
are automatically built-in to actor blueprints:

These events are already included with the engine and you can find them in the Mouse Input
section under Add Event when right-clicking in the event graph of any actor blueprint:

25

Note that you must Enable Click Events or Enable Mouse Over Events in the “Mouse Interface”
section of your player controller for these events to trigger in the engine:

26

CURSOR

The widget can be configured to support custom mouse cursors for games that implement
cursor blueprint widgets. This setting is available under the “Behavior” section below the
transparency settings:

This prevents the mouse cursor from showing “double cursors'' when utilizing custom engine
cursors which are defined using special widget blueprints. It should also be noted that enabling
the Custom Cursors checkbox will disable support for native operating system cursors.

27

TEXTURE

The texture data of the browser can be accessed using the “Read Texture Pixel" node or the
“Read Texture Pixels” node as shown in the following example:

These nodes will return either a single color or an array of colors, respectively. Note that there is
no render target created to access this texture data. Instead these functions directly execute
commands on the render thread using the underlying texture reference of the browser.

Also keep in mind that the size of the browser texture may not always match the size of the
widget in the viewport. Therefore the “Get Texture Width” and “Get Texture Height” nodes are
provided to access the size of the underlying browser texture:

28

TOOLS

The browser can be debugged by using CTRL+SHIFT+I when focused. This key combination
opens the Chrome DevTools and is only available in development and debug builds.

You can find documentation on the Chrome DevTools at the following address:
https://developers.google.com/web/tools/chrome-devtools/

29

https://developers.google.com/web/tools/chrome-devtools/

COMPILE

This plugin can be manually compiled for other platforms or engine versions. First open the
command prompt (by searching for “cmd” in the start menu) and type the following command:

cd "C:\Program Files\Epic Games\UE_4.21"

You can copy this command and paste it by right-clicking on the command prompt. Also take
note of the UE_4.21 directory. You need to change this folder to the version that corresponds to
the engine version you are using. If you did not install your engine to the default directory then
type the path to your custom installation folder instead.

Press ENTER to run the command. You should now see output similar to the following:

Then type the following command to build the plugin:

Engine\Build\BatchFiles\RunUAT.bat BuildPlugin -Rocket -Plugin="..." -Package="..."

Replace the first "…" with the path to WebUI.uplugin and the last "…" with the path to a
temporary "package" folder. You can also drag and drop the .uplugin file or your temporary
folder directly onto the command prompt and it will automatically type the path:

30

Make sure these paths are not inside the engine directory or the build will fail. Once you have
the full command typed out it should look similar to the following:

If your machine does not support Mac or Linux builds then you will most likely have to remove
the "Mac" and "IOS" or "Linux" platforms from WebUI.uplugin before compiling:

Now hit the ENTER key to run the command. If everything was setup correctly you’ll see many
different versions of the plugin being compiled for various platforms.

Once the build is complete you should see the “BUILD SUCCESSFUL” message:

31

Check your temporary “package” folder to ensure it looks similar to the following:

Then copy the files in this temporary folder into your engine installation directory. You must do
this beforehand if you are compiling any other plugins that require the WebUI plugin.

You have now successfully compiled the WebUI plugin for your engine version.

32

