
JsonLibrary Plugin

The JsonLibrary plugin supports Windows, Mac, Linux, Android, and iOS.

PC Android iOS

INSTALL

To install the JsonLibrary plugin open the Epic Games Launcher and click “Install to Engine” on
the Library tab. Click “Installed Plugins” to check if the plugin is installed for your engine version.

Then open your project and go to the “Plugins” option in the edit drop-down. Click on the
“Messaging” category and enable the JsonLibrary plugin if it is not already enabled.

You have now successfully installed the JsonLibrary plugin. Restart the editor to continue.



SOURCE INSTALL

To install the JsonLibrary plugin extract the downloaded files to the following engine folder:

Also take note of the UE_5.1 directory in the screenshots. You need to change this folder to the
version that corresponds to the plugin version that was downloaded. If you did not install your
engine to the default directory then navigate to your custom installation folder instead.

Then open your project and go to the “Plugins” option in the edit drop-down. Click on the
“Messaging” category and enable the JsonLibrary plugin if it is not already enabled.

You have now successfully installed the JsonLibrary plugin. Restart the editor to continue.

2



TABLE OF CONTENTS

MENU 4

PARSE 5

OBJECTS 7

ARRAYS 10

EVENTS 13

COMPILE 15

3



MENU

Once the JsonLibrary plugin is installed and enabled start by right clicking in any blueprint to
bring up the context menu and navigate to the JSON Library section.

The “Construct Object” and “Construct List” nodes can be used to create JSON objects and
arrays. To convert various data types into a JSON value use the “Convert From …” nodes. The
“Construct null” helper is also available to create a null value.

4



PARSE

Call the “Parse” node to deserialize a valid JSON string. This will return a generic JSON value
that contains any primitive or complex data type. It is the equivalent of using JSON.parse(...)

in JavaScript. Now drag a connection from the Return Value pin to see the available functions.

Use the “Get Type” node to check the current type of the JSON value. This will return an enum
for the various primitive and complex data types. However if a JSON value is not initialized, not
valid JSON, or undefined then “Get Type” will return Invalid.

The “Convert To…” nodes will convert JSON values into primitive or complex data types. If the
JSON value being converted does not match the conversion type then a default value will be
returned. This is false for booleans, zero for integers or floats, or an empty string.

5



These JSON values can also be copied to native UE4 arrays or maps.

6



OBJECTS

The “Construct Object” node is used to create a JSON object. Start by dragging a connection
from the return value to see the available functions.

If an existing JSON value is of the type object then it can also be converted to a JSON object
using the “Convert To Object” helper. The “Has Property” node can be used to check if the
object contains an existing key while the “Get …” nodes provide access to the current values.

7



The “Remove Property” node is used to remove an existing key. There are also “Set …”
functions for various data types that add a new property to the JSON object.

These “Set…” or “Remove Property” nodes also return a reference to the Target pin so that they
can be daisy chained with more functions.

After dragging a connection from the Return Value pin select another “Set …” function to daisy
chain them together. This allows for cleaner connections when manipulating JSON objects.

8



The “Stringify” node is also used to serialize a JSON object into a string. This is the equivalent
of using JSON.stringify(...) in JavaScript.

This will always return a string in the format "{...}" unless the JSON object is undefined.

9



ARRAYS

The “Construct List” node is used to create a JSON array. Start by dragging a connection from
the return value to see the available functions.

If an existing JSON value is of the type array then it can also be converted to a JSON array
using the “Convert To List” helper. The “Count” node is used to check the current length of the
array while the “Get …” nodes provide access to the values.

10



The “Remove” node is used to remove an existing index. Other “Remove …” nodes are
provided as well in order to remove a specific value from the JSON array.

There are “Add …” and “Insert…” functions for various data types that add or insert new
elements to the JSON array, respectively.

There are also “Set …” functions for various data types that set an existing element in the JSON
array. These nodes return a reference to the Target pin as well so they can be daisy chained.

11



The “Stringify” node is also used to serialize a JSON array into a string. This is the equivalent of
using JSON.stringify(...) in JavaScript.

This will always return a string in the format "[...]" unless the JSON array is undefined.

12



EVENTS

The “Construct Object” and “Construct List” nodes can also be connected to a delegate for
change tracking. Start by dragging a connection from the delegate pin and select the following
option to add a custom event:

This event is only valid for the current structure and will not trigger if accessed via a parent
object or converted into a generic JSON value. Therefore you should store this reference in a
variable to access it in different parts of your blueprint, otherwise only the internal JSON data
will be referenced when added to another object/list or converted to a value:

13



The “Action” pin on the event delegate logs whether the object/list had a property/element
added, removed, or changed. It also provides the value that is being added or removed. If the
object/list was cleared then the reset action will be triggered with no key/index or value. Lastly
when a property/element is set to the same value the none action will be triggered:

These delegates are also available on the “Parse Object” and “Parse List” nodes:

Again note that these delegates will only have a binding to the root object/list and only apply to
the current reference. Any subobjects or subarrays that were parsed will not trigger this event.

14



COMPILE

This plugin can be manually compiled for other platforms or engine versions. First open the
command prompt (by searching for “cmd” in the start menu) and type the following command:

cd "C:\Program Files\Epic Games\UE_4.21"

You can copy this command and paste it by right-clicking on the command prompt. Also take
note of the UE_4.21 directory. You need to change this folder to the version that corresponds to
the engine version you are using. If you did not install your engine to the default directory then
type the path to your custom installation folder instead.

Press ENTER to run the command. You should now see output similar to the following:

Then type the following command to build the plugin:

Engine\Build\BatchFiles\RunUAT.bat BuildPlugin -Rocket -Plugin="..." -Package="..."

Replace the first "…" with the path to JsonLibrary.uplugin and the last "…" with the
path to a temporary “package” folder. You can also drag and drop the .uplugin file or your
temporary folder directly onto the command prompt and it will automatically type the path:

15



Make sure these paths are not inside the engine directory or the build will fail. Once you have
the full command typed out it should look similar to the following:

If your machine does not support Mac or Linux builds then you will most likely have to remove
the “Mac” and “IOS” or “Linux” platforms from JsonLibrary.uplugin before compiling:

Now hit the ENTER key to run the command. If everything was setup correctly you’ll see many
different versions of the plugin being compiled for various platforms.

Once the build is complete you should see the “BUILD SUCCESSFUL” message:

16



Check your temporary “package” folder to ensure it looks similar to the following:

Then copy the files in this temporary folder into your engine installation directory. You must do
this beforehand if you are compiling any other plugins that require the JsonLibrary plugin.

You have now successfully compiled the JsonLibrary plugin for your engine version.

17


