
Joseph Albahari & Ben Albahari

C# 6.0
in a Nutshell

THE DEFINITIVE REFERENCE

6th Edition

Covers .NET 4.6 &

the Roslyn Compiler

C#/MICROSOF T .NET

C# 6.0 in a Nutshell

ISBN: 978-1-491-92706-9

US $59.99 CAN $68.99

“	C# 6.0 in a Nutshell	is	
one	of	the	few	books		
I	keep	on	my	desk	as		
a	quick	reference.”

—Scott Guthrie
Microsoft

“	Novices	and	experts	
alike	will	find	the	latest	
techniques	in	C#	
programming	here.”

—Eric Lippert
C# MVP

Twitter: @oreillymedia
facebook.com/oreilly

When you have questions about C# 6.0 or the
.NET CLR and its core Framework assemblies, this
bestselling guide has the answers you need. C# has
become a language of unusual flexibility and breadth
since its premiere in 2000, but this continual growth
means there’s still much more to learn.

O r g a n i ze d a ro u n d c o n c e p t s a n d u s e c a s e s ,
this thoroughly updated sixth edition provides
intermediate and advanced programmers with a
concise map of C# and .NET knowledge. Dive in and
discover why this Nutshell guide is considered the
definitive reference on C#.

 ■ Get up to speed with all aspects of the
C# language, from the basics of syntax
and variables, to advanced topics such
as pointers and operator overloading

 ■ Dig deep into LINQ via three chapters
dedicated to the topic

 ■ Learn about dynamic, asynchronous, and
parallel programming

 ■ Work with .NET features, including XML,
networking, serialization, reflection,
security, application domains, and code
contracts

 ■ Explore the new C# 6.0 compiler-as-a-
service, Roslyn

Joseph Albahari, author of C#
5.0 in a Nutshell, C# 5.0 Pocket
Reference, and LINQ Pocket
Reference, also wrote LINQPad,
the popular code scratchpad and
LINQ querying utility..

Ben Albahari, a former program
manager at Microsoft, is cofounder
of Auditionist, a casting website
for actors in the UK.

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920040323.do

978-1-491-92706-9

[M]

C# 6.0 in a Nutshell
by Joseph Albahari and Ben Albahari

Copyright © 2016 Joseph Albahari and Ben Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Production Editor: Kristen Brown
Proofreader: Amanda Kersey
Indexer: Angela Howard

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2015: Sixth Edition

Revision History for the Sixth Edition
2015-11-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927069 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 6.0 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors dis‐
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol‐
ogy this work contains or describes is subject to open source licenses or the intellectual prop‐
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

Table of Contents

Preface. xi

1. Introducing C# and the .NET Framework. 1
Object Orientation 1
Type Safety 2
Memory Management 3
Platform Support 3
C#’s Relationship with the CLR 3
The CLR and .NET Framework 3
C# and Windows Runtime 5
What’s New in C# 6.0 6
What Was New in C# 5.0 8
What Was New in C# 4.0 8
What Was New in C# 3.0 9

2. C# Language Basics. 11
A First C# Program 11
Syntax 14
Type Basics 17
Numeric Types 26
Boolean Type and Operators 33
Strings and Characters 35
Arrays 38
Variables and Parameters 42
Expressions and Operators 51
Null Operators 55
Statements 56
Namespaces 65

3. Creating Types in C#. 73

iii

Classes 73
Inheritance 88
The object Type 97
Structs 101
Access Modifiers 102
Interfaces 104
Enums 109
Nested Types 113
Generics 114

4. Advanced C#. 127
Delegates 127
Events 136
Lambda Expressions 143
Anonymous Methods 147
try Statements and Exceptions 148
Enumeration and Iterators 156
Nullable Types 162
Operator Overloading 168
Extension Methods 171
Anonymous Types 174
Dynamic Binding 175
Attributes 183
Caller Info Attributes (C# 5) 185
Unsafe Code and Pointers 187
Preprocessor Directives 190
XML Documentation 193

5. Framework Overview. 199
The CLR and Core Framework 202
Applied Technologies 206

6. Framework Fundamentals. 213
String and Text Handling 213
Dates and Times 226
Dates and Time Zones 234
Formatting and Parsing 240
Standard Format Strings and Parsing Flags 246
Other Conversion Mechanisms 253
Globalization 257
Working with Numbers 258
Enums 262

iv | Table of Contents

Tuples 266
The Guid Struct 267
Equality Comparison 267
Order Comparison 278
Utility Classes 281

7. Collections. 285
Enumeration 285
The ICollection and IList Interfaces 293
The Array Class 297
Lists, Queues, Stacks, and Sets 305
Dictionaries 314
Customizable Collections and Proxies 321
Plugging in Equality and Order 327

8. LINQ Queries. 335
Getting Started 335
Fluent Syntax 337
Query Expressions 344
Deferred Execution 348
Subqueries 355
Composition Strategies 358
Projection Strategies 362
Interpreted Queries 364
LINQ to SQL and Entity Framework 371
Building Query Expressions 385

9. LINQ Operators. 391
Overview 393
Filtering 396
Projecting 400
Joining 412
Ordering 420
Grouping 423
Set Operators 426
Conversion Methods 427
Element Operators 430
Aggregation Methods 432
Quantifiers 437
Generation Methods 438

10. LINQ to XML. 441

Table of Contents | v

Architectural Overview 441
X-DOM Overview 442
Instantiating an X-DOM 446
Navigating and Querying 448
Updating an X-DOM 453
Working with Values 456
Documents and Declarations 459
Names and Namespaces 463
Annotations 468
Projecting into an X-DOM 469

11. Other XML Technologies. 477
XmlReader 478
XmlWriter 487
Patterns for Using XmlReader/XmlWriter 489
XSD and Schema Validation 493
XSLT 496

12. Disposal and Garbage Collection. 499
IDisposable, Dispose, and Close 499
Automatic Garbage Collection 505
Finalizers 507
How the Garbage Collector Works 512
Managed Memory Leaks 516
Weak References 520

13. Diagnostics and Code Contracts. 525
Conditional Compilation 525
Debug and Trace Classes 529
Code Contracts Overview 532
Preconditions 537
Postconditions 541
Assertions and Object Invariants 543
Contracts on Interfaces and Abstract Methods 545
Dealing with Contract Failure 546
Selectively Enforcing Contracts 548
Static Contract Checking 549
Debugger Integration 551
Processes and Process Threads 552
StackTrace and StackFrame 553
Windows Event Logs 555
Performance Counters 557

vi | Table of Contents

The Stopwatch Class 562

14. Concurrency and Asynchrony. 563
Introduction 563
Threading 564
Tasks 581
Principles of Asynchrony 589
Asynchronous Functions in C# 594
Asynchronous Patterns 610
Obsolete Patterns 618

15. Streams and I/O. 623
Stream Architecture 623
Using Streams 625
Stream Adapters 639
Compression Streams 647
Working with ZIP Files 649
File and Directory Operations 650
File I/O in Windows Runtime 661
Memory-Mapped Files 663
Isolated Storage 666

16. Networking. 673
Network Architecture 673
Addresses and Ports 675
URIs 676
Client-Side Classes 679
Working with HTTP 692
Writing an HTTP Server 698
Using FTP 701
Using DNS 703
Sending Mail with SmtpClient 703
Using TCP 704
Receiving POP3 Mail with TCP 708
TCP in Windows Runtime 709

17. Serialization. 713
Serialization Concepts 713
The Data Contract Serializer 717
Data Contracts and Collections 727
Extending Data Contracts 730
The Binary Serializer 733

Table of Contents | vii

Binary Serialization Attributes 735
Binary Serialization with ISerializable 738
XML Serialization 742

18. Assemblies. 753
What’s in an Assembly 753
Strong Names and Assembly Signing 758
Assembly Names 761
Authenticode Signing 764
The Global Assembly Cache 768
Resources and Satellite Assemblies 770
Resolving and Loading Assemblies 779
Deploying Assemblies Outside the Base Folder 784
Packing a Single-File Executable 785
Working with Unreferenced Assemblies 787

19. Reflection and Metadata. 789
Reflecting and Activating Types 790
Reflecting and Invoking Members 797
Reflecting Assemblies 810
Working with Attributes 812
Dynamic Code Generation 818
Emitting Assemblies and Types 825
Emitting Type Members 828
Emitting Generic Methods and Types 834
Awkward Emission Targets 836
Parsing IL 840

20. Dynamic Programming. 847
The Dynamic Language Runtime 847
Numeric Type Unification 849
Dynamic Member Overload Resolution 850
Implementing Dynamic Objects 856
Interoperating with Dynamic Languages 859

21. Security. 863
Permissions 863
Code Access Security (CAS) 868
Allowing Partially Trusted Callers 871
The Transparency Model 873
Sandboxing Another Assembly 881
Operating System Security 885

viii | Table of Contents

Identity and Role Security 888
Cryptography Overview 889
Windows Data Protection 890
Hashing 891
Symmetric Encryption 892
Public Key Encryption and Signing 897

22. Advanced Threading. 903
Synchronization Overview 904
Exclusive Locking 904
Locking and Thread Safety 912
Nonexclusive Locking 918
Signaling with Event Wait Handles 923
The Barrier Class 932
Lazy Initialization 933
Thread-Local Storage 936
Interrupt and Abort 938
Suspend and Resume 939
Timers 940

23. Parallel Programming. 945
Why PFX? 945
PLINQ 948
The Parallel Class 961
Task Parallelism 968
Working with AggregateException 978
Concurrent Collections 980
BlockingCollection<T> 983

24. Application Domains. 989
Application Domain Architecture 989
Creating and Destroying Application Domains 990
Using Multiple Application Domains 992
Using DoCallBack 994
Monitoring Application Domains 995
Domains and Threads 995
Sharing Data Between Domains 997

25. Interoperability. 1003
Calling into Native DLLs 1003
Type Marshaling 1004
Callbacks from Unmanaged Code 1007

Table of Contents | ix

Simulating a C Union 1007
Shared Memory 1008
Mapping a Struct to Unmanaged Memory 1011
COM Interoperability 1015
Calling a COM Component from C# 1017
Embedding Interop Types 1020
Primary Interop Assemblies 1021
Exposing C# Objects to COM 1022

26. Regular Expressions. 1023
Regular Expression Basics 1024
Quantifiers 1028
Zero-Width Assertions 1029
Groups 1032
Replacing and Splitting Text 1033
Cookbook Regular Expressions 1035
Regular Expressions Language Reference 1038

27. The Roslyn Compiler. 1043
Roslyn Architecture 1044
Syntax Trees 1045
Compilations and Semantic Models 1060

Index. 1073

x | Table of Contents

2
C# Language Basics

In this chapter, we introduce the basics of the C# language.

All programs and code snippets in this and the following two
chapters are available as interactive samples in LINQPad.
Working through these samples in conjunction with the book
accelerates learning in that you can edit the samples and
instantly see the results without needing to set up projects and
solutions in Visual Studio.
To download the samples, go to LINQPad’s Sample Libraries
page and choose “C# 6.0 in a Nutshell.” LINQPad is free—go
to http://www.linqpad.net.

A First C# Program
Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen.
The double forward slash indicates that the remainder of a line is a comment:

using System; // Importing namespace

class Test // Class declaration
{
 static void Main() // Method declaration
 {
 int x = 12 * 30; // Statement 1
 Console.WriteLine (x); // Statement 2
 } // End of method
} // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WriteLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code
block, as we’ll see later). The first statement computes the expression 12 * 30 and

C
#

Lang
uag

e
B

asics

C# Language Basics | 11

stores the result in a local variable, named x, which is an integer type. The second
statement calls the Console class’s WriteLine method, to print the variable x to a text
window on the screen.

A method performs an action in a series of statements, called a statement block—a
pair of braces containing zero or more statements. We defined a single method
named Main:

static void Main()
{
 ...
}

Writing higher-level functions that call upon lower-level functions simplifies a pro‐
gram. We can refactor our program with a reusable method that multiplies an inte‐
ger by 12 as follows:

using System;

class Test
{
 static void Main()
 {
 Console.WriteLine (FeetToInches (30)); // 360
 Console.WriteLine (FeetToInches (100)); // 1200
 }

 static int FeetToInches (int feet)
 {
 int inches = feet * 12;
 return inches;
 }
}

A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. We defined a method called Feet
ToInches that has a parameter for inputting feet, and a return type for outputting
inches:

static int FeetToInches (int feet) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The
Main method in our example has empty parentheses because it has no parameters,
and is void because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execu‐
tion. The Main method may optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings

12 | Chapter 2: C# Language Basics

as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of ele‐
ments of a particular type. Arrays are specified by placing
square brackets after the element type and are described in
“Arrays” on page 38.

Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function
members and data members to form an object-oriented building block. The Con
sole class groups members that handle command-line input/output functionality,
such as the WriteLine method. Our Test class groups two methods—the Main
method and the FeetToInches method. A class is a kind of type, which we will
examine in “Type Basics” on page 17.

At the outermost level of a program, types are organized into namespaces. The
using directive was used to make the System namespace available to our applica‐
tion, to use the Console class. We could define all our classes within the TestPro
grams namespace, as follows:

using System;

namespace TestPrograms
{
 class Test {...}
 class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For example, this is the
namespace that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully
qualified name, which is the type name prefixed with its namespace, such as Sys
tem.Text.StringBuilder.

Compilation
The C# compiler compiles source code, specified as a set of files with the .cs exten‐
sion, into an assembly. An assembly is the unit of packaging and deployment
in .NET. An assembly can be either an application or a library. A normal console or
Windows application has a Main method and is an .exe file. A library is a .dll and is
equivalent to an .exe without an entry point. Its purpose is to be called upon (refer‐

C
#

Lang
uag

e
B

asics

A First C# Program | 13

enced) by an application or by other libraries. The .NET Framework is a set of libra‐
ries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual
Studio to compile, or call csc manually from the command line. (The compiler is
also available as a library; see Chapter 27.) To compile manually, first save a pro‐
gram to a file such as MyFirstProgram.cs, and then go to the command line and
invoke csc (located in %ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

Peculiarly, .NET Framework 4.6 ships with the C# 5 compiler.
To obtain the C# 6 command-line compiler, you must install
Visual Studio or MSBuild 14.

To produce a library (.dll), do the following:

csc /target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s ele‐
ments of syntax, using the following program:

using System;

class Test
{
 static void Main()
 {
 int x = 12 * 30;
 Console.WriteLine (x);
 }
}

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables,
and so on. These are the identifiers in our example program, in the order they
appear:

System Test Main x Console WriteLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case-sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myVaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).

14 | Chapter 2: C# Language Basics

Keywords are names that mean something special to the compiler. These are the
keywords in our example program:

using class static void int

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

longnamespace

new

null

object

operator

out

override

params

private

protected

public

readonly

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

volatile

while

Avoiding conflicts
If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix. For instance:

class class {...} // Illegal
class @class {...} // Legal

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as
myVariable.

The @ prefix can be useful when consuming libraries written
in other .NET languages that have different keywords.

Contextual keywords
Some keywords are contextual, meaning they can also be used as identifiers—
without an @ symbol. These are:

C
#

Lang
uag

e
B

asics

Syntax | 15

add

ascending

async

await

by

descending

dynamic

equals

from

get

global

group

in

into

join

let

nameof

on

orderby

partial

remove

select

set

value

var

when

where

yield

With contextual keywords, ambiguity cannot arise within the context in which they
are used.

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the program. The liter‐
als we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators
we used in our example program:

{ } ;

The braces group multiple statements into a statement block.

The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most operators in C# are deno‐
ted with a symbol, such as the multiplication operator, *. We will discuss operators
in more detail later in this chapter. These are the operators we used in our example
program:

. () * =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that we’ll see later in this chapter.) An equals sign performs assignment. (The double
equals sign, ==, performs equality comparison, as we’ll see later.)

Comments
C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line. For example:

int x = 3; // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:

16 | Chapter 2: C# Language Basics

int x = 3; /* This is a comment that
 spans two lines */

Comments may embed XML documentation tags, explained in “XML Documenta‐
tion” on page 193 in Chapter 4.

Type Basics
A type defines the blueprint for a value. In our example, we used two literals of type
int with values 12 and 30. We also declared a variable of type int whose name was
x:

static void Main()
{
 int x = 12 * 30;
 Console.WriteLine (x);
}

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possi‐
ble values a variable can have, is determined by its type.

Predefined Type Examples
Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from −231 to 231−1, and is the default type for numeric literals within this
range. We can perform functions such as arithmetic with instances of the int type
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “.NET” or “http://oreilly.com.” We can work with strings by call‐
ing functions on them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2015

The predefined bool type has exactly two possible values: true and false. The bool
type is commonly used to conditionally branch execution flow based with an if
statement. For example:

bool simpleVar = false;
if (simpleVar)

C
#

Lang
uag

e
B

asics

Type Basics | 17

 Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
 Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types) are
recognized with a C# keyword. The System namespace in
the .NET Framework contains many important types that are
not predefined by C# (e.g., DateTime).

Custom Type Examples
Just as we can build complex functions from simple functions, we can build com‐
plex types from primitive types. In this example, we will define a custom type
named UnitConverter—a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter
{
 int ratio; // Field
 public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
 public int Convert (int unit) {return unit * ratio; } // Method
}

class Test
{
 static void Main()
 {
 UnitConverter feetToInchesConverter = new UnitConverter (12);
 UnitConverter milesToFeetConverter = new UnitConverter (5280);

 Console.WriteLine (feetToInchesConverter.Convert(30)); // 360
 Console.WriteLine (feetToInchesConverter.Convert(100)); // 1200
 Console.WriteLine (feetToInchesConverter.Convert(
 milesToFeetConverter.Convert(1))); // 63360
 }
}

Members of a type
A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom types have few differ‐
ences. The predefined int type serves as a blueprint for integers. It holds data—32
bits—and provides function members that use that data, such as ToString. Simi‐

18 | Chapter 2: C# Language Basics

larly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation
Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public class UnitConverter
{
 ...
 public UnitConverter (int unitRatio) { ratio = unitRatio; }
 ...
}

Instance versus static members
The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type,
but rather on the type itself, must be marked as static. The Test.Main and Con
sole.WriteLine methods are static methods. The Console class is actually a static
class, which means all its members are static. You never actually create instances of a
Console—one console is shared across the whole application.

Let’s contrast instance from static members. In the following code, the instance field
Name pertains to an instance of a particular Panda, whereas Population pertains to
the set of all Panda instances:

public class Panda
{
 public string Name; // Instance field
 public static int Population; // Static field

 public Panda (string n) // Constructor
 {
 Name = n; // Assign the instance field
 Population = Population + 1; // Increment the static Population field
 }
}

C
#

Lang
uag

e
B

asics

Type Basics | 19

The following code creates two instances of the Panda, prints their names, and then
prints the total population:

using System;

class Test
{
 static void Main()
 {
 Panda p1 = new Panda ("Pan Dee");
 Panda p2 = new Panda ("Pan Dah");

 Console.WriteLine (p1.Name); // Pan Dee
 Console.WriteLine (p2.Name); // Pan Dah

 Console.WriteLine (Panda.Population); // 2
 }
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error.

The public keyword
The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private, and the Test class
could not access it. Marking a member public is how a type communicates: “Here
is what I want other types to see—everything else is my own private implementation
details.” In object-oriented terms, we say that the public members encapsulate the
private members of the class.

Conversions
C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bitwise capacity of an int) and explicitly cast an int to a short type
(which has half the capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer

20 | Chapter 2: C# Language Basics

1 A minor caveat is that very large long values lose some precision when converted to double.

Implicit conversions are allowed when both of the following are true:

• The compiler can guarantee they will always succeed.
• No information is lost in conversion.1

Conversely, explicit conversions are required when one of the following is true:

• The compiler cannot guarantee they will always succeed.
• Information may be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of con‐
version are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 121 in Chapter 3.)

The numeric conversions that we just saw are built into the lan‐
guage. C# also supports reference conversions and boxing con‐
versions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 168 in Chapter 4). The com‐
piler doesn’t enforce the aforementioned rules with custom
conversions, so it’s possible for badly designed types to behave
otherwise.

Value Types Versus Reference Types
All C# types fall into the following categories:

• Value types
• Reference types
• Generic type parameters
• Pointer types

In this section, we’ll describe value types and reference types.
We’ll cover generic type parameters in “Generics” on page 114
in Chapter 3, and pointer types in “Unsafe Code and Pointers”
on page 187 in Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type), as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes
the predefined string type.)

The fundamental difference between value types and reference types is how they are
handled in memory.

C
#

Lang
uag

e
B

asics

Type Basics | 21

Value types
The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

or more tersely:

public struct Point { public int X, Y; }

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Assignment causes copy

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 7
}

Figure 2-2 shows that p1 and p2 have independent storage.

Figure 2-2. Assignment copies a value-type instance

Reference types
A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is a

22 | Chapter 2: C# Language Basics

reference to an object that contains the value. Here is the Point type from our previ‐
ous example rewritten as a class, rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Copies p1 reference

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 9
}

Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Figure 2-4. Assignment copies a reference

C
#

Lang
uag

e
B

asics

Type Basics | 23

Null
A reference can be assigned the literal null, indicating that the reference points to
no object:

class Point {...}
...

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}
...

Point p = null; // Compile-time error
int x = null; // Compile-time error

C# also has a construct called nullable types for representing
value-type nulls (see “Nullable Types” on page 162 in Chap‐
ter 4).

Storage overhead
Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes eight bytes of memory:

struct Point
{
 int x; // 4 bytes
 int y; // 4 bytes
}

Technically, the CLR positions fields within the type at an
address that’s a multiple of the fields’ size (up to a maximum
of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “was‐
ted”):

struct A { byte b; long l; }

You can override this behavior with the StructLayout

attribute (see “Mapping a Struct to Unmanaged Memory” on
page 1011 in Chapter 25).

24 | Chapter 2: C# Language Basics

Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative over‐
head. The precise overhead is intrinsically private to the implementation of
the .NET runtime, but at minimum, the overhead is eight bytes, used to store a key
to the object’s type, as well as temporary information such as its lock state for multi‐
threading and a flag to indicate whether it has been fixed from movement by the
garbage collector. Each reference to an object requires an extra four or eight bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
• Numeric

—Signed integer (sbyte, short, int, long)
—Unsigned integer (byte, ushort, uint, ulong)
—Real number (float, double, decimal)

• Logical (bool)

• Character (char)

Reference types
• String (string)

• Object (object)

Predefined types in C# alias Framework types in the System namespace. There is
only a syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types, excluding decimal, are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via
instructions in compiled code, and this usually translates to direct support on the
underlying processor. For example:

 // Underlying hexadecimal representation
int i = 7; // 0x7
bool b = true; // 0x1
char c = 'A'; // 0x41
float f = 0.5f; // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 25).

C
#

Lang
uag

e
B

asics

Type Basics | 25

2 Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#
language specification.

Numeric Types
C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral—signed

sbyte SByte 8 bits –27 to 27–1

short Int16 16 bits –215 to 215–1

int Int32 32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

Integral—unsigned

byte Byte 8 bits 0 to 28–1

ushort UInt16 16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or
when space efficiency is paramount.

Of the real number types, float and double are called floating-point types2 and are
typically used for scientific and graphical calculations. The decimal type is typically
used for financial calculations, where base-10-accurate arithmetic and high preci‐
sion are required.

Numeric Literals
Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted
with the 0x prefix. For example:

int x = 127;
long y = 0x7F;

Real literals can use decimal and/or exponential notation. For example:

26 | Chapter 2: C# Language Basics

double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral
type:

• If the literal contains a decimal point or the exponential symbol (E), it is a
double.

• Otherwise, the literal’s type is the first type in this list that can fit the literal’s
value: int, uint, long, and ulong.

For example:

Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)
Console.WriteLine (0xF0000000.GetType()); // UInt32 (uint)
Console.WriteLine (0x100000000.GetType()); // Int64 (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows:

Category C# type Example

F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint uint i = 1U;

L long long i = 1L;

UL ulong ulong i = 1UL;

The suffixes U and L are rarely necessary, because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long i = 5; // Implicit lossless conversion from int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specify‐
ing float or decimal literals. Without the F suffix, the following line would not
compile, because 4.5 would be inferred to be of type double, which has no implicit
conversion to float:

C
#

Lang
uag

e
B

asics

Numeric Types | 27

float f = 4.5F;

The same principle is true for a decimal literal:

decimal d = -1.23M; // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Integral to integral conversions
Integral conversions are implicit when the destination type can represent every pos‐
sible value of the source type. Otherwise, an explicit conversion is required. For
example:

int x = 12345; // int is a 32-bit integral
long y = x; // Implicit conversion to 64-bit integral
short z = (short)x; // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions
A float can be implicitly converted to a double, since a double can represent every
possible value of a float. The reverse conversion must be explicit.

Floating-point to integral conversions
All integral types may be implicitly converted to all floating-point types:

int i = 1;
float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

When you cast from a floating-point number to an integral,
any fractional portion is truncated; no rounding is performed.
The static class System.Convert provides methods that round
while converting between various numeric types (see Chap‐
ter 6).

Implicitly converting a large integral type to a floating-point type preserves magni‐
tude but may occasionally lose precision. This is because floating-point types always
have more magnitude than integral types, but may have less precision. Rewriting
our example with a larger number demonstrates this:

int i1 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int i2 = (int)f; // 100000000

28 | Chapter 2: C# Language Basics

Decimal conversions
All integral types can be implicitly converted to the decimal type, since a decimal
can represent every possible C# integral value. All other numeric conversions to and
from a decimal type must be explicit.

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types:

+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after division

Increment and Decrement Operators
The increment and decrement operators (++, --) increment and decrement numeric
types by 1. The operator can either follow or precede the variable, depending on
whether you want its value before or after the increment/decrement. For example:

int x = 0, y = 0;
Console.WriteLine (x++); // Outputs 0; x is now 1
Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Integral Operations

Integral division
Division operations on integral types always truncate remainders (round toward
zero). Dividing by a variable whose value is zero generates a runtime error (a Divid
eByZeroException):

int a = 2 / 3; // 0

int b = 0;
int c = 5 / b; // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Integral overflow
At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation was done on a larger integer type and the extra
significant bits discarded. For example, decrementing the minimum possible int
value results in the maximum possible int value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

C
#

Lang
uag

e
B

asics

Numeric Types | 29

Integral arithmetic overflow check operators
The checked operator tells the runtime to generate an OverflowException rather
than overflowing silently when an integral expression or statement exceeds the
arithmetic limits of that type. The checked operator affects expressions with the ++,
−−, +, − (binary and unary), *, /, and explicit conversion operators between integral
types.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as we’ll see
soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;
int b = 1000000;

int c = checked (a * b); // Checks just the expression.

checked // Checks all expressions
{ // in statement block.
 ...
 c = a * b;
 ...
}

You can make arithmetic overflow checking the default for all expressions in a pro‐
gram by compiling with the /checked+ command-line switch (in Visual Studio, go
to Advanced Build Settings). If you then need to disable overflow checking just for
specific expressions or statements, you can do so with the unchecked operator. For
example, the following code will not throw exceptions—even if compiled
with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions
Regardless of the /checked compiler switch, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator:

int x = int.MaxValue + 1; // Compile-time error
int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators
C# supports the following bitwise operators:

30 | Chapter 2: C# Language Basics

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integrals
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x = 1, y = 1;
short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be per‐
formed. This means the result is also an int, which cannot be implicitly cast back to
a short (because it could cause loss of data). To make this compile, we must add an
explicit cast:

short z = (short) (x + y); // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (not a number), +∞, −∞, and −0. The float
and double classes have constants for NaN, +∞, and −∞, as well as other values (Max
Value, MinValue, and Epsilon). For example:

Console.WriteLine (double.NegativeInfinity); // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

−0 −0.0 −0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (−1.0 / 0.0); // -Infinity

C
#

Lang
uag

e
B

asics

Numeric Types | 31

Console.WriteLine (1.0 / −0.0); // -Infinity
Console.WriteLine (−1.0 / −0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For
example:

Console.WriteLine (0.0 / 0.0); // NaN
Console.WriteLine ((1.0 / 0.0) − (1.0 / 0.0)); // NaN

When using ==, a NaN value is never equal to another value, even another NaN
value:

Console.WriteLine (0.0 / 0.0 == double.NaN); // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

When using object.Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)); // True

NaNs are sometimes useful in representing special values. In
WPF, double.NaN represents a measurement whose value is
“Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that
wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org.

double Versus decimal
double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather
than the result of real-world measurements. Here’s a summary of the differences:

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than
double)

Real-Number Rounding Errors
float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most

32 | Chapter 2: C# Language Basics

3 It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

literals with a fractional component (which are in base 10) will not be represented
precisely. For example:

float tenth = 0.1f; // Not quite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, deci
mal works in base 10 and so can precisely represent numbers expressible in base 10
(as well as its factors, base 2 and base 5). Since real literals are in base 10, decimal
can precisely represent numbers such as 0.1. However, neither double nor decimal
can precisely represent a fractional number whose base 10 representation is recur‐
ring:

decimal m = 1M / 6M; // 0.1666666666666666666666666667M
double d = 1.0 / 6.0; // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory, since this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, the
Framework provides a BitArray class in the System.Collections namespace that
is designed to use just one bit per Boolean value.

Bool Conversions
No casting conversions can be made from the bool type to numeric types or vice
versa.

Equality and Comparison Operators
== and != test for equality and inequality of any type, but always return a bool
value.3 Value types typically have a very simple notion of equality:

C
#

Lang
uag

e
B

asics

Boolean Type and Operators | 33

int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); // True

For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

public class Dude
{
 public string Name;
 public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2); // False
Dude d3 = d1;
Console.WriteLine (d1 == d3); // True

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric
types, but should be used with caution with real numbers (as we saw in “Real-
Number Rounding Errors” on page 32). The comparison operators also work on
enum type members, by comparing their underlying integral values. We describe this
in “Enums” on page 109 in Chapter 3.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 168 in Chapter 4, and in “Equality Comparison” on page 267
and “Order Comparison” on page 278 in Chapter 6.

Conditional Operators
The && and || operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In this example, the UseUm
brella method returns true if it’s rainy or sunny (to protect us from the rain or the
sun), as long as it’s not also windy (since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
 return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.
Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);

34 | Chapter 2: C# Language Basics

The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

Conditional operator (ternary operator)
The conditional operator (more commonly called the ternary operator, as it’s the only
operator that takes three operands) has the form q ? a : b, where if condition q is
true, a is evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
 return (a > b) ? a : b;
}

The conditional operator is particularly useful in LINQ queries (Chapter 8).

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes. A char literal is specified inside single quotes:

char c = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning.
For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

C
#

Lang
uag

e
B

asics

Strings and Characters | 35

Char Meaning Value

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-
digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol = '\u03A9';
char newLine = '\u000A';

Char Conversions
An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit con‐
version is required.

String Type
C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable sequence of Unicode characters. A string literal is specified
inside double quotes:

string a = "Heat";

string is a reference type, rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is
prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @ "\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped = "First Line\r\nSecond Line";
string verbatim = @"First Line

36 | Chapter 2: C# Language Basics

Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

String concatenation
The + operator concatenates two strings:

string s = "a" + "b";

One of the operands may be a nonstring value, in which case ToString is called on
that value. For example:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)
A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions inside braces:

int x = 4;
Console.Write ($"A square has {x} sides"); // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will con‐
vert the expression to a string by calling its ToString method or equivalent. You can
change the formatting by appending the expression with a colon and a format string
(format strings are described in “Formatting and parsing” on page 233 in Chap‐
ter 6):

string s = $"255 in hex is {byte.MaxValue:X2}"; // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the ver‐
batim string operator. Note that the $ operator must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the desired brace charac‐
ter.

String comparisons
string does not support < and > operators for comparisons. You must use the
string’s CompareTo method, described in Chapter 6.

C
#

Lang
uag

e
B

asics

Strings and Characters | 37

Arrays
An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type. For example:

char[] vowels = new char[5]; // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]); // e

This prints “e” because array indexes start at 0. We can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
 Console.Write (vowels[i]); // aeiou

The Length property of an array returns the number of elements in the array. Once
an array has been created, its length cannot be changed. The System.Collection
namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','o','u'};

or simply:

char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type, and are described in “The Array Class” on page 297 in Chapter 7.

Default Element Initialization
Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Since int is a value type, this allocates 1,000 integers in
one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]); // 0

38 | Chapter 2: C# Language Basics

Value types versus reference types
Whether an array element type is a value type or a reference type has important per‐
formance implications. When the element type is a value type, each element value is
allocated as part of the array. For example:

public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X; // 0

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

public class Point { public int X, Y; }

...
Point[] a = new Point[1000];
int x = a[500].X; // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
 a[i] = new Point(); // Set array element i with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays
Rectangular arrays are declared using commas to separate each dimension. The fol‐
lowing declares a rectangular two-dimensional array, where the dimensions are
3 x 3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (start‐
ing at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 matrix[i,j] = i * 3 + j;

C
#

Lang
uag

e
B

asics

Arrays | 39

A rectangular array can be initialized as follows (to create an array identical to the
previous example):

int[,] matrix = new int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

Jagged arrays
Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array, where
the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so:
see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu‐
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. Each inner array must be created
manually:

for (int i = 0; i < matrix.Length; i++)
{
 matrix[i] = new int[3]; // Create inner array
 for (int j = 0; j < matrix[i].Length; j++)
 matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array identical to the previ‐
ous example with an additional element at the end):

int[][] matrix = new int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions
There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
 {0,1,2},
 {3,4,5},

40 | Chapter 2: C# Language Basics

 {6,7,8}
};

int[][] jaggedMatrix =
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};

The second approach is to use the var keyword, which tells the compiler to implic‐
itly type a local variable:

var i = 3; // i is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] // rectMatrix is implicitly of type int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};

Implicit typing can be taken one stage further with arrays: you can omit the type
qualifier after the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','o','u'}; // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type). For example:

var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking
All array indexing is bounds-checked by the runtime. An IndexOutOfRangeExcep
tion is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1; // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies
debugging.

C
#

Lang
uag

e
B

asics

Arrays | 41

Generally, the performance hit from bounds checking is
minor, and the JIT (just-in-time) compiler can perform opti‐
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that can
explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 187 in Chapter 4).

Variables and Parameters
A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, or out), field (instance or static), or array
element.

The Stack and the Heap
The stack and the heap are the places where variables and constants reside. Each has
very different lifetime semantics.

Stack
The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a function is entered and exited. Consider the follow‐
ing method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)
{
 if (x == 0) return 1;
 return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap
The heap is a block of memory in which objects (i.e., reference-type instances)
reside. Whenever a new object is created, it is allocated on the heap, and a reference
to that object is returned. During a program’s execution, the heap starts filling up as
new objects are created. The runtime has a garbage collector that periodically deal‐
locates objects from the heap, so your program does not run out of memory. An
object is eligible for deallocation as soon as it’s not referenced by anything that’s
itself “alive.”

In the following example, we start by creating a StringBuilder object referenced by
the variable ref1, and then write out its content. That StringBuilder object is then
immediately eligible for garbage collection, because nothing subsequently uses it.

42 | Chapter 2: C# Language Basics

Then, we create another StringBuilder referenced by variable ref2, and copy that
reference to ref3. Even though ref2 is not used after that point, ref3 keeps the
same StringBuilder object alive—ensuring that it doesn’t become eligible for col‐
lection until we’ve finished using ref3:

using System;
using System.Text;

class Test
{
 static void Main()
 {
 StringBuilder ref1 = new StringBuilder ("object1");
 Console.WriteLine (ref1);
 // The StringBuilder referenced by ref1 is now eligible for GC.

 StringBuilder ref2 = new StringBuilder ("object2");
 StringBuilder ref3 = ref2;
 // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

 Console.WriteLine (ref3); // object2
 }
}

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++. An
unreferenced object is eventually collected by the garbage col‐
lector.

The heap also stores static fields. Unlike objects allocated on the heap (which can
get garbage-collected), these live until the application domain is torn down.

Definite Assignment
C# enforces a definite assignment policy. In practice, this means that outside of an
unsafe context, it’s impossible to access uninitialized memory. Definite assignment
has three implications:

• Local variables must be assigned a value before they can be read.
• Function arguments must be supplied when a method is called (unless marked

as optional—see “Optional parameters” on page 48).
• All other variables (such as fields and array elements) are automatically initial‐

ized by the runtime.

For example, the following code results in a compile-time error:

C
#

Lang
uag

e
B

asics

Variables and Parameters | 43

static void Main()
{
 int x;
 Console.WriteLine (x); // Compile-time error
}

Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0, because array elements are implicitly
assigned to their default values:

static void Main()
{
 int[] ints = new int[2];
 Console.WriteLine (ints[0]); // 0
}

The following code outputs 0, because fields are implicitly assigned a default value:

class Test
{
 static int x;
 static void Main() { Console.WriteLine (x); } // 0
}

Default Values
All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

All reference types null

All numeric and enum types 0

char type '\0'

bool type false

You can obtain the default value for any type with the default keyword (in practice,
this is useful with generics which we’ll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type.

Parameters
A method has a sequence of parameters. Parameters define the set of arguments
that must be provided for that method. In this example, the method Foo has a single
parameter named p, of type int:

static void Foo (int p)
{
 p = p + 1; // Increment p by 1

44 | Chapter 2: C# Language Basics

 Console.WriteLine (p); // Write p to screen
}

static void Main()
{
 Foo (8); // Call Foo with an argument of 8
}

You can control how parameters are passed with the ref and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in

ref Reference Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far the most common
case. This means a copy of the value is created when passed to the method:

class Test
{
 static void Foo (int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (x); // Make a copy of x
 Console.WriteLine (x); // x will still be 8
 }
}

Assigning p a new value does not change the contents of x, since p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference, but not the object.
In the following example, Foo sees the same StringBuilder object that Main instan‐
tiated, but has an independent reference to it. In other words, sb and fooSB are sepa‐
rate variables that reference the same StringBuilder object:

class Test
{
 static void Foo (StringBuilder fooSB)
 {
 fooSB.Append ("test");
 fooSB = null;
 }

C
#

Lang
uag

e
B

asics

Variables and Parameters | 45

4 An exception to this rule is when calling COM methods. We discuss this in Chapter 25.

 static void Main()
 {
 StringBuilder sb = new StringBuilder();
 Foo (sb);
 Console.WriteLine (sb.ToString()); // test
 }
}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become
null.)

The ref modifier
To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

class Test
{
 static void Foo (ref int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (ref x); // Ask Foo to deal directly with x
 Console.WriteLine (x); // x is now 9
 }
}

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.4 This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (later, in “Generics”
on page 114 in Chapter 3, we will show how to write a swap method that works with
any type):

class Test
{
 static void Swap (ref string a, ref string b)
 {
 string temp = a;
 a = b;
 b = temp;
 }

46 | Chapter 2: C# Language Basics

 static void Main()
 {
 string x = "Penn";
 string y = "Teller";
 Swap (ref x, ref y);
 Console.WriteLine (x); // Teller
 Console.WriteLine (y); // Penn
 }
}

A parameter can be passed by reference or by value, regardless
of whether the parameter type is a reference type or a value
type.

The out modifier
An out argument is like a ref argument, except it:

• Need not be assigned before going into the function
• Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a
method. For example:

class Test
{
 static void Split (string name, out string firstNames,
 out string lastName)
 {
 int i = name.LastIndexOf (' ');
 firstNames = name.Substring (0, i);
 lastName = name.Substring (i + 1);
 }

 static void Main()
 {
 string a, b;
 Split ("Stevie Ray Vaughan", out a, out b);
 Console.WriteLine (a); // Stevie Ray
 Console.WriteLine (b); // Vaughan
 }
}

Like a ref parameter, an out parameter is passed by reference.

Implications of passing by reference
When you pass an argument by reference, you alias the storage location of an exist‐
ing variable rather than create a new storage location. In the following example, the
variables x and y represent the same instance:

class Test
{

C
#

Lang
uag

e
B

asics

Variables and Parameters | 47

 static int x;

 static void Main() { Foo (out x); }

 static void Foo (out int y)
 {
 Console.WriteLine (x); // x is 0
 y = 1; // Mutate y
 Console.WriteLine (x); // x is 1
 }
}

The params modifier
The params parameter modifier may be specified on the last parameter of a method
so that the method accepts any number of arguments of a particular type. The
parameter type must be declared as an array. For example:

class Test
{
 static int Sum (params int[] ints)
 {
 int sum = 0;
 for (int i = 0; i < ints.Length; i++)
 sum += ints[i]; // Increase sum by ints[i]
 return sum;
 }

 static void Main()
 {
 int total = Sum (1, 2, 3, 4);
 Console.WriteLine (total); // 10
 }
}

You can also supply a params argument as an ordinary array. The first line in Main is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 });

Optional parameters
From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

Optional parameters may be omitted when calling the method:

Foo(); // 23

The default argument of 23 is actually passed to the optional parameter x—the com‐
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to:

Foo (23);

48 | Chapter 2: C# Language Basics

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem‐
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres‐
sion, or a parameterless constructor of a value type. Optional parameters cannot be
marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo(1); // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y), you must
combine optional parameters with named arguments.

Named arguments
Rather than identifying an argument by position, you can identify an argument by
name. For example:

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo (x:1, y:2); // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semanti‐
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

A subtle difference is that argument expressions are evaluated
in the order in which they appear at the calling site. In general,
this makes a difference only with interdependent side-
effecting expressions such as the following, which writes 0, 1:

int a = 0;
Foo (y: ++a, x: --a); // ++a is evaluated first

Of course, you would almost certainly avoid writing such code
in practice!

C
#

Lang
uag

e
B

asics

Variables and Parameters | 49

You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments. So we couldn’t call Foo like this:

Foo (x:1, 2); // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }

We can call this supplying only a value for d as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in
Chapter 25.

var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in one step. If the com‐
piler is able to infer the type from the initialization expression, you can use the key‐
word var (introduced in C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

var can decrease code readability in the case when you can’t
deduce the type purely by looking at the variable declaration.
For example:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” on page 174 in Chapter 4, we will describe a scenario where
the use of var is mandatory.

50 | Chapter 2: C# Language Basics

Expressions and Operators
An expression essentially denotes a value. The simplest kinds of expressions are con‐
stants and variables. Expressions can be transformed and combined using opera‐
tors. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression,
such as the operand (12 * 30) in the following example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary—depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation, where the operator is placed between the two operands.

Primary Expressions
Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression per‐
forms a member-lookup (with the . operator), and the second expression performs
a method call (with the () operator).

Void Expressions
A void expression is an expression that has no value. For example:

Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more
complex expressions:

1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the result of another expres‐
sion to a variable. For example:

x = x * 5

C
#

Lang
uag

e
B

asics

Expressions and Operators | 51

An assignment expression is not a void expression—it has a value of whatever was
assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple values:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assign‐
ment with another operator. For example:

x *= 2 // equivalent to x = x * 2
x <<= 1 // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+= and -= operators here are treated specially and map to the event’s add and remove
accessors.)

Operator Precedence and Associativity
When an expression contains multiple operators, precedence and associativity deter‐
mine the order of their evaluation. Operators with higher precedence execute before
operators of lower precedence. If the operators have the same precedence, the oper‐
ator’s associativity determines the order of evaluation.

Precedence
The following expression:

1 + 2 * 3

is evaluated as follows because * has a higher precedence than +:

1 + (2 * 3)

Left-associative operators
Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression:

8 / 4 / 2

is evaluated as follows due to left associativity:

(8 / 4) / 2 // 1

You can insert parentheses to change the actual order of evaluation:

8 / (4 / 2) // 4

52 | Chapter 2: C# Language Basics

Right-associative operators
The assignment operators, lambda, null-coalescing, and conditional operator are
right-associative; in other words, they are evaluated from right to left. Right associa‐
tivity allows multiple assignments such as the following to compile:

x = y = 3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x.

Operator Table
Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence. We explain user-overloadable operators in “Operator
Overloading” on page 168 in Chapter 4.

Table 2-3. C# operators (categories in order of precedence)

Category Operator
symbol

Operator name Example User-
overloadable

Primary . Member access x.y No

 -> (unsafe) Pointer to struct x->y No

 () Function call x() No

 [] Array/index a[x] Via indexer

 ++ Post-increment x++ Yes

 −− Post-decrement x−− Yes

 new Create instance new Foo() No

 stackalloc Unsafe stack
allocation

stackalloc(10) No

 typeof Get type from
identifier

typeof(int) No

 nameof Get name of
identifier

nameof(x) No

 checked Integral overflow
check on

checked(x) No

 unchecked Integral overflow
check off

unchecked(x) No

 default Default value default(char) No

Unary await Await await myTask No

 sizeof Get size of struct sizeof(int) No

 ?. Null-conditional x?.y No

 + Positive value of +x Yes

 − Negative value of −x Yes

 ! Not !x Yes

C
#

Lang
uag

e
B

asics

Expressions and Operators | 53

Category Operator
symbol

Operator name Example User-
overloadable

 ~ Bitwise complement ~x Yes

 ++ Pre-increment ++x Yes

 −− Pre-decrement −−x Yes

 () Cast (int)x No

 * (unsafe) Value at address *x No

 & (unsafe) Address of value &x No

Multiplicative * Multiply x * y Yes

 / Divide x / y Yes

 % Remainder x % y Yes

Additive + Add x + y Yes

 − Subtract x − y Yes

Shift << Shift left x << 1 Yes

 >> Shift right x >> 1 Yes

Relational < Less than x < y Yes

 > Greater than x > y Yes

 <= Less than or equal to x <= y Yes

 >= Greater than or equal
to

x >= y Yes

 is Type is or is subclass
of

x is y No

 as Type conversion x as y No

Equality == Equals x == y Yes

 != Not equals x != y Yes

Logical And & And x & y Yes

Logical Xor ^ Exclusive Or x ^ y Yes

Logical Or | Or x | y Yes

Conditional And && Conditional And x && y Via &

Conditional Or || Conditional Or x || y Via |

Null-coalescing ?? Null-coalescing x ?? y No

Conditional ?: Conditional isTrue ? thenThis

Value : elseThis

Value

No

Assignment &
Lambda

= Assign x = y No

 *= Multiply self by x *= 2 Via *

54 | Chapter 2: C# Language Basics

Category Operator
symbol

Operator name Example User-
overloadable

 /= Divide self by x /= 2 Via /

 += Add to self x += 2 Via +

 −= Subtract from self x −= 2 Via −

 <<= Shift self left by x <<= 2 Via <<

 >>= Shift self right by x >>= 2 Via >>

 &= And self by x &= 2 Via &

 ^= Exclusive-Or self by x ^= 2 Via ^

 |= Or self by x |= 2 Via |

 => Lambda x => x + 1 No

Null Operators
C# provides two operators to make it easier to work with nulls: the null-coalescing
operator and the null-conditional operator.

Null-Coalescing Operator
The ?? operator is the null-coalescing operator. It says “If the operand is non-null,
give it to me; otherwise, give me a default value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing"; // s2 evaluates to "nothing"

If the left-hand expression is non-null, the right-hand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Types” on page 162 in Chapter 4).

Null-conditional operator (C# 6)
The ?. operator is the null-conditional or “Elvis” operator, and is new to C# 6. It
allows you to call methods and access members just like the standard dot operator,
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString(); // No error; s instead evaluates to null

The last line is equivalent to:

string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():

C
#

Lang
uag

e
B

asics

Null Operators | 55

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper(); // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be
null. The following expression is robust to both x being null and x.y being null:

x?.y?.z

and is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
 : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” on page
162 in Chapter 4): If you’re already familiar with nullable types, here’s a preview:

int? length = sb?.ToString().Length; // OK : int? can be null

You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a NullRe
ferenceException.

The null-conditional operator can be used with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing"; // s evaluates to "nothing"

The last line is equivalent to:

string s = (sb == null ? "nothing" : sb.ToString());

Statements
Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {} tokens).

Declaration Statements
A declaration statement declares a new variable, optionally initializing the variable
with an expression. A declaration statement ends in a semicolon. You may declare
multiple variables of the same type in a comma-separated list. For example:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

56 | Chapter 2: C# Language Basics

A constant declaration is like a variable declaration, except that it cannot be
changed after it has been declared, and the initialization must occur with the decla‐
ration (see “Constants” on page 83 in Chapter 3):

const double c = 2.99792458E08;
c += 10; // Compile-time Error

Local variables
The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks. For example:

static void Main()
{
 int x;
 {
 int y;
 int x; // Error - x already defined
 }
 {
 int y; // OK - y not in scope
 }
 Console.Write (y); // Error - y is out of scope
}

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara‐
tion of x in this example to the bottom of the method, we’d get
the same error. This is in contrast to C++ and is somewhat
peculiar, given that it’s not legal to refer to a variable or con‐
stant before it’s declared.

Expression Statements
Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. The possible expression state‐
ments are:

• Assignment expressions (including increment and decrement expressions)
• Method call expressions (both void and nonvoid)
• Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements

C
#

Lang
uag

e
B

asics

Statements | 57

x = 1 + 2; // Assignment expression
x++; // Increment expression
y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression
sb = new StringBuilder(); // Assignment expression
new StringBuilder(); // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged to
use the result. However, unless the constructor or method changes state, the state‐
ment is completely useless:

new StringBuilder(); // Legal, but useless
new string ('c', 3); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program exe‐
cution:

• Selection statements (if, switch)

• Conditional operator (?:)

• Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the
switch statement.

The if statement
An if statement executes a statement if a bool expression is true. For example:

if (5 < 2 * 3)
 Console.WriteLine ("true"); // true

The statement can be a code block:

if (5 < 2 * 3)
{
 Console.WriteLine ("true");
 Console.WriteLine ("Let's move on!");
}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 Console.WriteLine ("False"); // False

Within an else clause, you can nest another if statement:

58 | Chapter 2: C# Language Basics

if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 if (2 + 2 == 4)
 Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces
An else clause always applies to the immediately preceding if statement in the
statement block. For example:

if (true)
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:

if (true)
{
 if (false)
 Console.WriteLine();
}
else
 Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

static void TellMeWhatICanDo (int age)
{
 if (age >= 35)
 Console.WriteLine ("You can be president!");
 else if (age >= 21)
 Console.WriteLine ("You can drink!");
 else if (age >= 18)
 Console.WriteLine ("You can vote!");
 else
 Console.WriteLine ("You can wait!");
}

Here, we’ve arranged the if and else statements to mimic the “elseif ” construct of
other languages (and C#’s #elif preprocessor directive). Visual Studio’s auto-
formatting recognizes this pattern and preserves the indentation. Semantically,

C
#

Lang
uag

e
B

asics

Statements | 59

though, each if statement following an else statement is functionally nested within
the else clause.

The switch statement
switch statements let you branch program execution based on a selection of possi‐
ble values that a variable may have. switch statements may result in cleaner code
than multiple if statements, since switch statements require an expression to be
evaluated only once. For instance:

static void ShowCard(int cardNumber)
{
 switch (cardNumber)
 {
 case 13:
 Console.WriteLine ("King");
 break;
 case 12:
 Console.WriteLine ("Queen");
 break;
 case 11:
 Console.WriteLine ("Jack");
 break;
 case -1: // Joker is -1
 goto case 12; // In this game joker counts as queen
 default: // Executes for any other cardNumber
 Console.WriteLine (cardNumber);
 break;
 }
}

You can only switch on an expression of a type that can be statically evaluated,
which restricts it to the built-in integral types, bool, and enum types (and nullable
versions of these—see Chapter 4), and string type.

At the end of each case clause, you must say explicitly where execution is to go next,
with some kind of jump statement. Here are the options:

• break (jumps to the end of the switch statement)

• goto case x (jumps to another case clause)

• goto default (jumps to the default clause)

• Any other jump statement—namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
 case 13:
 case 12:
 case 11:

60 | Chapter 2: C# Language Basics

 Console.WriteLine ("Face card");
 break;
 default:
 Console.WriteLine ("Plain card");
 break;
}

This feature of a switch statement can be pivotal in terms of producing cleaner
code than multiple if-else statements.

Iteration Statements
C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops
while loops repeatedly execute a body of code while a bool expression is true. The
expression is tested before the body of the loop is executed. For example:

int i = 0;
while (i < 3)
{
 Console.WriteLine (i);
 i++;
}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int i = 0;
do
{
 Console.WriteLine (i);
 i++;
}
while (i < 3);

for loops
for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
 statement-or-statement-block

C
#

Lang
uag

e
B

asics

Statements | 61

Initialization clause
Executed before the loop begins; used to initialize one or more iteration
variables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to
update the iteration variable

For example, the following prints the numbers 0 through 2:

for (int i = 0; i < 3; i++)
 Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where each number is the sum
of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
 Console.WriteLine (prevFib);
 int newFib = prevFib + curFib;
 prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement may be omitted. One can implement an
infinite loop such as the following (though while(true) may be used instead):

for (;;)
 Console.WriteLine ("interrupt me");

foreach loops
The foreach statement iterates over each element in an enumerable object. Most of
the types in C# and the .NET Framework that represent a set or list of elements are
enumerable. For example, both an array and a string are enumerable. Here is an
example of enumerating over the characters in a string, from the first character
through to the last:

foreach (char c in "beer") // c is the iteration variable
 Console.WriteLine (c);

OUTPUT:
b
e
e
r

We define enumerable objects in “Enumeration and Iterators” on page 156 in Chap‐
ter 4.

62 | Chapter 2: C# Language Basics

Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 148 in Chap‐
ter 4). This means that:

• A jump out of a try block always executes the try’s
finally block before reaching the target of the jump.

• A jump cannot be made from the inside to the outside of
a finally block (except via throw).

The break statement
The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)
{
 if (x++ > 5)
 break ; // break from the loop
}
// execution continues here after break
...

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
 if ((i % 2) == 0) // If i is even,
 continue; // continue with next iteration

 Console.Write (i + " ");
}
OUTPUT: 1 3 5 7 9

The goto statement
The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;

Or, when used within a switch statement:

goto case case-constant;

C
#

Lang
uag

e
B

asics

Statements | 63

A label is a placeholder in a code block that precedes a statement, denoted with a
colon suffix. The following iterates the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
 Console.Write (i + " ");
 i++;
 goto startLoop;
}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 60).

The return statement
The return statement exits the method and must return an expression of the meth‐
od’s return type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{
 decimal p = d * 100m;
 return p; // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block).

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 148 in Chapter 4):

if (w == null)
 throw new ArgumentNullException (...);

Miscellaneous Statements
The using statement provides an elegant syntax for calling Dispose on objects that
implement IDisposable, within a finally block (see “try Statements and Excep‐
tions” on page 148 in Chapter 4 and “IDisposable, Dispose, and Close” on page 499
in Chapter 12).

C# overloads the using keyword to have independent mean‐
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the Moni
tor class (see Chapter 14 and Chapter 23).

64 | Chapter 2: C# Language Basics

Namespaces
A namespace is a domain for type names. Types are typically organized into hier‐
archical namespaces, making them easier to find and avoiding conflicts. For exam‐
ple, the RSA type that handles public key encryption is defined within the following
namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa =
 System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are units of
deployment such as an .exe or .dll (described in Chapter 18).

Namespaces also have no impact on member visibility—pub

lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block. For exam‐
ple:

namespace Outer.Middle.Inner
{
 class Class1 {}
 class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer
{
 namespace Middle
 {
 namespace Inner
 {
 class Class1 {}
 class Class2 {}
 }
 }
}

You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the
preceding example as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.

C
#

Lang
uag

e
B

asics

Namespaces | 65

The using Directive
The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer.Mid
dle.Inner namespace:

using Outer.Middle.Inner;

class Test
{
 static void Main()
 {
 Class1 c; // Don't need fully qualified name
 }
}

It’s legal (and often desirable) to define the same type name in
different namespaces. However, you’d typically do so only if it
was unlikely for a consumer to want to import both namespa‐
ces at once. A good example, from the .NET Framework, is
the TextBox class which is defined both in System.Win
dows.Controls (WPF) and System.Web.UI.WebControls

(ASP.NET).

using static (C# 6)
From C# 6, you can import not just a namespace, but a specific type, with the using
static directive. All static members of that type can then be used without being
qualified with the type name. In the following example, we call the Console class’s
static WriteLine method:

using static System.Console;

class Test
{
 static void Main() { WriteLine ("Hello"); }
}

The using static directive imports all accessible static members of the type,
including fields, properties and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type:

using static System.Windows.Visibility;

we can specify Hidden instead of Visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden }; // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context, and will generate an error.

66 | Chapter 2: C# Language Basics

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified within inner name‐
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer
{
 class Class1 {}

 namespace Inner
 {
 class Class2 : Class1 {}
 }
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany
{
 namespace Common
 {
 class ReportBase {}
 }
 namespace ManagementReporting
 {
 class SalesReport : Common.ReportBase {}
 }
}

Name hiding
If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name.
For example:

namespace Outer
{
 class Foo { }

 namespace Inner
 {
 class Foo { }

 class Test
 {
 Foo f1; // = Outer.Inner.Foo
 Outer.Foo f2; // = Outer.Foo
 }

C
#

Lang
uag

e
B

asics

Namespaces | 67

 }
}

All type names are converted to fully qualified names at com‐
pile time. Intermediate language (IL) code contains no unqua‐
lified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type names within the name‐
spaces don’t conflict:

namespace Outer.Middle.Inner
{
 class Class1 {}
}

namespace Outer.Middle.Inner
{
 class Class2 {}
}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

namespace Outer.Middle.Inner
{
 class Class1 {}
}

Source file 2:

namespace Outer.Middle.Inner
{
 class Class2 {}
}

Nested using directive
You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope, but not in another:

namespace N1
{
 class Class1 {}
}

namespace N2
{
 using N1;

 class Class2 : Class1 {}

68 | Chapter 2: C# Language Basics

}

namespace N2
{
 class Class3 : Class1 {} // Compile-time error
}

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision. Rather than importing
the whole namespace, you can import just the specific types you need, giving each
type an alias. For example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern
Extern aliases allow your program to reference two types with the same fully quali‐
fied name (i.e., the namespace and type name are identical). This is an unusual sce‐
nario and can occur only when the two types come from different assemblies. Con‐
sider the following example.

Library 1:

// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
 public class Widget {}
}

Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
 public class Widget {}
}

Application:

// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{

C
#

Lang
uag

e
B

asics

Namespaces | 69

 static void Main()
 {
 Widget w = new Widget();
 }
}

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity in our application:

// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
 static void Main()
 {
 W1.Widgets.Widget w1 = new W1.Widgets.Widget();
 W2.Widgets.Widget w2 = new W2.Widgets.Widget();
 }
}

Namespace alias qualifiers
As we mentioned earlier, names in inner namespaces hide names in outer namespa‐
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N
{
 class A
 {
 public class B {} // Nested type
 static void Main() { new A.B(); } // Instantiate class B
 }
}

namespace A
{
 class B {}
}

The Main method could be instantiating either the nested class B, or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace; in this case, the nested B class.

70 | Chapter 2: C# Language Basics

To resolve such conflicts, a namespace name can be qualified, relative to one of the
following:

• The global namespace—the root of all namespaces (identified with the contex‐
tual keyword global)

• The set of extern aliases

The :: token is used for namespace alias qualification. In this example, we qualify
using the global namespace (this is most commonly seen in auto-generated code to
avoid name conflicts):

namespace N
{
 class A
 {
 static void Main()
 {
 System.Console.WriteLine (new A.B());
 System.Console.WriteLine (new global::A.B());
 }

 public class B {}
 }
}

namespace A
{
 class B {}
}

Here is an example of qualifying with an alias (adapted from the example in
“Extern” on page 69):

extern alias W1;
extern alias W2;
class Test
{
 static void Main()
 {
 W1::Widgets.Widget w1 = new W1::Widgets.Widget();
 W2::Widgets.Widget w2 = new W2::Widgets.Widget();
 }
}

C
#

Lang
uag

e
B

asics

Namespaces | 71

O’Reilly ebooks.
Your bookshelf

on your devices.

When you buy an ebook through oreilly.com you get lifetime
access to the book, and whenever possible we provide it
to you in four DRM-free file formats—PDF, .epub, Kindle-
compatible .mobi, and DAISY—that you can use on the devices
of your choice. Our ebook files are fully searchable, and you
can cut-and-paste and print them. We also alert you when
we’ve updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://play.google.com/store/books?hl=en
http://www.amazon.com/

	Copyright
	Table of Contents
	Preface
	Intended Audience
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Joseph Albahari
	Ben Albahari

	Chapter 1. Introducing C# and the .NET Framework
	Object Orientation
	Type Safety
	Memory Management
	Platform Support
	C#’s Relationship with the CLR
	The CLR and .NET Framework
	C# and Windows Runtime
	What’s New in C# 6.0
	What Was New in C# 5.0
	What Was New in C# 4.0
	What Was New in C# 3.0

	Chapter 2. C# Language Basics
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Conversions
	Value Types Versus Reference Types
	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric Conversions
	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	8- and 16-Bit Integrals
	Special Float and Double Values
	double Versus decimal
	Real-Number Rounding Errors

	Boolean Type and Operators
	Bool Conversions
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	Char Conversions
	String Type

	Arrays
	Default Element Initialization
	Multidimensional Arrays
	Simplified Array Initialization Expressions
	Bounds Checking

	Variables and Parameters
	The Stack and the Heap
	Definite Assignment
	Default Values
	Parameters
	var—Implicitly Typed Local Variables

	Expressions and Operators
	Primary Expressions
	Void Expressions
	Assignment Expressions
	Operator Precedence and Associativity
	Operator Table

	Null Operators
	Null-Coalescing Operator
	Null-conditional operator (C# 6)

	Statements
	Declaration Statements
	Expression Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	Miscellaneous Statements

	Namespaces
	The using Directive
	using static (C# 6)
	Rules Within a Namespace
	Aliasing Types and Namespaces
	Advanced Namespace Features

	Chapter 3. Creating Types in C#
	Classes
	Fields
	Methods
	Instance Constructors
	Object Initializers
	The this Reference
	Properties
	Indexers
	Constants
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	The nameof operator (C# 6)

	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	The ToString Method
	Object Member Listing

	Structs
	Struct Construction Semantics

	Access Modifiers
	Examples
	Friend Assemblies
	Accessibility Capping
	Restrictions on Access Modifiers

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass
	Interfaces and Boxing

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators
	Type-Safety Issues

	Nested Types
	Generics
	Generic Types
	Why Generics Exist
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Type Parameters and Conversions
	Covariance
	Contravariance
	C# Generics Versus C++ Templates

	Chapter 4. Advanced C#
	Delegates
	Writing Plug-in Methods with Delegates
	Multicast Delegates
	Instance Versus Static Method Targets
	Generic Delegate Types
	The Func and Action Delegates
	Delegates Versus Interfaces
	Delegate Compatibility

	Events
	Standard Event Pattern
	Event Accessors
	Event Modifiers

	Lambda Expressions
	Explicitly Specifying Lambda Parameter Types
	Capturing Outer Variables

	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	Throwing Exceptions
	Key Properties of System.Exception
	Common Exception Types
	The TryXXX Method Pattern
	Alternatives to Exceptions

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Composing Sequences

	Nullable Types
	Nullable<T> struct
	Implicit and explicit nullable conversions
	Boxing and unboxing nullable values
	Operator Lifting
	bool? with & and | Operators
	Nullable Types & Null Operators
	Scenarios for Nullable Types
	Alternatives to Nullable Types

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions
	Overloading true and false

	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution

	Anonymous Types
	Dynamic Binding
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of Dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Calls Without Dynamic Receivers
	Static Types in Dynamic Expressions
	Uncallable Functions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes

	Caller Info Attributes (C# 5)
	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	Arrays
	void*
	Pointers to Unmanaged Code

	Preprocessor Directives
	Conditional Attributes
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags
	User-Defined Tags
	Type or Member Cross-References

	Chapter 5. Framework Overview
	The CLR and Core Framework
	System Types
	Text Processing
	Collections
	Queries
	XML
	Diagnostics and Code Contracts
	Concurrency and Asynchrony
	Streams and I/O
	Networking
	Serialization
	Assemblies, Reflection, and Attributes
	Dynamic Programming
	Security
	Advanced Threading
	Parallel Programming
	Application Domains
	Native and COM Interoperability

	Applied Technologies
	User Interface Technologies
	Backend Technologies
	Distributed System Technologies

	Chapter 6. Framework Fundamentals
	String and Text Handling
	Char
	String
	Comparing Strings
	StringBuilder
	Text Encodings and Unicode

	Dates and Times
	TimeSpan
	DateTime and DateTimeOffset

	Dates and Time Zones
	DateTime and Time Zones
	DateTimeOffset and Time Zones
	TimeZone and TimeZoneInfo
	Daylight Saving Time and DateTime

	Formatting and Parsing
	ToString and Parse
	Format Providers

	Standard Format Strings and Parsing Flags
	Numeric Format Strings
	NumberStyles
	Date/Time Format Strings
	DateTimeStyles
	Enum Format Strings

	Other Conversion Mechanisms
	Convert
	XmlConvert
	Type Converters
	BitConverter

	Globalization
	Globalization Checklist
	Testing

	Working with Numbers
	Conversions
	Math
	BigInteger
	Complex
	Random

	Enums
	Enum Conversions
	Enumerating Enum Values
	How Enums Work

	Tuples
	Comparing Tuples

	The Guid Struct
	Equality Comparison
	Value Versus Referential Equality
	Standard Equality Protocols
	Equality and Custom Types

	Order Comparison
	IComparable
	< and >
	Implementing the IComparable Interfaces

	Utility Classes
	Console
	Environment
	Process
	AppContext

	Chapter 7. Collections
	Enumeration
	IEnumerable and IEnumerator
	IEnumerable<T> and IEnumerator<T>
	Implementing the Enumeration Interfaces

	The ICollection and IList Interfaces
	ICollection<T> and ICollection
	IList<T> and IList
	IReadOnlyList<T>

	The Array Class
	Construction and Indexing
	Enumeration
	Length and Rank
	Searching
	Sorting
	Reversing Elements
	Copying
	Converting and Resizing

	Lists, Queues, Stacks, and Sets
	List<T> and ArrayList
	LinkedList<T>
	Queue<T> and Queue
	Stack<T> and Stack
	BitArray
	HashSet<T> and SortedSet<T>

	Dictionaries
	IDictionary<TKey,TValue>
	IDictionary
	Dictionary<TKey,TValue> and Hashtable
	OrderedDictionary
	ListDictionary and HybridDictionary
	Sorted Dictionaries

	Customizable Collections and Proxies
	Collection<T> and CollectionBase
	KeyedCollection<TKey,TItem> and DictionaryBase
	ReadOnlyCollection<T>

	Plugging in Equality and Order
	IEqualityComparer and EqualityComparer
	IComparer and Comparer
	StringComparer
	IStructuralEquatable and IStructuralComparable

	Chapter 8. LINQ Queries
	Getting Started
	Fluent Syntax
	Chaining Query Operators
	Composing Lambda Expressions
	Natural Ordering
	Other Operators

	Query Expressions
	Range Variables
	Query Syntax Versus SQL Syntax
	Query Syntax Versus Fluent Syntax
	Mixed-Syntax Queries

	Deferred Execution
	Reevaluation
	Captured Variables
	How Deferred Execution Works
	Chaining Decorators
	How Queries Are Executed

	Subqueries
	Subqueries and Deferred Execution

	Composition Strategies
	Progressive Query Building
	The into Keyword
	Wrapping Queries

	Projection Strategies
	Object Initializers
	Anonymous Types
	The let Keyword

	Interpreted Queries
	How Interpreted Queries Work
	Combining Interpreted and Local Queries
	AsEnumerable

	LINQ to SQL and Entity Framework
	LINQ to SQL Entity Classes
	Entity Framework Entity Classes
	DataContext and ObjectContext
	Associations
	Deferred Execution with L2S and EF
	DataLoadOptions
	Eager Loading in Entity Framework
	Updates
	API Differences Between L2S and EF

	Building Query Expressions
	Delegates Versus Expression Trees
	Expression Trees

	Chapter 9. LINQ Operators
	Overview
	Sequence→Sequence
	Sequence→Element or Value
	Void→Sequence

	Filtering
	Where
	Take and Skip
	TakeWhile and SkipWhile
	Distinct

	Projecting
	Select
	SelectMany

	Joining
	Join and GroupJoin
	The Zip Operator

	Ordering
	OrderBy, OrderByDescending, ThenBy, and ThenByDescending

	Grouping
	GroupBy

	Set Operators
	Concat and Union
	Intersect and Except

	Conversion Methods
	OfType and Cast
	ToArray, ToList, ToDictionary, and ToLookup
	AsEnumerable and AsQueryable

	Element Operators
	First, Last, and Single
	ElementAt
	DefaultIfEmpty

	Aggregation Methods
	Count and LongCount
	Min and Max
	Sum and Average
	Aggregate

	Quantifiers
	Contains and Any
	All and SequenceEqual

	Generation Methods
	Empty
	Range and Repeat

	Chapter 10. LINQ to XML
	Architectural Overview
	What Is a DOM?
	The LINQ to XML DOM

	X-DOM Overview
	Loading and Parsing
	Saving and Serializing

	Instantiating an X-DOM
	Functional Construction
	Specifying Content
	Automatic Deep Cloning

	Navigating and Querying
	Child Node Navigation
	Parent Navigation
	Peer Node Navigation
	Attribute Navigation

	Updating an X-DOM
	Simple Value Updates
	Updating Child Nodes and Attributes
	Updating Through the Parent

	Working with Values
	Setting Values
	Getting Values
	Values and Mixed Content Nodes
	Automatic XText Concatenation

	Documents and Declarations
	XDocument
	XML Declarations

	Names and Namespaces
	Namespaces in XML
	Specifying Namespaces in the X-DOM
	The X-DOM and Default Namespaces
	Prefixes

	Annotations
	Projecting into an X-DOM
	Eliminating Empty Elements
	Streaming a Projection
	Transforming an X-DOM

	Chapter 11. Other XML Technologies
	XmlReader
	Reading Nodes
	Reading Elements
	Reading Attributes
	Namespaces and Prefixes

	XmlWriter
	Writing Attributes
	Writing Other Node Types
	Namespaces and Prefixes

	Patterns for Using XmlReader/XmlWriter
	Working with Hierarchical Data
	Mixing XmlReader/XmlWriter with an X-DOM

	XSD and Schema Validation
	Performing Schema Validation

	XSLT

	Chapter 12. Disposal and Garbage Collection
	IDisposable, Dispose, and Close
	Standard Disposal Semantics
	When to Dispose
	Opt-in Disposal
	Clearing Fields in Disposal

	Automatic Garbage Collection
	Roots
	Garbage Collection and WinRT

	Finalizers
	Calling Dispose from a Finalizer
	Resurrection

	How the Garbage Collector Works
	Optimization Techniques
	Forcing Garbage Collection
	Tuning Garbage Collection
	Memory Pressure

	Managed Memory Leaks
	Timers
	Diagnosing Memory Leaks

	Weak References
	Weak References and Caching
	Weak References and Events

	Chapter 13. Diagnostics and Code Contracts
	Conditional Compilation
	Conditional Compilation Versus Static Variable Flags
	The Conditional Attribute

	Debug and Trace Classes
	Fail and Assert
	TraceListener
	Flushing and Closing Listeners

	Code Contracts Overview
	Why Use Code Contracts?
	Contract Principles

	Preconditions
	Contract.Requires
	Contract.Requires<TException>
	Contract.EndContractBlock
	Preconditions and Overridden Methods

	Postconditions
	Contract.Ensures
	Contract.EnsuresOnThrow<TException>
	Contract.Result<T> and Contract.ValueAtReturn<T>
	Contract.OldValue<T>
	Postconditions and Overridden Methods

	Assertions and Object Invariants
	Assertions
	Object Invariants

	Contracts on Interfaces and Abstract Methods
	Dealing with Contract Failure
	The ContractFailed Event
	Exceptions Within Contract Conditions

	Selectively Enforcing Contracts
	Contracts in Release Builds
	Call-Site Checking

	Static Contract Checking
	The ContractVerification Attribute
	Baselines
	The SuppressMessage Attribute

	Debugger Integration
	Attaching and Breaking
	Debugger Attributes

	Processes and Process Threads
	Examining Running Processes
	Examining Threads in a Process

	StackTrace and StackFrame
	Windows Event Logs
	Writing to the Event Log
	Reading the Event Log
	Monitoring the Event Log

	Performance Counters
	Enumerating the Available Counters
	Reading Performance Counter Data
	Creating Counters and Writing Performance Data

	The Stopwatch Class

	Chapter 14. Concurrency and Asynchrony
	Introduction
	Threading
	Creating a Thread
	Join and Sleep
	Blocking
	Local Versus Shared State
	Locking and Thread Safety
	Passing Data to a Thread
	Exception Handling
	Foreground Versus Background Threads
	Thread Priority
	Signaling
	Threading in Rich-Client Applications
	Synchronization Contexts
	The Thread Pool

	Tasks
	Starting a Task
	Returning values
	Exceptions
	Continuations
	TaskCompletionSource
	Task.Delay

	Principles of Asynchrony
	Synchronous Versus Asynchronous Operations
	What is Asynchronous Programming?
	Asynchronous Programming and Continuations
	Why Language Support Is Important

	Asynchronous Functions in C#
	Awaiting
	Writing Asynchronous Functions
	Asynchronous Lambda Expressions
	Asynchronous Methods in WinRT
	Asynchrony and Synchronization Contexts
	Optimizations

	Asynchronous Patterns
	Cancellation
	Progress Reporting
	The Task-based Asynchronous Pattern (TAP)
	Task Combinators

	Obsolete Patterns
	Asynchronous Programming Model (APM)
	Event-Based Asynchronous Pattern (EAP)
	BackgroundWorker

	Chapter 15. Streams and I/O
	Stream Architecture
	Using Streams
	Reading and Writing
	Seeking
	Closing and Flushing
	Timeouts
	Thread Safety
	Backing Store Streams
	FileStream
	MemoryStream
	PipeStream
	BufferedStream

	Stream Adapters
	Text Adapters
	Binary Adapters
	Closing and Disposing Stream Adapters

	Compression Streams
	Compressing in Memory

	Working with ZIP Files
	File and Directory Operations
	The File Class
	The Directory Class
	FileInfo and DirectoryInfo
	Path
	Special Folders
	Querying Volume Information
	Catching Filesystem Events

	File I/O in Windows Runtime
	Working with Directories
	Working with Files
	Isolated Storage in Windows Store Apps

	Memory-Mapped Files
	Memory-Mapped Files and Random File I/O
	Memory-Mapped Files and Shared Memory
	Working with View Accessors

	Isolated Storage
	Isolation Types
	Reading and Writing Isolated Storage
	Store Location
	Enumerating Isolated Storage

	Chapter 16. Networking
	Network Architecture
	Addresses and Ports
	URIs
	Client-Side Classes
	WebClient
	WebRequest and WebResponse
	HttpClient
	Proxies
	Authentication
	Exception Handling

	Working with HTTP
	Headers
	Query Strings
	Uploading Form Data
	Cookies
	Forms Authentication
	SSL

	Writing an HTTP Server
	Using FTP
	Using DNS
	Sending Mail with SmtpClient
	Using TCP
	Concurrency with TCP

	Receiving POP3 Mail with TCP
	TCP in Windows Runtime

	Chapter 17. Serialization
	Serialization Concepts
	Serialization Engines
	Formatters
	Explicit Versus Implicit Serialization

	The Data Contract Serializer
	DataContractSerializer Versus NetDataContractSerializer
	Using the Serializers
	Serializing Subclasses
	Object References
	Version Tolerance
	Member Ordering
	Null and Empty Values

	Data Contracts and Collections
	Subclassed Collection Elements
	Customizing Collection and Element Names

	Extending Data Contracts
	Serialization and Deserialization Hooks
	Interoperating with [Serializable]
	Interoperating with IXmlSerializable

	The Binary Serializer
	Getting Started

	Binary Serialization Attributes
	[NonSerialized]
	[OnDeserializing] and [OnDeserialized]
	[OnSerializing] and [OnSerialized]
	[OptionalField] and Versioning

	Binary Serialization with ISerializable
	Subclassing Serializable Classes

	XML Serialization
	Getting Started with Attribute-Based Serialization
	Subclasses and Child Objects
	Serializing Collections
	IXmlSerializable

	Chapter 18. Assemblies
	What’s in an Assembly
	The Assembly Manifest
	The Application Manifest
	Modules
	The Assembly Class

	Strong Names and Assembly Signing
	How to Strongly Name an Assembly
	Delay Signing

	Assembly Names
	Fully Qualified Names
	The AssemblyName Class
	Assembly Informational and File Versions

	Authenticode Signing
	How to Sign with Authenticode
	Authenticode Validation

	The Global Assembly Cache
	How to Install Assemblies to the GAC
	GAC and Versioning

	Resources and Satellite Assemblies
	Directly Embedding Resources
	.resources Files
	.resx Files
	Satellite Assemblies
	Cultures and Subcultures

	Resolving and Loading Assemblies
	Assembly and Type Resolution Rules
	AssemblyResolve
	Loading Assemblies

	Deploying Assemblies Outside the Base Folder
	Packing a Single-File Executable
	Selective Patching

	Working with Unreferenced Assemblies

	Chapter 19. Reflection and Metadata
	Reflecting and Activating Types
	Obtaining a Type
	Type Names
	Base Types and Interfaces
	Instantiating Types
	Generic Types

	Reflecting and Invoking Members
	Member Types
	C# Members Versus CLR Members
	Generic Type Members
	Dynamically Invoking a Member
	Method Parameters
	Using Delegates for Performance
	Accessing Nonpublic Members
	Generic Methods
	Anonymously Calling Members of a Generic Interface

	Reflecting Assemblies
	Loading an Assembly into a Reflection-Only Context
	Modules

	Working with Attributes
	Attribute Basics
	The AttributeUsage Attribute
	Defining Your Own Attribute
	Retrieving Attributes at Runtime
	Retrieving Attributes in the Reflection-Only Context

	Dynamic Code Generation
	Generating IL with DynamicMethod
	The Evaluation Stack
	Passing Arguments to a Dynamic Method
	Generating Local Variables
	Branching
	Instantiating Objects and Calling Instance Methods
	Exception Handling

	Emitting Assemblies and Types
	Saving Emitted Assemblies
	The Reflection.Emit Object Model

	Emitting Type Members
	Emitting Methods
	Emitting Fields and Properties
	Emitting Constructors
	Attaching Attributes

	Emitting Generic Methods and Types
	Defining Generic Methods
	Defining Generic Types

	Awkward Emission Targets
	Uncreated Closed Generics
	Circular Dependencies

	Parsing IL
	Writing a Disassembler

	Chapter 20. Dynamic Programming
	The Dynamic Language Runtime
	Numeric Type Unification
	Dynamic Member Overload Resolution
	Simplifying the Visitor Pattern
	Anonymously Calling Members of a Generic Type

	Implementing Dynamic Objects
	DynamicObject
	ExpandoObject

	Interoperating with Dynamic Languages
	Passing State Between C# and a Script

	Chapter 21. Security
	Permissions
	CodeAccessPermission and PrincipalPermission
	PermissionSet
	Declarative Versus Imperative Security

	Code Access Security (CAS)
	How Code Access Security Is Applied
	Testing for Full Trust

	Allowing Partially Trusted Callers
	Elevation of Privilege
	APTCA and [SecurityTransparent]

	The Transparency Model
	How the Transparency Model Works
	How to Write APTCA Libraries with Transparency
	Transparency in Full-Trust Scenarios

	Sandboxing Another Assembly
	Asserting Permissions

	Operating System Security
	Running in a Standard User Account
	Administrative Elevation and Virtualization

	Identity and Role Security
	Assigning Users and Roles

	Cryptography Overview
	Windows Data Protection
	Hashing
	Symmetric Encryption
	Encrypting in Memory
	Chaining Encryption Streams
	Disposing Encryption Objects
	Key Management

	Public Key Encryption and Signing
	The RSA Class
	Digital Signing

	Chapter 22. Advanced Threading
	Synchronization Overview
	Exclusive Locking
	The lock Statement
	Monitor.Enter and Monitor.Exit
	Choosing the Synchronization Object
	When to Lock
	Locking and Atomicity
	Nested Locking
	Deadlocks
	Performance
	Mutex

	Locking and Thread Safety
	Thread Safety and .NET Framework Types
	Thread Safety in Application Servers
	Immutable Objects

	Nonexclusive Locking
	Semaphore
	Reader/Writer Locks

	Signaling with Event Wait Handles
	AutoResetEvent
	ManualResetEvent
	CountdownEvent
	Creating a Cross-Process EventWaitHandle
	Wait Handles and Continuations
	Converting Wait Handles to Tasks
	WaitAny, WaitAll, and SignalAndWait

	The Barrier Class
	Lazy Initialization
	Lazy<T>
	LazyInitializer

	Thread-Local Storage
	[ThreadStatic]
	ThreadLocal<T>
	GetData and SetData

	Interrupt and Abort
	Suspend and Resume
	Timers
	Multithreaded Timers
	Single-Threaded Timers

	Chapter 23. Parallel Programming
	Why PFX?
	PFX Concepts
	PFX Components
	When to Use PFX

	PLINQ
	Parallel Execution Ballistics
	PLINQ and Ordering
	PLINQ Limitations
	Example: Parallel Spellchecker
	Functional Purity
	Setting the Degree of Parallelism
	Cancellation
	Optimizing PLINQ

	The Parallel Class
	Parallel.Invoke
	Parallel.For and Parallel.ForEach

	Task Parallelism
	Creating and Starting Tasks
	Waiting on Multiple Tasks
	Canceling Tasks
	Continuations
	Task Schedulers
	TaskFactory

	Working with AggregateException
	Flatten and Handle

	Concurrent Collections
	IProducerConsumerCollection<T>
	ConcurrentBag<T>

	BlockingCollection<T>
	Writing a Producer/Consumer Queue

	Chapter 24. Application Domains
	Application Domain Architecture
	Creating and Destroying Application Domains
	Using Multiple Application Domains
	Using DoCallBack
	Monitoring Application Domains
	Domains and Threads
	Sharing Data Between Domains
	Sharing Data via Slots
	Intra-Process Remoting
	Isolating Types and Assemblies

	Chapter 25. Interoperability
	Calling into Native DLLs
	Type Marshaling
	Marshaling Common Types
	Marshaling Classes and Structs
	In and Out Marshaling

	Callbacks from Unmanaged Code
	Simulating a C Union
	Shared Memory
	Mapping a Struct to Unmanaged Memory
	fixed and fixed {...}

	COM Interoperability
	The Purpose of COM
	The Basics of the COM Type System

	Calling a COM Component from C#
	Optional Parameters and Named Arguments
	Implicit ref Parameters
	Indexers
	Dynamic Binding

	Embedding Interop Types
	Type Equivalence

	Primary Interop Assemblies
	Exposing C# Objects to COM

	Chapter 26. Regular Expressions
	Regular Expression Basics
	Compiled Regular Expressions
	RegexOptions
	Character Escapes
	Character Sets

	Quantifiers
	Greedy Versus Lazy Quantifiers

	Zero-Width Assertions
	Lookahead and Lookbehind
	Anchors
	Word Boundaries

	Groups
	Named Groups

	Replacing and Splitting Text
	MatchEvaluator Delegate
	Splitting Text

	Cookbook Regular Expressions
	Recipes

	Regular Expressions Language Reference

	Chapter 27. The Roslyn Compiler
	Roslyn Architecture
	Workspaces

	Syntax Trees
	SyntaxTree Structure
	Obtaining a Syntax Tree
	Traversing and Searching a Tree
	Trivia
	Transforming a Syntax Tree

	Compilations and Semantic Models
	Creating a Compilation
	Emitting an Assembly
	Querying the Semantic Model
	Example: Renaming a Symbol

	Index

