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2
C# Language Basics

In this chapter, we introduce the basics of the C# language.

All programs and code snippets in this and the following two
chapters are available as interactive samples in LINQPad.
Working through these samples in conjunction with the book
accelerates learning in that you can edit the samples and
instantly see the results without needing to set up projects and
solutions in Visual Studio.
To download the samples, go to LINQPad’s Sample Libraries
page and choose “C# 6.0 in a Nutshell.” LINQPad is free—go
to http://www.linqpad.net.

A First C# Program
Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen.
The double forward slash indicates that the remainder of a line is a comment:

using System;                     // Importing namespace

class Test                        // Class declaration
{
  static void Main()              // Method declaration
  {
    int x = 12 * 30;              // Statement 1
    Console.WriteLine (x);        // Statement 2
  }                               // End of method
}                                 // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WriteLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code
block, as we’ll see later). The first statement computes the expression 12 * 30 and

C
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stores the result in a local variable, named x, which is an integer type. The second
statement calls the Console class’s WriteLine method, to print the variable x to a text
window on the screen.

A method performs an action in a series of statements, called a statement block—a
pair of braces containing zero or more statements. We defined a single method
named Main:

static void Main()
{
  ...
}

Writing higher-level functions that call upon lower-level functions simplifies a pro‐
gram. We can refactor our program with a reusable method that multiplies an inte‐
ger by 12 as follows:

using System;

class Test
{
  static void Main()
  {
    Console.WriteLine (FeetToInches (30));      // 360
    Console.WriteLine (FeetToInches (100));     // 1200
  }

  static int FeetToInches (int feet)
  {
    int inches = feet * 12;
    return inches;
  }
}

A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. We defined a method called Feet
ToInches that has a parameter for inputting feet, and a return type for outputting
inches:

static int FeetToInches (int feet ) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The
Main method in our example has empty parentheses because it has no parameters,
and is void because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execu‐
tion. The Main method may optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings
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as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of ele‐
ments of a particular type. Arrays are specified by placing
square brackets after the element type and are described in
“Arrays” on page 38.

Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function
members and data members to form an object-oriented building block. The Con
sole class groups members that handle command-line input/output functionality,
such as the WriteLine method. Our Test class groups two methods—the Main
method and the FeetToInches method. A class is a kind of type, which we will
examine in “Type Basics” on page 17. 

At the outermost level of a program, types are organized into namespaces. The
using directive was used to make the System namespace available to our applica‐
tion, to use the Console class. We could define all our classes within the TestPro
grams namespace, as follows:

using System;

namespace TestPrograms
{
  class Test  {...}
  class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For example, this is the
namespace that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully
qualified name, which is the type name prefixed with its namespace, such as Sys
tem.Text.StringBuilder.

Compilation
The C# compiler compiles source code, specified as a set of files with the .cs exten‐
sion, into an assembly. An assembly is the unit of packaging and deployment
in .NET. An assembly can be either an application or a library. A normal console or
Windows application has a Main method and is an .exe file. A library is a .dll and is
equivalent to an .exe without an entry point. Its purpose is to be called upon (refer‐
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enced) by an application or by other libraries. The .NET Framework is a set of libra‐
ries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual
Studio to compile, or call csc manually from the command line. (The compiler is
also available as a library; see Chapter 27.) To compile manually, first save a pro‐
gram to a file such as MyFirstProgram.cs, and then go to the command line and
invoke csc (located in %ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

Peculiarly, .NET Framework 4.6 ships with the C# 5 compiler.
To obtain the C# 6 command-line compiler, you must install
Visual Studio or MSBuild 14.

To produce a library (.dll), do the following:

csc /target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s ele‐
ments of syntax, using the following program:

using System;

class Test
{
  static void Main()
  {
    int x = 12 * 30;
    Console.WriteLine (x);
  }
}

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables,
and so on. These are the identifiers in our example program, in the order they
appear:

System   Test   Main   x   Console   WriteLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case-sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myVaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).
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Keywords are names that mean something special to the compiler. These are the
keywords in our example program:

using   class   static   void   int

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

longnamespace

new

null

object

operator

out

override

params

private

protected

public

readonly

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

volatile

while

Avoiding conflicts
If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix. For instance:

class class  {...}      // Illegal
class @class {...}      // Legal

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as
myVariable.

The @ prefix can be useful when consuming libraries written
in other .NET languages that have different keywords.

Contextual keywords
Some keywords are contextual, meaning they can also be used as identifiers—
without an @ symbol. These are:

C
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add

ascending

async

await

by

descending

dynamic

equals

from

get

global

group

in

into

join

let

nameof

on

orderby

partial

remove

select

set

value

var

when

where

yield

With contextual keywords, ambiguity cannot arise within the context in which they
are used. 

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the program. The liter‐
als we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators
we used in our example program:

{   }   ;

The braces group multiple statements into a statement block.

The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most operators in C# are deno‐
ted with a symbol, such as the multiplication operator, *. We will discuss operators
in more detail later in this chapter. These are the operators we used in our example
program:

.  ()   *   =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that we’ll see later in this chapter.) An equals sign performs assignment. (The double
equals sign, ==, performs equality comparison, as we’ll see later.)

Comments
C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line. For example:

int x = 3;   // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:
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int x = 3;   /* This is a comment that
                spans two lines */

Comments may embed XML documentation tags, explained in “XML Documenta‐
tion” on page 193 in Chapter 4. 

Type Basics
A type defines the blueprint for a value. In our example, we used two literals of type
int with values 12 and 30. We also declared a variable of type int whose name was
x:

static void Main()
{
  int x = 12 * 30;
  Console.WriteLine (x);
}

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possi‐
ble values a variable can have, is determined by its type.

Predefined Type Examples
Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from −231 to 231−1, and is the default type for numeric literals within this
range. We can perform functions such as arithmetic with instances of the int type
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “.NET” or “http://oreilly.com.” We can work with strings by call‐
ing functions on them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage);               // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message);                    // Hello world2015

The predefined bool type has exactly two possible values: true and false. The bool
type is commonly used to conditionally branch execution flow based with an if
statement. For example:

bool simpleVar = false;
if (simpleVar)
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  Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
  Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types) are
recognized with a C# keyword. The System namespace in
the .NET Framework contains many important types that are
not predefined by C# (e.g., DateTime). 

Custom Type Examples
Just as we can build complex functions from simple functions, we can build com‐
plex types from primitive types. In this example, we will define a custom type
named UnitConverter—a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter
{
  int ratio;                                                 // Field
  public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
  public int Convert   (int unit)    {return unit * ratio; } // Method
}

class Test
{
  static void Main()
  {
    UnitConverter feetToInchesConverter = new UnitConverter (12);
    UnitConverter milesToFeetConverter  = new UnitConverter (5280);

    Console.WriteLine (feetToInchesConverter.Convert(30));    // 360
    Console.WriteLine (feetToInchesConverter.Convert(100));   // 1200
    Console.WriteLine (feetToInchesConverter.Convert(
                         milesToFeetConverter.Convert(1)));   // 63360
  }
}

Members of a type
A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom types have few differ‐
ences. The predefined int type serves as a blueprint for integers. It holds data—32
bits—and provides function members that use that data, such as ToString. Simi‐
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larly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation
Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public class UnitConverter
{
  ...
  public UnitConverter (int unitRatio) { ratio = unitRatio; }
  ...
}

Instance versus static members
The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type,
but rather on the type itself, must be marked as static. The Test.Main and Con
sole.WriteLine methods are static methods. The Console class is actually a static
class, which means all its members are static. You never actually create instances of a
Console—one console is shared across the whole application.

Let’s contrast instance from static members. In the following code, the instance field
Name pertains to an instance of a particular Panda, whereas Population pertains to
the set of all Panda instances:

public class Panda
{
  public string Name;             // Instance field
  public static int Population;   // Static field

  public Panda (string n)         // Constructor
  {
    Name = n;                     // Assign the instance field
    Population = Population + 1;  // Increment the static Population field
  }
}
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The following code creates two instances of the Panda, prints their names, and then
prints the total population:

using System;

class Test
{
  static void Main()
  {
    Panda p1 = new Panda ("Pan Dee");
    Panda p2 = new Panda ("Pan Dah");

    Console.WriteLine (p1.Name);      // Pan Dee
    Console.WriteLine (p2.Name);      // Pan Dah

    Console.WriteLine (Panda.Population);   // 2
  }
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error. 

The public keyword
The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private, and the Test class
could not access it. Marking a member public is how a type communicates: “Here
is what I want other types to see—everything else is my own private implementation
details.” In object-oriented terms, we say that the public members encapsulate the
private members of the class. 

Conversions
C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bitwise capacity of an int) and explicitly cast an int to a short type
(which has half the capacity of an int):

int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integer
short z = (short)x;  // Explicit conversion to 16-bit integer
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1 A minor caveat is that very large long values lose some precision when converted to double.

Implicit conversions are allowed when both of the following are true:

• The compiler can guarantee they will always succeed.
• No information is lost in conversion.1

Conversely, explicit conversions are required when one of the following is true:

• The compiler cannot guarantee they will always succeed.
• Information may be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of con‐
version are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 121 in Chapter 3.)

The numeric conversions that we just saw are built into the lan‐
guage. C# also supports reference conversions and boxing con‐
versions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 168 in Chapter 4). The com‐
piler doesn’t enforce the aforementioned rules with custom
conversions, so it’s possible for badly designed types to behave
otherwise. 

Value Types Versus Reference Types
All C# types fall into the following categories:

• Value types
• Reference types
• Generic type parameters
• Pointer types

In this section, we’ll describe value types and reference types.
We’ll cover generic type parameters in “Generics” on page 114
in Chapter 3, and pointer types in “Unsafe Code and Pointers”
on page 187 in Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type), as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes
the predefined string type.)

The fundamental difference between value types and reference types is how they are
handled in memory.
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Value types
The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

or more tersely:

public struct Point { public int X, Y; }

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Assignment causes copy

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 7
}

Figure 2-2 shows that p1 and p2 have independent storage. 

Figure 2-2. Assignment copies a value-type instance

Reference types
A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is a
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reference to an object that contains the value. Here is the Point type from our previ‐
ous example rewritten as a class, rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Copies p1 reference

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 9
}

Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Figure 2-4. Assignment copies a reference
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Null
A reference can be assigned the literal null, indicating that the reference points to
no object: 

class Point {...}
...

Point p = null;
Console.WriteLine (p == null);   // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}
...

Point p = null;  // Compile-time error
int x = null;    // Compile-time error

C# also has a construct called nullable types for representing
value-type nulls (see “Nullable Types” on page 162 in Chap‐
ter 4).

Storage overhead
Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes eight bytes of memory:

struct Point
{
  int x;  // 4 bytes
  int y;  // 4 bytes
}

Technically, the CLR positions fields within the type at an
address that’s a multiple of the fields’ size (up to a maximum
of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “was‐
ted”):

struct A { byte b; long l; }

You can override this behavior with the StructLayout

attribute (see “Mapping a Struct to Unmanaged Memory” on
page 1011 in Chapter 25).
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Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative over‐
head. The precise overhead is intrinsically private to the implementation of
the .NET runtime, but at minimum, the overhead is eight bytes, used to store a key
to the object’s type, as well as temporary information such as its lock state for multi‐
threading and a flag to indicate whether it has been fixed from movement by the
garbage collector. Each reference to an object requires an extra four or eight bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
• Numeric

—Signed integer (sbyte, short, int, long)
—Unsigned integer (byte, ushort, uint, ulong)
—Real number (float, double, decimal)

• Logical (bool)

• Character (char)

Reference types
• String (string)

• Object (object)

Predefined types in C# alias Framework types in the System namespace. There is
only a syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types, excluding decimal, are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via
instructions in compiled code, and this usually translates to direct support on the
underlying processor. For example:

                   // Underlying hexadecimal representation
int i = 7;         // 0x7
bool b = true;     // 0x1
char c = 'A';      // 0x41
float f = 0.5f;    // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 25).
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2 Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#
language specification.

Numeric Types
C# has the predefined numeric types shown in Table 2-1. 

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral—signed

sbyte SByte  8 bits –27 to 27–1

short Int16  16 bits –215 to 215–1

int Int32  32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

Integral—unsigned

byte Byte  8 bits 0 to 28–1

ushort UInt16  16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or
when space efficiency is paramount.

Of the real number types, float and double are called floating-point types2 and are
typically used for scientific and graphical calculations. The decimal type is typically
used for financial calculations, where base-10-accurate arithmetic and high preci‐
sion are required.

Numeric Literals
Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted
with the 0x prefix. For example:

int x = 127;
long y = 0x7F;

Real literals can use decimal and/or exponential notation. For example:
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double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral
type:

• If the literal contains a decimal point or the exponential symbol (E), it is a
double.

• Otherwise, the literal’s type is the first type in this list that can fit the literal’s
value: int, uint, long, and ulong.

For example:

Console.WriteLine (        1.0.GetType());  // Double  (double)
Console.WriteLine (       1E06.GetType());  // Double  (double)
Console.WriteLine (          1.GetType());  // Int32   (int)
Console.WriteLine ( 0xF0000000.GetType());  // UInt32  (uint)
Console.WriteLine (0x100000000.GetType());  // Int64   (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows: 

Category C# type Example

F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint uint i = 1U;

L long long i = 1L;

UL ulong ulong i = 1UL;

The suffixes U and L are rarely necessary, because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long i = 5;     // Implicit lossless conversion from int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specify‐
ing float or decimal literals. Without the F suffix, the following line would not
compile, because 4.5 would be inferred to be of type double, which has no implicit
conversion to float:
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float f = 4.5F;

The same principle is true for a decimal literal:

decimal d = -1.23M;     // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section. 

Numeric Conversions

Integral to integral conversions
Integral conversions are implicit when the destination type can represent every pos‐
sible value of the source type. Otherwise, an explicit conversion is required. For
example:

int x = 12345;       // int is a 32-bit integral
long y = x;          // Implicit conversion to 64-bit integral
short z = (short)x;  // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions
A float can be implicitly converted to a double, since a double can represent every
possible value of a float. The reverse conversion must be explicit.

Floating-point to integral conversions
All integral types may be implicitly converted to all floating-point types:

int i = 1;
float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

When you cast from a floating-point number to an integral,
any fractional portion is truncated; no rounding is performed.
The static class System.Convert provides methods that round
while converting between various numeric types (see Chap‐
ter 6).

Implicitly converting a large integral type to a floating-point type preserves magni‐
tude but may occasionally lose precision. This is because floating-point types always
have more magnitude than integral types, but may have less precision. Rewriting
our example with a larger number demonstrates this:

int i1 = 100000001;
float f = i1;          // Magnitude preserved, precision lost
int i2 = (int)f;       // 100000000
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Decimal conversions
All integral types can be implicitly converted to the decimal type, since a decimal
can represent every possible C# integral value. All other numeric conversions to and
from a decimal type must be explicit. 

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types: 

+    Addition
-    Subtraction
*    Multiplication
/    Division
%    Remainder after division

Increment and Decrement Operators
The increment and decrement operators (++, --) increment and decrement numeric
types by 1. The operator can either follow or precede the variable, depending on
whether you want its value before or after the increment/decrement. For example:

int x = 0, y = 0;
Console.WriteLine (x++);   // Outputs 0; x is now 1
Console.WriteLine (++y);   // Outputs 1; y is now 1

Specialized Integral Operations

Integral division
Division operations on integral types always truncate remainders (round toward
zero). Dividing by a variable whose value is zero generates a runtime error (a Divid
eByZeroException):

int a = 2 / 3;      // 0

int b = 0;
int c = 5 / b;      // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Integral overflow
At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation was done on a larger integer type and the extra
significant bits discarded. For example, decrementing the minimum possible int
value results in the maximum possible int value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True
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Integral arithmetic overflow check operators
The checked operator tells the runtime to generate an OverflowException rather
than overflowing silently when an integral expression or statement exceeds the
arithmetic limits of that type. The checked operator affects expressions with the ++,
−−, +, − (binary and unary), *, /, and explicit conversion operators between integral
types.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as we’ll see
soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;
int b = 1000000;

int c = checked (a * b);      // Checks just the expression.

checked                       // Checks all expressions
{                             // in statement block.
   ...
   c = a * b;
   ...
}

You can make arithmetic overflow checking the default for all expressions in a pro‐
gram by compiling with the /checked+ command-line switch (in Visual Studio, go
to Advanced Build Settings). If you then need to disable overflow checking just for
specific expressions or statements, you can do so with the unchecked operator. For
example, the following code will not throw exceptions—even if compiled
with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions
Regardless of the /checked compiler switch, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator: 

int x = int.MaxValue + 1;               // Compile-time error
int y = unchecked (int.MaxValue + 1);   // No errors

Bitwise operators
C# supports the following bitwise operators: 
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Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integrals
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x = 1, y = 1;
short z = x + y;          // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be per‐
formed. This means the result is also an int, which cannot be implicitly cast back to
a short (because it could cause loss of data). To make this compile, we must add an
explicit cast: 

short z = (short) (x + y);   // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (not a number), +∞, −∞, and −0. The float
and double classes have constants for NaN, +∞, and −∞, as well as other values (Max
Value, MinValue, and Epsilon). For example:

Console.WriteLine (double.NegativeInfinity);   // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

−0 −0.0 −0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine ( 1.0 /  0.0);                  //  Infinity
Console.WriteLine (−1.0 /  0.0);                  // -Infinity
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Console.WriteLine ( 1.0 / −0.0);                  // -Infinity
Console.WriteLine (−1.0 / −0.0);                  //  Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For
example:

Console.WriteLine ( 0.0 /  0.0);                  //  NaN
Console.WriteLine ((1.0 /  0.0) − (1.0 / 0.0));   //  NaN

When using ==, a NaN value is never equal to another value, even another NaN
value:

Console.WriteLine (0.0 / 0.0 == double.NaN);    // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True

When using object.Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN));   // True

NaNs are sometimes useful in representing special values. In
WPF, double.NaN represents a measurement whose value is
“Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that
wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org. 

double Versus decimal
double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather
than the result of real-world measurements. Here’s a summary of the differences:

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than
double)

Real-Number Rounding Errors
float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most
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3 It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

literals with a fractional component (which are in base 10) will not be represented
precisely. For example:

float tenth = 0.1f;                       // Not quite 0.1
float one   = 1f;
Console.WriteLine (one - tenth * 10f);    // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, deci
mal works in base 10 and so can precisely represent numbers expressible in base 10
(as well as its factors, base 2 and base 5). Since real literals are in base 10, decimal
can precisely represent numbers such as 0.1. However, neither double nor decimal
can precisely represent a fractional number whose base 10 representation is recur‐
ring:

decimal m = 1M / 6M;               // 0.1666666666666666666666666667M
double  d = 1.0 / 6.0;             // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m;  // 1.0000000000000000000000000002M
double  notQuiteWholeD = d+d+d+d+d+d;  // 0.99999999999999989

which breaks equality and comparison operations: 

Console.WriteLine (notQuiteWholeM == 1M);   // False
Console.WriteLine (notQuiteWholeD < 1.0);   // True

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory, since this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, the
Framework provides a BitArray class in the System.Collections namespace that
is designed to use just one bit per Boolean value.

Bool Conversions
No casting conversions can be made from the bool type to numeric types or vice
versa.

Equality and Comparison Operators
== and != test for equality and inequality of any type, but always return a bool
value.3 Value types typically have a very simple notion of equality:
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int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y);         // False
Console.WriteLine (x == z);         // True

For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

public class Dude
{
  public string Name;
  public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2);       // False
Dude d3 = d1;
Console.WriteLine (d1 == d3);       // True

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric
types, but should be used with caution with real numbers (as we saw in “Real-
Number Rounding Errors” on page 32). The comparison operators also work on
enum type members, by comparing their underlying integral values. We describe this
in “Enums” on page 109 in Chapter 3.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 168 in Chapter 4, and in “Equality Comparison” on page 267
and “Order Comparison” on page 278 in Chapter 6. 

Conditional Operators
The && and || operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In this example, the UseUm
brella method returns true if it’s rainy or sunny (to protect us from the rain or the
sun), as long as it’s not also windy (since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
  return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.
Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);
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The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

Conditional operator (ternary operator)
The conditional operator (more commonly called the ternary operator, as it’s the only
operator that takes three operands) has the form q ? a : b, where if condition q is
true, a is evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
  return (a > b) ? a : b;
}

The conditional operator is particularly useful in LINQ queries (Chapter 8). 

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes. A char literal is specified inside single quotes:

char c = 'A';       // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning.
For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C
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Char Meaning Value

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-
digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol     = '\u03A9';
char newLine         = '\u000A';

Char Conversions
An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit con‐
version is required. 

String Type
C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable sequence of Unicode characters. A string literal is specified
inside double quotes:

string a = "Heat";

string is a reference type, rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b);  // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is
prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @ "\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped  = "First Line\r\nSecond Line";
string verbatim = @"First Line
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Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

String concatenation
The + operator concatenates two strings:

string s = "a" + "b";

One of the operands may be a nonstring value, in which case ToString is called on
that value. For example:

string s = "a" + 5;  // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)
A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions inside braces:

int x = 4;
Console.Write ($"A square has {x} sides");  // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will con‐
vert the expression to a string by calling its ToString method or equivalent. You can
change the formatting by appending the expression with a colon and a format string
(format strings are described in “Formatting and parsing” on page 233 in Chap‐
ter 6):

string s = $"255 in hex is {byte.MaxValue:X2}";  // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the ver‐
batim string operator. Note that the $ operator must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the desired brace charac‐
ter.

String comparisons
string does not support < and > operators for comparisons. You must use the
string’s CompareTo method, described in Chapter 6. 
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Arrays
An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type. For example:

char[] vowels = new char[5];    // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]);      // e

This prints “e” because array indexes start at 0. We can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
  Console.Write (vowels[i]);            // aeiou

The Length property of an array returns the number of elements in the array. Once
an array has been created, its length cannot be changed. The System.Collection
namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','o','u'};

or simply:

char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type, and are described in “The Array Class” on page 297 in Chapter 7.

Default Element Initialization
Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Since int is a value type, this allocates 1,000 integers in
one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]);            // 0
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Value types versus reference types
Whether an array element type is a value type or a reference type has important per‐
formance implications. When the element type is a value type, each element value is
allocated as part of the array. For example:

public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X;                  // 0

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

public class Point { public int X, Y; }

...
Point[] a = new Point[1000];
int x = a[500].X;                  // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
   a[i] = new Point();             // Set array element i with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays
Rectangular arrays are declared using commas to separate each dimension. The fol‐
lowing declares a rectangular two-dimensional array, where the dimensions are
3 x 3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (start‐
ing at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
  for (int j = 0; j < matrix.GetLength(1); j++)
    matrix[i,j] = i * 3 + j;
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A rectangular array can be initialized as follows (to create an array identical to the
previous example):

int[,] matrix = new int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

Jagged arrays
Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array, where
the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so:
see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu‐
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. Each inner array must be created
manually:

for (int i = 0; i < matrix.Length; i++)
{
  matrix[i] = new int[3];                    // Create inner array
  for (int j = 0; j < matrix[i].Length; j++)
    matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array identical to the previ‐
ous example with an additional element at the end): 

int[][] matrix = new int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions
There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
  {0,1,2},
  {3,4,5},
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  {6,7,8}
};

int[][] jaggedMatrix =
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};

The second approach is to use the var keyword, which tells the compiler to implic‐
itly type a local variable:

var i = 3;           // i is implicitly of type int
var s = "sausage";   // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,]    // rectMatrix is implicitly of type int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

var jaggedMat = new int[][]    // jaggedMat is implicitly of type int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};

Implicit typing can be taken one stage further with arrays: you can omit the type
qualifier after the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','o','u'};   // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type). For example: 

var x = new[] {1,10000000000};   // all convertible to long

Bounds Checking
All array indexing is bounds-checked by the runtime. An IndexOutOfRangeExcep
tion is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1;               // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies
debugging.
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Generally, the performance hit from bounds checking is
minor, and the JIT (just-in-time) compiler can perform opti‐
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that can
explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 187 in Chapter 4). 

Variables and Parameters
A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, or out), field (instance or static), or array
element.

The Stack and the Heap
The stack and the heap are the places where variables and constants reside. Each has
very different lifetime semantics.

Stack
The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a function is entered and exited. Consider the follow‐
ing method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)
{
  if (x == 0) return 1;
  return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap
The heap is a block of memory in which objects (i.e., reference-type instances)
reside. Whenever a new object is created, it is allocated on the heap, and a reference
to that object is returned. During a program’s execution, the heap starts filling up as
new objects are created. The runtime has a garbage collector that periodically deal‐
locates objects from the heap, so your program does not run out of memory. An
object is eligible for deallocation as soon as it’s not referenced by anything that’s
itself “alive.”

In the following example, we start by creating a StringBuilder object referenced by
the variable ref1, and then write out its content. That StringBuilder object is then
immediately eligible for garbage collection, because nothing subsequently uses it.
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Then, we create another StringBuilder referenced by variable ref2, and copy that
reference to ref3. Even though ref2 is not used after that point, ref3 keeps the
same StringBuilder object alive—ensuring that it doesn’t become eligible for col‐
lection until we’ve finished using ref3:

using System;
using System.Text;

class Test
{
  static void Main()
  {
    StringBuilder ref1 = new StringBuilder ("object1");
    Console.WriteLine (ref1);
    // The StringBuilder referenced by ref1 is now eligible for GC.

    StringBuilder ref2 = new StringBuilder ("object2");
    StringBuilder ref3 = ref2;
    // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

    Console.WriteLine (ref3);                   // object2
  }
}

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++. An
unreferenced object is eventually collected by the garbage col‐
lector.

The heap also stores static fields. Unlike objects allocated on the heap (which can
get garbage-collected), these live until the application domain is torn down. 

Definite Assignment
C# enforces a definite assignment policy. In practice, this means that outside of an
unsafe context, it’s impossible to access uninitialized memory. Definite assignment
has three implications:

• Local variables must be assigned a value before they can be read.
• Function arguments must be supplied when a method is called (unless marked

as optional—see “Optional parameters” on page 48).
• All other variables (such as fields and array elements) are automatically initial‐

ized by the runtime.

For example, the following code results in a compile-time error:
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static void Main()
{
  int x;
  Console.WriteLine (x);        // Compile-time error
}

Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0, because array elements are implicitly
assigned to their default values:

static void Main()
{
  int[] ints = new int[2];
  Console.WriteLine (ints[0]);    // 0
}

The following code outputs 0, because fields are implicitly assigned a default value: 

class Test
{
  static int x;
  static void Main() { Console.WriteLine (x); }   // 0
}

Default Values
All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

All reference types null

All numeric and enum types 0

char type '\0'

bool type false

You can obtain the default value for any type with the default keyword (in practice,
this is useful with generics which we’ll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type. 

Parameters
A method has a sequence of parameters. Parameters define the set of arguments
that must be provided for that method. In this example, the method Foo has a single
parameter named p, of type int:

static void Foo (int p)
{
  p = p + 1;                 // Increment p by 1
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  Console.WriteLine (p);     // Write p to screen
}

static void Main()
{
  Foo (8);                  // Call Foo with an argument of 8
}

You can control how parameters are passed with the ref and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in

ref Reference Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far the most common
case. This means a copy of the value is created when passed to the method:

class Test
{
  static void Foo (int p)
  {
    p = p + 1;                // Increment p by 1
    Console.WriteLine (p);    // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (x);                  // Make a copy of x
    Console.WriteLine (x);    // x will still be 8
  }
}

Assigning p a new value does not change the contents of x, since p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference, but not the object.
In the following example, Foo sees the same StringBuilder object that Main instan‐
tiated, but has an independent reference to it. In other words, sb and fooSB are sepa‐
rate variables that reference the same StringBuilder object:

class Test
{
  static void Foo (StringBuilder fooSB)
  {
    fooSB.Append ("test");
    fooSB = null;
  }
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4 An exception to this rule is when calling COM methods. We discuss this in Chapter 25.

  static void Main()
  {
    StringBuilder sb = new StringBuilder();
    Foo (sb);
    Console.WriteLine (sb.ToString());    // test
  }
}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become
null.) 

The ref modifier
To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

class Test
{
  static void Foo (ref int p)
  {
    p = p + 1;               // Increment p by 1
    Console.WriteLine (p);   // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (ref  x);            // Ask Foo to deal directly with x
    Console.WriteLine (x);   // x is now 9
  }
}

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.4 This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (later, in “Generics”
on page 114 in Chapter 3, we will show how to write a swap method that works with
any type):

class Test
{
  static void Swap (ref string a, ref string b)
  {
    string temp = a;
    a = b;
    b = temp;
  }
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  static void Main()
  {
    string x = "Penn";
    string y = "Teller";
    Swap (ref x, ref y);
    Console.WriteLine (x);   // Teller
    Console.WriteLine (y);   // Penn
  }
}

A parameter can be passed by reference or by value, regardless
of whether the parameter type is a reference type or a value
type.

The out modifier
An out argument is like a ref argument, except it:

• Need not be assigned before going into the function
• Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a
method. For example:

class Test
{
  static void Split (string name, out string firstNames,
                     out string lastName)
  {
     int i = name.LastIndexOf (' ');
     firstNames = name.Substring (0, i);
     lastName   = name.Substring (i + 1);
  }

  static void Main()
  {
    string a, b;
    Split ("Stevie Ray Vaughan", out a, out b);
    Console.WriteLine (a);                      // Stevie Ray
    Console.WriteLine (b);                      // Vaughan
  }
}

Like a ref parameter, an out parameter is passed by reference.

Implications of passing by reference
When you pass an argument by reference, you alias the storage location of an exist‐
ing variable rather than create a new storage location. In the following example, the
variables x and y represent the same instance: 

class Test
{
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  static int x;

  static void Main() { Foo (out x); }

  static void Foo (out int y)
  {
    Console.WriteLine (x);                // x is 0
    y = 1;                                // Mutate y
    Console.WriteLine (x);                // x is 1
  }
}

The params modifier
The params parameter modifier may be specified on the last parameter of a method
so that the method accepts any number of arguments of a particular type. The
parameter type must be declared as an array. For example:

class Test
{
  static int Sum (params int[] ints)
  {
    int sum = 0;
    for (int i = 0; i < ints.Length; i++)
      sum += ints[i];                       // Increase sum by ints[i]
    return sum;
  }

  static void Main()
  {
    int total = Sum (1, 2, 3, 4);
    Console.WriteLine (total);              // 10
  }
}

You can also supply a params argument as an ordinary array. The first line in Main is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 } );

Optional parameters
From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

Optional parameters may be omitted when calling the method:

Foo();     // 23

The default argument of 23 is actually passed to the optional parameter x—the com‐
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to:

Foo (23);
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because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem‐
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres‐
sion, or a parameterless constructor of a value type. Optional parameters cannot be
marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo(1);    // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y), you must
combine optional parameters with named arguments. 

Named arguments
Rather than identifying an argument by position, you can identify an argument by
name. For example:

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo (x:1, y:2);  // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semanti‐
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

A subtle difference is that argument expressions are evaluated
in the order in which they appear at the calling site. In general,
this makes a difference only with interdependent side-
effecting expressions such as the following, which writes 0, 1:

int a = 0;
Foo (y: ++a, x: --a);  // ++a is evaluated first

Of course, you would almost certainly avoid writing such code
in practice!
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You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments. So we couldn’t call Foo like this:

Foo (x:1, 2);         // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }

We can call this supplying only a value for d as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in
Chapter 25. 

var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in one step. If the com‐
piler is able to infer the type from the initialization expression, you can use the key‐
word var (introduced in C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello";    // Compile-time error; x is of type int

var can decrease code readability in the case when you can’t
deduce the type purely by looking at the variable declaration.
For example:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” on page 174 in Chapter 4, we will describe a scenario where
the use of var is mandatory.
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Expressions and Operators
An expression essentially denotes a value. The simplest kinds of expressions are con‐
stants and variables. Expressions can be transformed and combined using opera‐
tors. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression,
such as the operand (12 * 30) in the following example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary—depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation, where the operator is placed between the two operands.

Primary Expressions
Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression per‐
forms a member-lookup (with the . operator), and the second expression performs
a method call (with the () operator).

Void Expressions
A void expression is an expression that has no value. For example:

Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more
complex expressions:

1 + Console.WriteLine (1)      // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the result of another expres‐
sion to a variable. For example:

x = x * 5
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An assignment expression is not a void expression—it has a value of whatever was
assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple values:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assign‐
ment with another operator. For example:

x *= 2    // equivalent to x = x * 2
x <<= 1   // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+= and -= operators here are treated specially and map to the event’s add and remove
accessors.) 

Operator Precedence and Associativity
When an expression contains multiple operators, precedence and associativity deter‐
mine the order of their evaluation. Operators with higher precedence execute before
operators of lower precedence. If the operators have the same precedence, the oper‐
ator’s associativity determines the order of evaluation.

Precedence
The following expression:

1 + 2 * 3

is evaluated as follows because * has a higher precedence than +:

1 + (2 * 3)

Left-associative operators
Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression:

8 / 4 / 2

is evaluated as follows due to left associativity:

( 8 / 4 ) / 2    // 1

You can insert parentheses to change the actual order of evaluation:

8 / ( 4 / 2 )    // 4
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Right-associative operators
The assignment operators, lambda, null-coalescing, and conditional operator are
right-associative; in other words, they are evaluated from right to left. Right associa‐
tivity allows multiple assignments such as the following to compile:

x = y = 3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x. 

Operator Table
Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence. We explain user-overloadable operators in “Operator
Overloading” on page 168 in Chapter 4.

Table 2-3. C# operators (categories in order of precedence)

Category Operator
symbol

Operator name Example User-
overloadable

Primary . Member access x.y No

 -> (unsafe) Pointer to struct x->y No

 () Function call x() No

 [] Array/index a[x] Via indexer

 ++ Post-increment x++ Yes

 −− Post-decrement x−− Yes

 new Create instance new Foo() No

 stackalloc Unsafe stack
allocation

stackalloc(10) No

 typeof Get type from
identifier

typeof(int) No

 nameof Get name of
identifier

nameof(x) No

 checked Integral overflow
check on

checked(x) No

 unchecked Integral overflow
check off

unchecked(x) No

 default Default value default(char) No

Unary await Await await myTask No

 sizeof Get size of struct sizeof(int) No

 ?. Null-conditional x?.y No

 + Positive value of +x Yes

 − Negative value of −x Yes

 ! Not !x Yes
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Category Operator
symbol

Operator name Example User-
overloadable

 ~ Bitwise complement ~x Yes

 ++ Pre-increment ++x Yes

 −− Pre-decrement −−x Yes

 () Cast (int)x No

 * (unsafe) Value at address *x No

 & (unsafe) Address of value &x No

Multiplicative * Multiply x * y Yes

 / Divide x / y Yes

 % Remainder x % y Yes

Additive + Add x + y Yes

 − Subtract x − y Yes

Shift << Shift left x << 1 Yes

 >> Shift right x >> 1 Yes

Relational < Less than x < y Yes

 > Greater than x > y Yes

 <= Less than or equal to x <= y Yes

 >= Greater than or equal
to

x >= y Yes

 is Type is or is subclass
of

x is y No

 as Type conversion x as y No

Equality == Equals x == y Yes

 != Not equals x != y Yes

Logical And & And x & y Yes

Logical Xor ^ Exclusive Or x ^ y Yes

Logical Or | Or x | y Yes

Conditional And && Conditional And x && y Via &

Conditional Or || Conditional Or x || y Via |

Null-coalescing ?? Null-coalescing x ?? y No

Conditional ?: Conditional isTrue ? thenThis

Value : elseThis

Value

No

Assignment &
Lambda

= Assign x = y No

 *= Multiply self by x *= 2 Via *
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Category Operator
symbol

Operator name Example User-
overloadable

 /= Divide self by x /= 2 Via /

 += Add to self x += 2 Via +

 −= Subtract from self x −= 2 Via −

 <<= Shift self left by x <<= 2 Via <<

 >>= Shift self right by x >>= 2 Via >>

 &= And self by x &= 2 Via &

 ^= Exclusive-Or self by x ^= 2 Via ^

 |= Or self by x |= 2 Via |

 => Lambda x => x + 1 No

Null Operators
C# provides two operators to make it easier to work with nulls: the null-coalescing
operator and the null-conditional operator.

Null-Coalescing Operator
The ?? operator is the null-coalescing operator. It says “If the operand is non-null,
give it to me; otherwise, give me a default value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing";   // s2 evaluates to "nothing"

If the left-hand expression is non-null, the right-hand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Types” on page 162 in Chapter 4).

Null-conditional operator (C# 6)
The ?. operator is the null-conditional or “Elvis” operator, and is new to C# 6. It
allows you to call methods and access members just like the standard dot operator,
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString();  // No error; s instead evaluates to null

The last line is equivalent to:

string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():
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System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper();   // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be
null. The following expression is robust to both x being null and x.y being null:

x?.y?.z

and is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
          : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length;   // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” on page
162 in Chapter 4): If you’re already familiar with nullable types, here’s a preview:

int? length = sb?.ToString().Length;   // OK : int? can be null

You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a NullRe
ferenceException.

The null-conditional operator can be used with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";   // s evaluates to "nothing"

The last line is equivalent to: 

string s = (sb == null ? "nothing" : sb.ToString());

Statements
Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {} tokens).

Declaration Statements
A declaration statement declares a new variable, optionally initializing the variable
with an expression. A declaration statement ends in a semicolon. You may declare
multiple variables of the same type in a comma-separated list. For example: 

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;
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A constant declaration is like a variable declaration, except that it cannot be
changed after it has been declared, and the initialization must occur with the decla‐
ration (see “Constants” on page 83 in Chapter 3):

const double c = 2.99792458E08;
c += 10;                        // Compile-time Error

Local variables
The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks. For example:

static void Main()
{
  int x;
  {
    int y;
    int x;            // Error - x already defined
  }
  {
    int y;            // OK - y not in scope
  }
  Console.Write (y);  // Error - y is out of scope
}

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara‐
tion of x in this example to the bottom of the method, we’d get
the same error. This is in contrast to C++ and is somewhat
peculiar, given that it’s not legal to refer to a variable or con‐
stant before it’s declared.

Expression Statements
Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. The possible expression state‐
ments are:

• Assignment expressions (including increment and decrement expressions)
• Method call expressions (both void and nonvoid)
• Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements
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x = 1 + 2;                 // Assignment expression
x++;                       // Increment expression
y = Math.Max (x, 5);       // Assignment expression
Console.WriteLine (y);     // Method call expression
sb = new StringBuilder();  // Assignment expression
new StringBuilder();       // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged to
use the result. However, unless the constructor or method changes state, the state‐
ment is completely useless:

new StringBuilder();     // Legal, but useless
new string ('c', 3);     // Legal, but useless
x.Equals (y);            // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program exe‐
cution:

• Selection statements (if, switch)

• Conditional operator (?:)

• Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the
switch statement.

The if statement
An if statement executes a statement if a bool expression is true. For example:

if (5 < 2 * 3)
  Console.WriteLine ("true");       // true

The statement can be a code block:

if (5 < 2 * 3)
{
  Console.WriteLine ("true");
  Console.WriteLine ("Let's move on!");
}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  Console.WriteLine ("False");        // False

Within an else clause, you can nest another if statement:
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if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  if (2 + 2 == 4)
    Console.WriteLine ("Computes");    // Computes

Changing the flow of execution with braces
An else clause always applies to the immediately preceding if statement in the
statement block. For example:

if (true)
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:

if (true)
{
  if (false)
    Console.WriteLine();
}
else
  Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

static void TellMeWhatICanDo (int age)
{
  if (age >= 35)
    Console.WriteLine ("You can be president!");
  else if (age >= 21)
    Console.WriteLine ("You can drink!");
  else if (age >= 18)
    Console.WriteLine ("You can vote!");
  else
    Console.WriteLine ("You can wait!");
}

Here, we’ve arranged the if and else statements to mimic the “elseif ” construct of
other languages (and C#’s #elif preprocessor directive). Visual Studio’s auto-
formatting recognizes this pattern and preserves the indentation. Semantically,
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though, each if statement following an else statement is functionally nested within
the else clause. 

The switch statement
switch statements let you branch program execution based on a selection of possi‐
ble values that a variable may have. switch statements may result in cleaner code
than multiple if statements, since switch statements require an expression to be
evaluated only once. For instance:

static void ShowCard(int cardNumber)
{
  switch (cardNumber)
  {
    case 13:
      Console.WriteLine ("King");
      break;
    case 12:
      Console.WriteLine ("Queen");
      break;
    case 11:
      Console.WriteLine ("Jack");
      break;
    case -1:                         // Joker is -1
      goto case 12;                  // In this game joker counts as queen
    default:                         // Executes for any other cardNumber
      Console.WriteLine (cardNumber);
      break;
  }
}

You can only switch on an expression of a type that can be statically evaluated,
which restricts it to the built-in integral types, bool, and enum types (and nullable
versions of these—see Chapter 4), and string type.

At the end of each case clause, you must say explicitly where execution is to go next,
with some kind of jump statement. Here are the options:

• break (jumps to the end of the switch statement)

• goto case x (jumps to another case clause)

• goto default (jumps to the default clause)

• Any other jump statement—namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
  case 13:
  case 12:
  case 11:
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    Console.WriteLine ("Face card");
    break;
  default:
    Console.WriteLine ("Plain card");
    break;
}

This feature of a switch statement can be pivotal in terms of producing cleaner
code than multiple if-else statements. 

Iteration Statements
C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops
while loops repeatedly execute a body of code while a bool expression is true. The
expression is tested before the body of the loop is executed. For example:

int i = 0;
while (i < 3)
{
  Console.WriteLine (i);
  i++;
}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int i = 0;
do
{
  Console.WriteLine (i);
  i++;
}
while (i < 3);

for loops
for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
  statement-or-statement-block
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Initialization clause
Executed before the loop begins; used to initialize one or more iteration
variables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to
update the iteration variable

For example, the following prints the numbers 0 through 2:

for (int i = 0; i < 3; i++)
  Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where each number is the sum
of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
  Console.WriteLine (prevFib);
  int newFib = prevFib + curFib;
  prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement may be omitted. One can implement an
infinite loop such as the following (though while(true) may be used instead):

for (;;)
  Console.WriteLine ("interrupt me");

foreach loops
The foreach statement iterates over each element in an enumerable object. Most of
the types in C# and the .NET Framework that represent a set or list of elements are
enumerable. For example, both an array and a string are enumerable. Here is an
example of enumerating over the characters in a string, from the first character
through to the last:

foreach (char c in "beer")   // c is the iteration variable
  Console.WriteLine (c);

OUTPUT:
b
e
e
r

We define enumerable objects in “Enumeration and Iterators” on page 156 in Chap‐
ter 4. 
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Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 148 in Chap‐
ter 4). This means that:

• A jump out of a try block always executes the try’s
finally block before reaching the target of the jump.

• A jump cannot be made from the inside to the outside of
a finally block (except via throw).

The break statement
The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)
{
  if (x++ > 5)
    break ;      // break from the loop
}
// execution continues here after break
...

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
  if ((i % 2) == 0)       // If i is even,
    continue;             // continue with next iteration

  Console.Write (i + " ");
}
OUTPUT: 1 3 5 7 9

The goto statement
The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;

Or, when used within a switch statement:

goto case case-constant;
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A label is a placeholder in a code block that precedes a statement, denoted with a
colon suffix. The following iterates the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
  Console.Write (i + " ");
  i++;
  goto startLoop;
}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 60).

The return statement
The return statement exits the method and must return an expression of the meth‐
od’s return type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{
  decimal p = d * 100m;
  return p;             // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block).

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 148 in Chapter 4): 

if (w == null)
  throw new ArgumentNullException (...);

Miscellaneous Statements
The using statement provides an elegant syntax for calling Dispose on objects that
implement IDisposable, within a finally block (see “try Statements and Excep‐
tions” on page 148 in Chapter 4 and “IDisposable, Dispose, and Close” on page 499
in Chapter 12).

C# overloads the using keyword to have independent mean‐
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the Moni
tor class (see Chapter 14 and Chapter 23). 
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Namespaces
A namespace is a domain for type names. Types are typically organized into hier‐
archical namespaces, making them easier to find and avoiding conflicts. For exam‐
ple, the RSA type that handles public key encryption is defined within the following
namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa =
  System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are units of
deployment such as an .exe or .dll (described in Chapter 18).

Namespaces also have no impact on member visibility—pub

lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block. For exam‐
ple:

namespace Outer.Middle.Inner
{
  class Class1 {}
  class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer
{
  namespace Middle
  {
    namespace Inner
    {
      class Class1 {}
      class Class2 {}
    }
  }
}

You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the
preceding example as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.
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The using Directive
The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer.Mid
dle.Inner namespace:

using Outer.Middle.Inner;

class Test
{
  static void Main()
  {
    Class1 c;    // Don't need fully qualified name
  }
}

It’s legal (and often desirable) to define the same type name in
different namespaces. However, you’d typically do so only if it
was unlikely for a consumer to want to import both namespa‐
ces at once. A good example, from the .NET Framework, is
the TextBox class which is defined both in System.Win
dows.Controls (WPF) and System.Web.UI.WebControls

(ASP.NET).

using static (C# 6)
From C# 6, you can import not just a namespace, but a specific type, with the using
static directive. All static members of that type can then be used without being
qualified with the type name. In the following example, we call the Console class’s
static WriteLine method:

using static System.Console;

class Test
{
  static void Main() { WriteLine ("Hello"); }
}

The using static directive imports all accessible static members of the type,
including fields, properties and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type:

using static System.Windows.Visibility;

we can specify Hidden instead of Visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden };   // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context, and will generate an error.
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Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified within inner name‐
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer
{
  class Class1 {}

  namespace Inner
  {
    class Class2 : Class1  {}
  }
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany
{
  namespace Common
  {
    class ReportBase {}
  }
  namespace ManagementReporting
  {
    class SalesReport : Common.ReportBase  {}
  }
}

Name hiding
If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name.
For example:

namespace Outer
{
  class Foo { }

  namespace Inner
  {
    class Foo { }

    class Test
    {
      Foo f1;         // = Outer.Inner.Foo
      Outer.Foo f2;   // = Outer.Foo
    }
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  }
}

All type names are converted to fully qualified names at com‐
pile time. Intermediate language (IL) code contains no unqua‐
lified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type names within the name‐
spaces don’t conflict:

namespace Outer.Middle.Inner
{
  class Class1 {}
}

namespace Outer.Middle.Inner
{
  class Class2 {}
}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

namespace Outer.Middle.Inner
{
  class Class1 {}
}

Source file 2:

namespace Outer.Middle.Inner
{
  class Class2 {}
}

Nested using directive
You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope, but not in another:

namespace N1
{
  class Class1 {}
}

namespace N2
{
  using N1;

  class Class2 : Class1 {}
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}

namespace N2
{
  class Class3 : Class1 {}   // Compile-time error
}

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision. Rather than importing
the whole namespace, you can import just the specific types you need, giving each
type an alias. For example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern
Extern aliases allow your program to reference two types with the same fully quali‐
fied name (i.e., the namespace and type name are identical). This is an unusual sce‐
nario and can occur only when the two types come from different assemblies. Con‐
sider the following example.

Library 1:

// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
  public class Widget {}
}

Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
  public class Widget {}
}

Application:

// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{
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  static void Main()
  {
    Widget w = new Widget();
  }
}

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity in our application: 

// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
  static void Main()
  {
    W1.Widgets.Widget w1 = new W1.Widgets.Widget();
    W2.Widgets.Widget w2 = new W2.Widgets.Widget();
  }
}

Namespace alias qualifiers
As we mentioned earlier, names in inner namespaces hide names in outer namespa‐
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N
{
  class A
  {
    public class B {}                    // Nested type
    static void Main() { new A.B(); }    // Instantiate class B
  }
}

namespace A
{
  class B {}
}

The Main method could be instantiating either the nested class B, or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace; in this case, the nested B class.

70 | Chapter 2: C# Language Basics



To resolve such conflicts, a namespace name can be qualified, relative to one of the
following: 

• The global namespace—the root of all namespaces (identified with the contex‐
tual keyword global)

• The set of extern aliases

The :: token is used for namespace alias qualification. In this example, we qualify
using the global namespace (this is most commonly seen in auto-generated code to
avoid name conflicts):

namespace N
{
  class A
  {
    static void Main()
    {
      System.Console.WriteLine (new A.B());
      System.Console.WriteLine (new global::A.B());
    }

    public class B {}
  }
}

namespace A
{
  class B {}
}

Here is an example of qualifying with an alias (adapted from the example in
“Extern” on page 69): 

extern alias W1;
extern alias W2;
class Test
{
  static void Main()
  {
    W1::Widgets.Widget w1 = new W1::Widgets.Widget();
    W2::Widgets.Widget w2 = new W2::Widgets.Widget();
  }
}
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