

O’Reilly ebooks.
Your bookshelf on your devices.

When you buy an ebook through oreilly.com you get lifetime access to the
book, and whenever possible we provide it to you in four DRM-free file
formats—PDF, .epub, Kindle-compatible .mobi, and DAISY—that you can
use on the devices of your choice. Our ebook files are fully searchable,
and you can cut-and-paste and print them. We also alert you when we’ve
updated the files with corrections and additions.

Learn more at ebooks.oreilly.com
You can also purchase O’Reilly ebooks through the

iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

ePubPDF Mobi DAISY

http://www.oreilly.com/
http://shop.oreilly.com/category/ebooks.do
https://play.google.com/store/books?hl=en
http://www.amazon.com/

978-1-4919-2146-3

[LSI]

C# 6.0 Cookbook
by Jay Hilyard and Stephen Teilhet

Copyright © 2015 Jay Hilyard, Stephen Teilhet. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Production Editor: Nicholas Adams
Copyeditor: Rachel Monaghan
Proofreader: Kim Cofer

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

January 2004: First Edition
January 2006: Second Edition
December 2007: Third Edition
October 2015: Fourth Edition

Revision History for the Fourth Edition
2015-09-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491921463 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 6.0 Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. xi

1. Classes and Generics. 1
1.0 Introduction 1
1.1 Creating Union-Type Structures 3
1.2 Making a Type Sortable 6
1.3 Making a Type Searchable 10
1.4 Returning Multiple Items from a Method 14
1.5 Parsing Command-Line Parameters 17
1.6 Initializing a Constant Field at Runtime 29
1.7 Building Cloneable Classes 32
1.8 Ensuring an Object’s Disposal 36
1.9 Deciding When and Where to Use Generics 38
1.10 Understanding Generic Types 39
1.11 Reversing the Contents of a Sorted List 47
1.12 Constraining Type Arguments 49
1.13 Initializing Generic Variables to Their Default Values 53
1.14 Adding Hooks to Generated Entities 54
1.15 Controlling How a Delegate Fires Within a Multicast Delegate 57
1.16 Using Closures in C# 65
1.17 Performing Multiple Operations on a List Using Functors 70
1.18 Controlling Struct Field Initialization 73
1.19 Checking for null in a More Concise Way 78

2. Collections, Enumerators, and Iterators. 83
2.0 Introduction 83
2.1 Looking for Duplicate Items in a List<T> 86
2.2 Keeping Your List<T> Sorted 90

v

2.3 Sorting a Dictionary’s Keys and/or Values 93
2.4 Creating a Dictionary with Min and Max Value Boundaries 95
2.5 Persisting a Collection Between Application Sessions 97
2.6 Testing Every Element in an Array or List<T> 99
2.7 Creating Custom Enumerators 101
2.8 Dealing with finally Blocks and Iterators 105
2.9 Implementing Nested foreach Functionality in a Class 109
2.10 Using a Thread-Safe Dictionary for Concurrent Access Without Manual

Locking 114

3. Data Types. 123
3.0 Introduction 123
3.1 Encoding Binary Data as Base64 125
3.2 Decoding a Base64-Encoded Binary 127
3.3 Converting a String Returned as a Byte[] Back into a String 128
3.4 Passing a String to a Method That Accepts Only a Byte[] 130
3.5 Determining Whether a String Is a Valid Number 132
3.6 Rounding a Floating-Point Value 132
3.7 Choosing a Rounding Algorithm 133
3.8 Safely Performing a Narrowing Numeric Cast 134
3.9 Testing for a Valid Enumeration Value 137
3.10 Using Enumerated Members in a Bit Mask 139
3.11 Determining Whether One or More Enumeration Flags Are Set 142

4. Language Integrated Query (LINQ) and Lambda Expressions. 147
4.0 Introduction 147
4.1 Querying a Message Queue 150
4.2 Using Set Semantics with Data 154
4.3 Reusing Parameterized Queries with LINQ to SQL 159
4.4 Sorting Results in a Culture-Sensitive Manner 161
4.5 Adding Functional Extensions for Use with LINQ 164
4.6 Querying and Joining Across Data Repositories 168
4.7 Querying Configuration Files with LINQ 171
4.8 Creating XML Straight from a Database 174
4.9 Being Selective About Your Query Results 187
4.10 Using LINQ with Collections That Don’t Support IEnumerable<T> 190
4.11 Performing an Advanced Interface Search 193
4.12 Using Lambda Expressions 195
4.13 Using Different Parameter Modifiers in Lambda Expressions 200
4.14 Speeding Up LINQ Operations with Parallelism 204

vi | Table of Contents

5. Debugging and Exception Handling. 217
5.0 Introduction 217
5.1 Knowing When to Catch and Rethrow Exceptions 225
5.2 Handling Exceptions Thrown from Methods Invoked via Reflection 226
5.3 Creating a New Exception Type 229
5.4 Breaking on a First-Chance Exception 238
5.5 Handling Exceptions Thrown from an Asynchronous Delegate 243
5.6 Giving Exceptions the Extra Info They Need with Exception.Data 245
5.7 Dealing with Unhandled Exceptions in WinForms Applications 247
5.8 Dealing with Unhandled Exceptions in WPF Applications 249
5.9 Determining Whether a Process Has Stopped Responding 252
5.10 Using Event Logs in Your Application 254
5.11 Watching the Event Log for a Specific Entry 265
5.12 Implementing a Simple Performance Counter 267
5.13 Creating Custom Debugging Displays for Your Classes 271
5.14 Tracking Where Exceptions Come From 273
5.15 Handling Exceptions in Asynchronous Scenarios 276
5.16 Being Selective About Exception Processing 282

6. Reflection and Dynamic Programming. 287
6.0 Introduction 287
6.1 Listing Referenced Assemblies 288
6.2 Determining Type Characteristics in Assemblies 293
6.3 Determining Inheritance Characteristics 298
6.4 Invoking Members Using Reflection 304
6.5 Accessing Local Variable Information 308
6.6 Creating a Generic Type 311
6.7 Using dynamic Versus object 312
6.8 Building Objects Dynamically 315
6.9 Make Your Objects Extensible 319

7. Regular Expressions. 331
7.0 Introduction 331
7.1 Extracting Groups from a MatchCollection 332
7.2 Verifying the Syntax of a Regular Expression 335
7.3 Augmenting the Basic String Replacement Function 338
7.4 Implementing a Better Tokenizer 341
7.5 Returning the Entire Line in Which a Match Is Found 342
7.6 Finding a Particular Occurrence of a Match 346
7.7 Using Common Patterns 349

Table of Contents | vii

8. Filesystem I/O. 355
8.0 Introduction 355
8.1 Searching for Directories or Files Using Wildcards 356
8.2 Obtaining the Directory Tree 362
8.3 Parsing a Path 366
8.4 Launching and Interacting with Console Utilities 368
8.5 Locking Subsections of a File 370
8.6 Waiting for an Action to Occur in the Filesystem 374
8.7 Comparing Version Information of Two Executable Modules 377
8.8 Querying Information for All Drives on a System 379
8.9 Compressing and Decompressing Your Files 382

9. Networking and Web. 393
9.0 Introduction 393
9.1 Handling Web Server Errors 394
9.2 Communicating with a Web Server 396
9.3 Going Through a Proxy 398
9.4 Obtaining the HTML from a URL 400
9.5 Using the Web Browser Control 401
9.6 Prebuilding an ASP.NET Website Programmatically 404
9.7 Escaping and Unescaping Data for the Web 407
9.8 Checking Out a Web Server’s Custom Error Pages 409
9.9 Writing a TCP Server 413
9.10 Writing a TCP Client 422
9.11 Simulating Form Execution 430
9.12 Transferring Data via HTTP 434
9.13 Using Named Pipes to Communicate 437
9.14 Pinging Programmatically 445
9.15 Sending SMTP Mail Using the SMTP Service 447
9.16 Using Sockets to Scan the Ports on a Machine 449
9.17 Using the Current Internet Connection Settings 454
9.18 Transferring Files Using FTP 461

10. XML. 465
10.0 Introduction 465
10.1 Reading and Accessing XML Data in Document Order 466
10.2 Querying the Contents of an XML Document 470
10.3 Validating XML 474
10.4 Detecting Changes to an XML Document 479
10.5 Handling Invalid Characters in an XML String 482
10.6 Transforming XML 486
10.7 Validating Modified XML Documents Without Reloading 494

viii | Table of Contents

10.8 Extending Transformations 498
10.9 Getting Your Schemas in Bulk from Existing XML Files 504
10.10 Passing Parameters to Transformations 506

11. Security. 513
11.0 Introduction 513
11.1 Encrypting and Decrypting a String 513
11.2 Encrypting and Decrypting a File 518
11.3 Cleaning Up Cryptography Information 523
11.4 Preventing String Tampering in Transit or at Rest 525
11.5 Making a Security Assert Safe 532
11.6 Verifying That an Assembly Has Been Granted Specific Permissions 535
11.7 Minimizing the Attack Surface of an Assembly 536
11.8 Obtaining Security and/or Audit Information 537
11.9 Granting or Revoking Access to a File or Registry Key 543
11.10 Protecting String Data with Secure Strings 546
11.11 Securing Stream Data 549
11.12 Encrypting web.config Information 562
11.13 Obtaining a Safer File Handle 564
11.14 Storing Passwords 566

12. Threading, Synchronization, and Concurrency. 575
12.0 Introduction 575
12.1 Creating Per-Thread Static Fields 576
12.2 Providing Thread-Safe Access to Class Members 578
12.3 Preventing Silent Thread Termination 585
12.4 Being Notified of the Completion of an Asynchronous Delegate 588
12.5 Storing Thread-Specific Data Privately 591
12.6 Granting Multiple Access to Resources with a Semaphore 594
12.7 Synchronizing Multiple Processes with the Mutex 599
12.8 Using Events to Make Threads Cooperate 609
12.9 Performing Atomic Operations Among Threads 611
12.10 Optimizing Read-Mostly Access 613
12.11 Making Your Database Requests More Scalable 627
12.12 Running Tasks in Order 629

13. Toolbox. 635
13.0 Introduction 635
13.1 Dealing with Operating System Shutdown, Power Management, or User

Session Changes 635
13.2 Controlling a Service 640
13.3 List What Processes an Assembly Is Loaded In 645

Table of Contents | ix

13.4 Using Message Queues on a Local Workstation 649
13.5 Capturing Output from the Standard Output Stream 653
13.6 Capturing Standard Output for a Process 654
13.7 Running Code in Its Own AppDomain 657
13.8 Determining the Operating System and Service Pack Version of the

Current Operating System 659

Index. 661

x | Table of Contents

CHAPTER 1

Classes and Generics

1.0 Introduction
The recipes in this chapter cover the foundation of the C# language. Topics include
classes and structures, how they are used, how they are different, and when you
would use one over the other. Building on this, we will construct classes that have
inherent functionality such as being sortable, searchable, disposable, and cloneable.
In addition, we will dive into topics such as union types, field initialization, lambdas,
partial methods, single and multicast delegates, closures, functors, and more. This
chapter also contains a recipe on parsing command-line parameters, which is always
a favorite.

Before diving into the recipes, let’s review some key information about the object-
oriented capabilities of classes, structures, and generics. Classes are much more flexi‐
ble than structures. Like classes, structures can implement interfaces, but unlike
classes, they cannot inherit from a class or a structure. This limitation precludes cre‐
ating structure hierarchies, as you can do with classes. Polymorphism, as imple‐
mented through an abstract base class, is also prohibited when you are using a struc‐
ture, since a structure cannot inherit from another class with the exception of boxing
to Object, ValueType, or Enum.

Structures, like any other value type, implicitly inherit from System.ValueType. At
first glance, a structure is similar to a class, but it is actually very different. Knowing
when to use a structure over a class will help you tremendously when you’re design‐
ing an application. Using a structure incorrectly can result in inefficient and hard-to-
modify code.

Structures have two performance advantages over reference types. First, if a structure
is allocated on the stack (i.e., it is not contained within a reference type), access to the
structure and its data is somewhat faster than access to a reference type on the heap.

1

Reference-type objects must follow their reference onto the heap in order to get at
their data. However, this performance advantage pales in comparison to the second
performance advantage of structures—namely, that cleaning up the memory alloca‐
ted to a structure on the stack requires a simple change of the address to which the
stack pointer points, which is done at the return of a method call. This call is
extremely fast compared to allowing the garbage collector to automatically clean up
reference types for you in the managed heap; however, the cost of the garbage collec‐
tor is deferred so that it’s not immediately noticeable.

The performance of structures falls short in comparison to that of classes when they
are passed by value to other methods. Because they reside on the stack, a structure
and its data have to be copied to a new local variable (the method’s parameter that is
used to receive the structure) when it is passed by value to a method. This copying
takes more time than passing a method a single reference to an object, unless the
structure is the same size as or smaller than the machine’s pointer size; thus, a struc‐
ture with a size of 32 bits is just as cheap to pass as a reference (which happens to be
the size of a pointer) on a 32-bit machine. Keep this in mind when choosing between
a class and a structure. While creating, accessing, and destroying a class’s object may
take longer, it also might not balance the performance hit when a structure is passed
by value a large number of times to one or more methods. Keeping the size of the
structure small minimizes the performance hit of passing it around by value.

Use a class if:

• Its identity is important. Structures get copied implicitly when being passed by
value into a method.

• It will have a large memory footprint.
• Its fields need initializers.
• You need to inherit from a base class.
• You need polymorphic behavior; that is, you need to implement an abstract base

class from which you will create several similar classes that inherit from this
abstract base class. (Note that polymorphism can be implemented via interfaces
as well, but it is usually not a good idea to place an interface on a value type,
since, if the structure is converted to the interface type, you will incur a perfor‐
mance penalty from the boxing operation.)

Use a structure if:

• It will act like a primitive type (int, long, byte, etc.).
• It must have a small memory footprint.
• You are calling a P/Invoke method that requires a structure to be passed in by

value. Platform Invoke, or P/Invoke for short, allows managed code to call out to

2 | Chapter 1: Classes and Generics

an unmanaged method exposed from within a DLL. Many times, an unmanaged
DLL method requires a structure to be passed in to it; using a structure is an effi‐
cient method of doing this and is the only way if the structure is being passed by
value.

• You need to reduce the impact of garbage collection on application performance.
• Its fields need to be initialized only to their default values. This value would be
zero for numeric types, false for Boolean types, and null for reference types.
Note that in C# 6.0 structs can have a default constructor that can be used to ini‐
tialize the struct’s fields to nondefault values.

• You do not need to inherit from a base class (other than ValueType, from which
all structs inherit).

• You do not need polymorphic behavior.

Structures can also cause degradation in performance when they are passed to meth‐
ods that require an object, such as any of the nongeneric collection types in the
Framework Class Library (FCL). Passing a structure (or any simple type, for that mat‐
ter) into a method requiring an object causes the structure to be boxed. Boxing is
wrapping a value type in an object. This operation is time-consuming and may
degrade performance.

Finally, adding generics to this mix allows you to write type-safe and efficient
collection- and pattern-based code. Generics add quite a bit of programming power,
but with that power comes the responsibility to use it correctly. If you are considering
converting your ArrayList, Queue, Stack, and Hashtable objects to use their generic
counterparts, consider reading Recipes 1.9 and 1.10. As you will read, the conversion
is not always simple and easy, and there are reasons why you might not want to do
this conversion at all.

1.1 Creating Union-Type Structures
Problem
You need to create a data type that behaves like a union type in C++. A union type is
useful mainly in interop scenarios in which the unmanaged code accepts and/or
returns a union type; we suggest that you do not use it in other situations.

Solution
Use a structure and mark it with the StructLayout attribute (specifying the Layout
Kind.Explicit layout kind in the constructor). In addition, mark each field in the
structure with the FieldOffset attribute. The following structure defines a union in
which a single signed numeric value can be stored:

1.1 Creating Union-Type Structures | 3

using System.Runtime.InteropServices;
[StructLayoutAttribute(LayoutKind.Explicit)]
struct SignedNumber
{
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
}

The next structure is similar to the SignedNumber structure, except that it can contain
a String type in addition to the signed numeric value:

[StructLayoutAttribute(LayoutKind.Explicit)]
struct SignedNumberWithText
{
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
 [FieldOffsetAttribute(16)]
 public string Text1;
}

Discussion
Unions are structures usually found in C++ code; however, there is a way to duplicate
that type of structure using a C# structure data type. A union is a structure that
accepts more than one type at a specific location in memory for that structure. For
example, the SignedNumber structure is a union-type structure built using a C# struc‐
ture. This structure accepts any type of signed numeric type (sbyte, int, long, etc.),
but it accepts this numeric type at only one location, or offset, within the structure.

4 | Chapter 1: Classes and Generics

Since StructLayoutAttribute can be applied to both structures
and classes, you can also use a class when creating a union data
type.

Notice the FieldOffsetAttribute has the value 0 passed to its constructor. This
denotes that this field will be offset by zero bytes from the beginning of the structure.
This attribute is used in tandem with the StructLayoutAttribute to manually
enforce where the fields in this structure will start (that is, the offset from the begin‐
ning of this structure in memory where each field will start). The FieldOffsetAttri
bute can be used only with a StructLayoutAttribute set to LayoutKind.Explicit.
In addition, it cannot be used on static members within this structure.

Unions can become problematic, since several types are essentially laid on top of one
another. The biggest problem is extracting the correct data type from a union struc‐
ture. Consider what happens if you choose to store the long numeric value long.Max
Value in the SignedNumber structure. Later, you might accidentally attempt to extract
a byte data type value from this same structure. In doing so, you will get back only
the first byte of the long value.

Another problem is starting fields at the correct offset. The SignedNumberWithText
union overlays numerous signed numeric data types at the zeroth offset. The last field
in this structure is laid out at the 16th byte offset from the beginning of this structure
in memory. If you accidentally overlay the string field Text1 on top of any of the
other signed numeric data types, you will get an exception at runtime. The basic rule
is that you are allowed to overlay a value type on another value type, but you cannot
overlay a reference type over a value type. If the Text1 field is marked with the fol‐
lowing attribute:

[FieldOffsetAttribute(14)]

this exception is thrown at runtime (note that the compiler does not catch this prob‐
lem):

System.TypeLoadException: Could not load type 'SignedNumberWithText' from
assembly 'CSharpRecipes, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=fe85c3941fbcc4c5' because it contains an object field at
offset 14 that is incorrectly aligned or overlapped by a non-object field.

It is imperative to get the offsets correct when you’re using complex unions in C#.

See Also
The “StructLayoutAttribute Class” topic in the MSDN documentation.

1.1 Creating Union-Type Structures | 5

1.2 Making a Type Sortable
Problem
You have a data type that will be stored as an element in a List<T> or a Sorted
List<K,V>. You would like to use the List<T>.Sort method or the internal sorting
mechanism of SortedList<K,V> to allow custom sorting of your data types in the
array. In addition, you may need to use this type in a SortedList collection.

Solution
Example 1-1 demonstrates how to implement the IComparable<T> interface. The
Square class shown in Example 1-1 implements this interface in such a way that the
List<T> and SortedList<K,V> collections can sort and search for these Square
objects.

Example 1-1. Making a type sortable by implementing IComparable<T>

public class Square : IComparable<Square>
{
 public Square(){}

 public Square(int height, int width)
 {
 this.Height = height;
 this.Width = width;
 }

 public int Height { get; set; }

 public int Width { get; set; }

 public int CompareTo(object obj)
 {
 Square square = obj as Square;
 if (square != null)
 return CompareTo(square);
 throw
 new ArgumentException(
 "Both objects being compared must be of type Square.");
 }

 public override string ToString()=>
 ($"Height: {this.Height} Width: {this.Width}");

 public override bool Equals(object obj)
 {
 if (obj == null)

6 | Chapter 1: Classes and Generics

 return false;

 Square square = obj as Square;
 if(square != null)
 return this.Height == square.Height;
 return false;
 }

 public override int GetHashCode()
 {
 return this.Height.GetHashCode() | this.Width.GetHashCode();
 }

 public static bool operator ==(Square x, Square y) => x.Equals(y);
 public static bool operator !=(Square x, Square y) => !(x == y);
 public static bool operator <(Square x, Square y) => (x.CompareTo(y) < 0);
 public static bool operator >(Square x, Square y) => (x.CompareTo(y) > 0);

 public int CompareTo(Square other)
 {
 long area1 = this.Height * this.Width;
 long area2 = other.Height * other.Width;

 if (area1 == area2)
 return 0;
 else if (area1 > area2)
 return 1;
 else if (area1 < area2)
 return -1;
 else
 return -1;
 }
}

Discussion
By implementing the IComparable<T> interface on your class (or structure), you can
take advantage of the sorting routines of the List<T> and SortedList<K,V> classes.
The algorithms for sorting are built into these classes; all you have to do is tell them
how to sort your classes via the code you implement in the IComparable<T>.Compar
eTo method.

When you sort a list of Square objects by calling the List<Square>.Sort method, the
list is sorted via the IComparable<Square> interface of the Square objects. The Add
method of the SortedList<K,V> class uses this interface to sort the objects as they are
being added to the SortedList<K,V>.

IComparer<T> is designed to solve the problem of allowing objects to be sorted based
on different criteria in different contexts. This interface also allows you to sort types
that you did not write. If you also wanted to sort the Square objects by height, you

1.2 Making a Type Sortable | 7

could create a new class called CompareHeight, shown in Example 1-2, which would
also implement the IComparer<Square> interface.

Example 1-2. Making a type sortable by implementing IComparer

public class CompareHeight : IComparer<Square>
{
 public int Compare(object firstSquare, object secondSquare)
 {
 Square square1 = firstSquare as Square;
 Square square2 = secondSquare as Square;
 if (square1 == null || square2 == null)
 throw (new ArgumentException("Both parameters must be of type Square."));
 else
 return Compare(firstSquare,secondSquare);
 }

 #region IComparer<Square> Members

 public int Compare(Square x, Square y)
 {
 if (x.Height == y.Height)
 return 0;
 else if (x.Height > y.Height)
 return 1;
 else if (x.Height < y.Height)
 return -1;
 else
 return -1;
 }

 #endregion
}

This class is then passed in to the IComparer parameter of the Sort routine. Now you
can specify different ways to sort your Square objects. The comparison method
implemented in the comparer must be consistent and apply a total ordering so that
when the comparison function declares equality for two items, it is absolutely true
and not a result of one item not being greater than another or one item not being less
than another.

For best performance, keep the CompareTo method short and effi‐
cient, because it will be called multiple times by the Sort methods.
For example, in sorting an array with four items, the Compare
method is called 10 times.

8 | Chapter 1: Classes and Generics

The TestSort method shown in Example 1-3 demonstrates how to use the Square
and CompareHeight classes with the List<Square> and SortedList<int,Square>
instances.

Example 1-3. TestSort method

public static void TestSort()
{
 List<Square> listOfSquares = new List<Square>(){
 new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};
 // Test a List<String>
 Console.WriteLine("List<String>");
 Console.WriteLine("Original list");
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 IComparer<Square> heightCompare = new CompareHeight();
 listOfSquares.Sort(heightCompare);
 Console.WriteLine("Sorted list using IComparer<Square>=heightCompare");
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparable<Square>");
 listOfSquares.Sort();
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 // Test a SORTEDLIST
 var sortedListOfSquares = new SortedList<int,Square>(){
 { 0, new Square(1,3)},
 { 2, new Square(3,3)},
 { 1, new Square(2,1)},
 { 3, new Square(6,1)}};

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SortedList<Square>");
 foreach (KeyValuePair<int,Square> kvp in sortedListOfSquares)
 {

1.2 Making a Type Sortable | 9

 Console.WriteLine ($"{kvp.Key} : {kvp.Value}");
 }
}

This code displays the following output:

List<String>
Original list
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted list using IComparer<Square>=heightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Sorted list using IComparable<Square>
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

SortedList<Square>
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:3 Width:3
3 : Height:6 Width:1

See Also
Recipe 1.3, and the “IComparable<T> Interface” topic in the MSDN documentation.

1.3 Making a Type Searchable
Problem
You have a data type that will be stored as elements in a List<T>. You would like to
use the BinarySearch method to allow for custom searching of your data types in the
list.

Solution
Use the IComparable<T> and IComparer<T> interfaces. The Square class, from Recipe
1.2, implements the IComparable<T> interface in such a way that the List<T> and
SortedList<K,V> collections can sort and search an array or collection of Square
objects.

10 | Chapter 1: Classes and Generics

Discussion
By implementing the IComparable<T> interface on your class (or structure), you can
take advantage of the search routines of the List<T> and SortedList<K,V> classes.
The algorithms for searching are built into these classes; all you have to do is tell
them how to search your classes via the code you implement in the IComparable<T>.
CompareTo method.

To implement the CompareTo method, see Recipe 1.2.

The List<T> class provides a BinarySearch method to perform a search on the ele‐
ments in that list. The elements are compared against an object passed to the Binary
Search method in the object parameter. The SortedList class does not have a Binary
Search method; instead, it has the ContainsKey method, which performs a binary
search on the key contained in the list. The ContainsValue method of the Sorted
List class performs a linear search when searching for values. This linear search uses
the Equals method of the elements in the SortedList collection to do its work. The
Compare and CompareTo methods do not have any effect on the operation of the linear
search performed in the SortedList class, but they do have an effect on binary
searches.

To perform an accurate search using the BinarySearch methods of
the List<T> class, you must first sort the List<T> using its Sort
method. In addition, if you pass an IComparer<T> interface to the
BinarySearch method, you must also pass the same interface to the
Sort method. Otherwise, the BinarySearch method might not be
able to find the object you are looking for.

The TestSort method shown in Example 1-4 demonstrates how to use the Square
and CompareHeight classes with the List<Square> and SortedList<int,Square>
collection instances.

Example 1-4. Making a type searchable

public static void TestSearch()
{
 List<Square> listOfSquares = new List<Square> {new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};
 IComparer<Square> heightCompare = new CompareHeight();

 // Test a List<Square>
 Console.WriteLine("List<Square>");
 Console.WriteLine("Original list");

1.3 Making a Type Searchable | 11

 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparer<Square>=heightCompare");
 listOfSquares.Sort(heightCompare);
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparer<Square>=heightCompare");
 int found = listOfSquares.BinarySearch(new Square(1,3), heightCompare);
 Console.WriteLine($"Found (1,3): {found}");

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparable<Square>");
 listOfSquares.Sort();
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparable<Square>");
 found = listOfSquares.BinarySearch(new Square(6,1)); // Use IComparable
 Console.WriteLine($"Found (6,1): {found}");

 // Test a SortedList<Square>
 var sortedListOfSquares = new SortedList<int,Square>(){
 {0, new Square(1,3)},
 {2, new Square(4,3)},
 {1, new Square(2,1)},
 {4, new Square(6,1)}};
 Console.WriteLine();
 Console.WriteLine("SortedList<Square>");
 foreach (KeyValuePair<int,Square> kvp in sortedListOfSquares)
 {
 Console.WriteLine ($"{kvp.Key} : {kvp.Value}");
 }

 Console.WriteLine();
 bool foundItem = sortedListOfSquares.ContainsKey(2);
 Console.WriteLine($"sortedListOfSquares.ContainsKey(2): {foundItem}");

 // Does not use IComparer or IComparable
 // -- uses a linear search along with the Equals method
 // which has not been overloaded
 Console.WriteLine();

12 | Chapter 1: Classes and Generics

 Square value = new Square(6,1);
 foundItem = sortedListOfSquares.ContainsValue(value);
 Console.WriteLine("sortedListOfSquares.ContainsValue " +
 $"(new Square(6,1)): {foundItem}");
}

This code displays the following:

List"Square>
Original list
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted list using IComparer"Square>=heightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Search using IComparer"Square>=heightCompare
Found (1,3): 0

Sorted list using IComparable"Square>
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

Search using IComparable"Square>
Found (6,1): 2

SortedList"Square>
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:4 Width:3
4 : Height:6 Width:1

sortedListOfSquares.ContainsKey(2): True
sortedListOfSquares.ContainsValue(new Square(6,1)): True

See Also
Recipe 1.2, and the “IComparable<T> Interface” and “IComparer<T> Interface” top‐
ics in the MSDN documentation.

1.3 Making a Type Searchable | 13

1.4 Returning Multiple Items from a Method
Problem
In many cases, a single return value for a method is not enough. You need a way to
return more than one item from a method.

Solution
Use the out keyword on parameters that will act as return parameters. The following
method accepts an inputShape parameter and calculates height, width, and depth
from that value:

public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
{
 height = 0;
 width = 0;
 depth = 0;

 // Calculate height, width, and depth from the inputShape value.
}

This method would be called in the following manner:

// Declare output parameters.
int height;
int width;
int depth;

// Call method and return the height, width, and depth.
Obj.ReturnDimensions(1, out height, out width, out depth);

Another method is to return a class or structure containing all the return values. The
previous method has been modified here to return a structure instead of using out
arguments:

public Dimensions ReturnDimensions(int inputShape)
{
 // The default ctor automatically defaults this structure's members to 0.
 Dimensions objDim = new Dimensions();

 // Calculate objDim.Height, objDim.Width, objDim.Depth
 // from the inputShape value...

 return objDim;
}

where Dimensions is defined as follows:

14 | Chapter 1: Classes and Generics

public struct Dimensions
{
 public int Height;
 public int Width;
 public int Depth;
}

This method would now be called in this manner:

// Call method and return the height, width, and depth.
Dimensions objDim = obj.ReturnDimensions(1);

Rather than returning a user-defined class or structure from this method, you can use
a Tuple object containing all the return values. The previous method has been modi‐
fied here to return a Tuple:

public Tuple<int, int, int> ReturnDimensionsAsTuple(int inputShape)
{
 // Calculate objDim.Height, objDim.Width, objDim.Depth from the inputShape
 // value e.g. {5, 10, 15}

 // Create a Tuple with calculated values
 var objDim = Tuple.Create<int, int, int>(5, 10, 15);

 return (objDim);
}

This method would now be called in this manner:

// Call method and return the height, width, and depth.
Tuple<int, int, int> objDim = obj.ReturnDimensions(1);

Discussion
Marking a parameter in a method signature with the out keyword indicates that this
parameter will be initialized and returned by this method. This trick is useful when a
method is required to return more than one value. A method can, at most, have only
one return value, but through the use of the out keyword, you can mark several
parameters as a kind of return value.

To set up an out parameter, mark the parameter in the method signature with the out
keyword as shown here:

public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
{
 ...
}

1.4 Returning Multiple Items from a Method | 15

To call this method, you must also mark the calling method’s arguments with the out
keyword, shown here:

obj.ReturnDimensions(1, out height, out width, out depth);

The out arguments in this method call do not have to be initialized; they can simply
be declared and passed in to the ReturnDimensions method. Regardless of whether
they are initialized before the method call, they must be initialized before they are
used within the ReturnDimensions method. Even if they are not used through every
path in the ReturnDimensions method, they still must be initialized. That is why this
method starts out with the following three lines of code:

height = 0;
width = 0;
depth = 0;

You may be wondering why you couldn’t use a ref parameter instead of the out
parameter, as both allow a method to change the value of an argument marked as
such. The answer is that an out parameter makes the code somewhat self-
documenting. You know that when an out parameter is encountered, it is acting as a
return value. In addition, an out parameter does not require the extra work to be ini‐
tialized before it is passed in to the method, while a ref parameter does.

An out parameter does not have to be marshaled when the method
is called; rather, it is marshaled once when the method returns the
data to the caller. Any other type of call (by-value or by-reference
using the ref keyword) requires that the value be marshaled in
both directions. Using the out keyword in marshaling scenarios
improves remoting performance.

An out parameter is great when there are only a few values that need to be returned,
but when you start encountering 4, 5, 6, or more values that need to be returned, it
can get unwieldy. Another option for returning multiple values is to create and return
a user-defined class/structure or to use a Tuple to package up all the values that need
to be returned by a method.

The first option, using a class/structure to return the values, is straightforward. Just
create the type (in this example it is a structure) like so:

public struct Dimensions
{
 public int Height;
 public int Width;
 public int Depth;
}

16 | Chapter 1: Classes and Generics

Fill in each field of this structure with the required data and then return it from the
method as shown in the Solution section.

The second option, using a Tuple, is an even more elegant solution than using a user-
defined object. A Tuple can be created to hold any number of values of varying types.
In addition, the data you store in the Tuple is immutable; once you add the data to
the Tuple through the constructor or the static Create method, that data cannot be
changed.

Tuples can accept up to and including eight separate values. If you need to return
more than eight values, you will need to use the special Tuple class:

Tuple<T1, T2, T3, T4, T5, T6, T7, TRest> Class

When creating a Tuple with more than eight values, you cannot use the static Create
method—you must instead use the constructor of the class. This is how you would
create a Tuple of 10 integer values:

var values = new Tuple<int, int, int, int, int, int, int, Tuple<int, int, int>> (
 1, 2, 3, 4, 5, 6, 7, new Tuple<int, int, int> (8, 9, 10));

Of course, you can continue to add more Tuples to the end of each embedded Tuple,
creating any size Tuple that you need.

See Also
The “Tuple Class” and “Tuple<T1, T2, T3, T4, T5, T6, T7, TRest> Class” topics in the
MSDN documentation.

1.5 Parsing Command-Line Parameters
Problem
You require your applications to accept one or more command-line parameters in a
standard format (described in the Discussion section). You need to access and parse
the entire command line passed to your application.

Solution
In Example 1-5, use the following classes together to help with parsing command-line
parameters: Argument, ArgumentDefinition, and ArgumentSemanticAnalyzer.

Example 1-5. Argument class

using System;
using System.Diagnostics;
using System.Linq;

1.5 Parsing Command-Line Parameters | 17

using System.Collections.ObjectModel;

public sealed class Argument
{
 public string Original { get; }
 public string Switch { get; private set; }
 public ReadOnlyCollection<string> SubArguments { get; }
 private List<string> subArguments;
 public Argument(string original)
 {
 Original = original;
 Switch = string.Empty;
 subArguments = new List<string>();
 SubArguments = new ReadOnlyCollection<string>(subArguments);
 Parse();
 }

 private void Parse()
 {
 if (string.IsNullOrEmpty(Original))
 {
 return;
 }
 char[] switchChars = { '/', '-' };
 if (!switchChars.Contains(Original[0]))

 {
 return;
 }
 string switchString = Original.Substring(1);
 string subArgsString = string.Empty;
 int colon = switchString.IndexOf(':');
 if (colon >= 0)
 {
 subArgsString = switchString.Substring(colon + 1);
 switchString = switchString.Substring(0, colon);
 }
 Switch = switchString;
 if (!string.IsNullOrEmpty(subArgsString))
 subArguments.AddRange(subArgsString.Split(';'));
 }

 // A set of predicates that provide useful information about itself
 // Implemented using lambdas
 public bool IsSimple => SubArguments.Count == 0;
 public bool IsSimpleSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count == 0;
 public bool IsCompoundSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count == 1;
 public bool IsComplexSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count > 0;
}

18 | Chapter 1: Classes and Generics

public sealed class ArgumentDefinition
{
 public string ArgumentSwitch { get; }
 public string Syntax { get; }
 public string Description { get; }
 public Func<Argument, bool> Verifier { get; }

 public ArgumentDefinition(string argumentSwitch,
 string syntax,
 string description,
 Func<Argument, bool> verifier)
 {
 ArgumentSwitch = argumentSwitch.ToUpper();
 Syntax = syntax;
 Description = description;
 Verifier = verifier;
 }

 public bool Verify(Argument arg) => Verifier(arg);
}

public sealed class ArgumentSemanticAnalyzer
{

 private List<ArgumentDefinition> argumentDefinitions =
 new List<ArgumentDefinition>();
 private Dictionary<string, Action<Argument>> argumentActions =
 new Dictionary<string, Action<Argument>>();

 public ReadOnlyCollection<Argument> UnrecognizedArguments { get; private set; }
 public ReadOnlyCollection<Argument> MalformedArguments { get; private set; }
 public ReadOnlyCollection<Argument> RepeatedArguments { get; private set; }

 public ReadOnlyCollection<ArgumentDefinition> ArgumentDefinitions =>
 new ReadOnlyCollection<ArgumentDefinition>(argumentDefinitions);

 public IEnumerable<string> DefinedSwitches =>
 from argumentDefinition in argumentDefinitions
 select argumentDefinition.ArgumentSwitch;

 public void AddArgumentVerifier(ArgumentDefinition verifier) =>
 argumentDefinitions.Add(verifier);

 public void RemoveArgumentVerifier(ArgumentDefinition verifier)
 {
 var verifiersToRemove = from v in argumentDefinitions
 where v.ArgumentSwitch == verifier.ArgumentSwitch
 select v;
 foreach (var v in verifiersToRemove)
 argumentDefinitions.Remove(v);
 }

1.5 Parsing Command-Line Parameters | 19

 public void AddArgumentAction(string argumentSwitch, Action<Argument> action) =>
 argumentActions.Add(argumentSwitch, action);

 public void RemoveArgumentAction(string argumentSwitch)
 {
 if (argumentActions.Keys.Contains(argumentSwitch))
 argumentActions.Remove(argumentSwitch);
 }

 public bool VerifyArguments(IEnumerable<Argument> arguments)
 {
 // no parameter to verify with, fail.
 if (!argumentDefinitions.Any())

 return false;

 // Identify if any of the arguments are not defined
 this.UnrecognizedArguments =
 (from argument in arguments
 where !DefinedSwitches.Contains(argument.Switch.ToUpper())
 select argument).ToList().AsReadOnly();

 if (this.UnrecognizedArguments.Any())
 return false;

 //Check for all the arguments where the switch matches a known switch,
 //but our well-formedness predicate is false.
 this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();

 if (this.MalformedArguments.Any())
 return false;

 //Sort the arguments into "groups" by their switch, count every group,
 //and select any groups that contain more than one element,
 //We then get a read-only list of the items.
 this.RepeatedArguments =
 (from argumentGroup in
 from argument in arguments
 where !argument.IsSimple
 group argument by argument.Switch.ToUpper()
 where argumentGroup.Count() > 1
 select argumentGroup).SelectMany(ag => ag).ToList().AsReadOnly();

 if (this.RepeatedArguments.Any())
 return false;

20 | Chapter 1: Classes and Generics

 return true;
 }

 public void EvaluateArguments(IEnumerable<Argument> arguments)
 {
 //Now we just apply each action:
 foreach (Argument argument in arguments)
 argumentActions[argument.Switch.ToUpper()](argument);
 }

 public string InvalidArgumentsDisplay()
 {
 StringBuilder builder = new StringBuilder();
 builder.AppendFormat($"Invalid arguments: {Environment.NewLine}");
 // Add the unrecognized arguments

 FormatInvalidArguments(builder, this.UnrecognizedArguments,
 "Unrecognized argument: {0}{1}");

 // Add the malformed arguments
 FormatInvalidArguments(builder, this.MalformedArguments,
 "Malformed argument: {0}{1}");

 // For the repeated arguments, we want to group them for the display,
 // so group by switch and then add it to the string being built.
 var argumentGroups = from argument in this.RepeatedArguments
 group argument by argument.Switch.ToUpper() into ag
 select new { Switch = ag.Key, Instances = ag};

 foreach (var argumentGroup in argumentGroups)
 {
 builder.AppendFormat($"Repeated argument:
 {argumentGroup.Switch}{Environment.NewLine}");
 FormatInvalidArguments(builder, argumentGroup.Instances.ToList(),
 "\t{0}{1}");
 }
 return builder.ToString();
 }

 private void FormatInvalidArguments(StringBuilder builder,
 IEnumerable<Argument> invalidArguments, string errorFormat)
 {
 if (invalidArguments != null)
 {
 foreach (Argument argument in invalidArguments)
 {
 builder.AppendFormat(errorFormat,
 argument.Original, Environment.NewLine);
 }
 }
 }
}

1.5 Parsing Command-Line Parameters | 21

Here is one example of how to use these classes to process the command line for an
application:

public static void Main(string[] argumentStrings)
{
 var arguments = (from argument in argumentStrings
 select new Argument(argument)).ToArray();

 Console.Write("Command line: ");
 foreach (Argument a in arguments)
 {
 Console.Write($"{a.Original} ");
 }
 Console.WriteLine("");

 ArgumentSemanticAnalyzer analyzer = new ArgumentSemanticAnalyzer();
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("output",
 "/output:[path to output]",
 "Specifies the location of the output file.",
 x => x.IsCompoundSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("trialMode",
 "/trialmode",
 "If this is specified it places the product into trial mode",
 x => x.IsSimpleSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("DEBUGOUTPUT",
 "/debugoutput:[value1];[value2];[value3]",
 "A listing of the files the debug output " +
 "information will be written to",
 x => x.IsComplexSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("",
 "[literal value]",
 "A literal value",
 x => x.IsSimple));

 if (!analyzer.VerifyArguments(arguments))
 {
 string invalidArguments = analyzer.InvalidArgumentsDisplay();
 Console.WriteLine(invalidArguments);
 ShowUsage(analyzer);
 return;
 }

 // Set up holders for the command line parsing results
 string output = string.Empty;
 bool trialmode = false;
 IEnumerable<string> debugOutput = null;
 List<string> literals = new List<string>();

22 | Chapter 1: Classes and Generics

 //For each parsed argument, we want to apply an action,
 // so add them to the analyzer.
 analyzer.AddArgumentAction("OUTPUT", x => { output = x.SubArguments[0]; });
 analyzer.AddArgumentAction("TRIALMODE", x => { trialmode = true; });
 analyzer.AddArgumentAction("DEBUGOUTPUT", x =>
 { debugOutput = x.SubArguments;
 });

 analyzer.AddArgumentAction("", x=>{literals.Add(x.Original);});

 // check the arguments and run the actions
 analyzer.EvaluateArguments(arguments);

 // display the results
 Console.WriteLine("");
 Console.WriteLine($"OUTPUT: {output}");
 Console.WriteLine($"TRIALMODE: {trialmode}");
 if (debugOutput != null)
 {
 foreach (string item in debugOutput)

 {
 Console.WriteLine($"DEBUGOUTPUT: {item}");
 }
 }
 foreach (string literal in literals)
 {
 Console.WriteLine($"LITERAL: {literal}");
 }
}

public static void ShowUsage(ArgumentSemanticAnalyzer analyzer)
{
 Console.WriteLine("Program.exe allows the following arguments:");
 foreach (ArgumentDefinition definition in analyzer.ArgumentDefinitions)
 {
 Console.WriteLine($"\t{definition.ArgumentSwitch}:
 ({definition.Description}){Environment.NewLine}
 \tSyntax: {definition.Syntax}");
 }
}

Discussion
Before you can parse command-line parameters, you must decide upon a common
format. The format for this recipe follows the command-line format for the Visual
C# .NET language compiler. The format used is defined as follows:

• All command-line arguments are separated by one or more whitespace charac‐
ters.

1.5 Parsing Command-Line Parameters | 23

• Each argument may start with either a - or / character, but not both. If it does
not, that argument is considered a literal, such as a filename.

• Each argument that starts with either the - or / character may be divided up into
a switch followed by a colon followed by one or more arguments separated with
the ; character. The command-line parameter -sw:arg1;arg2;arg3 is divided up
into a switch (sw) and three arguments (arg1, arg2, and arg3). Note that there
should not be any spaces in the full argument; otherwise, the runtime command-
line parser will split up the argument into two or more arguments.

• Strings delineated with double quotes, such as "c:\test\file.log", will have
their double quotes stripped off. This is a function of the operating system inter‐
preting the arguments passed in to your application.

• Single quotes are not stripped off.
• To preserve double quotes, precede the double quote character with the \ escape

sequence character.
• The \ character is handled as an escape sequence character only when followed

by a double quote—in which case, only the double quote is displayed.
• The ^ character is handled by the runtime command-line parser as a special char‐

acter.

Fortunately, the runtime command-line parser handles most of this before your
application receives the individual parsed arguments.

The runtime command-line parser passes a string[] containing each parsed argu‐
ment to the entry point of your application. The entry point can take one of the fol‐
lowing forms:

public static void Main()
public static int Main()
public static void Main(string[] args)
public static int Main(string[] args)

The first two accept no arguments, but the last two accept the array of parsed
command-line arguments. Note that the static Environment.CommandLine property
will also return a string containing the entire command line, and the static Environ
ment.GetCommandLineArgs method will return an array of strings containing the
parsed command-line arguments.

The three classes presented in the Solution address the phases of dealing with the
command-line arguments:

Argument

Encapsulates a single command-line argument and is responsible for parsing the
argument.

24 | Chapter 1: Classes and Generics

ArgumentDefinition

Defines an argument that will be valid for the current command line.

ArgumentSemanticAnalyzer

Performs the verification and retrieval of the arguments based on the ArgumentDefi
nitions that are set up.

Passing in the following command-line arguments to this application:

MyApp c:\input\infile.txt -output:d:\outfile.txt -trialmode

results in the following parsed switches and arguments:

Command line: c:\input\infile.txt -output:d:\outfile.txt -trialmode
OUTPUT: d:\outfile.txt
TRIALMODE: True
LITERAL: c:\input\infile.txt

If you input command-line parameters incorrectly, such as forgetting to add argu‐
ments to the -output switch, you get the following output:

Command line: c:\input\infile.txt -output: -trialmode
Invalid arguments:
Malformed argument: -output

Program.exe allows the following arguments:
 OUTPUT: (Specifies the location of the output file.)
 Syntax: /output:[path to output]
 TRIALMODE: (If this is specified, it places the product into trial mode)
 Syntax: /trialmode
 DEBUGOUTPUT: (A listing of the files the debug output information will be
 written to)
 Syntax: /debugoutput:[value1];[value2];[value3]
 : (A literal value)
 Syntax: [literal value]

There are a few items in the code that are worth pointing out.

Each Argument instance needs to be able to determine certain things about itself;
accordingly, a set of predicates that tell us useful information about this Argument are
exposed as properties on the Argument. The ArgumentSemanticAnalyzer will use
these properties to determine the characteristics of the argument:

public bool IsSimple => SubArguments.Count == 0;
public bool IsSimpleSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count == 0;
public bool IsCompoundSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count == 1;
public bool IsComplexSwitch =>
 !string.IsNullOrEmpty(Switch) && SubArguments.Count > 0;

1.5 Parsing Command-Line Parameters | 25

For more information on lambda expressions, see the introduction
to Chapter 4. Also see Recipe 1.16 for a discussion of using lambda
expressions to implement closures.

In a number of places in the code, the ToArray or ToList methods are called on the
result of a LINQ query:

var arguments = (from argument in argumentStrings
 select new Argument(argument)).ToArray();

This is because query results use deferred execution, which means that not only are
the results calculated in a lazy manner, but they are recalculated every time they are
accessed. Using the ToArray or ToList methods forces the eager evaluation of the
results and generates a copy that will not reevaluate during each usage. The query
logic does not know if the collection being worked on is changing or not, so it has to
reevaluate each time unless you make a “point in time” copy using these methods.

To verify that these arguments are correct, we must create an ArgumentDefinition
and associate it for each acceptable argument type with the ArgumentSemanticAna
lyzer:

ArgumentSemanticAnalyzer analyzer = new ArgumentSemanticAnalyzer();
analyzer.AddArgumentVerifier(
 new ArgumentDefinition("output",
 "/output:[path to output]",
 "Specifies the location of the output file.",
 x => x.IsCompoundSwitch));
analyzer.AddArgumentVerifier(
 new ArgumentDefinition("trialMode",
 "/trialmode",
 "If this is specified it places the product into trial mode",
 x => x.IsSimpleSwitch));
analyzer.AddArgumentVerifier(
 new ArgumentDefinition("DEBUGOUTPUT",
 "/debugoutput:[value1];[value2];[value3]",
 "A listing of the files the debug output " +
 "information will be written to",
 x => x.IsComplexSwitch));
analyzer.AddArgumentVerifier(
 new ArgumentDefinition("",
 "[literal value]",
 "A literal value",
 x => x.IsSimple));

There are four parts to each ArgumentDefinition: the argument switch, a string
showing the syntax of the argument, a description of the argument, and the verifica‐
tion predicate to verify the argument. This information can be used to verify the
argument, as shown here:

26 | Chapter 1: Classes and Generics

//Check for all the arguments where the switch matches a known switch,
//but our well-formedness predicate is false.
this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();

The ArgumentDefinitions also allow you to compose a usage method for the pro‐
gram:

public static void ShowUsage(ArgumentSemanticAnalyzer analyzer)
{
 Console.WriteLine("Program.exe allows the following arguments:");
 foreach (ArgumentDefinition definition in analyzer.ArgumentDefinitions)
 {
 Console.WriteLine("\t{0}: ({1}){2}\tSyntax: {3}",
 definition.ArgumentSwitch, definition.Description,
 Environment.NewLine,definition.Syntax);
 }
}

To get the values of the arguments so they can be used, we need to extract the infor‐
mation out of the parsed arguments. For the Solution example, we would need the
following information:

// Set up holders for the command line parsing results
string output = string.Empty;
bool trialmode = false;
IEnumerable<string> debugOutput = null;
List<string> literals = new List<string>();

How are these values filled in? Well, we need to associate an action with each Argu
ment to determine how the value should be retrieved from an Argument instance. The
action is a predicate, which makes this a very powerful approach, as any predicate can
be used here. Here is where those Argument actions are defined and associated with
the ArgumentSemanticAnalyzer:

//For each parsed argument, we want to apply an action,
// so add them to the analyzer.
analyzer.AddArgumentAction("OUTPUT", x => { output = x.SubArguments[0]; });
analyzer.AddArgumentAction("TRIALMODE", x => { trialmode = true; });
analyzer.AddArgumentAction("DEBUGOUTPUT", x =>
 { debugOutput = x.SubArguments;});
analyzer.AddArgumentAction("", x=>{literals.Add(x.Original);});

Now that all of the actions are set up, we can retrieve the values by using the Evalua
teArguments method on the ArgumentSemanticAnalyzer:

// check the arguments and run the actions
analyzer.EvaluateArguments(arguments);

1.5 Parsing Command-Line Parameters | 27

Now the arguments have been filled in by the execution of the actions, and the pro‐
gram can run with those values:

// Run the program passing in the argument values:
Program program = new Program(output, trialmode, debugOutput, literals);
program.Run();

The verification of the arguments uses LINQ to query for unrecognized, malformed,
or repeated arguments, any of which will cause the parameters to be invalid:

public bool VerifyArguments(IEnumerable<Argument> arguments)
{
 // no parameter to verify with, fail.
 if (!argumentDefinitions.Any())
 return false;

 // Identify if any of the arguments are not defined
 this.UnrecognizedArguments =
 (from argument in arguments
 where !DefinedSwitches.Contains(argument.Switch.ToUpper())
 select argument).ToList().AsReadOnly();

 if (this.UnrecognizedArguments.Any())
 return false;

 //Check for all the arguments where the switch matches a known switch,
 //but our well-formedness predicate is false.
 this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();
 if (this.MalformedArguments.Any())
 return false;

 //Sort the arguments into "groups" by their switch, count every group,
 //and select any groups that contain more than one element.
 //We then get a read-only list of the items.
 this.RepeatedArguments =
 (from argumentGroup in
 from argument in arguments
 where !argument.IsSimple
 group argument by argument.Switch.ToUpper()
 where argumentGroup.Count() > 1
 select argumentGroup).SelectMany(ag => ag).ToList().AsReadOnly();

 if (this.RepeatedArguments.Any())
 return false;

 return true;
}

28 | Chapter 1: Classes and Generics

Look at how much easier it is to understand each phase of the verification, compared
with how it would be done before LINQ—with multiple nested loops, switches,
IndexOfs, and other mechanisms. Each query concisely states in the language of the
problem domain what task it is attempting to perform.

LINQ is designed to help with problems where data must be sorted,
searched, grouped, filtered, and projected. Use it!

See Also
The “Main” and “Command-Line Arguments” topics in the MSDN documentation.

1.6 Initializing a Constant Field at Runtime
Problem
A field marked as const can be initialized only at compile time. You need to initialize
a field to a valid value at runtime, not at compile time. This field must then act as if it
were a constant field for the rest of the application’s life.

Solution
You have two choices when declaring a constant value in your code. You can use a
readonly field or a const field. Each has its own strengths and weaknesses. However,
if you need to initialize a constant field at runtime, you must use a readonly field:

public class Foo
{
 public readonly int bar;

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue;
 }

 // Rest of class...
}

This is not possible using a const field. A const field can be initialized only at com‐
pile time:

public class Foo
{

1.6 Initializing a Constant Field at Runtime | 29

 public const int bar; // This line causes a compile-time error.

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue; // This line also causes a compile-time error.
 }
 // Rest of class...
}

Discussion
A readonly field allows initialization to take place only in the constructor at runtime,
whereas a const field must be initialized at compile time. Therefore, implementing a
readonly field is the only way to allow a field that must be constant to be initialized at
runtime.

There are only two ways to initialize a readonly field. The first is by adding an initial‐
izer to the field itself:

public readonly int bar = 100;

The second way is to initialize the readonly field through a constructor. This
approach is demonstrated by the code in the Solution to this recipe. If you look at the
following class:

public class Foo
{
 public readonly int x;
 public const int y = 1;

 public Foo() {}
 public Foo(int roInitValue)
 {
 x = roInitValue;
 }

 // Rest of class...
}

you’ll see it is compiled into the following IL (intermediate language):

.class auto ansi nested public beforefieldinit Foo
 extends [mscorlib]System.Object {
.field public static literal int32 y = int32(0x00000001) //<<-- const field
.field public initonly int32 x //<<-- readonly field
.method public hidebysig specialname rtspecialname
 instance void .ctor(int32 roInitValue) cil managed
{
 // Code size 16 (0x10)
 .maxstack 8

30 | Chapter 1: Classes and Generics

 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: nop
 IL_0007: nop
 IL_0008: ldarg.0
 IL_0009: ldarg.1
 IL_000a: stfld int32 CSharpRecipes.ClassesAndGenerics/Foo::x
 IL_000f: ret
} // end of method Foo::.ctor
.method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
{
 // Code size 9 (0x9)
 .maxstack 8
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: nop
 IL_0007: nop
 IL_0008: ret
} // end of method Foo::.ctor
} // End of class Foo

Notice that a const field is compiled into a static field, and a readonly field is com‐
piled into an instance field. Therefore, you need only a class name to access a const
field.

A common argument against using const fields is that they do not
version as well as readonly fields. If you rebuild a component that
defines a const field and the value of that const changes in a later
version, any other components that were built against the old ver‐
sion won’t pick up the new value. If there is any chance that a field
is going to change, don’t make it a const field.

The following code shows how to use an instance readonly field:

Foo obj1 = new Foo(100);
Console.WriteLine(obj1.bar);

See Also
The “const” and “readonly” keywords in the MSDN documentation.

1.6 Initializing a Constant Field at Runtime | 31

1.7 Building Cloneable Classes
Problem
You need a method of performing a shallow cloning operation, a deep cloning opera‐
tion, or both on a data type that may also reference other types, but the ICloneable
interface should not be used, as it violates the .NET Framework Design Guidelines.

Solution
To resolve the issue with using ICloneable, create two other interfaces to establish a
copying pattern, IShallowCopy<T> and IDeepCopy<T>:

public interface IShallowCopy<T>
{
 T ShallowCopy();
}
public interface IDeepCopy<T>
{
 T DeepCopy();
}

Shallow copying means that the copied object’s fields will reference the same objects as
the original object. To allow shallow copying, implement the IShallowCopy<T> inter‐
face in the class:

using System;
using System.Collections;
using System.Collections.Generic;

public class ShallowClone : IShallowCopy<ShallowClone>
{
 public int Data = 1;
 public List<string> ListData = new List<string>();
 public object ObjData = new object();

 public ShallowClone ShallowCopy() => (ShallowClone)this.MemberwiseClone();
}

Deep copying, or cloning, means that the copied object’s fields will reference new
copies of the original object’s fields. To allow deep copying, implement the IDeep
Copy<T> interface in the class:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]

32 | Chapter 1: Classes and Generics

public class DeepClone : IDeepCopy<DeepClone>
{
 public int data = 1;
 public List<string> ListData = new List<string>();
 public object objData = new object();

 public DeepClone DeepCopy()
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (DeepClone)BF.Deserialize(memStream);
 }
}

To support both shallow and deep methods of copying, implement both interfaces.
The code might appear as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]
public class MultiClone : IShallowCopy<MultiClone>,
 IDeepCopy<MultiClone>
{
 public int data = 1;
 public List<string> ListData = new List<string>();
 public object objData = new object();

 public MultiClone ShallowCopy() => (MultiClone)this.MemberwiseClone();

 public MultiClone DeepCopy()
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (MultiClone)BF.Deserialize(memStream);
 }
}

1.7 Building Cloneable Classes | 33

Discussion
The .NET Framework has an interface named ICloneable, which was originally
designed as the means through which cloning is implemented in .NET. The design
recommendation is now that this interface not be used in any public API, because it
lends itself to different interpretations. The interface looks like this:

public interface ICloneable
{
 object Clone();
}

Notice that there is a single method, Clone, that returns an object. Is the clone a shal‐
low copy of the object or a deep copy? You can’t know from the interface, as the
implementation could go either way. This is why it should not be used, and the IShal
lowCopy<T> and IDeepCopy<T> interfaces are introduced here.

Cloning is the ability to make an exact copy (a clone) of an instance of a type. Cloning
may take one of two forms: a shallow copy or a deep copy. Shallow copying is rela‐
tively easy: it involves copying the object on which the ShallowCopy method was
called.

The reference type fields in the original object are copied over, as are the value type
fields. This means that if the original object contains a field of type StreamWriter, for
instance, the cloned object will point to this same instance of the original object’s
StreamWriter; a new object is not created.

There is no need to deal with static fields when performing a
cloning operation. There is only one memory location reserved for
each static field per class, per application domain. The cloned
object will have access to the same static fields as the original.

Support for shallow copying is implemented by the MemberwiseClone method of the
Object class, which serves as the base class for all .NET classes. So the following code
allows a shallow copy to be created and returned by the Clone method:

public ShallowClone ShallowCopy() => (ShallowClone)this.MemberwiseClone();

Making a deep copy is the second way of cloning an object. A deep copy will make a
copy of the original object just as the shallow copy does; however, a deep copy will
also make separate copies of each reference type field in the original object. There‐
fore, if the original object contains a StreamWriter type field, the cloned object will
also contain a StreamWriter type field, but the cloned object’s StreamWriter field will
point to a new StreamWriter object, not that of the original object.

34 | Chapter 1: Classes and Generics

Support for deep copying is not automatically provided by the .NET Framework, but
the following code illustrates an easy way of implementing a deep copy:

BinaryFormatter BF = new BinaryFormatter();
MemoryStream memStream = new MemoryStream();

BF.Serialize(memStream, this);
memStream.Flush();
memStream.Position = 0;

return (BF.Deserialize(memStream));

Basically, the original object is serialized out to a memory stream via binary serializa‐
tion, and then it is deserialized into a new object, which is returned to the caller. It is
important to reposition the memory stream pointer back to the start of the stream
before calling the Deserialize method; otherwise, an exception will be thrown indi‐
cating that the serialized object contains no data.

Performing a deep copy using object serialization allows you to change the underly‐
ing object without having to modify the code that performs the deep copy. If you per‐
formed the deep copy by hand, you’d have to make a new instance of all the instance
fields of the original object and copy them over to the cloned object. This is a tedious
chore in and of itself. If you make a change to the fields of the object being cloned,
you must also change the deep copy code to reflect that modification. Using serializa‐
tion, you rely on the serializer to dynamically find and serialize all fields contained in
the object. If the object is modified, the serializer will still make a deep copy without
any code modifications.

One reason you might want to do a deep copy by hand is that the serialization techni‐
que presented in this recipe works properly only when everything in your object is
serializable. Of course, manual cloning doesn’t always help there either—some objects
are just inherently uncloneable. Suppose you have a network management applica‐
tion in which an object represents a particular printer on your network. What’s it
supposed to do when you clone it? Fax a purchase order for a new printer?

One problem inherent with deep copying is performing a deep copy on a nested data
structure with circular references. This recipe makes it possible to deal with circular
references, although it’s a tricky problem. So, in fact, you don’t need to avoid circular
references if you are using this recipe.

See Also
Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET
Libraries by Krzysztof Cwalina and Brad Abrams (Addison-Wesley Professional), and
the “Object.MemberwiseClone Method” topic in the MSDN documentation.

1.7 Building Cloneable Classes | 35

1.8 Ensuring an Object’s Disposal
Problem
You require a way to always have something happen when an object’s work is done or
it goes out of scope.

Solution
Use the using statement:

using System;
using System.IO;

// ...

using(FileStream FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
}

Discussion
The using statement is very easy to use and saves you the hassle of writing extra code.
If this Solution had not used the using statement, it would look like this:

FileStream FS = new FileStream("Test.txt", FileMode.Create);
try
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 StreamWriter SW = new StreamWriter(FS);

 try
 {
 SW.WriteLine("some text.");
 }
 finally
 {
 if (SW != null)
 {

36 | Chapter 1: Classes and Generics

 ((IDisposable)SW).Dispose();
 }
 }
}
finally
{
 if (FS != null)
 {
 ((IDisposable)FS).Dispose();
 }
}

Several points to note about the using statement:

• There is a using directive, such as:
using System.IO;

which should be differentiated from the using statement. This is potentially con‐
fusing to developers first getting into this language.

• The variable(s) defined in the using statement clause must all be of the same
type, and they must have an initializer. However, you are allowed multiple using
statements in front of a single code block, so this isn’t a significant restriction.

• Any variables defined in the using clause are considered read-only in the body of
the using statement. This prevents a developer from inadvertently switching the
variable to refer to a different object and causing problems when attempting to
dispose of the object that the variable initially referenced.

• The variable should not be declared outside of the using block and then initial‐
ized inside of the using clause.

This last point is described by the following code:

FileStream FS;
using(FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
}

For this example code, you will not have a problem. But consider that the variable FS
is usable outside of the using block. Essentially, you could revisit this code and mod‐
ify it as follows:

1.8 Ensuring an Object’s Disposal | 37

FileStream FS;
using(FS = new FileStream("Test.txt", FileMode.Create))
{
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
}
FS.WriteByte((byte)4);

This code compiles but throws an ObjectDisposedException on the last line of this
code snippet because the Dispose method has already been called on the FS object.
The object has not yet been collected at this point and still remains in memory in the
disposed state.

See Also
The “Cleaning Up Unmanaged Resources,” “IDisposable Interface,” “Using foreach
with Collections,” and “Implementing Finalize and Dispose to Clean Up Unmanaged
Resources” topics in the MSDN documentation.

1.9 Deciding When and Where to Use Generics
Problem
You want to use generic types in a new project or convert nongeneric types in an
existing project to their generic equivalents. However, you do not really know why
you would want to do this, and you do not know which nongeneric types should be
converted to generic.

Solution
In deciding when and where to use generic types, you need to consider several things:

• Will your type contain or be operating on various unspecified data types (e.g., a
collection type)? If so, creating a generic type will offer several benefits over cre‐
ating a nongeneric type. If your type will operate on only a single specific type,
then you may not need to create a generic type.

• If your type will be operating on value types, so that boxing and unboxing opera‐
tions will occur, you should consider using generics to prevent the performance
penalty incurred from boxing and unboxing operations.

38 | Chapter 1: Classes and Generics

• The stronger type checking associated with generics will aid in finding errors
sooner (i.e., during compile time as opposed to runtime), thus shortening your
bug-fixing cycle.

• Is your code suffering from “code bloat,” with you writing multiple classes to han‐
dle different data types on which they operate (e.g., a specialized ArrayList that
stores only StreamReaders and another that stores only StreamWriters)? It is
easier to write the code once and have it just work for each of the data types it
operates on.

• Generics allow for greater clarity of code. By eliminating code bloat and forcing
stronger type checking on your types, they make your code easier to read and
understand.

Discussion
In most cases, your code will benefit from using a generic type. Generics allow for
more efficient code reuse, faster performance, stronger type checking, and easier-to-
read code.

See Also
The “Generics Overview” and “Benefits of Generics” topics in the MSDN documen‐
tation.

1.10 Understanding Generic Types
Problem
You need to understand how the .NET types work for generics and how generic .NET
types differ from regular .NET types.

Solution
A couple of quick experiments can show the differences between regular .NET types
and generic .NET types. Before we get deep into the code, if you are unfamiliar with
generics, jump to the Discussion section in this recipe for a detailed explanation
about generics and then come back to this section.

Now, when a regular .NET type is defined, it looks like the FixedSizeCollection
type defined in Example 1-6.

1.10 Understanding Generic Types | 39

Example 1-6. FixedSizeCollection: a regular .NET type

public class FixedSizeCollection
{
 /// <summary>
 /// Constructor that increments static counter
 /// and sets the maximum number of items
 /// </summary>
 /// <param name="maxItems"></param>
 public FixedSizeCollection(int maxItems)
 {
 FixedSizeCollection.InstanceCount++;
 this.Items = new object[maxItems];
 }
 /// <summary>
 /// Add an item to the class whose type
 /// is unknown as only object can hold any type
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the index of the item added</returns>
 public int AddItem(object item)
 {
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class
 /// </summary>
 /// <param name="index">the index of the item to get</param>
 /// <returns>an item of type object</returns>
 public object GetItem(int index)
 {
 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException(nameof(index));
 return this.Items[index];
 }

 #region Properties
 /// <summary>
 /// Static instance counter hangs off of the Type for
 /// StandardClass
 /// </summary>
 public static int InstanceCount { get; set; }

 /// <summary>

40 | Chapter 1: Classes and Generics

 /// The count of the items the class holds
 /// </summary>
 public int ItemCount { get; private set; }

 /// <summary>
 /// The items in the class
 /// </summary>
 private object[] Items { get; set; }
 #endregion // Properties

 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString() =>
 $"There are {FixedSizeCollection.InstanceCount.ToString()}
 instances of {this.GetType().ToString()} and this instance
 contains {this.ItemCount} items...";
}

FixedSizeCollection has a static integer property variable, InstanceCount, which is
incremented in the instance constructor, and a ToString override that prints out how
many instances of FixedSizeCollection exist in this AppDomain.FixedSizeCollec
tion. Additionally, this collection class contains an array of objects(Items), the size
of which is determined by the item count passed in to the constructor. FixedSizeCol
lection also implements methods that add and retrieve items (AddItem, GetItem)
and a read-only property to get the number of items currently in the array (Item
Count).

FixedSizeCollection<T> is a generic .NET type with the same static property
InstanceCount field, the instance constructor that counts the number of instantia‐
tions, and the overridden ToString method to tell you how many instances there are
of this type. FixedSizeCollection<T> also has an Items array property and methods
corresponding to those in FixedSizeCollection, as you can see in Example 1-7.

Example 1-7. FixedSizeCollection<T>: a generic .NET type

/// <summary>
/// A generic class to show instance counting
/// </summary>
/// <typeparam name="T">the type parameter used for the array storage</typeparam>
public class FixedSizeCollection<T>
{
 /// <summary>
 /// Constructor that increments static counter and sets up internal storage
 /// </summary>
 /// <param name="items"></param>
 public FixedSizeCollection(int items)

1.10 Understanding Generic Types | 41

 {
 FixedSizeCollection<T>.InstanceCount++;
 this.Items = new T[items];
 }

 /// <summary>
 /// Add an item to the class whose type
 /// is determined by the instantiating type
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the zero-based index of the item added</returns>
 public int AddItem(T item)
 {
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class
 /// </summary>
 /// <param name="index">the zero-based index of the item to get</param>
 /// <returns>an item of the instantiating type</returns>
 public T GetItem(int index)
 {
 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException(nameof(index));

 return this.Items[index];
 }

 #region Properties
 /// <summary>
 /// Static instance counter hangs off of the
 /// instantiated Type for
 /// GenericClass
 /// </summary>
 public static int InstanceCount { get; set; }

 /// <summary>
 /// The count of the items the class holds
 /// </summary>
 public int ItemCount { get; private set; }

 /// <summary>
 /// The items in the class
 /// </summary>

42 | Chapter 1: Classes and Generics

 private T[] Items { get; set; }
 #endregion // Properties

 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString() =>
 $"There are {FixedSizeCollection<T>.InstanceCount.ToString()}
 instances of {this.GetType().ToString()} and this instance
 contains {this.ItemCount} items...";
}

Things start to differ a little with FixedSizeCollection<T> when you look at the
Items array property implementation. The Items array is declared as:

private T[] Items { get; set; }

instead of:

private object[] Items { get; set; }

The Items array property uses the type parameter of the generic class (<T>) to deter‐
mine what types of items are allowed. FixedSizeCollection uses object for the
Items array property type, which allows any type to be stored in the array of items
(since all types are convertible to object), while FixedSizeCollection<T> provides
type safety by allowing the type parameter to dictate what types of objects are permit‐
ted. Notice also that the properties have no associated private backing field declared
for storing the array. This is an example of using the new automatically implemented
properties feature that was originally introduced in C# 3.0. Under the covers, the C#
compiler is creating a storage element of the property’s type, but you don’t have to
write the code for the property storage anymore if you don’t have specific code that
has to execute when accessing the properties. To make the property read-only, simply
mark the set; declaration private.

The next difference is visible in the method declarations of AddItem and GetItem.
AddItem now takes a parameter of type T, whereas in FixedSizeCollection, it took a
parameter of type object. GetItem now returns a value of type T, whereas in FixedSi
zeCollection, it returned a value of type object. These changes allow the methods
in FixedSizeCollection<T> to use the instantiated type to store and retrieve the
items in the array, instead of having to allow any object to be stored as in FixedSize
Collection:

/// <summary>
/// Add an item to the class whose type
/// is determined by the instantiating type
/// </summary>
/// <param name="item">item to add</param>
/// <returns>the zero-based index of the item added</returns>

1.10 Understanding Generic Types | 43

public int AddItem(T item)
{
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
}

/// <summary>
/// Get an item from the class
/// </summary>
/// <param name="index">the zero-based index of the item to get</param>
/// <returns>an item of the instantiating type</returns>
public T GetItem(int index)
{

 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException("index");

 return this.Items[index];
}

This provides a few advantages, first and foremost of which is the type safety pro‐
vided by FixedSizeCollection<T> for items in the array. It was possible to write
code like this in FixedSizeCollection:

// Regular class
FixedSizeCollection C = new FixedSizeCollection(5);
Console.WriteLine(C);

string s1 = "s1";
string s2 = "s2";
string s3 = "s3";
int i1 = 1;

// Add to the fixed size collection (as object).
C.AddItem(s1);
C.AddItem(s2);
C.AddItem(s3);
// Add an int to the string array, perfectly OK.
C.AddItem(i1);

But FixedSizeCollection<T> will give a compiler error if you try the same thing:

// Generic class
FixedSizeCollection<string> gC = new FixedSizeCollection<string>(5);
Console.WriteLine(gC);

string s1 = "s1";

44 | Chapter 1: Classes and Generics

string s2 = "s2";
string s3 = "s3";
int i1 = 1;
// Add to the generic class (as string).
gC.AddItem(s1);
gC.AddItem(s2);
gC.AddItem(s3);
// Try to add an int to the string instance, denied by compiler.
// error CS1503: Argument '1': cannot convert from 'int' to 'string'
//gC.AddItem(i1);

Having the compiler prevent this before it can become the source of runtime bugs is a
very good idea.

It may not be immediately noticeable, but the integer is actually boxed when it is
added to the object array in FixedSizeCollection, as you can see in the IL for the
call to GetItem on FixedSizeCollection:

IL_0177: ldloc.2
IL_0178: ldloc.s i1
IL_017a: box [mscorlib]System.Int32
IL_017f: callvirt instance int32
 CSharpRecipes.ClassesAndGenerics/FixedSizeCollection::AddItem(object)

This boxing turns the int, which is a value type, into a reference type (object) for
storage in the array. This requires you to do extra work to store value types in the
object array.

You’ll encounter another problem when you go to retrieve an item from the class in
the FixedSizeCollection implementation. Take a look at how FixedSizeCollec
tion.GetItem retrieves an item:

// Hold the retrieved string.
string sHolder;

// Have to cast or get error CS0266:
// Cannot implicitly convert type 'object' to 'string'
sHolder = (string)C.GetItem(1);

Since the item returned by FixedSizeCollection.GetItem is of type object, you
need to cast it to a string in order to get what you hope is a string for index 1. It
may not be a string—all you know for sure is that it’s an object—but you have to
cast it to a more specific type coming out so you can assign it properly.

These issues are both fixed by the FixedSizeCollection<T> implementation. Unlike
with FixedSizeCollection, no unboxing is required in FixedSizeCollection<T>,
since the return type of GetItem is the instantiated type, and the compiler enforces
this by looking at the value being returned:

// Hold the retrieved string.
string sHolder;

1.10 Understanding Generic Types | 45

int iHolder;

// No cast necessary
sHolder = gC.GetItem(1);

// Try to get a string into an int.
// error CS0029: Cannot implicitly convert type 'string' to 'int'
//iHolder = gC.GetItem(1);

To see one other difference between the two types, instantiate a few instances of each
like so:

// Regular class
FixedSizeCollection A = new FixedSizeCollection(5);
Console.WriteLine(A);
FixedSizeCollection B = new FixedSizeCollection(5);
Console.WriteLine(B);
FixedSizeCollection C = new FixedSizeCollection(5);
Console.WriteLine(C);

// generic class
FixedSizeCollection<bool> gA = new FixedSizeCollection<bool>(5);
Console.WriteLine(gA);
FixedSizeCollection<int> gB = new FixedSizeCollection<int>(5);
Console.WriteLine(gB);
FixedSizeCollection<string> gC = new FixedSizeCollection<string>(5);
Console.WriteLine(gC);
FixedSizeCollection<string> gD = new FixedSizeCollection<string>(5);
Console.WriteLine(gD);

The output from the preceding code shows this:

There are 1 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection
 and this instance contains 0 items...
There are 2 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection
 and this instance contains 0 items...
There are 3 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection
 and this instance contains 0 items...
There are 1 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1
 [System.Boolean] and this instance contains 0 items...
There are 1 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1
 [System.Int32] and this instance contains 0 items...
There are 1 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1
 [System.String] and this instance contains 0 items...
There are 2 instances of CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1
 [System.String] and this instance contains 0 items...

Discussion
The type parameters in generics allow you to create type-safe code without knowing
the final type you will be working with. In many instances, you want the types to have

46 | Chapter 1: Classes and Generics

certain characteristics, in which case you place constraints on the type (see Recipe
1.12). Methods can have generic type parameters whether or not the class itself does.

Notice that while FixedSizeCollection has three instances, FixedSizeCollec
tion<T> has one instance in which it was declared with bool as the type, one instance
in which int was the type, and two instances in which string was the type. This
means that, while there is one .NET Type object created for each nongeneric class,
there is one .NET Type object for every constructed type of a generic class.

FixedSizeCollection has three instances in the example code because FixedSizeCol
lection has only one type that is maintained by the CLR. With generics, one type is
maintained for each combination of the class template and the type arguments passed
when a type instance is constructed. In other words, you get one .NET type for Fixed
SizeCollection<bool>, one .NET type for FixedSizeCollection<int>, and a
third .NET type for FixedSizeCollection<string>.

The static InstanceCount property helps to illustrate this point, as static properties of
a class are actually connected to the type that the CLR hangs on to. The CLR creates
any given type only once and then maintains it until the AppDomain unloads. This is
why the output from the calls to ToString on these objects shows that the count is 3
for FixedSizeCollection (as there is truly only one of these) and 1 or 2 for the Fixed
SizeCollection<T> types.

See Also
The “Generic Type Parameters” and “Generic Classes” topics in the MSDN documen‐
tation.

1.11 Reversing the Contents of a Sorted List
Problem
You want to be able to reverse the contents of a sorted list of items while maintaining
the ability to access them in both array and list styles like SortedList and the generic
SortedList<T> classes provide. Neither SortedList nor SortedList<T> provides a
direct way to accomplish this without reloading the list.

Solution
Use LINQ to Objects to query the SortedList<T> and apply a descending order to the
information in the list. After you instantiate a SortedList<TKey, TValue>, the key of
which is an int and the value of which is a string, a series of unordered numbers
and their text representations are inserted into the list. Those items are then dis‐
played:

1.11 Reversing the Contents of a Sorted List | 47

SortedList<int, string> data = new SortedList<int, string>()
 { [2]="two", [5]="five", [3]="three", [1]="one" };

foreach (KeyValuePair<int, string> kvp in data)
{
 Console.WriteLine($"\t {kvp.Key}\t{kvp.Value}");
}

The output for the list is shown sorted in ascending order (the default):

1 one
2 two
3 three
5 five

Now you reverse the sort order by creating a query using LINQ to Objects and setting
the orderby clause to descending. The results are then displayed from the query
result set:

// query ordering by descending
var query = from d in data
 orderby d.Key descending
 select d;

foreach (KeyValuePair<int, string> kvp in query)
{
 Console.WriteLine($"\t {kvp.Key}\t{kvp.Value}");
}

This time the output is in descending order:

5 five
3 three
2 two
1 one

When you add a new item to the list, it is added in the ascending sort order, but by
querying again after adding all of the items, you keep the ordering of the list intact:

data.Add(4, "four");

// requery ordering by descending
query = from d in data
 orderby d.Key descending
 select d;

foreach (KeyValuePair<int, string> kvp in query)
{
 Console.WriteLine($"\t {kvp.Key}\t{kvp.Value}");
}
Console.WriteLine("");

// Just go against the original list for ascending
foreach (KeyValuePair<int, string> kvp in data)

48 | Chapter 1: Classes and Generics

{
 Console.WriteLine($"\t {kvp.Key}\t{kvp.Value}");
}

You can see the output in both descending and ascending order with the new item:

5 five
4 four
3 three
2 two
1 one

1 one
2 two
3 three
4 four
5 five

Discussion
A SortedList blends array and list syntax to allow you to access the data in either
format, which can be a handy thing to do. The data is accessible as key/value pairs or
directly by index and will not allow you to add duplicate keys. In addition, values that
are reference or nullable types can be null, but keys cannot. You can iterate over the
items using a foreach loop, with KeyValuePair being the type returned. While
accessing elements of the SortedList<T>, you may only read from them. The usual
iterator syntax prohibits you from updating or deleting elements of the list while
reading, as it will invalidate the iterator.

The orderby clause in the query orders the result set of the query either in ascending
(the default) or descending order. This sorting is accomplished through use of the
default comparer for the element type, so you can alter it by overriding the Equals
method for elements that are custom classes. You can specify multiple keys for the
orderby clause, which has the effect of nesting the sort order, such as sorting by “last
name” and then “first name.”

See Also
The “SortedList,” “Generic KeyValuePair Structure,” and “Generic SortedList” topics
in the MSDN documentation.

1.12 Constraining Type Arguments
Problem
Your generic type needs to be created with a type argument that must support the
members of a particular interface, such as IDisposable.

1.12 Constraining Type Arguments | 49

Solution
Use constraints to force the type arguments of a generic type to be of a type that
implements one or more particular interfaces:

public class DisposableList<T> : IList<T>
 where T : class, IDisposable
{
 private List<T> _items = new List<T>();

 // Private method that will dispose of items in the list
 private void Delete(T item) => item.Dispose();

 // IList<T> Members
 public int IndexOf(T item) => _items.IndexOf(item);

 public void Insert(int index, T item) => _items.Insert(index, item);

 public T this[int index]
 {
 get {return (_items[index]);}
 set {_items[index] = value;}
 }

 public void RemoveAt(int index)
 {
 Delete(this[index]);
 _items.RemoveAt(index);
 }

 // ICollection<T> Members
 public void Add(T item) => _items.Add(item);

 public bool Contains(T item) => _items.Contains(item);

 public void CopyTo(T[] array, int arrayIndex) =>
 _items.CopyTo(array, arrayIndex);

 public int Count => _items.Count;

 public bool IsReadOnly => false;

 // IEnumerable<T> Members
 public IEnumerator<T> GetEnumerator()=> _items.GetEnumerator();

 // IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator()=> _items.GetEnumerator();

 // Other members
 public void Clear()
 {
 for (int index = 0; index < _items.Count; index++)

50 | Chapter 1: Classes and Generics

 {
 Delete(_items[index]);
 }

 _items.Clear();
 }

 public bool Remove(T item)
 {
 int index = _items.IndexOf(item);

 if (index >= 0)
 {
 Delete(_items[index]);
 _items.RemoveAt(index);

 return (true);
 }
 else
 {
 return (false);
 }
 }
}

This DisposableList class allows only an object that implements IDisposable to be
passed in as a type argument to this class. The reason for this is that whenever an
object is removed from a DisposableList object, the Dispose method is always
called on that object. This allows you to transparently handle the management of any
object stored within this DisposableList object.

The following code exercises a DisposableList object:

public static void TestDisposableListCls()
{
 DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

 // Create a few test objects.
 StreamReader tr1 = new StreamReader("C:\\Windows\\system.ini");
 StreamReader tr2 = new StreamReader("c:\\Windows\\vmgcoinstall.log");
 StreamReader tr3 = new StreamReader("c:\\Windows\\Starter.xml");

 // Add the test object to the DisposableList.
 dl.Add(tr1);
 dl.Insert(0, tr2);
 dl.Add(tr3);

 foreach(StreamReader sr in dl)
 {
 Console.WriteLine($"sr.ReadLine() == {sr.ReadLine()}");
 }

1.12 Constraining Type Arguments | 51

 // Call Dispose before any of the disposable objects are
 // removed from the DisposableList.
 dl.RemoveAt(0);
 dl.Remove(tr1);
 dl.Clear();
}

Discussion
The where keyword is used to constrain a type parameter to accept only arguments
that satisfy the given constraint. For example, the DisposableList has the constraint
that any type argument T must implement the IDisposable interface:

public class DisposableList<T> : IList<T>
 where T : IDisposable

This means that the following code will compile successfully:

DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

but the following code will not:

DisposableList<string> dl = new DisposableList<string>();

This is because the string type does not implement the IDisposable interface, and
the StreamReader type does.

Other constraints on the type argument are allowed, in addition to requiring one or
more specific interfaces to be implemented. You can force a type argument to be
inherited from a specific base class, such as the TextReader class:

public class DisposableList<T> : IList<T>
 where T : System.IO.TextReader, IDisposable

You can also determine if the type argument is narrowed down to only value types or
only reference types. The following class declaration is constrained to using only
value types:

public class DisposableList<T> : IList<T>
 where T : struct

This class declaration is constrained to only reference types:

public class DisposableList<T> : IList<T>
 where T : class

In addition, you can also require any type argument to implement a public default
constructor:

public class DisposableList<T> : IList<T>
 where T : IDisposable, new()

Using constraints allows you to write generic types that accept a narrower set of avail‐
able type arguments. If the IDisposable constraint is omitted in the Solution for this

52 | Chapter 1: Classes and Generics

recipe, a compile-time error will occur. This is because not all of the types that can be
used as the type argument for the DisposableList class will implement the IDisposa
ble interface. If you skip this compile-time check, a DisposableList object may con‐
tain objects that do not have a public no-argument Dispose method. In this case, a
runtime exception will occur. Generics and constraints in particular force strict type
checking of the class-type arguments and allow you to catch these problems at com‐
pile time rather than at runtime.

See Also
The “where Keyword” topic in the MSDN documentation.

1.13 Initializing Generic Variables to Their Default Values
Problem
You have a generic class that contains a variable of the same type as the type parame‐
ter defined by the class itself. Upon construction of your generic object, you want that
variable to be initialized to its default value.

Solution
Simply use the default keyword to initialize that variable to its default value:

public class DefaultValueExample<T>
{
 T data = default(T);

 public bool IsDefaultData()
 {
 T temp = default(T);

 if (temp.Equals(data))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public void SetData(T val) => data = value;
}

The code to exercise this class is shown here:

public static void ShowSettingFieldsToDefaults()
{

1.13 Initializing Generic Variables to Their Default Values | 53

 DefaultValueExample<int> dv = new DefaultValueExample<int>();

 // Check if the data is set to its default value; true is returned.
 bool isDefault = dv.IsDefaultData();
 Console.WriteLine($"Initial data: {isDefault}");
 // Set data.
 dv.SetData(100);
 // Check again, this time a false is returned.
 isDefault = dv.IsDefaultData();
 Console.WriteLine($"Set data: {isDefault}");
}

The first call to IsDefaultData returns true, while the second returns false. The
output is shown here:

Initial data: True
Set data: False

Discussion
When initializing a variable of the same type parameter as the generic class, you can‐
not just set that variable to null. What if the type parameter is a value type such as an
int or char? This will not work because value types cannot be null. You may be
thinking that a nullable type such as long? or Nullable<long> can be set to null
(see “Using Nullable Types (C# Programming Guide)” in the MSDN documentation
for more on nullable types). However, the compiler has no way of knowing what type
argument the user will use to construct the type.

The default keyword allows you to tell the compiler that at compile time the default
value of this variable should be used. If the type argument supplied is a numeric value
(e.g., int, long, decimal), then the default value is 0. If the type argument supplied is
a reference type, then the default value is null. If the type argument supplied is a
struct, then you determine the default value by initializing each member field to its
default value.

See Also
The “Using Nullable Types (C# Programming Guide)” and “default Keyword in
Generic Code” topics in the MSDN documentation.

1.14 Adding Hooks to Generated Entities
Problem
You have a process to generate your partial class business entity definitions, and you
want to add a lightweight notification mechanism.

54 | Chapter 1: Classes and Generics

Solution
Use partial methods to add hooks in the generated code for the business entities.

The process to generate the entities may be from UML (Unified Modeling Language),
a data set, or some other object-modeling facility, but when the code is generated as
partial classes, add partial method hooks into the templates for the properties that call
a ChangingProperty partial method, as shown in the GeneratedEntity class:

public partial class GeneratedEntity
{
 public GeneratedEntity(string entityName)
 {
 this.EntityName = entityName;
 }

 partial void ChangingProperty(string name, string originalValue,
 stringnewValue);

 public string EntityName { get; }
 private string _FirstName;
 public string FirstName
 {
 get { return _FirstName; }
 set
 {
 ChangingProperty("FirstName",_FirstName,value);
 _FirstName = value;
 }
 }
 private string _State;
 public string State
 {
 get { return _State; }
 set
 {
 ChangingProperty("State",_State,value);
 _State = value;
 }
 }
}

The GeneratedEntity has two properties, FirstName and State. Notice each of these
properties has the same boilerplate code that calls the ChangingProperty method
with the name of the property, the original, and the new values. If the generated class
is used at this point, the ChangingProperty declaration and method will be removed
by the compiler, as there is no implementation for ChangingProperty. If an imple‐
mentation is supplied to report on property changes as shown here, then all of the
partial method code for ChangingProperty will be retained and executed:

1.14 Adding Hooks to Generated Entities | 55

public partial class GeneratedEntity
{
 partial void ChangingProperty(string name, string originalValue,
 string newValue)
 {
 Console.WriteLine($"Changed property ({name}) for entity " +
 $"{this.EntityName} from " +
 $"{originalValue} to {newValue}");
 }
}

Discussion
When using partial methods, be aware of the following:

• You indicate a partial method with the partial modifier.
• Partial methods can be declared only in partial classes.
• Partial methods might have only a declaration and no body.
• From a signature standpoint, a partial method can have arguments, require a

void return value, and must not have any access modifier, and partial implies
that this method is private and can be static, generic, or unsafe.

• For generic partial methods, constraints must be repeated on the declaring and
implementing versions.

• A partial method may not implement an interface member since interface mem‐
bers must be public.

• None of the virtual, abstract, override, new, sealed, or extern modifiers may be
used.

• Arguments to a partial method cannot use out, but they can use ref.

Partial methods are similar to conditional methods, except that the method definition
is always present in conditional methods, even when the condition is not met. Partial
methods do not retain the method definition if there is no matching implementation.
The code in the Solution could be used like this:

public static void TestPartialMethods()
{
 Console.WriteLine("Start entity work");
 GeneratedEntity entity = new GeneratedEntity("FirstEntity");
 entity.FirstName = "Bob";
 entity.State = "NH";
 GeneratedEntity secondEntity = new GeneratedEntity("SecondEntity");
 entity.FirstName = "Jay";
 secondEntity.FirstName = "Steve";
 secondEntity.State = "MA";
 entity.FirstName = "Barry";

56 | Chapter 1: Classes and Generics

 secondEntity.State = "WA";
 secondEntity.FirstName = "Matt";
 Console.WriteLine("End entity work");
}

to produce the following output when the ChangingProperty implementation is pro‐
vided:

Start entity work
Changed property (FirstName) for entity FirstEntity from to Bob
Changed property (State) for entity FirstEntity from to NH
Changed property (FirstName) for entity FirstEntity from Bob to Jay
Changed property (FirstName) for entity SecondEntity from to Steve
Changed property (State) for entity SecondEntity from to MA
Changed property (FirstName) for entity FirstEntity from Jay to Barry
Changed property (State) for entity SecondEntity from MA to WA
Changed property (FirstName) for entity SecondEntity from Steve to Matt
End entity work

or to produce the following output when the ChangingProperty implementation is
not provided:

Start entity work
End entity work

See Also
The “Partial Methods” and “partial (Method)” topics in the MSDN documentation.

1.15 Controlling How a Delegate Fires Within a Multicast
Delegate
Problem
You have combined multiple delegates to create a multicast delegate. When this mul‐
ticast delegate is invoked, each delegate within it is invoked in turn. You need to exert
more control over the order in which each delegate is invoked, firing only a subset of
delegates, or firing each delegate based on the success or failure of previous delegates.
Additionally, you need to be able to handle the return value of each delegate sepa‐
rately.

Solution
Use the GetInvocationList method to obtain an array of Delegate objects. Next,
iterate over this array using a for (if enumerating in a nonstandard order) or foreach
(for enumerating in a standard order) loop. You can then invoke each Delegate
object in the array individually and, optionally, retrieve each delegate’s unique return
value.

1.15 Controlling How a Delegate Fires Within a Multicast Delegate | 57

In C#, all delegate types support multicast—that is, any delegate instance can invoke
multiple methods each time the instance is invoked if it has been set up to do so. In
this recipe, we use the term multicast to describe a delegate that has been set up to
invoke multiple methods.

The following method creates a multicast delegate called allInstances and then uses
GetInvocationList to allow each delegate to be invoked individually, in reverse
order. The Func<int> generic delegate is used to create delegate instances that return
an int:

public static void InvokeInReverse()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Fire delegates in reverse");
 Delegate[] delegateList = allInstances.GetInvocationList();
 foreach (Func<int> instance in delegateList.Reverse())
 {
 instance();
 }
}

Note that to roll over the delegate list retrieved using GetInvocationList, we use the
IEnumerable<T> extension method Reverse so that we get the items in the opposite
order of how the enumeration would normally produce them.

As the following methods demonstrate by firing every other delegate, you don’t have
to invoke all of the delegates in the list. InvokeEveryOtherOperation uses an exten‐
sion method created here for IEnumerable<T> called EveryOther that will return only
every other item from the enumeration.

If a unicast delegate was used and you called GetInvocationList
on it, you will receive a list of one delegate instance.

public static void InvokeEveryOtherOperation()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

58 | Chapter 1: Classes and Generics

 Func<int> allInstances = myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Delegate[] delegateList = allInstances.GetInvocationList();
 Console.WriteLine("Invoke every other delegate");
 foreach (Func<int> instance in delegateList.EveryOther())
 {
 // invoke the delegate
 int retVal = instance();
 Console.WriteLine($"Delegate returned {retVal}");
 }
}

static IEnumerable<T> EveryOther<T>(this IEnumerable<T> enumerable)
{
 bool retNext = true;
 foreach (T t in enumerable)
 {
 if (retNext) yield return t;
 retNext = !retNext;
 }
}

The following class contains each of the methods that will be called by the multicast
delegate allInstances:

public class TestInvokeIntReturn
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return 1;
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return 2;
 }

 public static int Method3()
 {
 Console.WriteLine("Invoked Method3");
 return 3;
 }
}

You can also specify whether to continue firing delegates in the list based on the
return value of the currently firing delegate. The following method fires each dele‐
gate, stopping only when a delegate returns a false value:

1.15 Controlling How a Delegate Fires Within a Multicast Delegate | 59

public static void InvokeWithTest()
{
 Func<bool> myDelegateInstanceBool1 = TestInvokeBoolReturn.Method1;
 Func<bool> myDelegateInstanceBool2 = TestInvokeBoolReturn.Method2;
 Func<bool> myDelegateInstanceBool3 = TestInvokeBoolReturn.Method3;

 Func<bool> allInstancesBool =
 myDelegateInstanceBool1 +
 myDelegateInstanceBool2 +
 myDelegateInstanceBool3;

 Console.WriteLine(
 "Invoke individually (Call based on previous return value):");
 foreach (Func<bool> instance in allInstancesBool.GetInvocationList())
 {
 if (!instance())
 break;
 }
}

The following class contains each of the methods that will be called by the multicast
delegate allInstancesBool:

public class TestInvokeBoolReturn
{
 public static bool Method1()
 {
 Console.WriteLine("Invoked Method1");
 return true;
 }

 public static bool Method2()
 {
 Console.WriteLine("Invoked Method2");
 return false;
 }

 public static bool Method3()
 {
 Console.WriteLine("Invoked Method3");
 return true;
 }
}

Discussion
A delegate, when called, will invoke all delegates stored within its invocation list.
These delegates are usually invoked sequentially from the first to the last one added.
Using the GetInvocationList method of the MulticastDelegate class, you can
obtain each delegate in the invocation list of a multicast delegate. This method
accepts no parameters and returns an array of Delegate objects that corresponds to

60 | Chapter 1: Classes and Generics

the invocation list of the delegate on which this method was called. The returned Del
egate array contains the delegates of the invocation list in the order in which they
would normally be called; that is, the first element in the Delegate array contains the
Delegate object that is normally called first.

This application of the GetInvocationList method enables you to control exactly
when and how the delegates in a multicast delegate are invoked, and to prevent the
continued invocation of delegates when one delegate fails. This ability is important if
each delegate is manipulating data, and one of the delegates fails in its duties but does
not throw an exception. If one delegate fails in its duties and the remaining delegates
rely on all previous delegates to succeed, you must quit invoking delegates at the
point of failure.

This recipe handles a delegate failure more efficiently and also provides more flexibil‐
ity in dealing with these errors. For example, you can write logic to specify which del‐
egates are to be invoked, based on the return values of previously invoked delegates.
The following method creates a multicast delegate called All and then uses GetInvo
cationList to fire each delegate individually. After firing each delegate, it captures
the return value:

public static void TestIndividualInvokesReturnValue()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (Obtain each return value):");
 foreach (Func<int> instance in allInstances.GetInvocationList())
 {
 int retVal = instance();
 Console.WriteLine($"\tOutput: {retVal}");
 }
}

One quirk of a multicast delegate is that if any or all delegates within its invocation
list return a value, only the value of the last invoked delegate is returned; all others are
lost. This loss can become annoying—or worse, if your code requires these return
values. Consider a case in which the allInstances delegate was invoked normally, as
in the following code:

retVal = allInstances();
Console.WriteLine(retVal);

1.15 Controlling How a Delegate Fires Within a Multicast Delegate | 61

The value 3 would be displayed because Method3 was the last method invoked by the
allInstances delegate. None of the other return values would be captured.

By using the GetInvocationList method of the MulticastDelegate class, you can
get around this limitation. This method returns an array of Delegate objects that can
each be invoked separately. Note that this method does not invoke each delegate; it
simply returns an array of them to the caller. By invoking each delegate separately,
you can retrieve each return value from each invoked delegate.

Note that any out or ref parameters will also be lost when a multicast delegate is
invoked. This recipe allows you to obtain the out and/or ref parameters of each
invoked delegate within the multicast delegate.

However, you still need to be aware that any unhandled exceptions emanating from
one of these invoked delegates will be bubbled up to the method TestIndividualIn
vokesReturnValue presented in this recipe. If an exception does occur in a delegate
that is invoked from within a multicast delegate and that exception is unhandled, any
remaining delegates are not invoked. This is the expected behavior of a multicast del‐
egate. However, in some circumstances, you’d like to be able to handle exceptions
thrown from individual delegates and then determine at that point whether to con‐
tinue invoking the remaining delegates.

An unhandled exception will force the invocation of delegates to
cease. Exceptions should be used only for exceptional circumstan‐
ces, not for control flow.

In the following TestIndividualInvokesExceptions method, if an exception is
caught it is logged to the event log and displayed, and then the code continues to
invoke delegates:

public static void TestIndividualInvokesExceptions()
{

 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (handle exceptions):");

 // Create an instance of a wrapper exception to hold any exceptions
 // encountered during the invocations of the delegate instances

62 | Chapter 1: Classes and Generics

 List<Exception> invocationExceptions = new List<Exception>();

 foreach (Func<int> instance in allInstances.GetInvocationList())
 {
 try
 {
 int retVal = instance();
 Console.WriteLine($"\tOutput: {retVal}");
 }
 catch (Exception ex)
 {
 // Display and log the exception and continue
 Console.WriteLine(ex.ToString());
 EventLog myLog = new EventLog();
 myLog.Source = "MyApplicationSource";
 myLog.WriteEntry(
 $"Failure invoking {instance.Method.Name} with error " +
 $"{ex.ToString()}",
 EventLogEntryType.Error);
 // add this exception to the list
 invocationExceptions.Add(ex);
 }
 }
 // if we caught any exceptions along the way, throw our
 // wrapper exception with all of them in it.
 if (invocationExceptions.Count > 0)
 {
 throw new MulticastInvocationException(invocationExceptions);
 }
}

The MulticastInvocationException class, used in the previous code, can have mul‐
tiple exceptions added to it. It exposes a ReadOnlyCollection<Exception> through
the InvocationExceptions property, as shown here:

[Serializable]
public class MulticastInvocationException : Exception
{
 private List<Exception> _invocationExceptions;

 public MulticastInvocationException()
 : base()
 {
 }

 public MulticastInvocationException(
 IEnumerable<Exception> invocationExceptions)
 {
 _invocationExceptions = new List<Exception>(invocationExceptions);
 }

 public MulticastInvocationException(string message)

1.15 Controlling How a Delegate Fires Within a Multicast Delegate | 63

 : base(message)
 {
 }

 public MulticastInvocationException(string message, Exception innerException)
 :base(message,innerException)
 {
 }

 protected MulticastInvocationException(SerializationInfo info,
 StreamingContext
 context) :
 base(info, context)
 {
 _invocationExceptions =
 (List<Exception>)info.GetValue("InvocationExceptions",
 typeof(List<Exception>));
 }

 [SecurityPermissionAttribute(SecurityAction.Demand,
 SerializationFormatter = true)]
 public override void GetObjectData(
 SerializationInfo info, StreamingContext context)
 {
 info.AddValue("InvocationExceptions", this.InvocationExceptions);
 base.GetObjectData(info, context);
 }

 public ReadOnlyCollection<Exception> InvocationExceptions =>
 new ReadOnlyCollection<Exception>(_invocationExceptions);
}

This strategy allows for as fine-grained handling of exceptions as you need. One
option is to store all of the exceptions that occur during delegate processing, and then
wrap all of the exceptions encountered during processing in a custom exception.
After processing completes, throw the custom exception.

By adding a finally block to this try-catch block, you can be assured that code
within this finally block is executed after every delegate returns. This technique is
useful if you want to interleave code between calls to delegates, such as code to clean
up objects that are not needed or code to verify that each delegate left the data it
touched in a stable state.

See Also
The “Delegate Class” and “Delegate.GetInvocationList Method” topics in the MSDN
documentation.

64 | Chapter 1: Classes and Generics

1.16 Using Closures in C#
Problem
You want to associate a small amount of state with some behavior without going to
the trouble of building a new class.

Solution
Use lambda expressions to implement closures, functions that capture the state of the
environment that is in scope where they are declared. Put more simply, closures are
current state plus some behavior that can read and modify that state. Lambda expres‐
sions have the capacity to capture external variables and extend their lifetime, which
makes closures possible in C#.

For more information on lambda expressions, see the introduction
to Chapter 4.

As an example, you will build a quick reporting system that tracks sales personnel
and their revenue production versus commissions. The closure behavior is that you
can build one bit of code that does the commission calculations per quarter and
works on every salesperson.

First, you have to define your sales personnel:

class SalesPerson
{
 // CTOR's
 public SalesPerson()
 {
 }

 public SalesPerson(string name,
 decimal annualQuota,
 decimal commissionRate)
 {
 this.Name = name;
 this.AnnualQuota = annualQuota;
 this.CommissionRate = commissionRate;
 }

 // Private Members
 decimal _commission;

 // Properties

1.16 Using Closures in C# | 65

 public string Name { get; set; }

 public decimal AnnualQuota { get; set; }

 public decimal CommissionRate { get; set; }

 public decimal Commission
 {
 get { return _commission; }
 set
 {
 _commission = value;
 this.TotalCommission += _commission;
 }
 }
 public decimal TotalCommission {get; private set; }
}

Sales personnel have a name, an annual quota, a commission rate for sales, and some
storage for holding a quarterly commission and a total commission. Now that you
have something to work with, let’s write a bit of code to do the work of calculating the
commissions:

delegate void CalculateEarnings(SalesPerson sp);

static CalculateEarnings GetEarningsCalculator(decimal quarterlySales,
 decimal bonusRate)
{
 return salesPerson =>
 {
 // Figure out the salesperson's quota for the quarter.
 decimal quarterlyQuota = (salesPerson.AnnualQuota / 4);
 // Did he make quota for the quarter?
 if (quarterlySales < quarterlyQuota)
 {
 // Didn't make quota, no commission
 salesPerson.Commission = 0;
 }
 // Check for bonus-level performance (200% of quota).
 else if (quarterlySales > (quarterlyQuota * 2.0m))
 {
 decimal baseCommission = quarterlyQuota *
 salesPerson.CommissionRate;
 salesPerson.Commission = (baseCommission +
 ((quarterlySales - quarterlyQuota) *
 (salesPerson.CommissionRate * (1 + bonusRate))));
 }
 else // Just regular commission
 {
 salesPerson.Commission =
 salesPerson.CommissionRate * quarterlySales;
 }

66 | Chapter 1: Classes and Generics

 };
}

You’ve declared the delegate type as CalculateEarnings, and it takes a SalesPerson
type. You have a factory method to construct an instance of this delegate for you,
called GetEarningsCalculator, which creates a lambda expression to calculate the
SalesPerson’s commission and returns a CalculateEarnings instantiation.

To get started, create your array of salespeople:

// set up the salespeople...
SalesPerson[] salesPeople = {
 new SalesPerson { Name="Chas", AnnualQuota=100000m, CommissionRate=0.10m },
 new SalesPerson { Name="Ray", AnnualQuota=200000m, CommissionRate=0.025m },
 new SalesPerson { Name="Biff", AnnualQuota=50000m, CommissionRate=0.001m }};

Then set up the earnings calculators based on quarterly earnings:

public class QuarterlyEarning
{
 public string Name { get; set; }
 public decimal Earnings { get; set; }
 public decimal Rate { get; set; }
}
QuarterlyEarning[] quarterlyEarnings =
 { new QuarterlyEarning(){ Name="Q1", Earnings = 65000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q2", Earnings = 20000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q3", Earnings = 37000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q4", Earnings = 110000m, Rate = 0.15m}
 };

var calculators = from e in quarterlyEarnings
 select new
 {
 Calculator =
 GetEarningsCalculator(e.Earnings, e.Rate),
 QuarterlyEarning = e
 };

Finally, run the numbers for each quarter for all the salespeople, and then you can
generate the annual report from this data by calling WriteCommissionReport. This
will tell the executives which sales personnel are worth keeping:

decimal annualEarnings = 0;
foreach (var c in calculators)
{
 WriteQuarterlyReport(c.QuarterlyEarning.Name,
 c.QuarterlyEarning.Earnings, c.Calculator, salesPeople);
 annualEarnings += c.QuarterlyEarning.Earnings;
}

// Let's see who is worth keeping...
WriteCommissionReport(annualEarnings, salesPeople);

1.16 Using Closures in C# | 67

WriteQuarterlyReport invokes the CalculateEarnings lambda expression imple‐
mentation (eCalc) for every SalesPerson and modifies the state to assign quarterly
commission values based on the commission rates for each one:

static void WriteQuarterlyReport(string quarter,
 decimal quarterlySales,
 CalculateEarnings eCalc,
 SalesPerson[] salesPeople)
{
 Console.WriteLine($"{quarter} Sales Earnings on Quarterly Sales of
 {quarterlySales.ToString("C")}:");
 foreach (SalesPerson salesPerson in salesPeople)
 {
 // Calc commission
 eCalc(salesPerson);
 // Report
 Console.WriteLine($"\tSales person {salesPerson.Name} " +
 "made a commission of : " +
 $"{salesPerson.Commission.ToString("C")}");
 }
}

WriteCommissionReport checks the revenue earned by the individual salesperson
against his commission, and if his commission is more than 20 percent of the revenue
he generated, you recommend action be taken:

static void WriteCommissionReport(decimal annualEarnings,
 SalesPerson[] salesPeople)
{
 decimal revenueProduced = ((annualEarnings) / salesPeople.Length);
 Console.WriteLine("");

 Console.WriteLine($"Annual Earnings were {annualEarnings.ToString("C")}");
 Console.WriteLine("");
 var whoToCan = from salesPerson in salesPeople
 select new
 {
 // if his commission is more than 20%
 // of what he produced, can him
 CanThem = (revenueProduced * 0.2m) <
 salesPerson.TotalCommission,
 salesPerson.Name,
 salesPerson.TotalCommission
 };

 foreach (var salesPersonInfo in whoToCan)
 {
 Console.WriteLine($"\t\tPaid {salesPersonInfo.Name} " +
 $"{salesPersonInfo.TotalCommission.ToString("C")} to produce" +
 $"{revenueProduced.ToString("C")}");
 if (salesPersonInfo.CanThem)
 {

68 | Chapter 1: Classes and Generics

 Console.WriteLine($"\t\t\tFIRE {salesPersonInfo.Name}!");
 }
 }
}

The output for your revenue- and commission-tracking program is listed here for
your enjoyment:

Q1 Sales Earnings on Quarterly Sales of $65,000.00:
 SalesPerson Chas made a commission of : $6,900.00
 SalesPerson Ray made a commission of : $1,625.00
 SalesPerson Biff made a commission of : $70.25
Q2 Sales Earnings on Quarterly Sales of $20,000.00:
 SalesPerson Chas made a commission of : $0.00
 SalesPerson Ray made a commission of : $0.00
 SalesPerson Biff made a commission of : $20.00
Q3 Sales Earnings on Quarterly Sales of $37,000.00:
 SalesPerson Chas made a commission of : $3,700.00
 SalesPerson Ray made a commission of : $0.00
 SalesPerson Biff made a commission of : $39.45
Q4 Sales Earnings on Quarterly Sales of $110,000.00:
 SalesPerson Chas made a commission of : $12,275.00
 SalesPerson Ray made a commission of : $2,975.00
 SalesPerson Biff made a commission of : $124.63

Annual Earnings were $232,000.00

 Paid Chas $22,875.00 to produce $77,333.33
 FIRE Chas!
 Paid Ray $4,600.00 to produce $77,333.33
 Paid Biff $254.33 to produce $77,333.33

Discussion
One of the best descriptions of closures in C# is to think of an object as a set of meth‐
ods associated with data and to think of a closure as a set of data associated with a
function. If you need to have several different operations on the same data, an object
approach may make more sense. These are two different angles on the same problem,
and the type of problem you are solving will help you decide which is the right
approach. It just depends on your inclination as to which way to go. There are times
when 100% pure object-oriented programming can get tedious and is unnecessary,
and closures are a nice way to solve some of those problems. The SalesPerson com‐
mission example presented here is a demonstration of what you can do with closures.
It could have been done without them, but at the expense of writing more class and
method code.

Closures were defined earlier, but there is a stricter definition that essentially implies
that the behavior associated with the state should not be able to modify the state in
order to be a true closure. We tend to agree more with the first definition, as it

1.16 Using Closures in C# | 69

expresses what a closure should be, not how it should be implemented, which seems
too restrictive. Whether you choose to think of this approach as a neat side feature of
lambda expressions or you feel it is worthy of being called a closure, it is another pro‐
gramming trick for your toolbox and should not be dismissed.

See Also
Recipe 1.17 and the “Lambda Expressions” topic in the MSDN documentation.

1.17 Performing Multiple Operations on a List Using
Functors
Problem
You want to be able to perform multiple operations on an entire collection of objects
at once, while keeping the operations functionally segmented.

Solution
Use a functor (or function object) as the vehicle for transforming the collection. A
functor is any object that can be called as a function. Examples are a delegate, a func‐
tion, a function pointer, or even an object that defines operator for us C/C++ con‐
verts.

Needing to perform multiple operations on a collection is a reasonably common sce‐
nario in software. Let’s say that you have a stock portfolio with a bunch of stocks in it.
Your StockPortfolio class would have a List of Stock objects and would allow you
to add stocks:

public class StockPortfolio : IEnumerable<Stock>
{
 List<Stock> _stocks;

 public StockPortfolio()
 {
 _stocks = new List<Stock>();
 }

 public void Add(string ticker, double gainLoss)
 {
 _stocks.Add(new Stock() {Ticker=ticker, GainLoss=gainLoss});
 }

 public IEnumerable<Stock> GetWorstPerformers(int topNumber) =>
 _stocks.OrderBy((Stock stock) => stock.GainLoss).Take(topNumber);

 public void SellStocks(IEnumerable<Stock> stocks)

70 | Chapter 1: Classes and Generics

 {
 foreach(Stock s in stocks)
 _stocks.Remove(s);
 }

 public void PrintPortfolio(string title)
 {
 Console.WriteLine(title);
 _stocks.DisplayStocks();
 }

 #region IEnumerable<Stock> Members
 public IEnumerator<Stock> GetEnumerator() => _stocks.GetEnumerator();
 #endregion

 #region IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator() => this.GetEnumerator();
 #endregion
}

The Stock class is rather simple. You just need a ticker symbol for the stock and its
percentage of gain or loss:

public class Stock
{
 public double GainLoss { get; set; }
 public string Ticker { get; set; }
}

To use this StockPortfolio, you add a few stocks to it with gain/loss percentages and
print out your starting portfolio. Once you have the portfolio, you want to get a list of
the three worst-performing stocks, so you can improve your portfolio by selling them
and print out your portfolio again:

StockPortfolio tech = new StockPortfolio() {
 {"OU81", -10.5},
 {"C#6VR", 2.0},
 {"PCKD", 12.3},
 {"BTML", 0.5},
 {"NOVB", -35.2},
 {"MGDCD", 15.7},
 {"GNRCS", 4.0},
 {"FNCTR", 9.16},
 {"LMBDA", 9.12},
 {"PCLS", 6.11}};

tech.PrintPortfolio("Starting Portfolio");
// sell the worst 3 performers
var worstPerformers = tech.GetWorstPerformers(3);
Console.WriteLine("Selling the worst performers:");
worstPerformers.DisplayStocks();

1.17 Performing Multiple Operations on a List Using Functors | 71

tech.SellStocks(worstPerformers);
tech.PrintPortfolio("After Selling Worst 3 Performers");

So far, nothing terribly interesting is happening. Let’s take a look at how you figured
out what the three worst performers were by looking at the internals of the GetWorst
Performers method:

public IEnumerable<Stock> GetWorstPerformers(int topNumber) => _stocks.OrderBy(
 (Stock stock) => stock.GainLoss).Take(topNumber);

First you make sure the list is sorted with the worst-performing stocks at the front by
calling the OrderBy extension method on IEnumerable<T>. The OrderBy method
takes a lambda expression that provides the gain/loss percentage for comparison for
the number of stocks indicated by topNumber in the Take extension method.

GetWorstPerformers returns an IEnumerable<Stock> full of the three worst per‐
formers. Since they aren’t making any money, you should cash in and sell them. For
your purposes, selling is simply removing them from the list of stocks in StockPortfo
lio. To accomplish this, you use yet another functor to iterate over the list of stocks
handed to the SellStocks function (the list of worst-performing ones, in your case),
and then remove that stock from the internal list that the StockPortfolio class
maintains:

public void SellStocks(IEnumerable<Stock> stocks)
{
 foreach(Stock s in stocks)
 _stocks.Remove(s);
}

Discussion
Functors come in a few different flavors: a generator (a function with no parameters),
a unary function (a function with one parameter), and a binary function (a function
with two parameters). If the functor happens to return a Boolean value, then it gets
an even more special naming convention: a unary function that returns a Boolean is
called a predicate, and a binary function with a Boolean return is called a binary predi‐
cate. There are both Predicate<T> and BinaryPredicate<T> delegates defined in the
Framework to facilitate these uses of functors.

The List<T> and System.Array classes take predicates (Predicate<T>, BinaryPredi
cate<T>), actions (Action<T>), comparisons (Comparison<T>), and converters (Con
verter<T,U>). This allows these collections to be operated on in a much more gen‐
eral way than was previously possible.

Thinking in terms of functors can be challenging at first, but once you put a bit of
time into it, you start to see powerful possibilities open up before you. Any code you

72 | Chapter 1: Classes and Generics

can write once, debug once, and use many times is valuable, and functors can help
you achieve that.

The output for the example is listed here:

Starting Portfolio
 (OU81) lost 10.5%
 (C#6VR) gained 2%
 (PCKD) gained 12.3%
 (BTML) gained 0.5%
 (NOVB) lost 35.2%
 (MGDCD) gained 15.7%
 (GNRCS) gained 4%
 (FNCTR) gained 9.16%
 (LMBDA) gained 9.12%
 (PCLS) gained 6.11%
Selling the worst performers:
 (NOVB) lost 35.2%
 (OU81) lost 10.5%
 (BTML) gained 0.5%
After Selling Worst 3 Performers
 (C#6VR) gained 2%
 (PCKD) gained 12.3%
 (MGDCD) gained 15.7%
 (GNRCS) gained 4%
 (FNCTR) gained 9.16%
 (LMBDA) gained 9.12%
 (PCLS) gained 6.11%

See Also
The “System.Collections.Generic.List<T>,” “System.Linq.Enumerable Class,” and
“System.Array” topics in the MSDN documentation.

1.18 Controlling Struct Field Initialization
Problem
You need to be able to control the initialization of a struct depending on whether you
want the struct to initialize all of its internal fields to their standard default values
based on their type (e.g., int is initialized to 0 and string is initialized to an empty
string), to a nonstandard set of default values, or to a set of predefined values.

Solution
We can use the various constructors for a struct to accomplish our goals. To initialize
all the internal fields in a struct to their standard default values based on their type,
we simply use the default initialization of structs, which will be demonstrated later. To

1.18 Controlling Struct Field Initialization | 73

initialize the struct’s fields to a set of predefined values, we use an overloaded con‐
structor. Finally, to initialize our struct to a set of nonstandard default values, we need
to use optional arguments in the struct’s constructor. With optional arguments,
structs are able to set their internal fields based on the default values placed on the
optional arguments in the constructor’s parameter list.

The data structure in Example 1-8 uses an overloaded constructor to initialize all the
fields of the structure.

Example 1-8. Struct with an overloaded constructor

public struct Data
{
 public Data(int intData, float floatData, string strData,
 char charData, bool boolData)
 {
 IntData = intData;
 FloatData = floatData;
 StrData = strData;
 CharData = charData;
 BoolData = boolData;
 }

 public int IntData { get; }
 public float FloatData { get; }
 public string StrData { get; }
 public char CharData { get; }
 public bool BoolData { get; }

 public override string ToString()=> IntData + " :: " + FloatData + " :: " +
 StrData + " :: " + CharData + " :: " + BoolData;
}

This is the typical way to initialize the values of the struct’s fields. Note also that an
implicit default constructor exists that allows this struct to initialize its fields to their
default values. However, you may want to have each field initialized with nondefault
values. The data structure in Example 1-9 uses an overloaded constructor with
optional arguments to initialize all the fields of the structure with nondefault values.

Example 1-9. Struct with optional arguments in the constructor

public struct Data
{
 public Data(int intData, float floatData = 1.1f, string strData = "a",
 char charData = 'a', bool boolData = true) : this()
 {
 IntData = intData;
 FloatData = floatData;
 StrData = strData;

74 | Chapter 1: Classes and Generics

 CharData = charData;
 BoolData = boolData;
 }

 public int IntData { get; }
 public float FloatData { get; }
 public string StrData { get; }
 public char CharData { get; }
 public bool BoolData { get; }

 public override string ToString()=> IntData + " :: " + FloatData + " :: " +
 StrData + " :: " + CharData + " :: " + BoolData;
}

Of course, a new initialization method could be introduced that makes this even eas‐
ier. But you need to explicitly call it, as shown in Example 1-10.

Example 1-10. Struct with an explicit initialization method

public struct Data
{
 public void Init()
 {
 IntData = 2;
 FloatData = 1.1f;
 StrData = "AA";
 CharData = 'A';
 BoolData = true;
 }

 public int IntData { get; private set; }
 public float FloatData { get; private set; }
 public string StrData { get; private set; }
 public char CharData { get; private set; }
 public bool BoolData { get; private set; }

 public override string ToString()=> IntData + " :: " + FloatData + " :: " +
 StrData + " :: " + CharData + " :: " + BoolData;
}

Note that when using an explicit initialization method such as Init, you’ll need to
add a private property setter for each property in order for each field to be initialized.

Discussion
We can now create instances of the struct in Example 1-8 using different techniques.
Each technique uses a different method of initializing this struct object. The first
technique uses the default keyword to create this struct:

Data dat = default(Data);

1.18 Controlling Struct Field Initialization | 75

The default keyword simply creates an instance of this struct with all of its fields ini‐
tialized to their default values. Essentially this causes all numeric types to default to 0,
bool defaults to false, char defaults to '\0', and string and other reference types
default to null.

Now, this is great if you don’t mind reference types and char to be set to null values,
but say that you need to set these types to something other than null when the struct
is created. The second technique for creating an instance of this struct does just this;
it uses a default parameterless constructor:

Data dat = new Data();

This code causes the default parameterless constructor to be invoked. The caveat with
using a default parameterless constructor on a struct is that the new keyword must be
used to create an instance of this struct. If the new keyword is not used, then this
default constructor will not be invoked. Therefore, the following code will not call the
default parameterless constructor:

Data[] dat = new Data[4];

Rather, the system-defined default values for each of the struct’s fields will be used.

There are two ways to get around this. You could use the overly lengthy way of creat‐
ing an array of Data structs:

Data[] dat = new Data[4];

dat[0] = new Data();
dat[1] = new Data();
dat[2] = new Data();
dat[3] = new Data();

or

ArrayList dat = new ArrayList();
dat.Add(new Data());
dat.Add(new Data());
dat.Add(new Data());
dat.Add(new Data());

Or you could use the more terse option, which uses LINQ:

Data[] dataList = new Data[4];
dataList = (from d in dataList
 select new Data()).ToArray();

The LINQ expression iterates over the Data array, explicitly invoking the default
parameterless constructor for each Data type struct element.

If neither of the first two options will work for your particular case, you could always
create an overloaded constructor that takes arguments for each field that you want to

76 | Chapter 1: Classes and Generics

initialize. This third technique requires that the overloaded constructor is used to cre‐
ate a new instance of this struct:

public Data(int intData, float floatData, string strData,
 char charData, bool boolData)
{
 IntData = intData;
 FloatData = floatData;
 StrData = strData;
 CharData = charData;
 BoolData = boolData;
}

This constructor explicitly initialized each field to a user-supplied value:

Data dat = new Data(2, 2.2f, "blank", 'a', false);

With C# 6.0 you not only have the option of initializing a struct’s fields with the sys‐
tem default values or using an overloaded constructor to initialize its fields to user-
defined values, but now you have the additional option of using an overloaded con‐
structor with optional arguments to initialize the struct’s fields to nonsystem-default
values. This is shown in Example 1-9. The constructor with optional arguments looks
like this:

public Data(int intData, float floatData = 1.1f, string strData = "a",
 char charData = 'a', bool boolData = true) : this()
{
 ...
}

The one issue with using this type of constructor is that you must supply at least one
of the parameter values to this constructor. If the intData argument also had an asso‐
ciated optional argument:

public Data(int intData = 2, float floatData = 1.1f, string strData = "a",
 char charData = 'a', bool boolData = true) : this()
{
 ...
}

then this code:

Data dat = new Data();

would call the default parameterless constructor for the struct, not the overloaded
constructor. This is why at least one of the parameters must be passed into this con‐
structor:

Data dat = new Data(3);

Now we call the overloaded constructor, setting the first parameter, intData, to 3 and
the rest of the parameters to their optional values.

1.18 Controlling Struct Field Initialization | 77

As a final option, you can add an explicit initialization method to the struct to initial‐
ize the fields to nondefault values. This technique is shown in Example 1-10.

You add the Init method to the struct, and must call it after the struct is initialized
either by using the new or default keyword. The Init method then initializes each
field to a nondefault value. The only other code modification that you need to make
to the struct’s properties is adding a private setter method. This allows the Init
method to set the internal fields without having to expose them to the outside world.

See Also
The “Struct” topics in the MSDN documentation.

1.19 Checking for null in a More Concise Way
Problem
You are constantly writing unwieldy if-then statements to determine whether an
object is null. You need a more concise and simpler way to write this type of code.

Solution
Use the new null-conditional operator introduced in C# 6.0. In the past you would
typically have to check to make sure an object is not null before using it in the fol‐
lowing manner:

if (val != null)
{
 val.Trim().ToUpper();
 ...
}

Now you can simply use the null-conditional operator:

val?.Trim().ToUpper();

This simplified syntax determines if val is null; if so, the Trim and ToUpper methods
will not be invoked and you will not throw that annoying NullReferenceException.
If val is not null, the Trim and ToUpper methods will be invoked.

This operator can also be employed to test each object for null when the dot operator
is used to chain a series of object member accesses:

Person?.Address?.State?.Trim();

In this case, if any of the first three objects (Person, Address, or State) is null, the
dot operator is not invoked for that null object and execution of this expression
ceases.

78 | Chapter 1: Classes and Generics

The null-conditional operator works not only on regular objects, but also on arrays
and indexes as well as the indexed element that is returned. For example, if val is of
type string[], this code will check to see if the val variable is null:

val?[0].ToUpper();

whereas this code checks to see if the actual string element stored in the zeroth
indexed position in the val array is null:

val[0]?.ToUpper();

This code is also valid; it determines if both val and the zeroth indexed element are
not null:

val?[0]?.ToUpper();

Another area where the null-conditional operator shines is with invoking delegates
and events. For instance, if you have a simple delegate:

public delegate bool Approval();

and instantiate it using a lambda expression, which for simplicity’s sake just returns
true all the time:

Approval approvalDelegate = () => { return true; };

then later in the code when you want to invoke this delegate you don’t have to write
any bulky conditional code to determine whether it is null; you simply use the null-
conditional operator:

approvalDelegate?.Invoke()

Discussion
Essentially the null-conditional operator works similarly to the ternary operator
(?:). The code:

val?.Trim();

is shorthand for:

(val != null) ? (string)val.Trim() : null

assuming val is of type string.

Let’s take a look at what happens when a value type is returned such as in the follow‐
ing code:

val?.Length;

The expression is modified to return a nullable value type such as int?:

(val != null) ? (int?)val.Length : null

1.19 Checking for null in a More Concise Way | 79

This means you can’t simply use the null-conditional operator and then assign the
returned value to just any type—it has to be a nullable type. Therefore, this code will
not compile:

int len = val?.Length;

but this code will:

int? len = val?.Length;

Notice that we have to make the return type a nullable type only when it is a value
type.

Additionally, you cannot attempt to use the null-conditional operator where a non‐
nullable type is expected. For example, the array size expects an int value, so you
cannot compile this code:

byte[] data = new byte[val?.Length];

However, you could use the GetValueOrDefault method to convert the nullable type’s
value into a non-nullable-friendly value:

byte[] data = new byte[(val?.Length).GetValueOrDefault()];

This way if val is really null, the byte array will be initialized to the default value for
integer types, which is 0. Just be aware that this method will return the default value
for that value type, which is 0 for numeric types and false for bool types. Your code
must take this into account so that your application’s behavior is consistent. In this
example, the byte array is of size 0 if the val object is of length 0 or is null, so your
application logic must account for that.

You also need to take care when using this operator in conditional statements:

if (val?.Length > 0)
 Console.WriteLine("val.length > 0");
else
 Console.WriteLine("val.length = 0 or null");

In this conditional statement, if the val variable is non-null and its length is greater
than 0, the true block of the if statement is executed and the text "val.length > 0"
is displayed. If val is null, the false block is displayed and the text "val.length = 0
or null" is displayed. However, you don’t know which val really is—null or 0?

If you need to check for val having a length of 0, you could add an extra check to the
if-else statement to take into account all conditions:

if (val?.Length > 0)
 Console.WriteLine("val.Length > 0");
else if (val?.Length == 0)
 Console.WriteLine("val.Length = 0");
else
 Console.WriteLine("val.Length = null");

80 | Chapter 1: Classes and Generics

The switch statement operates in a similar manner:

switch (val?.Length)
{
 case 0:
 Console.WriteLine("val.Length = 0");
 break;
 case 1:
 Console.WriteLine("val.Length = 1");
 break;
 default:
 Console.WriteLine("val.Length > 1 or val.Length = null");
 break;
}

If val is null, execution will fall through to the default block. You won’t know if the
length of val is greater than 1 or null unless you perform more checks.

Take care when using this operator in conditional statements. This
can lead to logic errors in your code if you are not careful.

See Also
The “Null-Conditional Operator” topics in the MSDN documentation.

1.19 Checking for null in a More Concise Way | 81

Want to
read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer, including
the iBookstore, the Android Marketplace, and Amazon.com.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15055

https://play.google.com/store/books?hl=en
http://www.amazon.com/
http://shop.oreilly.com/product/0636920037347.do

	Cover
	Copyright
	Table of Contents
	Chapter 1. Classes and Generics
	1.0 Introduction
	1.1 Creating Union-Type Structures
	Problem
	Solution
	Discussion
	See Also

	1.2 Making a Type Sortable
	Problem
	Solution
	Discussion
	See Also

	1.3 Making a Type Searchable
	Problem
	Solution
	Discussion
	See Also

	1.4 Returning Multiple Items from a Method
	Problem
	Solution
	Discussion
	See Also

	1.5 Parsing Command-Line Parameters
	Problem
	Solution
	Discussion
	See Also

	1.6 Initializing a Constant Field at Runtime
	Problem
	Solution
	Discussion
	See Also

	1.7 Building Cloneable Classes
	Problem
	Solution
	Discussion
	See Also

	1.8 Ensuring an Object’s Disposal
	Problem
	Solution
	Discussion
	See Also

	1.9 Deciding When and Where to Use Generics
	Problem
	Solution
	Discussion
	See Also

	1.10 Understanding Generic Types
	Problem
	Solution
	Discussion
	See Also

	1.11 Reversing the Contents of a Sorted List
	Problem
	Solution
	Discussion
	See Also

	1.12 Constraining Type Arguments
	Problem
	Solution
	Discussion
	See Also

	1.13 Initializing Generic Variables to Their Default Values
	Problem
	Solution
	Discussion
	See Also

	1.14 Adding Hooks to Generated Entities
	Problem
	Solution
	Discussion
	See Also

	1.15 Controlling How a Delegate Fires Within a Multicast Delegate
	Problem
	Solution
	Discussion
	See Also

	1.16 Using Closures in C#
	Problem
	Solution
	Discussion
	See Also

	1.17 Performing Multiple Operations on a List Using Functors
	Problem
	Solution
	Discussion
	See Also

	1.18 Controlling Struct Field Initialization
	Problem
	Solution
	Discussion
	See Also

	1.19 Checking for null in a More Concise Way
	Problem
	Solution
	Discussion
	See Also

