
Praveen	Murugesan	
“Big	Data	Processing	the	UBER	Way”	

U B E R | Data

Uber’s	Mission	

“Transporta>on	as	reliable	as	running	water,	
everywhere,	for	everyone”	
	
	
75+	Countries																																																500+	Ci>es	
	
And	growing...	

U B E R | Data

Agenda	

●  UBER’s Data Audience

●  Data Infra - A Brief History

●  What we Solved

●  What we are Currently Solving

U B E R | Data

Uber’s	Data	Audience	

●  1000s	of	City	Operators	(Uber	Ops!)	
○  On	the	ground	team	who	run	and	scale	uber’s	

transporta>on	network	
●  100s	of	Data	Scien>sts	and	Analysts	

○  Spread	across	various	func>onal	groups	including	
Engineering,	Marke>ng,	BizDev	etc	

●  10s	of	Engineering	Teams	
○  Focussed	on	building	automated	Data	Applica>ons		

U B E R | Data

Uber’s	Data	Audience	

●  1000s	of	City	Operators	(Uber	Ops!)	
○  driver	funnel,	rider	reten>on,	business	performance	and	

other	daily/weekly	reports	
●  100s	of	Data	Scien>sts	and	Analysts	

○  A/B	experimenta>ons,	Spend	analysis	etc	
●  10s	of	Engineering	Teams	

○  real->me	fraud	detec>on,	map	search,	loca>on	
predic>on	etc	

U B E R | Data

Once Upon a time.. (2014)

Kafka Logs

Key-Val DB

RDBMS DBs

S3

Applications

…

ETL
Business Ops

A/B Experiments

Adhoc Analytics

City Ops
Vertica

Data Warehouse

 Data Science

EMR

U B E R | Data

Data Infrastructure Today

Kafka8 Logs

Schemaless DB

SOA DBs

Service Accounts

…

ETL
Machine Learning

Experimentation

Data Science

Adhoc Analytics
Ops/Data Science

HDFS

City Ops

Data Science

Spark | Presto

Hive

U B E R | Data

A	Things	we	solved	along	the	way..	

● Scalable	Inges>on	Model	
○ home-grown	streaming	inges>on	solu>on	
○ h[ps://eng.uber.com/streamific/	

● Built	a	Hadoop	Data	Lake	
○ No	more	limited	to	storage,	(EL	from	Data	Sources	
instead	of	ETL)	

○ JSON	->	Avro	->	Parquet	
	

U B E R | Data

A	Things	we	solved	along	the	way..	

●  Strict	Schema	Management	
○  Because	our	largest	data	audience	are	SQL	Savvy!	(1000s		of	Uber	Ops!)		
○  SQL	=	Strict	Schema	

●  BigData	Processing	Tools	Unlocked	-	Hive,	Presto	and	Spark	
○  Migrate	SQL	savvy	users	from	Ver>ca	to	Hive	&	Presto	(1000s	of	Ops	&	100s	

of	data	scien>sts	&	analysts)	
○  Spark	for	more	advanced	users	-	100s	of	data	scien>sts	

●  GeoSpa>al	Computa>on	Plaiorm	
○  Because	everyone	runs	geo	based	Queries	

●  Data	Tools		
○  Spark	UDK	-	To	reduce	barrier	to	entry	for	wri>ng	Spark	Jobs	
○  Aks	-	A	tool	to	analyze	query	costs	and	status	

	

U B E R | Data

Pre-Strict	Schema	Management	

Data
Warehouse

Data
Producers

Data
Consumers

Json

U B E R | Data

Pre-Strict	Schema	Management	

Data
Warehouse

Data
Producers

Data
Consumers

{
created_at : “Dec 1,2015”
}

CREATE (
created_at: string
)

parseDate(data.created_at, “%M %d,
%yy”)

U B E R | Data

Pre-Strict	Schema	Management	

Data
Warehouse

Data Producers Data
Consumers

{

created_at: 1459404179.03
}

CREATE (
created_at: string
)

parseDate(data.created_at, “%M %d,
%yy”)

U B E R | Data

Solu>on:	Centralized	Schema	Management	

Data
Warehouse

Data
Producers Data

Consumers

Schema
Client

Central
Schema

Repository

Schema
Client

Schema
Service
Schema
Storage

U B E R | Data

Solu>on:	Centralized	Schema	Management	

Data
Warehouse

Data
Producers Data

Consumers

Schema
Client

Schema
Service

Schema
Client

{

created_at: 1459404179.03
}

CREATE (
created_at: string
)

parseDate(data.created_at, “%M %d,
%yy”)

Schema
Storage

U B E R | Data

Solu>on:	Strict	Centralized	Schema	Management	

●  A central versioned schema Contract for every dataset
○  used by teams, producers and consumers to negotiate data contracts
○  we use Heatpipe - an uber library which is a wrapper over Apache

Avro as the serialization format
●  A schema evolution system

○  Which ensures schemas evolution is compatible with previous data
○  Strictly typed

●  A web UI schema manager
○  To easily create, edit, consume avro schemas.
○  Serves as documentation for data

	

U B E R | Data

Avro	Schema	Example	

U B E R | Data

Schema	Manager	Web	Ui	aka	Watchtower	

U B E R | Data

Schema	Evolu>on	Venn	

Presto Hive Parquet Avro Heatpipe

U B E R | Data

Parquet	for	Hadoop	Data	Lake	Storage	

●  Supports	Schema	
●  2	to	4	>mes	faster	than	json/gzip	

○  column	pruning	
■  wider	nested	table	support	(at	uber)	

○  filter	predicate	push-down	
○  columnar	compression	

●  Strong	Open	Source	Support	
○  Hive,	Presto,	Spark	

U B E R | Data

Queryable Big Data Warehouse (2016)

Hadoop Data Lake

Hive

U B E R | Data

But	Hive	is	Slow..	

Vertica

Fast…
but cannot scale cheaply

Hive

Scales cheaply and reliably...
but is not fast

U B E R | Data

Queryable Big Data Warehouse (2016)

Hadoop Data Lake

Hive(Batch SQL) Presto(Interactive SQL)

U B E R | Data

Queryable Big Data Warehouse (2016)

Hadoop Data Lake

Hive
(Batch SQL)

Presto
(Interactive SQL)

JANUS
(ANSI SQL Federation Gateway)

U B E R | Data

Query Federation

● Adhoc/Scheduled SQL
○  Query via Janus - Gateway Service
○  Uses ANSI SQL standard (Presto, Hive underneath

today..)
○  Dynamically picks YARN Queues
○  Keep bad queries out!

U B E R | Data

Query Engine Enhancements

● Presto
■ Nested Column Pruning for Parquet Columns

●  Making Presto fasterr!
■ Geospatial support

●  Filling in the UBER Gap!

● Hive
■ Hive on Parquet schema evolution fixes

U B E R | Data

Attis - Our Query Monitoring Tool

● Oracle AWR like reports
○ top queries by CPU
○ top queries by runtime

● Cost Analysis
○ Approx Cost to run query on AWS (by CPU and

Memory)
● Realtime Query Tracker

U B E R | Data

Query	Engine	Monitor	

U B E R | Data

What	next	to	solve	for	Data	Warehousing?	

● True	Query	Federa>on	
○ Predict	if	a	Query	should	be	run	on	Hive	or	Presto?	

● Query	Transla>on	
○ Can	we	convert	expensive	Presto	Queries	to	Hive	

● UDF	Management	across	Hive/Presto	

U B E R | Data

SQL	solves	for	the	most	part….	
But,	What	about	Complex	Data	Applica>ons?		
●  Machine	Learning	algos	
●  Low	Latent	batch	processing	
●  S>tching	HDFS	files	
●  etc	
	
	

U B E R | Data

SQL	solves	for	the	most	part….	
But,	What	about	Complex	Data	Applica>ons?		
●  Machine	Learning	algos	
●  Low	Latent	batch	processing	
●  S>tching	HDFS	files	
●  etc	
	
Use	Spark!	

U B E R | Data

Spark	UDK	(Uber	Developer	Kit)	

Goal:	
● Self-Serve	Development	kit:	

○ Reduce	barrier	to	entry	for	new	spark	users	
○ Applica>on	Lifecycle	management	
■ Scheduling,	Monitoring	etc	

● Abstract	our	run>me	environment	
● Ensure	a	reliable	mul>-tenant	infrastructure	

U B E R | Data

Spark	UDK	

U B E R | Data

Spark	UDK	

U B E R | Data

Spark	UDK	Engineering	APIs	

● SCBuilder	
○  Encapsulates	cluster	environment	details	
○  Perf,	debug	op>mized	(history,	event	logs,	YARN	configs)	
○  SRE	approved	CPU	&	Memory	sekngs	

● Data	Dispersal	
○  Kara	Dispersal	

■  RDD	-	Paralleliza>on	
■  HA,	Rate	-	limi>ng,	schema	enforcement	
■  publish(data: RDD, topic: String, schemaId: Int,

appId: String)
○  Also	have	connectors	to	Hive,	Elas>c	Search		

U B E R | Data

Spark	UDK	Tools	

●  Sparkplug
○  A collection of popular job templates
○  Two commands to run the first job in Dev
○  One use case per template

■  e.g. Ozzie + SparkSQL + Incremental processing
■  e.g. Incremental processing + Kafka dispersal

○  Best Practices
■  built-in unit tests, test coverage, Jenkins
■  built-in Kafka, HDFS mocks

U B E R | Data

U B E R | Data

U B E R | Data

Uber	Geospa>al	Processing	

within(trip_location, city_shape)
Find if a car is within a city

contains(geofence, auto_location)
Find all cars in an area

U B E R | Data

Uber	Geospa>al	Processing	

overlaps(trip1, trip2)
Find trips that have similar routes

intersects(trip_location, gas_locations)
Find all gas stations a trip has passed by

U B E R | Data

Spa>al	Join:	The	Problem	

Objective: Associate all trips with city_id for a
single day.
SELECT trip.trip_id, city.city_id
FROM trip JOIN city
WHERE contains(city.city_shape, trip.start_location)
AND trip.datestr = ‘2016-09-07’

U B E R | Data

Spa>al	Join:	The	Problem	

Objective: Associate all trips with city_id for a
single day.
SELECT trip.trip_id, city.city_id
FROM trip JOIN city
WHERE contains(city.city_shape, trip.start_location)
AND trip.datestr = ‘2016-09-07’

Notice that a cross join is involved in the raw query which is
prohibitively time consuming

U B E R | Data

U B E R | Data

Trip City Association Spatial Cross Join

U B E R | Data

Spa>al	Join:	Solu>on		

●  Use Generated UDFs which uses a geospatial index
and avoid cross joins

SELECT trips.id, getCityId(trips.request_location)
FROM trips

We Build either quadtree or r-tree indexes dynamically

U B E R | Data

Magellan	-	A	self	serve	Geospa>al	Service	

U B E R | Data

Magellan	-	A	self	serve	Geospa>al	Service	

U B E R | Data

What	Next	for	Spa>al	Processing?	

● Extend	inges>on	pipelines	to	support	spa>al-
index	fields	

● Enhance	query-engines	(Hive,	Presto,	Spark)	to	
auto	op>mize	on	supported	index	fields	

U B E R | Data

Key	Takeaways	

●  EL	from	Source	to	Data	Lake	
○  Going	back	to	fetch	from	online	sources	over	and	over	again	is	not	a	good	

idea	especially	at	a	large	scale	
●  Always	manage	schemas	if	you	have	>	1	consumer	

○  When	an	organiza>on	scales,	you	need	automated	ways	to	manage	lineage	
&	schema	evolu>on	to	avoid	pain	

●  Abstract	Query	Engines	Access	and	Use	Standards	
○  ANSI	SQL	-	Makes	swapping	query	engines	later	easier	
○  Use	a	gateway	to	audit,	your	SRE/Ops	will	like	you	for	it		

●  Leverage	Open	Source	Whenever	Possible	
○  While	filling	in	the	gaps,	and	contribu>ng	back!!	

	

U B E R | Data

Thank	you!	

