IBM Text-to-Speech
APl Reference

Version 6.4.0

Printed in the USA

Note:
Before using this information and the product it supports, be sure to read the general information under
Appendix A, "Notices."

Twelfth Edition (M arch 2002)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warrantiesin certain transactions, therefore, this statement may not apply to you. This publication could include
technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these
changes will beincorporated in new editions of the publication. IBM may make improvements and/or changesin
the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or servicesin
your country. Reqguests f or technical information about IBM products should be made to your IBM reseller or
IBM marketing representative.

©Copyright International Business Machines Corporation 1994-2002. All Rights Reserved.
Note to U.S. Government Users—Documentation related to restricted rights— Use, duplication or disclosure is
subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

Copyright License

This information contains sample application programs in source language, which illustrates
programming techniques. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee

or imply reliability, serviceability, or functionality of these programs. You may

also copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include
a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp.

_enter the year or years . All rights reserved

contents

About This Book 1
Who Should Read ThisBoOK?.t 1
Organizationof ThiSBOOK 1
Typographical Conventionst 2
TheIBM Text-to-Speech Softwar e Developer’sKit 3
OV IV BV . ettt e e e 3
Eloquence Command Interface (ECI) ..., 3
The ECI Application Programming I nterface 5
OV IV BV . ottt e e 5
Structuringan ECI Program 6
Threadingo 10
Callbackso 10
User DICtioNarieso vt e e e e 12
ECI Reference 21
DAt A TYPES . . ot ot 21
SynthesisState Parameters.o i 29
VoiceParameterso 34
Preset Voice Definitions. 37
Tableof FUNCiONS 39
Alphabetical Index of Functions 44
Annotations 151

IBM Text-to-Speech

About This Document

ECI ANNOLatioNSot e 151
Selectingalanguageand Dialect i i 152
Selecting aVoice or Voice Characteristics.ot 157
SelectingaSpeakingStyle 159
Modifying Word Emphasisand Tone., 160
Modifying Phrase-Final Intonation.............. ... coiiiin. 163
Adding PalISES oo 164
FerS. . 166
Specifying Alternative Pronunciations oo, 167
Custom Filters 169
ImplementingaCustom Filter. 170
DynamiC FIIters.o e 171
Static Filters. . ..o 175
Symbolic Phonetic Repr esentations 181
SPR O 182
SPR TaDIES ..o e 184
American EnglishSPRs. 184
BritishEnglish SPRSo e 187
German SPRS. 190
Canadian French SPRS 193
French SPRS oo 197
Standard Italian SPRSo 200
Mexican SpanishSPRS i e 202
Castilian Spanish SPRSo 204
Brazilian Portuguese SPRS 206
FiNnish SPRS o 208
Chinese SPRS. 211
JAPANESE SPRS 214
Code Samples 217
Vi IBM Text-to-Speech

About This Document

Helloworld! 217
Specifyingalanguage. 218
SPECIfYiNg aVOICe oo 218
Specifyingasamplerate. 219
Specifying voice parameters.t 220
USiNg anNOtatioNS. oo vttt et e e 220
Concatenative TTS. . ..o e 221
Inserting iNdiCes e 222
Catching indices—the callback function 223
User dictionaries—mainvolume it 224
User dictionaries—rootsvolumet 225
User dictionaries— abbreviationsvolume 226
User dictionaries—extendedvolume. oot 227
Appendix A Notices 233
Trademarks. 234
I ndex 235
IBM Text-to-Speech Vii

About This Document

viii IBM Text-to-Speech

About This Book

This book provides information on incorporating IBM Text-to-Speech technology into other
applications. It describes the programming interfaces available for devel opers to take advantage of
these features within their applications. This book is prepared in Portable Document Format (PDF) to
provide the advantages of text search and cross-reference hyperlinking and is viewable with the Adobe
Acrobat Reader v.3.x or higher. We recommend that you print al or part of this guide for quick
reference.

Who Should Read This Book?

Read this book if you are a software devel oper interested in writing applications that use IBM Text-to-
Speech technology. This document describes the use of IBM Text-to-Speech technology for
beginning to advanced software engineers.

Organization of This Book

This document is organized in the following manner:

e« “ThelBM Text-to-Speech Software Developer's Kit” contains general information about
the structure and organization of the IBM Text-to-Speech SDK, including an overview of the
API interfaces and a description of the SDK-provided tools.

e “TheECI Application Programming I nterface” contains information about using IBM
Text-to-Speech with its proprietary “ Eloquence Command Interface” API.

 “ECI Reference” contains detailed information about the data types and functions available
for use with the Eloguence Command Interface.

« “Annctations” includes a description of the use of specia codesthat can be inserted into the
input text to customize the behavior of IBM Text-to-Speech .

e “Symbolic Phonetic Representations” describes the use of specia phonetic symbolsto
customize pronunciationsin IBM Text-to-Speech.

IBM Text-to-Speech 1

About This Book

e “Glossary of Linguistic Terms” contains definitions of linguistic terms used in this manual.

Typographical Conventions

The following typographical conventions are used throughout this document to facilitate reading and
comprehension. They are outlined in the following table.

Text Format Appliesto

Monospace font Code samples, file and directory names.

Bold Function and callback names; data types (including
structures and enumerations).

Italics Parameter and structure member names; sample text; the
introduction of a new term.

UPPERCASE Property, enumerator, mode, and state names.

2 IBM Text-to-Speech

The IBM Text-to-Speech Software
Deveoper’sKit

Overview

The IBM TTS alowsyou to incorporate high-quality text-to-speech functionality into your
applications. This SDK offers devel opers the application programming interfaces (APIs) for the
proprietary, platform-independent Eloquence Command Interface (ECI). Thetypical installation of
the IBM Text-to-Speech SDK, which includes this document, along with the IBM TTS RunTime,
provides all the necessary software and support files for these APIs.

The following sections include a brief description of each of the available APIs and directory structure
of this SDK.

Eloguence Command Interface (ECI)

The Eloguence Command Interface (ECI) isaproprietary, platform independent API that allows direct
access to dl the functionality and power of the IBM Text-to-Speech. This API:

» Issupported on avariety of operating systems.

» Allows customization of speech output both through function calls and textual annotations.

» Does not use the Windows Registry to find components, allowing developers to include a private

copy of the text-to-speech engine with their application that islesslikely to be accidentally
modified by later installations or by other applications.

Seethe sections The ECI Application Programming Interface and ECI Reference for details on how to
use this API. Seethe section Annotations for details on the use of ECI annotationsto customize
speech output.

IBM Text-to-Speech 3

Eloguence Command I nterface (ECI)

4 IBM Text-to-Speech

The ECI Application Programming
Interface

Overview

The Eloquence Command Interface (ECI) isalibrary that provides an interface between applications
and the IBM Text-to-Speech system. Version 6.2 of ECI has been re-architected to provide support for
multiple concurrent speech synthesis threads, and a consistent interface on al supported platforms.

Asin prior versions of ECI, text is appended to the input buffer. Each word takes its voice definition
from the active voice. Speech is synthesized from the input buffer according to the associated voice
parameters, placed in the output audio buffer, and sent to the appropriate destination. The active voice
can be set from a number of built-in voices or from a user-defined voice. Language, dialect, and voice
parameters can be modified individually using either ECI function calls or annotationsinserted into the
input buffer with the input text. Astext isadded to the input buffer, the active voice definition is stored
with it, so that changes to the active voice do not affect text already in the input buffer.

Indices can be used to determine when the delimited text fragment has been synthesized. A message
will be received when all text inserted before the index has been synthesized.

Output can be sent to one of three types of destinations: a callback function, afile, or an audio device.
These destination types are mutually exclusive, so sending output to one of them turns off output to the
previous destination. The default destination is an available audio device.

IBM Text-to-Speech 5

Sructuring an ECI Program

Sructuring an ECI Program

Using eciSpeak Text for Simple Programs

The simplest way to incorporate text-to-speech into your application is by using the high-level ECI
function eciSpeak Text, which speaks the given text to the default audio device. Thisfirst sample C
program speaks a short phrase and then exits:

#i ncl ude <eci. h>

int main(int argc, char *argv[])

{
eci SpeakText ("Hello World!", false);

return O;

}

Managing an ECI Instance

In order to use the more powerful features of the ECI API, you will have to manage ECI instances
directly. An ECI instance, in accordance with standard object-oriented procedure, originates with a
call to eciNew and endswith acall to eciDelete.
One basic strategy for managing an ECI instance is outlined below:

» Create anew ECI instance by invoking eciNew.

« |If youwant ECI to notify you of certain events, register a callback function with a call to
eciRegister Callback.

* Interact with the ECI instance. You may, for example:
» Addtext to the ECI instance’'s input buffer with one or more callsto eciAddText.

« To synthesize annotated text, call eciSetPar am(ecil nstance, ecil nputType, 1) before
calling eciAddText. Thislets ECI know that the text may contain annotations.

« To useone of the preset voices, call eciCopyVoice before calling eciAddText. The active
voice (voice 0) specifiesvaluesfor a set of voice characteristics, such as pitch baseline and

6 IBM Text-to-Speech

Sructuring an ECI Program

pitch fluctuation, which are applied to all new text added to the input buffer. See \VVoice
Parameters for more detailed discussion.

e Change the state of the active voice with calls to eci SetVoiceParam.

» Cadl eciSynthesize when all text has been added to the input buffer. To synthesize text in line-
oriented format, such as atable or list, call eciAddText and eciSynthesize for each line, to
ensure that each line is spoken as a separate sentence.

» If thethread that is managing this ECI instance does not contain a Windows message |oop, you
must ask your instance of ECI to report that synthesisis complete. This step will also allow
your registered callback to be called by ECI. You can do thisin more than one way:

« Cadll eciSynchronize, which waits in an efficient state, allowing callbacksto be called,
until synthesisisfinished. When synthesisis complete, the function will return control to
the calling thread. Do not call eciSynchronize from athread that has a Windows message
loop.

» Cadl eciSpeaking until it returnsf al se. Each call to eciSpeaking will alow your
callback to be called.

If the thread that is managing this ECI instance contains a Windows message loop, thisstep is

not necessary.

» UseeciDeleteto free the resources dedicated to your instance.

IBM Text-to-Speech 7

Sructuring an ECI Program

The following example speaks a phrase in English, then a phrase in French, then exits:

#i ncl ude <eci. h>

int main(int argc, char *argv[])

{

EClI Hand eci Handl e;

eci Handl e = eci New();//Create a new EClI | nstance
if (eciHandle!= NULL_ECI HAND) //Success?
{//Gve sone text to the instance
if (!eci AddText (eci Handle, "Hello World!"))
{
/I failed to add text
[IPrint an error nessage
printf("eci AddText failed\n");
}
/1 Change the | anguage to Standard French,
/1if avail able
i f (eci SetParanm(eci Handl e, eci LanguageDi al ect,
eci St andar dFrench) == -1)
{
/1 Error Changing to French
printf("Could not change to French\n");
}
el se
{
/1 Gve sonme text in French
if (!eci AddText (eci Handl e, "Un. Deux. Trois."))
{
/IWe failed to add text
//Print an error nessage
printf("eci AddText failed\n");

}

Conti nued on the next page

8 IBM Text-to-Speech

Sructuring an ECI Program

Conti nued from previ ous page
/1 Start ECI speaking
i f (!eciSynthesize(eciHandle))
{
/IWe failed to synthesize
/1Print an error nessage
printf("eci Synthesize failed\n");
}

}
/[/Wait until ECI finishes speaking

i f (!eciSynchronize(eci Handl e))
{
//We failed to synchronize

/1Print an error nessage

printf("eci Synchronize failed\n");
}
/1 Del ete our ECl Instance; deallocates nmenory
eci Del et e(eci Handl e) ;

}

el se

{

/W failed to create a new ECl |nstance
/IPrint an error nessage
printf("eciNew failed\n");

}

return O;

}

IBM Text-to-Speech

Threading

Threading

The ECI API is structured on aprinciple called the " Single-Threaded Apartment Modd", which means
that each individual instance can be called only upon the thread that created it; that is, it should not be
affected by the existence of other instances or threads. All callbacks are called by the thread that
created the instance.

The eciSpeak Text function is ablocking function that creates, manages, and destroys its own private
ECI instance. The application thread of execution is blocked until the function returns. eciSpeak Text
requires no special thread handling, since it does not return control to the main thread until it has
completed al synthesis.

Other ECI functions are non-blocking: the application thread of execution remains available during
their execution. Applications using animated mouths, multiple voices, multiple conversations or
requiring the highest possible performance depend on these non-blocking functions, which are only
accessible through the handle created by eciNew. See also eciNewEX.

Callbacks

A callback is a mechanism for temporarily passing control of execution out of an instance of ECI to a
function provided by the devel oper when certain eventstake place. The ECI API provides for four
callback events:

» ecilndexReply: Sends notification when a particular point in the input text is reached. To set
these points in the text, call ecilnsertindex after callsto eciAddText.

» eciPhonemeBuffer: Sends notification when the Symbolic Phonetic Representations buffer is
full. Call eciGener atePhonemes after a call to eciAddText to enable this event.

» eciPhonemel ndexReply: Sends notification when a particular phoneme is spoken, including
mouth animation data for that phoneme. Set eciWantPhonemel ndicesto 1 with eciSetParam
to enable this event.

« eciWaveformBuffer: Sends notification when a sample-capture buffer isfull (so, e.g., the
developer can send the samples to a custom audio destination). Call eciSetOutputBuffer to
enable this event.

10 IBM Text-to-Speech

Callbacks

Only one callback function may be registered for each instance of ECI. This function will receive all
four types of callback events. No events are set by default.

Callback functions must return promptly, returning a flag indicating completion of processing.
Callbacks may not call ECI functions.

Register your callback with eciRegister Callback immediately after calling eciNew. For any given
ECI instance, your callback will be called from the same thread on which your application calls ECI.
See eciRegisterCallback for more details on use of callbacks.

IBM Text-to-Speech 11

User Dictionaries

User Dictionaries

IBM TTS allows you to explicitly specify pronunciations for words, abbreviations, acronyms, and
other sequences, preventing the normal pronunciation rules from applying. One way you can do thisis
to enter a Symbolic Phonetic Representation (SPR) annotation directly into the input text (see
Symbolic Phonetic Representations). A more permanent way is to enter the word (the input string or
key) and the pronunciation you want (the output or translation value) in one of the user dictionaries.

A dictionary set consists of 4 volumes. Each volume differs from the kinds of keys and translation
values it accepts.

Main Dictionary (eciMainDict)

Main Extension Dictionary (eciMainDictExt)

Roots Dictionary (eciRootDict)

Abbreviations Dictionary (eciAbbvDict)

A dictionary file consists of ASCII text with one dictionary entry per line. Each input line contains a
key and atrandation value, separated by atab character. Aninvalid key or translation will cause the
dictionary look-up to fail, and the pronunciation of the word will be generated by the normal
pronunciation rules. Valid entries for each dictionary are discussed in the subsections bel ow.

To add, modify, or delete an entry in any of the dictionaries, use the eciUpdateDict function of the
API.

For Asian languages, such as Chinese and Japanese, the client application should use the dictionary
maintenance functions that are named with an A at the end in place of the same-name function. For
example, use eciDictFindFirstA, in stead of eciDictFindFirst.

ForChinese, Roots Dictionary (eciRootDict) functionality is not supported.

12 IBM Text-to-Speech

User Dictionaries

Main Dictionary (eciMainDict)

The Main Dictionary is distinguished from the other user dictionariesin two ways. avalid trandation
consists of any valid input string, and the key of a Main Dictionary entry may contain any characters
other than white space, except that the final character of the key may not be a punctuation symbol.
You can thus use the Main Dictionary for:

* Stringsthat translate into more than one word

» Keysthat require trand ations which include annotations or SPRs
* URLSand email addresses

» Keyscontaining digits or other non-letter symbols

» Acronymswith specia pronunciations

The Main Dictionary is case-sensitive. For example, if you enter the key "WHQO" with the trandation
"World Health Organization", lower case who will still be pronounced as expected ("[hu]).

Note: The Main Dictionary translations may include ECI annotations.

Valid Main Dictionary Entries

The following table summarizes the valid Main Dictionary keys and trandations:

Key Translation

- letters, both upper and lower case Anything that islegal input to the text-
- digits to-speech engine, including white

- non-alphanumeric characterslike @, | space, punctuation, SPRs, and
#9$,%&,%, + annotations.

- apostrophes, quotation marks,
parentheses, brackets, etc.

- punctuation, except as the final
character

NO: white space

IBM Text-to-Speech 13

User Dictionaries

Main Dictionary Examples

The following table shows examples of Main Dictionary entries:

Key

Translation

AWSA

American Woman Suffrage "0 Association

jeb@notreal.org

jebatnotreal dotorg

ECSU

[] "[1si] T1Es] [1yu]

UConn [2yulkan]

WYSIWYG “[1wl10ziOwlg]

Win32 win thirty two

486DX 4 86 dee ecks
See Also

Abbreviations Dictionary (eciAbbvDict), Roots Dictionary (eciRootDict).

14

IBM Text-to-Speech

User Dictionaries

Main Extension Dictionary (eciMainDictExt)

The Main Extension Dictionary is the used for Asian languages and provides support for Chinese,
Japanese, and Korean.

You can use the Main Extension Dictionary for:

» Strings for DBCS languages (other than white space)

e Stringsthat trandate into more than one word

» Keysthat require trandlations which include annotations or SPRs
» Keys containing digits or other non-letter symbols

» Acronyms with special pronunciation

Transation is language dependent. For example in Japanese, Katakana Yomi strings are valid
trandations. Any other SBCS/DBCS characters except the accent mark (") will cause an error.

Each Main Extension Dictionary entry requires a part of speech which specifies the grammatical
category. The possible values are:

L anguage Part of Speech (POS)
Chinese eciUndefinedPOS
eciMingCi
Japanese eciUndefinedPOS
eci FutsuuM ei shi
eciKoyuuMeishi
eciSahenMeishi
Korean eciUndefinedPOS

Note: The Main Extension Dictionary can be accessed with eciUpdateDictA, eciDictFindFirstA,
eciDictFindNextA, eciDictLookupA.

IBM Text-to-Speech 15

User Dictionaries

Roots Dictionary (eciRootDict)

The Roots Dictionary is used for ordinary words, like nouns (including proper names), verbs, or
adjectives, and for proper names. The distinctive feature of the Roots Rictionary is that you only have
to enter the root form of aword; al other forms of the word will automatically get pronounced in the
same way. For example, the letter-to-sound rules normally pronounce roof as [ruf] (which has the
vowel of boot). You can use the Roots Dictionary to specify the alternate pronunciation [rUf] (which
has the vowel of book). Then, all words with thisroot, such as roofer and roofing will also be
pronounced this way; there is no need to list the other words separately in the dictionary.

» The Roots Dictionary is not case-sensitive. So, for example, when you enter aroot in lowercase, it
will still be found and pronounced as specified even when it begins with an uppercase (capital)
letter (for example, as the first word in a sentence).

» TheRoots Dictionary is designed to provide aternate pronunciations of existing roots, and may not
work properly in the case of unknown roots. For example, the entry prego occurring in the
hypothetical word pregoness will not be accessed from the user roots dictionary because the
linguistic analysis rules assume that the word contains the root go rather than the root prego.

» Theroots dictionary cannot be used to specify an aternate pronunciation of a function word, such
astheor to.

Valid Roots Dictionary Entries

The following table summarizes valid Roots Dictionary keys and tranglations:

Keys Translations

A single word in ordinary spelling, all - A single word in ordinary spelling
lowercase | etters - Avaid SPR

NO: digits, punctuation, white space, or | NO: digits, punctuation, or other non-letter
other non-letter characters characters, white space, tags, or annotations

Roots Dictionary Examples

The following table shows examples of Roots Dictionary entries:

Key Translation Would apply to:
figure [.1f1.0gR] figures, figuring, figured, refigure
tomato "[.0tx.1ma.0to] tomatoes, tomato’'s

16 IBM Text-to-Speech

User Dictionaries

Key Translation Would apply to:

wash [.lwarS] wash, washing, washed, washes

wilhelmina wilma Wilhelmina, Wilhemina's
See Also

Main Dictionary (eciMainDict), Abbreviations Dictionary (eciAbbvDict)

IBM Text-to-Speech 17

User Dictionaries

Abbreviations Dictionary (eciAbbvDict)

The Abbreviations Dictionary is used for abbreviations (both with and without periods) which do not
require the use of annotations in their translation.

The Abbreviations Dictionary is case-sensitive. So for example, if you entered the key Mar with
translation "march," lower-case "mar" would still be pronounced as expected (‘'[mar]).

When you enter akey in the Abbreviations Dictionary, it is hot necessary to include the "trailing"
period (asin thefinal period of "etc."). However, if you want an abbreviation to be pronounced as
specified in the tranglation only when it is followed by a period in the text, then you must enter the
trailing period in the key. The following table summarizes the use of trailing periods.

Key entry: Will match:
i nv inv.

inv
si d. sid.

(not sid)

An Abbreviations Dictionary entry invokes different assumptions about how to interpret the trailing
period in the text than does a Main Dictionary entry. Since the period cannot be part of aMain
Dictionary entry key, it is automatically interpreted as end-of-sentence punctuation. A period
following an Abbreviations Dictionary entry, on the other hand, is ambiguous. It will only be
interpreted as end-of -sentence punctuation if other appropriate conditions obtain (e.g., if it isfollowed
by two spaces and an upper-case letter). For example, input (a) will be interpreted as one sentence,
while (b) will be interpreted as two sentences.

(a) It rained 2 cm on Mnday.
(b) On Sunday it rained 2 cm On Mnday, it was sunny.

18 IBM Text-to-Speech

User Dictionaries

Valid Abbreviations Dictionary Entries

The following table summarizes valid Abbreviations Dictionary keys and translations:

Keys Translation

» Sequences of one or more letters » Oneor more valid wordsin ordinary spelling,
separated by periods (X.X.X. or including both upper and lower case |etters,
XX XX.XX) separated by white space or hyphen

» Sequences of letters, with or without
thetrailing period that may be
considered part of the abbreviation
(XXX. or XXx)

e Upper or lower case letters

» Internal apostrophes (not the first or
last character in the sequence)

NO: digits, non-letter symbols, white NO: digits, punctuation, SPRs, tags, or annotations
space, or punctuation other than periods

Abbreviations Dictionary Examples

The following table shows examples of Abbreviations Dictionary entries:

Key Translation
Is.D. eye ess dee
punct punctuation
para paragraph
Ltjg lieutenant junior-grade
Fr Friar
int'l international
See Also

Main Dictionary (eciMainDict), Roots Dictionary (eciRootDict).

IBM Text-to-Speech 19

User Dictionaries

You can temporarily override the use of both internal and user-defined abbreviations with an
annotation; see Dictionary Processing of Abbreviations.

20 IBM Text-to-Speech

ECI Reference

This section contains the following reference information:
» DataTypes

* Synthesis State Parameters

» Voice Parameters

» Table of Functions

» Alphabetical Index of Functions

Data Types

ECI definesthe following data types in the header file eci . h which should be included in any source
file that uses ECI functions.

Boolean

typedef int Bool ean;

Many ECI functions return Boolean values.

ECICallbackReturn

typedef enun
eci Dat aNot Processed,
eci Dat aPr ocessed
eci Dat aAbort

} ECI Cal | backRet urn

If you register a callback function, it must return one of these enumerated values.

IBM Text-to-Speech 21

Data Types

ECIDictError

typedef enunf
Di ct NoError,
The call executed properly.

Di ct NoEntry,
The dictionary is empty, or there are no more entries.

Di ct Fi | eNot Found,
The specified file could not be found.

Di ct Qut Of Menory,
Ran out of heap space when creating internal data structures.

Dictlnternal Error,
An error occurred in the internal synthesis engine.

Di ct AccessError
An error occurred when claiming operating-system specific resources for dictionary access.

Di ct Er r LookUpKey
An error occurred when looking up the key.

Di ctlnval i dvol ume
The dictionary volume is not supported by the current language.

}ECI Di ct Error

Most dictionary volume access functions return a value of this type to report errors.

ECIDictHand

t ypedef voi d* ECI D ct Hand

A handle to an ECI dictionary set.

22 IBM Text-to-Speech

Data Types

ECIDictVolume

t ypedef enum {

eci Mai nDi ct,

eci RootDi ct,

eci AbbvDi ct,

eci Mai ndDi ct Ext
} ECI Di ct Vol une;

Identifies dictionary set volumes. See User Dictionaries.

ECIFilterError

typedef enum {
Fi | ter NoError,
The call executed properly.

FilterFileNotFound,
The specified filter could not be found.

FilterQut Of Menory,
Ran out of heap space when creating internal data structures

Filterlnternal Error,
An error occurred in theinternal synthesis engine.

Fil ter AccessError,

An error occurred when claiming operating-system specific resources for filter access.
} ECIFilterError

ECIHand

t ypedef voi d* EClI Hand

A handle to an instance of ECI.

IBM Text-to-Speech 23

Data Types

ECIInputText

t ypedef const voi d* ECI | nput Text

Contains an NULL terminated string using a system-dependent character set (currently ANSI for all
platforms).

ECILanguageDialect

t ypedef enum {
eci Gener al Areri canEngl i sh,
eci BritishEnglish,
eci Casti |l i anSpani sh,
eci Mexi canSpani sh,
eci St andar dFr ench,
eci Canadi anFrench
eci St andar dGer man,
eci Standardltali an,
eci Mandar i nChi nese,
eci Tai waneseMandari n,
eci Brazi |l i anPort uguese
eci St andar dJapanese,
eci St andar dFi nni sh,
eci St andar dNor wegi an
eci St andar dSwedi sh,
eci St andar dDani sh

} ECI LanguageDi al ect

Identifies alanguage and dia ect.

24 IBM Text-to-Speech

Data Types

ECIM essage

t ypedef enunf
eci Wavef ornBuf f er,
eci PhoneneBuf f er,
eci | ndexRepl y,
eci Phonenel ndexRepl y
} ECl Message

Indicates why a callback has been called.

ECIParam

typedef enum
eci Synt hMbde,
eci | nput Type,
eci Text Mode,
eci Di ctionary,
eci Sampl eRat e,
eci Want Phonenel ndi ces,
eci Real Worl dUnits,
eci LanguageDi al ect,
eci Nunber Mode,
eci PhrasePredi cti on,
eci NunPar ans

} ECl Par am

Specifies a synthesis state parameter for function calls that get and set synthesis state attributes.

ECIlVoiceParam

typedef enuni
eci Gender,
eci HeadSi ze,
eci Pi t chBasel i ne,
eci Pi t chFl uctuati on,
eci Roughness,

IBM Text-to-Speech

25

Data Types

eci Br eat hi ness,

eci Speed,

eci Vol une,

eci NunVoi cePar ans
} ECI Voi cePar am

Specifies a voice parameter for function calls that get and set voice attributes.

ECIMouthData

Consists of a phoneme, language and dialect of the phoneme, and mouth position data for the
phoneme. Returned by callbacks with the eciPhonemel ndexReply message. See
eciRegister Callback for more details.

In addition to the phoneme symbols defined for SPR input, the symbol & (0xA4) is aso used to
indicate end of utterance, and is sent with a set of neutral mouth position parameters.

typedef struct {
char szPhonene[eci PhonenmeLengt h+1] ;
ECI LanguageDi al ect eci LanguageDi al ect ;
unsi gned char nout hHei ght ;
unsi gned char nout hW dt h;
unsi gned char mout hUpt ur n;
unsi gned char jawQOpen;
unsi gned char teethUpper Vi si bl e;
unsi gned char teethLowerVisible;
unsi gned char tonguePosn;
unsi gned char |ipTension;

} ECI Mout hDat a;

Members

szPhoneme
Null-terminated, ASCIIZ string containing the name of a phoneme, or @ (0xA4) for end-of-
utterance.

eciLanguageDial ect
Language and dialect of this phoneme.

mouthHeight

26 IBM Text-to-Speech

Data Types

Height of the mouth and lips. Thisisalinear range from 0-255, where 0 = minimum height (that is,
mouth and lips are closed) and 255 = maximum possible height for the mouth.

mouthWidth
Width of the mouth and lips. Thisisalinear range from 0-255, where 0 = minimum width (that is,
the mouth and lips are puckered) and 255 = maximum possible width for the mouth.

mouthUpturn
Extent to which the mouth turns up at the corners, that is, how much it smiles. Thisisalinear
range from 0-255, where 0 = mouth corners turning down, 128 = neutral, and 255 = mouth is fully
upturned.

jawOpen
Angle to which the jaw isopen. Thisisalinear range from 0-255, where O = fully closed, and 255
= completely open.

teethUpperVisible
Extent to which the upper teeth are visible. Thisis alinear range from 0-255, where 0 = upper
teeth are completely hidden, 128 = only the teeth are visible, and 255 = upper teeth and gums are
completely exposed.

teethLowerVisible
Extent to which the lower teeth are visible. Thisisalinear range from 0-255, where 0 = lower
teeth are completely hidden, 128 = only the teeth are visible, and 255 = lower teeth & gums are
completely exposed.

tonguePosn
Tongue position. Thisis alinear range from 0-255, where 0 = tongue is completely relaxed, and
255 = tongue is against the upper teeth.

lipTension
Lip tension. Thisisalinear range from 0-255, where 0 = lips are completely relaxed, and 255 =
lips are very tense.

Remarks

The inventory of phoneme symbols used as the values of szPhoneme is similar but not necessarily
identical to the inventory of Symbolic Phonetic Representations (SPR) phoneme symbols. The values
of szPhoneme are taken directly from the phonemic representation generated by the IBM Text-to-
Speech TTS engine, whereas the symbols used in SPRs are normalized versions of these phonemes.

IBM Text-to-Speech 27

Data Types

In addition to the phoneme symbols used in each language, the symbol & (0xA4) is used to indicate the
end of asentence and is sent with a set of neutral mouth position parameters.

28 IBM Text-to-Speech

Synthesis Sate Parameters

Synthesis State Parameters

When you create anew ECI instance, it is given a default synthesis state. As you interact with the
instance, its state changes. You can:

» Get the current synthesis state using eciGetParam.

» Set the synthesis state directly, through eciSetParam, or indirectly, by sending annotated text in
callsto eciAddText.

This section describes the synthesis state parameters that can be passed to eciGetParam and
€ci SetParam.

eciDictionary

0: Abbreviations dictionaries (both internal and user) are used (default).

1: Abbreviations dictionaries (both internal and user) are not used.

Enables or disables the internal and user abbreviations dictionaries. You can also turn abbreviations

dictionary lookups on and off the using the ‘ daN annotation (see Dictionary Processing of
Abbreviations).

ecilnputType

0: Plain: input consists of unannotated text. Any annotations will be spelled out (e.g., 'v2 will be
pronounced " backquote vee two") (default).

1: Annotated: input text includes annotations. See Annotations for more details.

eciL anguageDialect

enum

{
eci Gener al Aneri cankngl i sh,

IBM Text-to-Speech 29

Synthesis Sate Parameters

eci BritishEnglish,
eci Castil i anSpani sh,
eci Mexi canSpani sh,
eci St andar dFrench,
eci St andar dGer man,
eci Standardltali an,
eci Mandar i nChi nese,
eci Tai waneseMandari n,
eci Brazi |l i anPort uguese
eci St andar dJapanese,
eci St andar dFi nni sh,
eci St andar dKor ean

} ECI LanguageDbi al ect

A value specifying the language and dialect. These should be of type ECIL anguageDialect. Not all
languages are available with all installations. The language defaults to the “lowest-numbered”
language installed on the system. Languages are numbered in the order specified by the
ECILanguageDialect enum.

This parameter can be set by the ‘IN annotation; see Selecting a Language and Dialect for more detail .

eciNumber M ode

0: Pronounce 4-digit numbers as “nonyears’ (e.g., “1984" would be pronounced “one thousand nine
hundred eighty four”).

1: Pronounce 4-digit numbers as “years’ (e.g., “1984” would be pronounced “ nineteen eighty four”)
(default)

This parameter can be set by the ‘tyN annotation; see Specifying Alternative Pronunciations for more
detail.

eciNumParams

Total number of EClParams. Passing eciNumParams to eciGetParam will cause a-1 (error) return,
which is an expected behavior.

30 IBM Text-to-Speech

Synthesis Sate Parameters

eciRealWorldUnits

0: Use ECI values (default).
1: Use Real World units.

Selects the units for the values of the voice parameters eciPitchBaseline, eciSpeed, and eciVolume as
either ECI units or Real World units.

eciSampleRate

0: 8000 samples per second.
1: 11,025 samples per second (default).

2: 22,050 samples per second.

eciSynthM ode

0: Sentence: The input buffer is synthesized and cleared at the end of each sentence (default).

1: Manual: Synthesis and input clearing is controlled by commands only.

eciTextM ode

0: Default: no specia interpretation (default).

1: AlphaSpell: letters and digits are spelled out, punctuation is treated normally to identify ends of
phrases and sentences, and other symbols are ignored.

2: AllSpdll: al symbols are spelled out. Note that sentence ends are not recognized in this mode.

IBM Text-to-Speech 31

Synthesis Sate Parameters

3: IRCSpdl: like AlphaSpell, except that letters are spelled out using the International Radio Code
(“apha, bravo, charlie”) rather than their conventional names.

This corresponds to the annotation ‘tsN, described in Specifying Alternative Pronunciations.

eciWantPhonemel ndices

0: Phoneme indices are not generated. (default)

1: If acallback has been registered (see eciRegisterCallback below), phoneme indices will be sent to
the callback as each phoneme is being spoken. See also the eciPhonemel ndexReply message and the
ECIMouthData type.

32 IBM Text-to-Speech

Synthesis Sate Parameters

Synthesis Sate Parameter Defaults

The following table provides a summary of the synthesis state parameters and their default behavior.

Parameter Default value | Default behavior

eci Dictionary 0 User dictionaries are used.

eci | nput Type 0 Annotations in input will be spelled out.

eci LanguageDi al ect lowest number | The lowest-numbered language/dialect on

installed the system is used.

eci Nunber Mode 1 Four-digit numbers are pronounced as
Hy%rsl!.

eci NunPar ans 0 Total number of ECIParams.

eci Real Wrl dUnits 0 ECI units are used for all voice definition
parameters.

eci Sanpl eRat e 1 The samplerateis 11,025 samples per
second.

eci Synt hMbde 0 The input buffer is synthesized and cleared
at the end of each sentence.

eci Text Mbde 0 No special spelling interpretation is
performed on the text.

eci Want Phonenel ndi ces 0 Phoneme indices are not generated.

IBM Text-to-Speech

33

Voice Parameters

Voice Parameters

Voice parameters are commands used to define and adjust individual voice characteristics. A set of
voice parameters makes a voice definition. You can create custom voices by selecting unique
combinations of voice parameters. Inaddition, there are five predefined voice definitions, as discussed
in the next section.

When you create a new ECI instance, it is given the default voice parameters. You can;

» Get the current voice parameters using eciGetVoicePar am.

» Set the voice parameters directly through eciSetVVoiceParam, or indirectly by sending annotated
text in callsto eciAddText.

This section describes the voice parameters that can be passed to eciGetVoiceParam and
€ci SetVoicePar am.

eciBreathiness
Range: 0-100

This parameter controls the amount of breathiness in the voice. The higher the value, the more
breathiness the voice has. A value of 100 produces a whisper.

This voice parameter can be changed using the annotation ‘vyN (see Selecting a \Voice or Voice
Characteristics).

eciGender

0: mae
1: female

Male and female vocal tracts have physical differences that affect the voice, some of which are
reflected in the vocal tract setting. Other differences between male and female voices, namely pitch
and head size, are controlled independently.

34 IBM Text-to-Speech

Voice Parameters

This voice parameter can be changed using the annotation ‘vgN (see Selecting a \Voice or Voice
Characteristics).

eciHeadSize
Range: 0-100

This parameter controls the size of the head for the speaker, changing the perceived pitch and other
acoustic characteristics of the voice. A large number indicates a large head and a deeper voice.

Thisvoice parameter can be changed using the annotation ‘vhN (see Selecting a Voice or Voice
Characteristics).

eciNumVoicePar ams

Total number of ECIVoiceParams. Passing eciNumVoiceParams to eci GetVoiceParam will cause a-1
(error) return, which is an expected behavior.

eciPitchBasdine

Range: 0-100 (ECI units); 40-422 (Real World Units = cycles per second)

Changing the pitch baseline will affect the overall pitch of the voice. The larger the pitch value, the
higher the pitch of the voice.

Thisvoice parameter can be changed using the annotation ‘ vbN (see Selecting a Voice or Voice
Characteristics).

eciPitchFluctuation

Range: 0-100

IBM Text-to-Speech 35

Voice Parameters

This parameter controls the degree of pitch fluctuation in the voice. A value of zero produces avoice
with no pitch fluctuation, resulting in monotone speech. A high value produces a voice with large pitch
fluctuations, typical of excited speech.

This voice parameter can be changed using the annotation ‘vfN (see Selecting a Voice or Voice
Characteristics).

eciRoughness
Range: 0-100

This parameter adds roughness or "creakiness' to the voice. A low value produces a smooth voice,
while a high value is rough or scratchy.

Thisvoice parameter can be changed using the annotation ‘vrN (see Selecting a Voice or Voice
Characteristics).

eci Speed
Range: 0-250 (ECI Units); 70-1297 (Real World Units = words per minute)
Speed controls the number of words spoken per minute.

Thisvoice parameter can be changed using the annotation ‘vsN (see Selecting a Voice or Voice
Characteristics).

eciVolume:

Range: 0-100 (ECI Units); 1-65535 (Real World Units)

The smaller the value, the lower the volume. Louder settings may cause distortion when combined
with other attribute changes.

36 IBM Text-to-Speech

Preset Voice Definitions

This voice parameter can be changed using the annotation ‘vvN (see Selecting a Voice or Voice
Characteristics).

Preset Voice Definitions

Voice definitions are sets of parameter values that make an individual voice. There are five preset
voice definitions for each dialect of each language (three more are reserved for future use).

Each voice definition contains a set of parameter values that control the attributes of the voice.

The preset voices in each language are:

1. Adult Malel

2. Adult Female 1
3.Child 1

4. Adult Male 2

5. Adult Mae3

6. Adult Female 2
7. Elderly Female 1
8. Elderly Mae 1

Voice Parameter Defaults

The following chart shows the voice definition parameters for all languages, except as noted:

1 2 3 4 5 6 7 8
Voice Adult Adult Adult Adult Adult Elderly Elderly
Parameters Male 1 Femalel | Child1 Male 2 Male3 Female2 | Femalel | Malel
Breathiness o** 50 0 0 0 40 40 20
Gender 0 1 1 0 0 1 1 0
Head size 50 50 22 86 50 56 45 30

IBM Text-to-Speech

37

Preset Voice Definitions

1 2 3 4 5 6 7 8
Voice Adult Adult Adult Adult Adult Elderly Elderly
Parameters Male 1 Femalel | Child 1 Male 2 Male 3 Female2 | Femalel | Malel
Pitch 65* 81 93 56 69 89 68 61
Baseline
(ECI units)
Pitch 30 30 35 47 34 35 30 44
Fluctuation
Speed 50 50 50 50 70 70 50 50
(ECI units)
Volume 92 100 20 93 92 95 20 90
(ECI units)

*In French, the Pitch Baseline parameter is69. ** |n Taiwanese Mandarin, the Breathiness paramter is
34.

38 IBM Text-to-Speech

Table of Functions

Table of Functions

This table outlines the avail able ECI functions. Detailed information about each function can be found
in the Alphabetical Index of Functions.

System Control

Use the following functions for system control

Function
eci DeactivateFilter

Description
Disables the specified filter for the ECI instance.

eci New Creates a new ECI instance and returns a handleto it.

eci NewEx Creates a new instance of ECI and returns ahandle to it.
The client indicates the language, dialect and character set
for the new engine instance

eci Reset Resets the ECI instance to the default state.

eci SpeakText

Synthesizes text to the default audio device.

eci SpeakText Ex

Synthesizes text to the default audio device with ability for
selection of language dialect and character set of its text

Synthesis Control

Use the following functions for Synthesis Control:

Function
eci AddText

Description
Appends new text to the input buffer.

eci Cl ear | nput

Clears the input buffer.

eci Gener at ePhonenes

Converts text to phonemes.

eci Get | ndex

Returns the last index reached in an output buffer.

eci | nsert| ndex

Inserts an index into an input buffer.

eci Pause

Pauses or unpauses speech synthesis and playback.

IBM Text-to-Speech

39

Table of Functions

Function Description
eci Speaki ng Determines whether synthesisisin progress.
eci St op Stops synthesis.

eci Synchroni ze

Waits for an ECI instance to finish processing its

output and then synchronizes it with adevice.

eci Synt hesi ze

Starts synthesis of text in an input buffer.

eci Synt hesi zeFi |l e

Synthesizes the contents of afile.

Output Controal

Use the following functions for output control:.

Function
eci Set Qut put Buf f er

Description
Sets an output buffer as the synthesis destination.

eci Set Qut put Devi ce

Sets an audio output hardware device asthe
synthesis destination.

eci Set Qut put Fi | enane

Sets an output file as the synthesis destination.

Speech Environment Parameter Selection

Use the following functions for speech environment parameter selection:

Function
eci Get Def aul t Par am

Description

Returns the default values for an environment
speech parameter.

eci Get Par am

Returns the value of an environment parameter.

eci Set Def aul t Par am

Sets the default values for an environment
speech parameter.

eci Set Par am

Sets an environment parameter.

40

IBM Text-to-Speech

Table of Functions

Voice Parameter Control

Use the following functions for voice parameter control:

Function
eci CopyVoi ce

Description
Makes a copy of a set of voice parameters.

eci Get Voi ceName

Returns the voice name and then copiesit to aname
buffer.

eci Get Voi cePar am

Returns avoice parameter.

eci Set Voi ceName

Sets a voice parameter.

Dynamic Dictionary Maintenance

Use the following functions for dictionary maintenance (for Asian languages such as Chinese and
Japanese, use the functions that end with the letter A):

Function
eci Del eteDi ct

Description
Deletes a specified dictionary set.

eci Di ct Fi ndFi r st

Retrieves the first entry in adictionary.

eci Di ct Fi ndFi rst A

Retrieves the first entry in a Chinese or Japanese
dictionary.

eci Di ct Fi ndNext

Retrieves the next entry in adictionary.

eci Di ct Fi ndNext A

Retrieves the next entry in a Chinese or Japanese
dictionary.

eci Di ct Lookup

Returns a pointer to the trandation value for akey.

eci Di ct LookupA

Returns a pointer to the Chinese or Japanese
translation value for akey.

eci GetDi ct

Returns a handle to an active dictionary set.

eci LoadDi ct

Loads a dictionary volume.

eci NewDi ct

Creates a new dictionary set for agiven ECI handle.

eci SaveDi ct

Writes the contents of a dictionary volumeto afile.

IBM Text-to-Speech

41

Table of Functions

Function Description
eci Set Di ct Setsadictionary set as the current dictionary set for
agiven ECI instance and the active language.
eci Updat eDi ct Updates a dictionary volume with a key/translation
pair.
eci Updat eDi ct A Updates a Chinese or Japanese dictionary with a
key/trandation pair.
Diagnostics
Use the following table for diagnostics:
Functions Description
eciCearErrors Clears error bits.
eci Error Message Returns an error message describing the last error
encountered.
eci ProgSt at us Returns a set of error-reporting bits.
eci Test Phrase Synthesizes atest phrase.
eci Ver si on Returnsthe IBM TTS version number.

Callback

Use the following function to register callbacks:

Function Description
eci Regi st er Cal | back Registers a callback function with the ECI instance.

42 IBM Text-to-Speech

Table of Functions

Custom Filters

Use the following functions to use custom filters:

Function Description
eciDeactivateFilter Disables the specified filter for the ECI instance.
eciDeleteFilter Deletes a specified filter handle, deactivating all

transformation performed by thisfilter if it isactive,
and freeing all resources used by thefilter.

eciGetFilteredText Returns the resulting filtered text for the input string
processed by the specified filter. This function
alows client applications to determine the text that
will be sent to the synthesis engine after filtering.

eciNewFilter Creates anew instance of an ECI Filter and returnsa
handleto it.

eciActivateFilter Enables the specified filter for the ECI instance.

eciUpdateFilter Allow runtime update of the token replacement

applied to known fields.

IBM Text-to-Speech 43

Alphabetical Index of Functions

Alphabetical Index of Functions

Following is an al phabetical description of the syntax and semantics of all ECI functions. Refer to the
Table of Functions to find the function names associated with specific operations.

Parameters

Unless otherwise specified, valid ECIHand parameters are assumed to be non-NULL (not equal to
NULL_ECI_HAND), and all pointers are assumed to be non-NULL. All strings arein ASCIIZ format.

Calling Conventions

On Win32 platforms, ECI functions are defined as __stdcall, formerly known as the PASCAL calling
convention. Refer to the Microsoft Visual C++ Programmers’ Guide for more information about this
convention.

On UNIX platforms, ECI functions default to ordinary C functions.

44 IBM Text-to-Speech

Alphabetical Index of Functions

eciActivateFilter

Enables the specified filter for the ECI instance.

Syntax
ECIFilterError eci ActivateFilter (
ECl Hand hEngi ne,

ECI Fi | t er Hand whi chFi | t er Hand
)

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichFilterHand
Handle to indicate the ECI Filter Instance that is going to be transforming the text. Thisisthe
value returned by eciNewFilter.

Return Values

ECIFilterError
One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks

Multiple filter can be active at the same time.

See Also

eciNew, eciNewEx, Custom Filters

IBM Text-to-Speech 45

Alphabetical Index of Functions

eciAddText

Appends new text to the input buffer.

Syntax

Bool ean eci AddText (
ECl Hand eci Handl e,
ECl | nput Text text

);

Parameters

eciHandle
Handle to the speech synthesis engine instance. Thisisthe value returned by eciNew or
eciNewEX.

text
Non-NULL pointer to the text to be synthesized (a null-terminated C-string).

Return Values

true
A copy of your text was added to the input buffer.

false
Failure. Check eciError M essage and/or eciProgStatus for additional error information.

Remarks

Appends new text to the end of the input buffer. When synthesized, the newly-added text will be
spoken with the voice definition specified by the state of the active voice when the text is inserted.

You can add more text while the engine is sill synthesizing previously added text. Sentences may be
split between callsto eciAddText, but words may not. See eciSynthesize below for more information
on sentence parsing.

46 IBM Text-to-Speech

Alphabetical Index of Functions

Example
#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

//print a string to stdout and wait for any key
voi d showMessage(char *nsg)

{
printf(msg);
getchar ();

}

i nt

{

mai n(int argc, char *argv[])

ECI Hand nyEC ;

FI LE *nyFP;

char errorMsg[100];

myECI = eciNew(); // create a new EClI Hand
if (NULL_ECI _HAND == nyEC)
showMessage("eci New failed.\n");

el se
{
if (NULL !'= (nyFP = fopen(argv[1], "rt")))
char buffer[1000];
eci Set Param(nyECI, eci SynthMode, 1); //set

whi l e(fgets(buffer

{
if (!eci AddText (nyECI, buffer))
{
eci Error Message(nyECI, errorMsgQ);
showvessage(errorMsg);
}
}

conti nued on next page

1000, nmyFP)) //read entire file

manual node

IBM Text-to-Speech

47

Alphabetical Index of Functions

eci Synt hesi ze(nmyECI); //start synthesis
eci Synchroni ze(nyECl); //wait for synthesis conplete
fclose(nyFP);
}
eci Del ete(nyEClI);//clean up
}
}

See Also

eci Synthesize, eci Synchronize, eci SetParam, eci Set\VVoiceName, eciCopyVoice, eciErrorM essage,
eciProgStatus

48 IBM Text-to-Speech

Alphabetical Index of Functions

eciClearErrors

Resets error-reporting bits.

Syntax

voi d eci Cl ear Errors(
ECl Hand hEngi ne,

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

None.

See Also

eciErrorM essage, eciProgStatus

IBM Text-to-Speech 49

Alphabetical Index of Functions

eciClear I nput

Clears the input buffer. Does not abort any synthesis already in progress.

Syntax

Bool ean eci d ear | nput (
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
The input buffer has been cleared.

false
An error occurred.

Remarks
The input buffer can be cleared only if the ECI instance isin manua mode. In automatic mode, the
input buffer is transferred immediately to the synthesis engine and cannot be cleared.

Other functions that clear the input buffer are: eciDelete, eciReset, and eciStop.

When this function succeeds, text that has been added to the input buffer in manual mode is removed
from the buffer unless it has already been sent to the engine. All resources associated with the input
buffer are returned to the system.

50 IBM Text-to-Speech

Alphabetical Index of Functions

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

/[/print a string to stdout and wait for any key

voi d showMessage(char *nsg)

{
printf(msg);
getchar () ;

}

int main(int argc, char *argv[])
{
ECl Hand nyEC ;
FI LE *nyFP;
char errorMsg[100];

myECI = eciNew();//create a new ECl Hand
if (NULL_ECI _HAND == nyECl)
showvessage("eci New failed.\n");
el se
{
if (NULL !'= (nmyFP = fopen(argv[1], "rt")))
{
char buffer[1000];
eci Set Paran(nyECI, eci SynthMode, 1); //set nmanual node
whil e(fgets(buffer, 1000, nyFP))//read entire file

{
if (!eci AddText (nyECI, buffer))
{
eci Error Message(nyECI, errorMsg); showMessage(errorMsg);
showvessage(errorMsg);
}
}

conti nued on next page

IBM Text-to-Speech 51

Alphabetical Index of Functions

continued from previ ous page
if (ferror(nyFP))
{
showvessage("Error reading input file\n");
if (!'ecidearlnput(nyEC))
showvessage("Error clearing input buffer\n");

}
el se
{
eci Synt hesi ze(nyECl); //start synthesis
eci Synchroni ze(myECl); //wait for synthesis conplete
}
fclose(nyFP);
}
eci Del ete(nmyECI); //clean up
}
}
See Also

eciDeactivateFilter, eciReset, eciStop

52

IBM Text-to-Speech

Alphabetical Index of Functions

eciCopyVoice

Makes a copy of a set of voice parameters.

Syntax

Bool ean eci CopyVoi ce(
ECl Hand hEngi ne,

i nt voi ceFrom

int voiceTo

);

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

voiceFrom
Voiceto copy. You can copy a preset voice (1-3, 7-8), a user-defined voice (9-16), or the active
voice (0).

voiceTo
Voice to store the copy of voiceFrom. Either O (the active voice), or 9-16 (a user-defined voice).

Return Values

true
The voice was copied.

false
Failure. Parameter may be out of range.

Remarks

A “voice” isaset of voice parameters. Voice O indicates the active voice. When you add text to the
input buffer, it is synthesized with voice 0.

IBM Text-to-Speech 53

Alphabetical Index of Functions

Each IBM Text-to-Speech language comes with five preset voices. The default voiceisvoice 1. When
you create anew ECI instance, voice 1 is automatically copied to voice 0 and becomes the active

voice. The user-defined voices are initially undefined.

You can change the parameters of the active voice, and of the user-defined voices, by calling
eci SetVoicePar am. You cannot change any of the preset voices with eciSetVoiceParam. If you want
to change any of the preset voices, then you must first use eciCopyVoice to copy it to either the active

voice or one of the user-defined voices.

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

//print a string to stdout and wait for any key
voi d showMessage(char *nsg)

{
printf(msg);
getchar () ;

}

conti nued on next page

IBM Text-to-Speech

Alphabetical Index of Functions

continued from previ ous page

int main(int argc, char *argv[])

{
ECl Hand nyEC ;
int voice;
char buffer[64];

myECI = eci New();
/lcreate a new ECI Hand
if (NULL_ECI _HAND == nyECl)
showMessage("eci New failed.\n");
el se
{
eci AddText (nmyECl, "Default voice.");
for(voice = 1; voice <= ECI_PRESET VO CES; voice++)

{
if (!eci CopyVoice(nyEC, voice, 0))
{
sprintf(buffer, "Cannot not copy voice %d to O\n",
showMessage(buffer);
}
el se
{
sprintf(buffer, "Preset voice %l.", voice);
eci AddText (nyECI, buffer);
}
}

eci Synt hesi ze(nyECl); //start synthesis
eci Synchroni ze(nmyECl);//wait for synthesis conplete
eci Del ete(nmyECI);//clean up

}
}

voi ce);

See Also

eci SetVVoiceName, eci GetVoiceParam, eciGetVVoiceName

IBM Text-to-Speech

55

Alphabetical Index of Functions

eciDeactivateFilter

Disables the specified filter for the ECI instance.

Syntax
ECIFilterError eciDeactivateFilter (
ECl Hand hEngi ne,

ECI Fi | t er Hand whi chFi |l t er Hand
)

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichFilterHand
Handle to indicate the ECI Filter Instance to disable. Thisisthe value returned by eciNewFilter.

Return Values

ECIFilterError
One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks

See Also

eciActivateFilter, eciNew, eciNewEXx, Custom Filters

56 IBM Text-to-Speech

Alphabetical Index of Functions

eciDdete

Terminates synthesis and deletes the ECI instance.

Syntax

ECl Hand eci Del et e(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

NULL_ECI_HAND
The ECI instance was successfully destroyed.

Remarks

Thisfunction closes and returnsto the system all resources associated with this ECI instance, including
memory, handles, etc. Any synthesis which is underway when this function is called it isimmediately
terminated.

IBM Text-to-Speech 57

Alphabetical Index of Functions

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci. h"

voi d showMessage(char *nsg)

{
printf(msg);
getchar () ;

}

int main(int argc, char *argv[])

{
ECI Hand nyEC ;

myECI = eci New();

if (NULL_ECI _HAND == nyEC)
showvessage("eci New failed.\n");

el se

{

showMessage("eci New succeeded!\n");

eci Synt hesi ze(nyECl);
eci Synchroni ze(nyECl);
eci Del ete(nyEC);

eci AddText(nyECI, "This is a test.");

See Also

eciNew, eciStop, eciReset

58

IBM Text-to-Speech

Alphabetical Index of Functions

eciDeleteDict

Deletes a specified dictionary set, deactivating all dynamic dictionary lookups for this ECI instance.

Syntax

ECI Di ct Hand eci Del et eDi ct (
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set to be deleted.

Return Values

NULL_DICT_HAND
The requested dictionary set was successfully deleted.

See Also

eciNewDict, eciGetDict

IBM Text-to-Speech 59

Alphabetical Index of Functions

eciDeleteFilter

Deletes a specified filter handle, deactivating all transformation performed by thisfilter if it is active,
and freeing all resources used by the filter.

Syntax

ECI FilterHand eciDeleteFilter (
ECl Hand hEngi ne,
ECI Fi | t er Hand whi chFi | t er Hand

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be deleted. Thisisthe value returned by eciNewFilter.

Return Values

ECIFilterHand
NULL_FILTER_HAND.

Remarks

See Also

eciNewFilter, eciNew, eciNewEx, Custom Filters

60 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictFindFir st

Retrievesthe first entry in adictionary volume.

Syntax

ECI Di ct Error eci Di ct Fi ndFirst(
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECl | nput Text *ppKey,
ECl | nput Text *ppTransl ati onVal ue

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

ppKey
Pointer to the address of the key to the first entry in this dictionary. The key is a constant C-string.
pptranslationValue
Pointer to the address of the trandation value of the first entry in this dictionary. The translation
valueis aconstant C-string.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

IBM Text-to-Speech 61

Alphabetical Index of Functions

Remarks

Retrievesthe first dictionary entry. The ppKey and ppTrand ationValue will receive pointers to their
corresponding strings in the dictionary. These should not be modified (or deallocated), as the
dictionary may become corrupted and synthesis may fail. ECIDictError indicates whether any errors
occurred in the call to eciDictFindFir <.

Refer to the section on User Dictionaries for more information about the ppK ey and
ppTranglationValue parameters.

See Also

eciNewDict, eciSetDict, eciDictFindNext, eciUpdateDict, User Dictionaries, Symbolic Phonetic
Representations

62 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictFindFir stA

Retrievesthe first entry in adictionary volume. This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax

ECI Di ct Error eci Di ct Fi ndFirstA(
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECl | nput Text *ppKey,
ECI | nput Text *ppTransl ati onVal ue
ECI Part Of Speech *pPart OF Speech

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

ppKey
Pointer to the address of the key to the first entry in this dictionary. Thisis the address of the
variable where a pointer to a constant buffer is returned.

ppTranslationvalue
Pointer to the address of the tranglation value of the first entry in thisdictionary. Thisisthe address
of the variable where a pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECIPartOf Speech enumeration, which specifies the grammatical category.

IBM Text-to-Speech 63

Alphabetical Index of Functions

Return Codes

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

Thisfunction supportsall dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function starts scanning through the dictionary from the
beginning and retrieves thefirst entry. The ppKey and ppTrandationVal ue parameters receive pointers
to their corresponding strings in the dictionary. These should neither be modified nor deall ocated
because the dictionary can become corrupted, causing speech synthesis to fail. ECIDictError indicates
whether any errors occurred in the call to eciDictFindFir stA.

The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, ppKey and ppTrandlationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, ppKey and ppTranslationValue should be an 8-
bit, NULL-terminated C string.

See Also

eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictL ookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA

64 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictFindNext

Retrieves the next dictionary entry following the last entry retrieved.

Syntax

ECI Di ct Error eci Di ct Fi ndNext (
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECl | nput Text *ppKey,
ECl | nput Text *ppTransl ati onVal ue

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

ppKey
Pointer to the address of the key to the next entry in this dictionary. The key is a constant C string.
ppTranslationValue
Pointer to the address of the trandation value of the next entry in this dictionary. The trandation
valueis aconstant C string.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

IBM Text-to-Speech 65

Alphabetical Index of Functions

Remarks

Theinput and output parameters have the same meaning as they do for the eciDictFindFir st function.
Thefirg call to this function should be preceded by acall to eciDictFindFir st. Entries are not returned
in any particular order. An ECIDictError isreturned which indicates any errors that occurred in the
call to eciDictFindNext. DictNoEnNtry isreturned if there are no more entriesin the dictionary.

Parameter and return code enumerations are declared in eci.h.

See Also
eciNewDict, eciDictFindFirst, eciUpdateDict

66 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictFindNextA

Retrieves the next dictionary entry following the last entry retrieved. This function supports all
dictionary volumes, including Main Extension Dictionary (eciMainDictExt), which is used for Asian
languages.

Syntax

ECI Di ct Error eci Di ct Fi ndNext A(
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECl | nput Text *ppKey,
ECl | nput Text *ppTransl ati onVal ue
ECl Part Of Speech *pPart OF Speech

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

ppKey
Pointer to akey to the next entry in this dictionary. Thisis the address of the variable where a
pointer to a constant buffer is returned.

ppTranslationvalue
Pointer to the value of the next entry in this dictionary. Thisis the address of the variable where a
pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECI PartOfSpeech enumeration, which specifies the grammatical category.

IBM Text-to-Speech 67

Alphabetical Index of Functions

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

Thisfunction supportsall dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function retrieves the next entry in the dictionary. The input
and output parameters have the same meaning as they do for eciDictFindFir stA. Thisfunction returns
DictNoEntry if there are no more entriesin the dictionary. Thefirst call to this function should be
preceded by acall to eciDictFindFirstA. Entries are not returned in any particular order. Thisfunction
returns ECIDictError if any errors occurred in the call to eciDictFindNextA.

The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, ppKey and ppTrandlationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, ppKey and ppTranslationValue should be an 8-
bit, NULL-terminated C string.

Parameter and return code enumerations are declared in eci.h.

See Also

eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictL ookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA

68 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictL ookup

Returns a pointer to the trandation value for key.

Syntax

const char* eci Di ct Lookup(

ECl Hand hEngi ne,

ECI Di ct Hand di ct Handl e,

ECI Di ct Vol une whi chDi cti onary,
ECI | nput Text key

);

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

key
Pointer to a key to the entry whose value you want. The key isanull-terminated C string.

Return Values

NULL
The key is not in the dictionary.

non-NULL
A pointer to the tranglation value for key.

IBM Text-to-Speech 69

Alphabetical Index of Functions

Remarks

Returns a pointer to the translation value for key or NULL if the key is not in the dictionary. The string
referenced by the return value should not be modified, as the dictionary may become corrupted and
synthesis may fail. Parameter and return code enumerations are declared ineci . h.

See Also
eciNewDict, eciUpdateDict

70 IBM Text-to-Speech

Alphabetical Index of Functions

eciDictL ookupA

Returns a pointer to the trandation value for pkey.This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax

ECI Di ct Error eci Di ct LookupA(
ECl Hand hEngi ne,
ECI Di ct Hand hDi ct,
ECI Di ct Vol une Di ct Vol ,
ECl | nput Text pKey,
ECl | nput Text *ppTransl ati onVal ue,
ECI Part Of Speech *pPart O Speech

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisis the value returned by eciNew or
eciNewEX.

hDict
Handle to the dictionary set. Thisisthe value returned by eciNewDict or eciGetDict.

Dict\vol
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

pKey
Pointer to a key to the entry whose value you want. Thisisa NULL-terminated buffer containing
the key.

ppTranslationvalue
Pointer to the value of the next entry in thisdictionary. Thisis the address of the variable where a
pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECIPartOf Speech enumeration, which specifies the grammatical category.

IBM Text-to-Speech 71

Alphabetical Index of Functions

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

Thisfunction supportsall dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function returns a pointer to the translation value for key, or
NULL if the key isnot in the dictionary. The string referenced by the return value should not be
modified because the dictionary can become corrupted, causing speech synthesisto fail.

The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, pKey and ppTrand ationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, pKey and ppTranslationVal ue should be an 8-
bit, NULL-terminated C string.

See Also

eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictL ookupA , eciLoadDict, eciSaveDict,
eci SetDict, eciUpdateDictA

72 IBM Text-to-Speech

Alphabetical Index of Functions

eciError M essage

Copies an error message describing the last error encountered into the buffer as an ASCIIZ string.

Syntax

voi d eci Error Message(
ECl Hand eci Handl e,
voi d* buffer

);

Parameters

eciHandle
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

buffer
Pointer to the buffer to receive the error message. This buffer must have room for at least 100
characters.

Return Values

None.

Remarks

Copies an error message describing the latest error into the buffer pointed to by buffer. The buffer will
contain an empty string if there have been no errors. If eciHandleisNULL_ECI_HAND, copiesa
message about insufficient memory to buffer.

See Also

eciClearErrors, eciProgStatus

IBM Text-to-Speech 73

Alphabetical Index of Functions

eciGener atePhonemes

Converts text to phonemes.

Syntax

Bool ean eci Gener at ePhonenes(
ECI Hand eci Handl e,

int size,

voi d* buffer

);

Parameters

eciHandle
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

size
Size of buffer (in bytes). 0 cancels phoneme generation

buffer
Pointer to the buffer to receive phonemes. NULL cancels phoneme generation.

Return Values

true
Phoneme generation was successfully performed.

false
Failure. Check eciError M essage and/or eciProgStatus for additiona error information. See
remarks.

Remarks
The eciSynthM ode must be set to manual using eciSetPar am before text is added to the input buffer.

A callback should be registered with eciRegister Callback before you call eciGener atePhonemes.
Synthesis may not be underway when this function is called.

74 IBM Text-to-Speech

Alphabetical Index of Functions

Thetext in the synthesis engine’s input buffer is converted to phonemes and placed in the designated
phoneme buffer. When your buffer isfull, or al the text has been converted, whichever comesfirst,
your callback is called with an eciPhonemeBuffer message. If your phoneme buffer cannot hold all
the generated phonemes, your callback is called repeatedly. You need to process the contents of your
phoneme buffer every time your callback is called; otherwise, the contents may be overwritten as the
input text continues to be converted to phonemes.

eciGener atePhonemes returns synchronously when phoneme conversion is complete.

Common conditions that cause this function to return "false";

* eciSynthModeis set to sentence.
* No calback isregistered.
e Synthesisisaready underway.

See Also
eciAddText, eciSetParam, eci Speaking, eciRegisterCallback, eciProgStatus, eciErrorMessage

IBM Text-to-Speech 75

Alphabetical Index of Functions

eciGetAvailablel anguages

Returns and identifies the number of installed and available |anguages.

Syntax

i nt (ECI LanguageDi al ect *palangs,
i nt *pi NunmLangs
);

Parameters

paLangs
Pointer to an array of installed languages. Each element in the array is of type
ECILAnNguageDialect enumeration (defined in eci.h).

piNumLangs
[On input] Pointer to the number of available elementsin the paLangs array. If this number isless
than the number of available languages, then palangs contains only that number of languages
(starting from the lowest-numbered language).

[On output] Pointer to how many elements were filled in. If the number is 0 on input, then the
number on output is the size required to hold the array.

Return Values

0
Success.

ECI_ PARAMETERERROR
An error occurred because of improper parameters.

Remarks

This function allows a developer to query the installed languages without incurring the overhead of
loading alanguageto seeif it is present. It isthe caller's responsibility to manage the dynamic memory
that is required to hold the array.

76 IBM Text-to-Speech

Alphabetical Index of Functions

See Also
N/A

IBM Text-to-Speech 77

Alphabetical Index of Functions

eciGetDefaultParam

Returns the default value for an environment speech parameter.

Syntax

i nt eci Get Def aul t Par an{
ECI Par am Par am

);

Parameters

Param
Parameter value taken from the existing EClParam enumeration in eci.h. These are the
same enumeration values that are used by eci SetParam and eci GetParam.

Return Values

>=0
The default Param value.

-1
An error. Param is out of range.

Remarks
N/A

See Also
N/A

78 IBM Text-to-Speech

Alphabetical Index of Functions

eciGetDict

Returns the handle to the active dictionary set for the current language.

Syntax

ECI Di ct Hand eci Get Di ct (
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

Non-null
A vdid dictionary set handle.

NULL_DICT_HAND
Thereisno active dictionary set for thisinstance.

Remarks

This function returns the handle to the currently active dictionary set for the current language, or
NULL_DICT_HAND, if there is no active set. The synthesis engine does not perform any dynamic
dictionary lookups until adictionary set is established as the current set using eciSetDict.

See Also
eciNewDict, eciSetDict

IBM Text-to-Speech 79

Alphabetical Index of Functions

eciGetFilteredText

Returns the resulting filtered text for the input string processed by the specified filter. This function
allows client applications to determine the text that will be sent to the synthesis engine after filtering.

Syntax

ECIFilterError eci GetFilteredText (
ECI Hand hEngi ne,
ECI Fi | t er Hand whi chFi | t er Hand,
ECI | nput Text i nput,
ECl | nput Text* filteredText

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be used. Thisisthe value returned by eciNewFilter.

input
Text to apply filter to.

filteredText
The resulting text after the specified filter is applied. The value of filteredText is only valid until
the next call to eciGetFilteredText or eciDel eteilter.

Return Values

ECIFilterError
One of the values enumerated in type ECIFilter Error. See Data Types for this enumeration.

Remarks

For static filters, this function must be called first on the text to befiltered. The resulting text can then
be sent to the synthesis engine using eciAddText.

80 IBM Text-to-Speech

Alphabetical Index of Functions

See Also

eciAddText, eciNewFilter, eciNew, eciNewEx, Custom Filters

IBM Text-to-Speech 81

Alphabetical Index of Functions

eciGetlndex

Returns the last index reached in an output buffer.

Syntax

i nt eci Getlndex(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

0
No indices have been encountered yet.

non-zero
The last index encountered in the output buffer.

Remarks

Returns the last index reached in the output buffer, or O if no index has been encountered. All inserted
indices must be nonzero integer values; thus, the return value of eciGetlndex is unambiguous.

See Also

ecilnsertlndex

82 IBM Text-to-Speech

Alphabetical Index of Functions

eciGetParam

Returns the value of an environment parameter.

Syntax

i nt eci Get Par am
ECl Hand hEngi ne,
ECl Par am eci Par anet er

)

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

eciParameter
One of the values enumerated in type ECIlParam. See Data Types for this enumeration.

Return Values

>=0
The eciParameter vaue.

-1
An error occurred. Parameter may be out of range.

Remarks

Getsthe value of an environment parameter. Returns avalue greater than or equal to 0 on success, or -1
on failure.

See Also

Synthesis State Parameters

IBM Text-to-Speech 83

Alphabetical Index of Functions

eciGetVVoiceName

Copies the voice name to a name buffer.

Syntax

Bool ean eci Get Voi ceName(
ECl Hand hEngi ne,

int voi ceNum

voi d* naneBuffer

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

voiceNum
Number of the voice whose name you want: 0, 1-8, 9-16.

nameBuffer
Pointer to the buffer where a null-terminated C string contai ning the name will be copied. Must be
non-NULL.

Return Values

true
The text string was successfully copied to the nameBuffer.

false
An error occurred. Check for invalid or out of range parameter.

Remarks

Your nameBuffer should be ECI_VOICE_NAME_LENGTH + 1 byteslong. Otherwise, along voice
name may corrupt memory.

84 IBM Text-to-Speech

Alphabetical Index of Functions

See Also

eci Set\VVoiceName, Voice Parameters

IBM Text-to-Speech 85

Alphabetical Index of Functions

eciGetVoiceParam

Returns a voice parameter.

Syntax

i nt eci Get Voi cePar am
ECl Hand hEngi ne,
int voi ceNum
ECl Voi cePar am voi cePar anet er

)

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

voiceNum
The number of the voice whose parameter value you want. O, 1-8, 9-16

voi ceParameter
One of the values enumerated in type ECIVoicePar am. See Data Types for this enumeration.

Return Values
>=0

The voice parameter value you requested.
-1

Failure. Parameter may be out of range.

Remarks

Getsthe specified voice parameter value for the specified voice. A voice of 0 indicates the active
voice.

86 IBM Text-to-Speech

Alphabetical Index of Functions

See Also

eci Set\VVoiceName, Voice Parameters

IBM Text-to-Speech 87

Alphabetical Index of Functions

ecil nsertl ndex

Inserts an index into the input buffer.

Syntax

Bool ean ecil nsert | ndex(
ECl Hand hEngi ne,
i nt i ndexNum

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.
indexNum
Unigque index number to be inserted. If it is not unique, you may later be unable to determine
which index is being returned.

Return Values

true
Index inserted successfully.

false
Error inserting index. Check eciError M essage and/or eciProgStatus for additional error
information.

Remarks

Appends an index, with the specified number, to the input buffer. After al the text prior to this index
has been synthesized, an ecil ndexReply message containing thisindex number is sent to your callback
function. If you are synthesizing to an audio device, then the index reply messageis sent at about the
same time the text is being heard on the speakers.

Indices must be nonzero integer values.

88 IBM Text-to-Speech

Alphabetical Index of Functions

If no callback has been registered, theindex reply message cannot be sent. You can still query the latest
index with eciGetl ndex.

See Also
eciGetlndex, eciRegisterCallback, eciErrorMessage, eciProgStatus

IBM Text-to-Speech 89

Alphabetical Index of Functions

eciLoadDict

Loads a dictionary volume.

Syntax

ECI Di ct Error eci LoadDi ct (

ECl Hand whi chECI ,

ECI Di ct Hand whi chDi ct Hand,
ECI Di ct Vol une whi chDi cti onay,
const void* fil ename

);

Parameters

whichieCl
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichDictHand
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

filename
Pointer to a null-terminated C string containing the name of adictionary file, which may contain a
path.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

L oadsthe dictionary volume identified by whichDictionary from the file named by filename. Theinput
file consists of ASCII text with one dictionary entry on each line. Each input line contains a key and
the corresponding trandlation value, separated by atab character. See User Dictionaries for afull

90 IBM Text-to-Speech

Alphabetical Index of Functions

discussion of valid keys and trand ation values within each type of dictionary. An ECIDictError is
returned, which indicates any error that occurred in the call to eciL cadDict.

See Also

eciNewDict, eciSetDict, eciSaveDict, eciDeleteDict, eciDictFindFirst, eciDictFindNext,
eciDictL ookup

IBM Text-to-Speech 91

Alphabetical Index of Functions

eciNew

Creates a new instance of ECI and returns ahandle to it.

Syntax

ECl Hand eci New(
voi d

);

Parameters

None.

Return Values

ECIHand
Handle to an ECI instance. This same value must be used in al subsequent calls to this ECI
instance, such as eciAddText, eciSynthesize, eciSynchronize, eciDelete, and so on.

NULL_ECI_HAND
An unrecoverable error occurred. Usually, thisis because ECI could not locate the synthesis
engine.

Remarks

Thisistypicaly thefirst call you will make to the ECI API unless you are using eciSpeak Text. It
creates anew ECI instance with default attributes. See Synthesis State Parameter Defaults.

92 IBM Text-to-Speech

Alphabetical Index of Functions

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

voi d showMvessage(char *nsg)

{
printf(msg);
getchar ();

}

int main(int argc, char *argv[])

{
ECI Hand nyEC ;

myECI = eci New();

if (NULL_ECI _HAND == nyECl)
showMessage("eci New failed.\n");

el se

{
showessage("eci New succeeded!\n");
eci AddText(nyECI, "This is a test.");
eci Synt hesi ze(nyECl);
eci Synchroni ze(nyECl);
eci Del ete(nyEC);

See Also

eciAddText, eciSynchronize, eciDeactivateFilter, Synthesis State Parameters

IBM Text-to-Speech 93

Alphabetical Index of Functions

eciNewEXx

Creates a new instance of ECI and returns a handle to it. The client indicates the language, dialect and
character set for the new engine instance.

Syntax

ECl Hand eci NewEx(
EClI LanguageDi al ect val ue

);

Parameters

value
Value to indicate the ECI language dia ect.

Return Values

ECIHand
Handle to one instance of the synthesis engine. This same value must be used in all subsequent
callsto thisinstance of the synthesis engine, such as eciAddText, eciSynthesize, eciSynchronize,
eciDelete, and so on.

NULL_ECI_HAND
An unrecoverable error occurred.

Remarks

Thisistypically thefirst call you will make to the ECI API. It creates a new ECI instance with default
attributes for the language specified as argument.

94 IBM Text-to-Speech

Alphabetical Index of Functions

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

voi d showMvessage(char *nsg)

{
printf(msg);
getchar ();

}

int main(int argc, char *argv[])

{
ECI Hand nyEC ;

myECI = eci Newkx();

if (NULL_ECI _HAND == nyECl)
showMessage("eci New failed.\n");

el se

{
showessage("eci NewEx succeeded!\n");
eci AddText(nyECI, "This is a test.");
eci Synchroni ze(nyECl);
eci Del ete(nyEC);

}

}

See Also

eciAddText, eciSynchronize, eciDeactivateFilter, Synthesis State Parameters

IBM Text-to-Speech

95

Alphabetical Index of Functions

eciNewDict

Creates a new dictionary set for agiven ECI instance.

Syntax

ECI Di ct Hand eci NewDi ct (
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

ECIDictHand
Handle to the dictionary set. Use this handle in subsequent dictionary calls that require an
eciDictHand handle.

NULL_DICT_HAND
The dictionary set could not be created.

Remarks

Creates a new, empty dictionary set for the given ECI instance and the current language. Use this
function to create different dictionary handles for different languages by setting the language
parameter using eci SetPar am before each call to eciNewDict. IBM TTSwill not look up entriesin the
new dictionary until it is activated with a call to eciSetDict. Returns NULL_DICT_HAND if the
dictionary set could not be created.

See Also

eciLoadDict, eciDeleteDict, User Dictionaries

96 IBM Text-to-Speech

Alphabetical Index of Functions

eciNewFilter

Creates a new instance of an ECI Filter and returns ahandle to it.

Syntax
ECI Fi | t er Hand eci NewFi |l ter (
ECl Hand hEngi ne,

unsigned int filterNum

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

filterNum
Value indicating the numerical designation for thisfilter. If no valueis specified, the default filter
(number 0) is used.

Return Values

ECIFilterHand
Handle to an ECI Filter instance. This same value must be used in all subsequent calls to use this
ECI Filter instance, such as, eci Deacti vateFilter, eci ActivateFilter,
eci Del eteFilter, eciUpdateFilter, andeci GetFilteredText.

NULL_ECI_HAND
An unrecoverable error occurred.

Remarks

If nofilter Numparameter is specified, the default filter is used (filter number 0). Multiple filter
handles may be created for each ECI instance; also, multiple filters may be active at atime.

See Also

eciNew, eciNewEx, Custom Filters

IBM Text-to-Speech 97

Alphabetical Index of Functions

eciPause

Pauses or unpauses speech synthesis and playback.

Syntax

Bool ean eci Pause(
ECl Hand hEngi ne,
Bool ean f Pauseon

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

fPauseon
Boolean value that indicates whether to pause (t r ue) or resume (f al se).

Return Values

true
Successfully set pause status as indicated in fPauseon.

false
Failure. Check eciError M essage and/or eciProgStatus for additiona error information.

Remarks

If the variable fPauseonisset to t r ue, the synthesis engine and the output device are paused. During
apause, ho output is sent to the audio device or to your callback function. If the variable fPauseon is
settof al se, synthesis resumes where it left off.

See Also

eciProgStatus, eciErrorM essage

98 IBM Text-to-Speech

Alphabetical Index of Functions

eciProg3Xatus

Returns a set of error-flag bits.

Syntax

Bool ean eci ProgSt at us(
ECI Hand hEngi ne

);

Parameters
hEngine

Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

0
No error.

Non-zero values are returned as an integer, composed of one or more of the following constants, joined

by bitwise "or":

ECI_SYSTEMERROR

Operating system returned an error.

ECI_MEMORYERROR
System resources |ow.

ECI_MODULELOADERROR

Unable to load necessary program module.

ECI_DELTAERROR
Error in Delta program.

ECI_SYNTHERROR
Error in synthesis engine.

ECI_DEVICEERROR
Error using sound device.

IBM Text-to-Speech

99

Alphabetical Index of Functions

ECI_PARAMETERERROR
Invalid or out of range parameter.

ECI_SYNTHESIZINGERROR
Synthesis engine is busy.

ECI_DEVICEBUSY
Audio deviceis busy.

ECI_SYNTHESISPAUSED
Synthesis engine is paused.

Remarks

All bits are cleared by eciReset and eciClearErrors. The last error set can be retrieved by calling
eciError M essage.

See Also

eciReset, eciClearErrors, eciErrorM essage

100 IBM Text-to-Speech

Alphabetical Index of Functions

eciRegister Callback

Registers your callback function with an ECI instance.

Syntax

voi d eci Regi sterCal | back(
ECl Hand hEngi ne,

ECI Cal | back *pCal | back
voi d* data

);

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

pCallback
Pointer to the ECI Callback function. Can be NULL.

data
Pointer to an arbitrary value, or akey to the size of avoid pointer. All values are allowed.

Return Values

None.

Remarks

Thisfunction registers your callback function with an ECI instance. If pCallback isNULL, the current
callback is removed. The supplied data pointer is associated with your callback. It is passed back to
your callback function on entry, so that your function can useit, if desired, for identification purposes,
such as a class pointer or an instance reference. Only one callback function can be registered at atime
with each ECI instance. ECI functions may not be called from within a callback.

Your callback must be registered with eciRegister Callback before any function that creates messages
is called. The functions that cause messages to be sent to your callback are eciGener atePhonemes,

IBM Text-to-Speech 101

Alphabetical Index of Functions

ecil nsertlndex, and eciSetOutputBuffer, and setting eciwantPhonemel ndicesto 1 with
€eciSetParam.

For any given ECI instance, your callback will be called from the same thread on which your
application calls ECI. Thisisachieved by passing control from your application to ECI. When you call
eciSynchronize, ECI will retrieve all messages and execute your callback for each one, until synthesis
iscomplete. If you call eciSpeaking, ECI will retrieve just those messages that are ready, execute your
callback for each one, and then return. If you choose to use eciSpeaking, instead of eciSynchronize,
you must keep calling it until it returns false.

eciRegister Callback may not be called while synthesisisin progress.

The syntax of your callback is as follows:

ECI Cal | backRet urn cal | back(
ECl Hand hEngi ne,

ECl Message nsg,

| ong | param

voi d* data

);

Callback Function Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

msg
Enumeration indicating the type of message (see Data Types):

eciWaveformBuffer
eciPhonemeBuffer
ecilndexReply

eci Phonemel ndexReply

eciWordlndexReply

Iparam
A long whose value and interpretation depends on the ECIM essage type. See discussion below.

data
An arbitrary value which is the size of avoid pointer. You specify this vauein your call to
eciRegister Callback. All values are allowed, including pointers.

102 IBM Text-to-Speech

Alphabetical Index of Functions

Callback Function Return Values

eciDataProcessed
You have processed the message and any associated datain your output buffer. Subsequent
messages may be sent to your callback.

eciDataNotProcessed
You could not process the message or associated datain your output buffer. The same message will
be sent to your callback later.

If your callback processes the ECI M essage, and does not wish to see that same message again, it
should return eciDataPr ocessed. If your callback function cannot process the message, and would like
to see the same message again, it should return eciDataNotProcessed; your callback will be called
with the same message at a later time. Thisis particularly useful if an eciWavefor mBuffer message
cannot be processed because the buffer you are writing to is temporarily full. No new ECI M essage
will be sent if eciDataNotProcessed is returned. If your application continues to return
eciDataNotProcessed, synthesis will stop, ado, eciDataAbort will stop sythesis and clear the text
buffer.

All callbacks should return quickly to ensure that there is no interruption of output. The value and
interpretation of Iparamis dependent on ECIM essage.

ECIM essage eciWavefor mBuffer

Iparam indicates the number of samples (not bytes) that have just been added to your output buffer.
Your output buffer is specified in acall to eciSetOutputBuffer.

When phoneme indices are a so being generated, this message is sent for the samples for each
phoneme.

Samples are 16-hit signed PCM values and are centered at 0.
Once your callback returns eciDataProcessed, the datain your output buffer is no longer protected;

therefore, your callback should only return eciDataProcessed when it has processed all the datain your
buffer. No more data will be added to your buffer until eciDataProcessed is returned.

IBM Text-to-Speech 103

Alphabetical Index of Functions

ECIM essage eciPhonemeBuffer

The Iparam parameter indicates the number of characters (bytes) that have just been added to your
phoneme buffer. Your phoneme buffer address was given to the ECI instance in your call to
eciGener atePhonemes.

Once your callback returns eciDataPr ocessed, the datain your phoneme buffer is no longer protected,
therefore, your callback should only return eciDataPr ocessed when it has processed all the datain the
buffer. More datawill not be added to your phoneme buffer until eciDataProcessed is returned.

ECIM essage ecil ndexReply

Iparamis an index that was reached during synthesis and playback of the input text buffer. Indices are
inserted into the input text buffer with ecil nsertl ndex.

Your callback should return immediately to ensure that there is no interruption of output.

Receiving index notifications is useful for synchronizing text with user-defined events, for example,
word highlighting or simultaneous display of related graphicsin a slideshow-style presentation.

ECIM essage eciPhonemel ndexReply
Iparamis apointer to an ECIM outhData structure.

This message is sent only when the eciWantPhonemel ndices environment parameter is set to 1. One of
these messages is sent for each phoneme spoken, just before the phoneme starts playing on the audio
device (or just before the associated waveform audio is placed in your output buffer, if you have called
eci SetOutputBuffer).

In addition to the language-specific phoneme symbols, the symbol & (0xA4) is used to indicate the end
of an utterance, and is sent with a set of neutral mouth position parameters.

Receiving phoneme notifications this way is appropriate for synchronizing facial animation or other
graphics with the speech output. If your application only needs to synchronize with individua words
or larger units, use word indices (ecil ndexReply messages). To convert text to phonemes, use the
eciGener atePhonemes function and the eciPhonemeBuffer message will be sent.

Aswith other messages, your callback function must return quickly. If significant processing is
required, as with complex graphics, your application should spawn a new thread, and marshal the

104 IBM Text-to-Speech

Alphabetical Index of Functions

callback messages to the new thread. Your application is responsible for skipping messages, if it
receives them faster than it can process them.

Examples

The following example in C++ function converts an input string to phonemes and writes them to the
console.

#i ncl ude <eci. h>
#i ncl ude <i ostream h>

const int bufferSize = 100;
static char buffer[bufferSize];

static ECI Cal | backReturn cal |l back(ECl Hand eci Hand,
ECl Message nsg, |ong | param void* data)
{

if (msg == eci PhoneneBuf fer)
{

cout << buffer;

}

return eci Dat aProcessed;

}

voi d showPhonenes(const char* text)
{
/1 This function denonstrates the proper use of
/ I eci Gener at ePhonenes. The standard error checking of
/1 ECl functions which return error codes is left out for
//the sake of sinplicity
ECl Hand eci Hand = eci New() ;

eci Regi ster Cal | back(eci Hand, call back, 0);

eci Set Param(eci Hand, eci Synt hivbde, 1);

eci AddText (eci Hand, text);

eci Gener at ePhonenes(eci Hand, bufferSize, buffer);
eci Del et e(eci Hand) ;

return;

IBM Text-to-Speech 105

Alphabetical Index of Functions

The following C++ example illustrates how to capture the waveform samples in order to process them
using an alternate method, rather than sending them directly to the audio device:

106 IBM Text-to-Speech

Alphabetical Index of Functions

#i ncl ude <eci. h>
#i ncl ude <i ostream h>

const int bufferSize = 100;
static short buffer[bufferSize];

/1 This function performs sone kind of processing on the sanples
/1 It returns true if it is done with those sanpl es,

/1 and false if it wants to be called with the sane sanpl es again.
ext ern Bool ean handl eSanpl es(const short* sanples, |ong count);

static ECI Cal | backReturn cal | back(ECl Hand eci Hand,
ECl Message nsg, |ong | param void* data)

{
Bool ean retval = true;
if (nmsg == eci Wavef or nBuf fer)
{
retval = handl eSanpl es(buffer, | paran)
}

return (retval ?eci Dat aProcessed: eci Dat aNot Processed) ;

voi d col | ect Sanpl es(const char* text)
{
/1 This function denonstrates the proper use of the
/I eci Wavef or mBuf f er nmessage. The standard error checking
[1of ECI functions which return error codes is |left out
[lfor the sake of sinplicity

ECl Hand eci Hand = eci New();

eci Regi ster Cal | back(eci Hand, call back, 0);

eci Set Qut put Buf f er (eci Hand, bufferSize, buffer);
eci AddText (eci Hand, text);

eci Synt hesi ze(eci Hand) ;

[IVWait until synthesis is conplete

eci Synchroni ze (eci Hand);

eci Del et e(eci Hand) ;

IBM Text-to-Speech 107

Alphabetical Index of Functions

The following C++ program uses word indices to synchronize a visible countdown with an audible
one:

#i ncl ude <i ostream h>
#i ncl ude <stdi o. h>
#i ncl ude <eci. h>

static ECICal | backReturn cal | back(ECl Hand eci Hand,
ECI Message nmsg, |ong | param void* data)
{

if (nmsg == ecilndexReply)
{

cout << param <<

}

return eci Dat aProcessed,;

<< endl|

}

int main(int argc, const char* argv[])
{
/1 This function denonstrates the proper use of the
/1 ecilndexReply nessage. The standard error checking
[1of ECI functions which return error codes is |left out
[lfor the sake of simplicity

ECl Hand eci Hand = eci New();

eci Regi ster Cal | back(eci Hand, call back, 0);
/1l count from10 to O, inserting an index at each count
for (int i =10; i > 0; i--)
{
char buf[10];
sprintf(buf, "%, ", i);
eci I nsertl ndex(eci Hand, i);
eci AddText (eci Hand, buf);
}
eci I nsertl ndex(eci Hand, 0);
eci AddText (eci Hand, "go!");
conti nued on next page

108 IBM Text-to-Speech

Alphabetical Index of Functions

continued from previ ous page

/1 synthesize, and wait until speaking is finished
eci Synt hesi ze(eci Hand) ;

[IVWait until synthesis is conplete

eci Synchroni ze (eci Hand);

cout << "(Gone." << endl;

eci Del et e(eci Hand) ;
return O;

Phoneme indices may be used in asimilar way, except that thereis no need for callsto ecil nsertl ndex.
The callback function might look like this:

static ECICal | backReturn cal | back(ECl Hand eci Hand,
ECI Message nmsg, |ong | param void* data)
{

if (nmsg == eci Phonenel ndexRepl y)

{
const ECI Mbut hDat a* nout hData = (ECI Mout hDat a*) | par am

/1 process the mouth position data--here, we'll just
/1l print the phonene nane
cout << nmout hDat a- >phonene << endl ;

}

return eci Dat aProcessed,;

}

See Also
eci Synchronize, eciSpeaking, Data Types

IBM Text-to-Speech 109

Alphabetical Index of Functions

eciReset

Resets the ECI instance to the default state.

Syntax

Bool ean eci Reset (
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Success

false
Failure. Check eciError M essage and/or eciProgStatus for additional error information.

Remarks

The default state is the same the state of a new instance returned by eciNew. See Synthesis State
Parameter Defaults.

If synthesisis underway when this function is called, the synthesis is terminated immediately.

See Also

eciNew, Synthesis State Parameters, eciErrorMessage, eciProgStatus

110 IBM Text-to-Speech

Alphabetical Index of Functions

eciSaveDict

Writes the contents of a dictionary volumeto afile.

Syntax

ECI Di ct Error eci SaveDi ct (

ECl Hand whi chECI ,

ECI Di ct Hand whi chDi ct Hand,

ECI Di ct Vol une whi chDi cti onary,
const void* fil ename

);

Parameters

whichECI.
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichDictHand
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

filename
Pointer to the name of adictionary file. Thisisanull-terminated C string containing the name of a
dictionary file.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

The ASCII filewill bein aformat suitable for reloading with eciL oadDict. The entries are listed in no
particular order, and will generally be different from the order entered or loaded. An ECIDictError is
returned which indicates any errors that occurred in the call to eciSaveDict.

IBM Text-to-Speech 11

Alphabetical Index of Functions

See Also
eciLoadDict, Synthesis State Parameters

112 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetDefaultParam

Sets the default value for an environment speech parameter.

Syntax

i nt eci Set Def aul t Par an{
EClI Par am Par am
int iValue

);

Parameters

Param
Parameter value taken from the existing EClParam enumeration in eci.h. These are the
same enumeration values that are used by eci SetParam and eci GetParam.

iValue
Default value which you want to set for Param.

Return Values
>=0
The previous default Param value.
-1
An error. Param or iVaueis out of range.

Remarks

Because the initial environment parameter defaults may not be suitable for al operating systems and
platforms, this function provides a means for modifying the initial environment parameter defaultsto
be used on all subsequent speech synthesis engine instances created with eciNew, eciNewEX,

eci SpeakText, or eciSpeak TextEx. However, if you already have an existing speech synthesis engine
instance and you call eciSetDefaultParam, you must then call eciReset to have these defaults take
effect in that instance.

The following table shows the behavior for specific default parameters.

IBM Text-to-Speech 113

Alphabetical Index of Functions

Default Parameter Behavior

eciLanguageDialect When called, eciNew, eci SpeakText, or eciReset attemptsto load the
desired default language. If the desired default language is not avail-
able, NULL_ECI_HAND isreturned.

eciSampleRate If adefault sample rate selected is not supported by the audio device
(determined when eciNew, eciNewEX, eciSpeakText,
eci Speak TextEXx, or eciReset is called), then ECI attempts to select
another available sample rate for that particular speech synthesis
engine instance. The default remains unchanged.

Note
It is the application developer's responsibility to select defaults that are compatible with the
functions they are intending to use because changing defaults can affect the behavior of other

functions.

See Also
N/A

114 IBM Text-to-Speech

Alphabetical Index of Functions

eciSatDict

Activates a dictionary set for agiven ECI instance in the currently active language.

Syntax

ECI Di ctError eci SetDict(
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e

);

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

A dictionary set consists of aMain, Roots, and Abbreviations Dictionary. Each language can be
associated with adifferent dictionary set. eciSetDict activates adictionary set only in that currently
active language. The user can call eciSetDict multiple times, switching languages before each call.

Dictionary lookups can be deactivated with eciSetDict by passing NULL_DICT_HAND to
dictHandle.

In this case, dictionary lookup is deactivated in all languages simultaneoudly. Note that this type of
dictionary deactivation differs from setting the eciDictionary parameter to 1 with acall to

IBM Text-to-Speech 115

Alphabetical Index of Functions

eciSetParam. The latter deactivates lookups in both the internal and user abbreviations dictionaries,
but not in any other user dictionaries, and remainsin effect when another language becomes active.

See Also

eciNewDict, eciL oadDict, eciGetlndex, User Dictionaries

116 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetOutputBuffer

Sets an output buffer as the synthesis destination.

Syntax

Bool ean eci Set Qut put Buf f er (
ECl Hand hEngi ne,

int size,

short* buffer

);

Parameters

hEngine

Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.
size

Size of the buffer (in samples). Use 0 to cancel waveform buffer callbacks.
buffer

Pointer to the buffer to receive PCM audio samples. Use NULL to cancel waveform buffer
callbacks.

Return Values

true
Successfully set the output buffer.

false
Failure. Does not register a callback. Check eciError M essage and/or eciProgStatusfor additional
error information.

Remarks

Registers your output buffer to receive 16-bit signed PCM audio samples. Signed PCM samples are
centered on 0. Calling this function with asize of 0 or aNULL buffer pointer reverts to the default
destination and cancels waveform buffer callbacks. Otherwise, when the buffer isfull or speechis
finished, the eciwavefor mBuffer message will be sent to your callback.

IBM Text-to-Speech 117

Alphabetical Index of Functions

If acalback has not been registered, eciSetOutputBuffer returns false. When an output buffer is
successfully registered, device and file output are cancelled. This function may not be called during
synthesis.

See Also
eciRegisterCallback, eci SetOutputDevice, eci SetOutputFilename, eciErrorM essage, eciProgStatus

118 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetOutputDevice

Sets an audio output hardware device as the synthesis destination.

Syntax

Bool ean eci Set Qut put Devi ce(
ECl Hand hEngi ne,
i nt deviceNum

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

deviceNum
Hardware device number. Vaues are 0 and higher, or -1.

Return Values

true
The synthesis destination was successfully set.

false
An error occurred that prevents output from being sent to this audio device. Check
eciError M essage and/or eciProgStatus for additional error information.

Remarks

Sets the specified audio device as the destination for synthesis. On Windows, the number of devicesis
returned by the waveOutGetNumDevs call, and devices are numbered sequentially starting with O. If
deviceNum is -1, the default destination (device 0) is used. When a deviceis successfully set, buffer
and file output are cancelled. This function may not be called during synthesis.

IBM Text-to-Speech 119

Alphabetical Index of Functions

See Also

eci SetOutputBuffer, eci SetOutputFilename, eciErrorM essage, eciProgStatus

120 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetOutputFilename

Sets a file as the synthesis destination.

Syntax

Bool ean eci Set Qut put Fi | ename(
ECl Hand hEngi ne,
const void* fil enane

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.
filename

Pointer to the name of the file in which to store audio samples. Thisis anull-terminated C string,
which may include a path.

Return Values

true
The output file was successfully set.

false
An error occurred that prevented setting the output file. Check eciError M essage and/or
eciProgStatus for additional error information.

Remarks

Sets the output file as the synthesis destination. If filenameis NULL, or the C string it pointsto is
empty, the synthesis engine revertsto the default destination. The extension of the filename determines
the format of the audio samples written to thefile:.

WAV PCM Sound in Windows format
AU u-law with header
.RAU: raw u-law without header

IBM Text-to-Speech 121

Alphabetical Index of Functions

The three audio formats are not supported on all operating systems. Windows only supports .wav
formats.

If the file does not exigt, it is created. If the file already exists, output is appended to the existing
contents. ECI should only be used in append modeif it is appending to afile that was created by ECI,
since it does not currently support all features of complex “.wav” file formats.

When afileis successfully set, buffer and device output are cancelled.

See Also
eci SetOutputBuffer, eci SetOutputDevice, eciErrorM essage, eciProgStatus

122 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetParam

Sets an environment parameter.

Syntax

i nt eci Set Par am(

ECl Hand hEngi ne,

ECl Par am eci Par anet er,
int val ue

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

eciParameter
One of the values enumerated in type ECIlParam. See Data Types for this enumeration.

value
The value the parameter isto be set to, usually 0 or 1. See Synthesis State Parameters for details.

Return Values

>=0
Success. Returns the previous value.

-1
Failure. Parameter may be out of range.

Remarks

Sets an environment parameter. Does not affect text already in the input buffer. Returns the previous
value on success, or -1 on failure.

IBM Text-to-Speech 123

Alphabetical Index of Functions

See Also

eciAddText, eciGetParam, Voice Parameters

124 IBM Text-to-Speech

Alphabetical Index of Functions

eciSetVVoiceName

Sets the name of avoice.

Syntax

i nt eci Set Voi ceNane(
ECl Hand hEngi ne,

i nt iVoice,

const void *pBuffer

);

Parameters
hEngine

Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.
iVoice

Number of the voice whose parameter value you want to set. Valid values are 0 — 16.

pBuffer
Pointer to a buffer containing the voice name.

Return Values

true
The voice name was successfully copied to pBuffer.

false
An error occurred. Check for valid or out-of-range parameter.

Remarks

The voice name should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, pBuffer should be in wide-character (Unicode) format with
a 16-bit terminator. Otherwise, pBuffer should be terminated with an 8-bit, NULL character.

IBM Text-to-Speech 125

Alphabetical Index of Functions

Your buffer should be less than or equal to ECI_VOICE_NAME_LENGTH characters long.
Otherwise, it will be truncated. The names of voices 1 - 8 cannot be set; they are read only.

See Also

eci GetVVoiceName

126 IBM Text-to-Speech

Alphabetical Index of Functions

eci SetVoiceParam

Sets a voice parameter.

Syntax

i nt eci Set Voi cePar am(

ECl Hand hEngi ne,

int voi ceNum

ECl Voi cePar am voi cePar anet er,
int val ue

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

voiceNum
Number of the voice whose parameter value you want to set: 0, 9-16.

voiceParameter
Voice parameter whose value you want to set:

eciGender
eciHeadSize
eciPitchBaseline
eciPitchFluctuation
eciRoughness
eciBreathiness
€ci Speed
eciVolume

value
Valueto set for voiceParameter. See \/oice Parameters for a description of values, ranges, and
defaults.

IBM Text-to-Speech 127

Alphabetical Index of Functions

Return Values

>=0
Success. Returns the previous value.

-1
Failure. Parameter may be out of range.

Remarks

Setsthe specified voice parameter value for the specified voice. A voice of 0 indicatesthe active voice.
See Voice Parameters for more information.

Returns the previous parameter value, or -1 for error. On error, check the voice number, parameter
number, and value.

See Also

eci GetParam, Voice Parameters

128 IBM Text-to-Speech

Alphabetical Index of Functions

eciSpeaking

Indicates whether synthesisisin progress.

Syntax

Bool ean eci Speaki ng(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Synthesisisin progress.

false
Synthesisis not in progress.

Remarks

Use this function to poll the ECI instance for synthesisin progress. This function provides an
aternative to blocking your thread’'s execution on eciSynchronize during synthesis.

When your application calls eciSpeaking, it gives the ECI instance an opportunity to check for
messages from the synthesis engine. If you have registered a callback, and there are one or more
callback messages from the engine, your callback will be executed on your thread from within this
function.

If accurate timing and synchronization are issues for your application, then you should call this
function frequently enough that messages and callbacks from the engine can be serviced in atimely
manner.

IBM Text-to-Speech 129

Alphabetical Index of Functions

See Also
eci RegisterCallback, eci Synchronize

130 IBM Text-to-Speech

Alphabetical Index of Functions

eciSpeak Text

Synthesizes text to the default audio device.

Syntax

Bool ean eci SpeakText (
ECI | nput Text szText Phrase,
Bool ean f Annot ati ons

)

Parameters

szTextPhrase
Text to be spoken. Thisisanull-terminated C-string.

fAnnotations
Boolean value that indicates whether annotations are embedded in szTextPhrase:

True
There are annotations in szZTextPhrase. Annotations are to be interpreted.
Fase

There are no annotations in szTextPhrase. Any annotations which nevertheless occur in
szTextPhrase will not be interpreted.

Return Values

true
The requested string was successfully spoken.

false
An error occurred and the requested string was not spoken.

IBM Text-to-Speech 131

Alphabetical Index of Functions

Remarks

Creates a new ECI instance, speaks the null-terminated C string szTextPhrase to the default output
device, and destroysthe ECI instance it created. When fAnnotations is true, annotations within the text
are processed, and the speech output is altered accordingly.

Does not return until al speech has been synthesized and played.

The function eciSpeak Text always speaks the default language unless language-annotated text is
passed to it. To change the language, you must insert alanguage annotation into the text. For example,
if you have English and French installed, and szTextPhrase contains text in French, you can insert an
annotation to switch to the French synthesis engine. See the example below for details on language

annotation.

If you set fAnnotations to false, but there are annotations in szTextPhrase, then the synthesis engine

reads them as normal text.

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

voi d showMessage(char *nsg)

{
printf(msg);
getchar ();

}

{
ECl | nput Text szText Phrase = "Hel

i f (eci SpeakText (szText Phrase,
showMessage("Success!\n");

el se showvessage("Failed.\n");

return O;

}

int main(int argc, char *argv[])

|l o world.
true))

“13.0 Bonj our

| e nonde. "

132

IBM Text-to-Speech

Alphabetical Index of Functions

See Also

eciAddText, eciNew, eciSynchronize, eciDeactivateFilter

IBM Text-to-Speech 133

Alphabetical Index of Functions

eciSpeak TextEx

Synthesizes text to the default audio device with the indicated language, dialect and character set.

Syntax

Bool ean eci SpeakText Ex(

ECl | nput Text text,

Bool ean bAnnot ati onsl nText Phr ase,
EClI LanguageDi al ect val ue

)i

Parameters

text
Text to be spoken. Thisisanull-terminated C-string

bannotationslnTextPhrase
Boolean value that indicate whether annotations are embedded in text:

True indicates annotations are in text and are to be interpreted.
False indicates annotations are not in text.

value
Value to indicate the ECI language dial ect.

Return Values

true
The requested string was successfully spoken.

false
An error occurred and the requested string was not spoken.

Remarks

Creates anew ECI instance, speaks the null-terminated C-string text to the default output device, and
destroys the ECI instance it created. When bAnnotationslnTextPhrase is true, annotations within the
text are processed, and the voice and speaking characteristics are changed as appropriate.

134 IBM Text-to-Speech

Alphabetical Index of Functions

The function eciSpeak TextEx speaks in the indicated language and dialect.

You may enter alanguage-specific annotation to change the indicated language, dialect, and character
set. For example, if you have English and French installed, and the text in text isin French, you can
insert an annotation indicating that the French TTS engine should be used. See the example.

If you set bAnnotationsinTextPhrase to false, but there are annotations in text, then the synthesis
engine attempts to read them as normal text.

Example

#i ncl ude <stdi o. h>
#i ncl ude "eci.h"

voi d showMessage(char *nsg)

{
printf(msg);
getchar ();
}
int main(int argc, char *argv[])
{
ECl | nput Text text = "Hello world. 13.0 Bonjour |e nmonde."

if (eciSpeakTextEz(text, true, eci CGeneral Areri canEnglish))
showMessage("Success!\n");

el se showMessage("Failed.\n");

return O;

}

See Also

eciAddText, eciNew, eciSynchronize, eciDeactivateFilter

IBM Text-to-Speech 135

Alphabetical Index of Functions

eciSop

Stops synthesis.

Syntax

Bool ean eci St op(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Synthesis is successfully stopped, and the input and output buffers are cleared.

false
An error occurred that prevented the termination of synthesis. Check eciError M essage and/or
eciProgStatus for additional error information.

Remarks

Aborts any synthesisin progress, clearstheinput buffer, clearsthe output buffer, and releasesthe audio
deviceif it has been claimed. This function is synchronous, so ECI will have stopped processing
before eciStop returns.

If the active voice has been changed by annotations during synthesis, then the state of the active voice
is undefined when eci S op returns. The active voice should be reset by your application to an
appropriate setting.

See Also
eci Pause, eciSynthesize, eci Speaking, eciErrorM essage, eciProgStatus

136 IBM Text-to-Speech

Alphabetical Index of Functions

eciSynchronize

Waits in an efficient state until all synthesisis finished.

Syntax

Bool ean eci Synchroni ze(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Synthesis has successfully finished.

false
An error occurred or synthesisis not taking place. Check eciError M essage and/or eciProgStatus
for additional error information.

Remarks

If the synthesis destination is a device, this function does not return until the audio has been played on
the device.

While waiting, the ECI instance calls your callback, if you have registered one, and if the synthesis
engine has produced any messages for your callback.

Alternativesto eciSynchronize are:

» Insert anindex using ecil nsertlndex and wait in a message loop until your callback function
is called with that index.

* Waitinaloop that polls eciSpeaking and processes your application
messages.

IBM Text-to-Speech 137

Alphabetical Index of Functions

See Also
eci Speaking, ecilnsertindex, eciErrorM essage, eciProgStatus

138 IBM Text-to-Speech

Alphabetical Index of Functions

eciSynthesize

Starts synthesis of text in an input buffer.

Syntax

Bool ean eci Synt hesi ze(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Synthesis has started.

false
An error occurred that prevented synthesis from starting. Check eciError M essage and/or
eciProgStatus for additional error information.

Remarks
Starts synthesis of al text in the input buffer. Returns immediately.

It isimportant to call this function after the last text of an utterance has been passed to eciAddText so
that the synthesis process will begin, even if ECI SynthM ode is sentence, so that sentence ends may
be determined correctly.

For example, if you make one call to eciAddText with text set to "The value of pi is3.", IBM TTS
must wait for the next call to eciAddText to seeif the sentence ends there, in case the next addition to
the text buffer begins "14159". Calling eciSynthesize after all text buffers have been sent tells IBM
TTSthat the last sentence is complete and can be synthesized.

IBM Text-to-Speech 139

Alphabetical Index of Functions

To synthesize text in line-oriented format, such as atable or list, call eciAddText and eciSynthesize
for each line, to ensure that each line is spoken as a separate sentence.

See Also
eciAddText, eciSynchronize, eciErrorM essage, eciProgStatus

140 IBM Text-to-Speech

Alphabetical Index of Functions

eciSynthesizeFile

Synthesizes the contents of afile.

Syntax

Bool ean eci Synt hesi zeFi | e(
ECl Hand eci Handl e,
const void* fil enane

);

Parameters

eciHandle
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

filename
Pointer to the name of the text file (which may include a path) whose contents you want to
synthesize. Thisis anull-terminated C string.

Return Values

true
The file was successfully opened.

false
Error opening file. Check eciError M essage and/or eciProgStatus for additional error
information. See remarks.

Remarks
eciSynthesizeFile returns immediately, and does not wait for synthesis to complete.
Opens the named file and starts reading its contents. If the file does not exist, returns false with no

other error flags set. This function is equivalent to sending all the text in the named file using
eciAddText, followed by acall to eciSynthesize.

IBM Text-to-Speech 141

Alphabetical Index of Functions

Your application should wait for synthesis to complete before terminating. Use eciSpeaking or
eci Synchronize for this purpose.

See Also
eciAddText, eciSpeaking, eciSynchronize, eciErrorMessage, eciProgStatus

142 IBM Text-to-Speech

Alphabetical Index of Functions

eci TestPhrase

Synthesizes atest phrase.

Syntax

Bool ean eci Test Phrase(
ECI Hand hEngi ne

);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

Return Values

true
Success

false
Failure. Check eciError M essage and/or eciProgStatus for additional error information.

Remarks

Aborts synthesis if it is underway, clears the input and output buffers, sets the active voice to preset
voice 1, loads the sentence “1 2 3.” starts synthesis, and returns.

Your application should wait for synthesis to complete before terminating. Use eciSpeaking or
eci Synchronize for this purpose.

See Also
eci Speaking, eci Synchronize, eciErrorMessage, eciProgStatus

IBM Text-to-Speech 143

Alphabetical Index of Functions

eciUpdateDict

Updates a dictionary volume with a key/translation pair.

Syntax

ECI Di ct Error eci Updat eDi ct (
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECI | nput Text pkey,
ECI | nput Text ptransl ati onVal ue

Parameters
hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set. Thisthe value returned by eciNewDict or eciGetDict.

whichDictionary
Enumeration value representing the particular dictionary volume:
eciMainDict — main dictionary
eciRootDict — root dictionary
eciAbbvDict — abbreviation dictionary

pkey
Pointer to akey to the entry in this dictionary. The key is a constant C string.

ptransationVvalue
Pointer to atranglation value for this entry in this dictionary. The translation value is a constant C
string.

Return Values
ECIDictError

144 IBM Text-to-Speech

Alphabetical Index of Functions

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
Updates the dictionary volume. The update action depends on the existence of the key and value of the
translationVal ue parameter:

» Theentry is added when the key does not exist and the translationValue is not NULL.

e Theentry isupdated if the key already exists and the trandationValue is not NULL.

» Theentry isdeleted if thetrandationValueisNULL. An ECIDictError is returned which
indicates any errors that occurred in the call.

See Also

eciDictLookup, eciGetDict, eciNewDict

IBM Text-to-Speech 145

Alphabetical Index of Functions

eciUpdateDictA

Updates a dictionary volume with akey/translation pair. This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax

ECI Di ct Error eci Updat eDi ct A(
ECl Hand hEngi ne,
ECI Di ct Hand di ct Handl e,
ECI Di ct Vol une whi chDi cti onary,
ECI | nput Text pkey,
ECI | nput Text ptransl ati onVal ue
ECI Part Of Speech Part O Speech

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set. This the value returned by eciNewDict or eciGetDict.

whichDictionary
Enumeration value representing the particular dictionary volume:

eciMainDict — main dictionary

eciRootDict — root dictionary

eciAbbvDict — abbreviation dictionary eci

eciMainDictExt - main dictionary used only with Asian languages

pKey
Pointer to akey to the entry in this dictionary. Thisis a constant buffer containing the key.

pTrandationvValue
Pointer to atrangdlation for this entry in this dictionary. Thisis a constant buffer containing the
value.

PartOfSpeech

146 IBM Text-to-Speech

Alphabetical Index of Functions

ECIPartOf Speech enumeration, which specifies the grammatical category.

Return Values

ECIDictError
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks

Thisfunction supportsall dictionary volumes, including Main Extension Dictionary (eciManDictExt),
whichisused for Asian languages. The update action depends on the existence of pKey and value of
pTrandationvValue, as follows:

» Theentry is added when key does not exist and pTrandationValue is non-NULL.

» Theentry isupdated if key aready exists and pTranslationvValue is non-NULL.

» Theentry isdeleted if pTrandationValueis NULL. An ECIDictError is returned, which indicates
any errors that occurred in the call.

The buffer contents should be in the same code page currently selected for this speech synthesis engine

instance. If a Unicode code page is active, pKey and pTranslationValue should be in wide-character

(Unicode) format with a 16-bit terminator. Otherwise, pKey and pTranslationValue should be an 8-bit,
NULL-terminated C string.

See Also

eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictL ookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA

IBM Text-to-Speech 147

Alphabetical Index of Functions

eciUpdateFilter

Allow runtime update of the token replacement applied to known fields.

Syntax

ECIFilterError eci UpdateFilter(
ECl Hand hEngi ne,
ECI Fi | t er Hand whi chFi | t er Hand,
ECI | nput Text key,
ECl | nput Text transl ation);

Parameters

hEngine
Handl e to the speech synthesis engine instance. Thisisthe value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be updated. Thisisthe value returned by eciNewFilter.

key
Field that requires special handling.

translation
Text that will replace the key.

Return Values

ECIFilterError
One of the values enumerated in type ECIFilter Error. See Data Types for this enumeration.

Remarks

See Also

eciNewFilter, eciNew, eciNewEXx, Custom Filters

148 IBM Text-to-Speech

Alphabetical Index of Functions

eciVersion

Returns the current IBM Text-to-Speech version number.

Syntax

voi d eci Versi on(
char* buffer

);

Parameters

buffer
Pointer to the buffer containing the version string. Must be at least 20 bytes. Should not be NULL.

Return Values

None.

Remarks

This function copies the IBM Text-to-Speech version number as a null-terminated C string to the
specified buffer, which must have room for at least 20 characters, including the terminating null.

IBM Text-to-Speech 149

Alphabetical Index of Functions

150 IBM Text-to-Speech

ECI Annotations

Annotations

Annotations are special codes placed in text to customize the speech output generated by IBM TTS.
You can use them for:

Selecting a Language and Dialect
Selecting a Voice or Voice Characteristics
Selecting a Speaking Style

Modifying Word Emphasis and Tone
Modifying Phrase-Final Intonation
Adding Pauses

Specifying Alternative Pronunciations
Filters

All annotations must be preceded by at least one unit of white space.

ECI

Annotations

An annotation consists of abackqguote (*) followed immediately by astring of characters. For example:

vsb Use a speaking rate of 5.
4 Put very heavy emphasis (level 4) on the following word.
ts2 Pronounce all charactersindividually by name.

The Symbolic Phonetic Representations provides a complete listing of the available annotations.

IBM Text-to-Speech 151

Selecting a Language and Dialect

Selecting a Language and Dialect

In order to use an annotation for alanguage or dialect, you must have installed the text-to-speech
engine for that language and dialect. For example, you must install the Standard German text-to-
speech engine in order for the German annotation to work.

» If you hear the text being pronounced using the accent of the last active language, then the
language of the text has not been installed.

» If you get an error message, then the language you want to hear has probably been installed
incorrectly.
Selecting alanguage will change only the language, not the voice characteristics. The last selected
voice characteristics will remain in effect.

The ECI language annotation begins with °I (backquote L), followed by a decimal number specifying
the language and dialect. If you specify alanguage/dialect combination that does not exist, (e.g.,
‘12.3), then the annotation will be ignored because there is no diaect of Spanish corresponding to 2.3.

The following table shows the ECI language annotations:

ECI Annotations Language or Dialect

11 English

11.0 American English (default)
11.1 British English

12 Spanish

12.0 Castilian Spanish (default)
12.1 Mexican Spanish

‘13 French

13.0 Standard French (default)
3.1 Canadian French

14 German

'14.0 Standard German (default)
‘15 [talian

'15.0 Standard Italian (default)

152 IBM Text-to-Speech

Selecting a Language and Dialect

ECI Annotations Language or Dialect

‘16 Chinese

'16.0 Standard Mandarin Chinese (default) with GBK support
'16.0.1 Standard Mandarin Chinese with only Pin Yin support
'16.0.8 Standard Mandarin Chinese with UCS support

'16.1 Taiwanese Mandarin Chinese with Big5 support
16.1.1 Taiwanese Mandarin Chinese with Zhu Yin support
'16.1.2 Taiwanese Mandarin Chinese with only Pin Yin support
'16.1.8 Taiwanese Mandarin Chinese with UCS support

17 Portuguese

17.0 Brazilian Portuguese (default)

‘18 Japanese

'18.0 Standard Japanese (default) with Shift-JIS support
'18.0.8 Standard Japanese with UCS support

19 Finnish

"19.0 Standard Finnish

113 Norwegian

"113.0 Standard Norwegian (default)

114 Swedish

114.0 Standard Swedish (default)

115 Danish

"115.0 Standard Danish (default)

IBM Text-to-Speech

153

Selecting a Language and Dialect

Choosing a Speaker

ECI annotations for each language and speaker, as indicated.

ECI Annotation | Description
11.0 vl Set voice to the “Reed,” the American English adult male voice.
11.0 'v2 Set voiceto “ Shelley,” the American English adult female voice.
11.0 'v3 Set voiceto “Sandy,” the American English child voice.
1.0 'v7 Set voiceto “Grandma,” the American English elderly female voice.
11.0 'v8 Set voiceto “Grandpa,” the American English elderly male voice.
11.1 vl Set voice to the “Justin,” the British English adult male voice.
1.1 °v2 Set voiceto “Jane,” the British English adult female voice.
11.1°v3 Set voiceto “Nicky,” the British English child voice.
1.1 °v7 Set voiceto “Nanny,” the British English elderly female voice.
11.1°v8 Set voice to “Gramps,” the British English elderly male voice.
2.0 vl Set voiceto the “ Carlos,” the Castilian Spanish adult male voice.
2.0 'v2 Set voiceto “Pilar,” the Castilian Spanish adult female voice.
12.0 'v3 Set voiceto “Pepe,” the Castilian Spanish child voice.
12.0 'v7 Set voiceto “Abuela,” the Castilian Spanish elderly female voice.
12.0 'v8 Set voiceto “Abuelo,” the Castilian Spanish elderly male voice.
13.0°v1 Set voiceto the “ Jacques,” the Standard French adult male voice.
13.0°'v2 Set voice to “Jacqueling,” the Standard French adult female voice.
13.0°v3 Set voiceto “Marius,” the Standard French child voice.
13.0 'v7 Set voiceto “Mamieg,” the Standard French elderly female voice.
13.0 'v8 Set voiceto “Grandpére,” the Standard French elderly male voice.
14.0 vl Set voiceto the “Max,” the Standard German adult male voice.
'14.0 "v2 Set voiceto “Gisela,” the Standard German adult female voice.
'14.0 "v3 Set voice to “Matti,” the Standard German child voice.
'14.0 "v7 Set voiceto “Oma,” the Standard German elderly female voice.
14.0 'v8 Set voiceto “Opa,” the Standard German elderly male voice.

154 IBM Text-to-Speech

Selecting a Language and Dialect

ECI Annotation | Description

15.0 'v1 Set voiceto the “Enrico,” the Standard Italian adult male voice.

5.0 'v2 Set voiceto “Lucia,” the Standard Italian adult female voice.

[5.0 'v3 Set voice to “Chicco,” the Standard Italian child voice.

5.0 "v7 Set voiceto “Nonna,” the Standard Italian elderly female voice.

15.0 'v8 Set voiceto “Nonno,” the Standard Italian elderly male voice.

16.0 'v1 Set voiceto the“Li3 Jing4,” the Standard Chinese adult male voice.

'16.0 'v2 Set voice to “Wang2 Yan4,” the Standard Chinese adult female voice.

'16.0 'v3 Set voiceto “Li3 Dongl Dongl,” the Standard Chinese child voice.

16.0 "v7 Set voiceto “Nai3 Nai,” the Standard Chinese elderly female voice.

16.0 'v8 Set voiceto “Ye2 Ye,” the Standard Chinese elderly male voice.

16.1 vl Set voice to the “Zhi4 Ming2,” the Taiwanese Mandarin Chinese adult
male voice.

6.1 "v2 Set voiceto “Chunl Jiaol,” the Taiwanese Mandarin Chinese adult female
voice.

16.1 'v3 Set voiceto “Xiao3 Bu4 Dian3,” the Taiwanese Mandarin Chinese child
voice.

16.1 °v7 Set voiceto “A3 Ma4,” the Taiwanese Mandarin Chinese elderly female
voice.

16.1°v8 Set voiceto “A3 Gongl,” the Taiwanese Mandarin Chinese elderly male
voice.

7.0 vl Set voice to the “ Jodo,” the Brazilian Portuguese adult male voice.

7.0 'v2 Set voiceto “Cléudia,” the Brazilian Portuguese adult female voice.

17.0 'v3 Set voiceto “Chico,” the Brazilian Portuguese child voice.

7.0 'v7 Set voiceto “Avo,” the Brazilian Portuguese elderly female voice.

17.0 'v8 Set voiceto “Avd,” the Brazilian Portuguese elderly male voice.

18.0 'v1 Set voiceto “Taroo,” the Standard Japanese adult male voice.

18.0 'v2 Set voice to “Hanako,” the Standard Japanese adult female voice.

18.0 'v3 Set voiceto “Jiroo,” the Standard Japanese child voice.

'18.0 'v7 Set voice to “ Obaachan”, the Standard Japanese elderly female voice.

IBM Text-to-Speech

155

Selecting a Language and Dialect

ECI Annotation | Description

'18.0 'v8 Set voiceto “Taroo,” the Standard Japanese elderly male voice.
19.0 'v1 Set voiceto “Antti,” the Standard Finnish adult male voice.
19.0 'v2 Set voiceto “Tarja,” the Standard Finnish adult female voice.
'19.0 'v3 Set voice to “Pekka,” the Standard Finnish child voice.

19.0 "v7 Set voice to “Isoéiti,” the Standard Finnish elderly female voice.
19.0 'v8 Set voiceto “Isoisd,” the Standard Finnish elderly male voice.

156 IBM Text-to-Speech

Selecting a Voice or Voice Characteristics

Selecting a Voice or Voice Characteristics

IBM TTS provides five pre-defined (built-in) voices. Each one has a corresponding voice annotation
that can be inserted into the text. In addition, there are avariety of annotations which allow you to
directly manipulate individual voice characteristics.

Selecting a Voicein the Current Language

Use the following tags or annotations to choose a built-in voice in the current language:

ECI

Annotation Description

vl Set voice to the default male voice 1.

V2 Set voice to the default female voice 1.

v3 Set voice to the default child voice 1.

v4 Set voice to the default male voice 2.

v5 Set voice to the default male voice 3.

V6 Set voice to the default female voice 2.

v7 Set voice to the default older female voice 1.
v8 Set voice to the default older male voice 1.

The voice annotation will stay in effect until you enter a new voice annotation.

Selecting Voice Char acteristics

Individual voices derive their uniqueness from a number of physical factors. In addition, an
individual's voice can take on different qualities at different times, depending on such things as mood
and circumstance. You can modify these attributes using voice characteristics annotations.

ECI Annotation | Description
“vgo Set vocal tract configuration to male.
vgl Set vocal tract configuration to female.

IBM Text-to-Speech 157

Selecting a Voice or Voice Characteristics

ECI Annotation | Description
"VbN Set pitch baselineto N.
Annotation range is 0-100.
“VhN Set head sizeto N.
Rangeis O (very small head) to 100 (very large head).
“viN Set voice roughness (creakiness) to N.
Rangeis 0 (smooth) to 100 (rough).
“vyN Set breathinessto N.
Rangeis 0 (not breathy) to 100 (99 is very breathy; 100 is awhisper).
viN Set pitch fluctuation to N.
Rangeis 0 (narrow=monotonic) to 100 (wide).
“vsN Set speed of the utterance to N.
Annotation range is 0-250.
“'wN Set speech volumeto N.
Annotation range is 0-100.
(no annotation) Reset the voice to the original characteristics for the selected speaker.

Voice characteristics tags affect the currently selected voice and remain in effect until a new voice or
speaker is specified with a‘vN annotation, or until the annotation is used again with adifferent value.
Restarting the program resets all of the characteristicsto their default values.

158 IBM Text-to-Speech

Selecting a Speaking Style

Selecting a Speaking Style

Use the following tags or annotations to choose a speaking style:

ECI Annotation Description

“vy100 Set voice to awhisper.

vfo Set voice to amonotone.

varies Restore voice to the speaking style in use before the \Chr\

command was invoked. The equivalent annotation will vary
depending on the original breathiness or pitch fluctuation values
for the selected speaker.

IBM Text-to-Speech 159

M odifying Word Emphasis and Tone

M odifying Word Emphasis and Tone

Each word in an utterance is pronounced with alevel of emphasisrelative to other words in the
utterance. Y ou can override the default emphasis patterns by placing an annotation before the
word you want to modify.

ECI Annotation | Description
00 Reduced emphasis
No emphasis

Normal emphasis
Added emphasis
Heavy emphasis
Very heavy emphasis

Nl w| N = o

Emphasislevel 1, or normal emphasis, isthe default level of emphasis for a content word, and
emphasis level 00 isthe default emphasis for a function word. The last content word in an intonation
phrase (the nuclear accent) will receive emphasis leve 2, unless you annotate the utterance to change
the default pattern.

For example, the default emphasis pattern for the phrase run through fields of barley is:

Run through fields of barley
1 1 1 00 2

Reduced Emphasis

The reduced emphasis annotation can be used to reduce aword to a function word.

No Emphasis

When two words form a single compound word (asin wet suit in example (b) below), the second word
receives less emphasis than the first. The no-emphasis annotation is used to achieve this effect.

(a) He wore a wet suit to work because his unbrella broke.

(b) He wore a wet "0 suit while diving.

160 IBM Text-to-Speech

Modifying Word Emphasis and Tone

Normal Emphasis

The normal-emphasis annotation can be used to mark aword like can (in sentence (b)) as a content
word rather than a function word.

(a) Eating fat can nmake you fat.
(b) You're going to need a very fat "1 can to hold all those
peaches.

While this annotation is used to assign normal emphasis to aword that would otherwise receive no
emphasis, the word will still receive the nuclear accent in appropriate contexts. You can use the added-
emphasis annotation to shift the nuclear accent of the phrase to another word.

Added Emphasis

Typically, the last content word in an intonational phrase receives emphasis level 2 automatically.
Sometimes, however, it is more appropriate for this emphasisto fall earlier in the phrase. The added-
emphasis annotation can be used to mark words in this way. Note that this causes all subsequent words
to be de-emphasized.

(a) W demand absol ute equality.
(b) We demand "2 absol ute equality.
(c) We 2 demand absol ute equality.

Heavy Emphasisand Very Heavy Emphasis

To give added emphasis to aword, you can increase the emphasis level. Note that setting the emphasis
level to 4 also causes all preceding words to be de-emphasized. The higher levels of emphasis are also
useful in contradicting a previous statement or expressing incredulity.

Your brother has a dog naned Spot ?
No, ny brother has a dog named "3 Fi do.

It's not "3 Monday, it's "4 Tuesday.

My aunt has a cat nanmed Fido
Your aunt has a '3 cat nanmed Fi do?

IBM Text-to-Speech 161

M odifying Word Emphasis and Tone

Assigning Tonesto Words

Use the following annotations to assign tones to words:

Annotation

Description

Low Tone

High Tone (thisis the default for content words)

Falling Tone

Rising Tone

Scooped Tone

EEEEE

Downstepped Tone

162

IBM Text-to-Speech

Modifying Phrase-Final Intonation

M odifying Phrase-Final Intonation

Use the following annotations to modify phrase-final intonation:

Annotation

Description

"%

Small pitch rise at the end of the phrase

%%

Continuation rise at the end of the phrase and low pitch on the nuclear
accented word of the phrase.

"%9%%

Flat, high pitch at the end of the phrase.

Y

Large pitch fall, as at the end of a paragraph. More perceived finality than at
the end of a sentence.

The phrase-final annotations must be immediately followed by the punctuation ending the intonational
phrase: either a period, comma, exclamation point, question mark, colon, or semicolon. If the required
punctuation is missing, the annotation is ignored.

IBM Text-to-Speech

163

Adding Pauses

Adding Pauses

You can use the pause annotation to:
» Modify the pause length created by punctuation symbols.
* Insert pauses between words where there is no punctuation.

Use the following annotations to create a pause.

ECI Annotation Description
PN Create a pause N milliseconds long. The maximum length for asingle
pause annotation is about 330 seconds.
“epfN The environmental phrase final (epfN) pauseis used to adjust the
duration of the final pause at the end of a set of sentences.
Default: N =10

Range: N =0to 100
Interpretation: At the end of the final sentence (whether explicit or
implied), after calculating final pause value in milliseconds, multiply the
value by N/10. The range of the multiplier isthus 0.0 - 10.0. The default
factor, 10, produces a multiplier of 1.0 (ie, no change). A factor of 0
produces a multiplier of 0.0, thus producing no pause at all. For example:
“epfO This is the first sentence. This is a test.
No pause after "test.”
“epf5 This is a test.
Pause period is 50% of normal.
“epfl0 This is a test.
Pause period is 100% of normal. That is, the default pause length
is generated.
“epf20 This is a test.
Pause period is twice normal.
“epf 100 This is a test.
Pause period is 10 times normal.

164 IBM Text-to-Speech

Adding Pauses

Punctuation Pauses

You can add to the length of a pause associated with a punctuation symbol, or you can replace that
pause with a pause of a different length.

» To add to the pause, insert a pause annotation after the punctuation.
(a)Avoid the following routes: Thirteen north, N nety-six west, and
Thirty-two south.
(b)Avoid the following routes: Thirteen north, 'p400 N nety-six west,
'p400 and Thirty-two south.

» To replace the pause, place a pause annotation immediately before the punctuation. There should
be no white space between the annotation and the punctuation.
(c)! thought | saw Kris. But |I'mnot sure about it.
(d)I thought | saw Kris 'p250. But |'mnot sure about it.

» To replace the pause at the end of a set of sentences, use the epfN annotation. The epfN annotation
can be placed anywhere. In the following example, the normal pause of the final sentenceis
changed to 0 and the normal pause remains between the two sentences. Only the last sentenceis
affected.

(e) epf0 | thought | saw Kris. But |I'mnot sure about it.

Inserting Pauses

Inserting pauses can be useful for synthesizing the hesitations that occur in natural speech:

(a) Any saw him 'p450 wel | "p450 "3 us 'p150 | ast night.
(b) Take t he square root of "p450 no 'p450 forget that. Miltiply the total
by . 05.

IBM Text-to-Speech 165

Filters

Filters

Use the following annotations to activate/deactivate a particular filter.

ECI Annotation | Description
“faN To activate filter N.
“fdN To deactivate filter N.

N isoptional. If N isommitted, the default filter will be used. The default filter is 0.

166 IBM Text-to-Speech

Specifying Alternative Pronunciations

Specifying Alternative Pronunciations

Character Spelling M odes

Use the following annotations to set the character spelling mode:

ECI Annotation

Description

“ts0 No special interpretation (default setting).

“tsl Pronounce only a phanumeric characters by name.

ts2 Pronounce al charactersindividually by name.

“ts3 Pronounce a phabet characters according to the International Radio

Alphabet. (Thisis currently limited to U.S. English only.)

Pronouncing Numbersand Years

Use the following annotations to pronounce numbers and years:

ECI Annotation

Description

50

Pronounce 4-digit numbers as "nonyears."

iyl

Pronounce 4 digit numbers as "years’ (default setting).

Dictionary Processing of Abbreviations

Use the following annotations to process abbreviations:

ECI Annotation

Description

"da0

Turn off both internal and user Abbreviations Dictionary lookups.

“dal

Use the abbreviation dictionaries (default setting).

IBM Text-to-Speech

167

See User Dictionaries for more information on the user’s Main, Roots, and Abbreviations Dictionaries.

Entering Symbolic Phonetic Representations

Use the following annotation to enter SPRs:

Annotation Description
[SPR] Pronounce the word phonetically as contained in “[SPR].

Unlike other annotations, the “[SPR] annotation does not modify the word or words which follow it.
Instead, it is used in place of the word for which it specifies a pronunciation.

See the section titled SPR Tables for more information and tables of symbolsin US English and other
languages.

IBM Text-to-Speech 168

Cusom Filters

IBM Text-to-Speech offers the ability to transform textual data prior to synthesis through custom
filters. These plug-in libraries are ideal for transforming complex raw data into more a suitable format
for listening. Although dictionaries are good means of transforming text, some transformations may
involve more than simple text substitution. Transformation of text through filtersin conjunction with
an active dictionary is the most powerful combination.

The following exampleis the conversion of an E-mail message to aformat that is much easier to
understand.

From root <root@ab.ibm conr

Ful | - name: CHRI STI NA

Message- | D. <bl ahbl ahbl ah@ol . con®

Date: 10 Oct

Subj ect: Humans find it hard to listen to all the tagged fields
To: tofield@ol.com

CC. cc@ol .com

M ME-Version: 1.0

Cont ent - Type: nul ti part/ m xed;
boundary="part2_13. ccllala. 272ef 411_boundary"
X-Mai |l er: Wndows AOL sub 125

Emai | may beconme conpl ex and enbed sone strange col |l oqui al i sns.

1 N

)

‘Raw’ Email Data (Complex)

This nessage is from root.

The nmessage was sent: 10 Cctober.

The subject of this nmessage is: Humans find it hard to listento all the
tagged fiel ds.

Emai | may become conpl ex and enbed sone strange col |l oqui al i sns.

‘Filtered” Email Data (Simplified)

IBM Text-to-Speech 169

Implementing a Custom Filter

In the example the filter was used to drop lines such as Message-ID:, CC:, and X-Mailer:. Thefilter
was also used to insert ‘ Thismessage isfrom’ and ‘ This message was sent’, and to remove the “smiley
faces” from thetext. A dictionary, however, was used to convert Oct to October. Notice that a
dictionary (which simply replaces text) alone cannot remove text based solely on what the line begins
with.

Many other transformations (raw stock quotes, directions, recipes, movie listings, etc.) are possible
with custom filtering. However the order in which the transformations take place is very important.
Currently the following rules apply:

1.Anavailablefilter is selected as the active filter.
2.The activefilter is then applied to the text.
3.Finally, dictionary rules are applied.

| mplementing a Custom Filter

The IBM Text-to-Speech SDK provides a mechanism to develop both “static” and “dynamic” filters.
A dtatic filter is one that the client application links with directly at build time. A static filter allows
client applications that use a version of the IBM Text-to-Speech runtime prior to version 6.2.2.1 to use
text filtering. A client application that uses a static filter must call eci Get Fi | t er edText to
determine the value of an input string once it has been run through the filter. The value returned in
filteredText isthe string to send to eci AddText for synthesis. A dynamic filter, however, isloaded at
runtime, so client applications do not need to be aware of it at build time. No separate call to

eci Get Fi | t er edText isrequired to causefiltering. If afilter has been created and activated, the
active filter will automatically filter text that is sent to the synthesis engine with eciAddText.
Additionally, using dynamic filters allows client applications to use more than one type of filter. For
client applications that will usethe |IBM Text-to-Speech version 6.2.2.1 or later, it isrecommended that
they use dynamic filtering.

170 IBM Text-to-Speech

Dynamic Filters

Dynamic Filters

Implementing adynamic filter consists of creating alibrary that implements the following methods of
the Filter base class:

evirtual ECIFilterError filterText(const char *input, char **filteredText,
bool forceFiltering = false);

Thisisthe method that performs the text filtering. Itiscalled fromeci Get Fi | t er edText and
eci AddText if thefilter isactive. Thefilter object is responsible for the allocation and deallocation
of the filteredText buffer The value of filteredText isonly valid until thenext call tof i | t er Text or
del et eFi | ter. If forceFilteringistrue, thefilter object will filter the input text evenif it is not
active (for example, if the client application callseci Get Fi | t er edText on aninactive filter).

e virtual ECIFilterError activateFilter();

This method is what sets the filter to the “active” stateviaeci Acti vateFilter.

e virtual ECIFilterError deactivateFilter();

This method is what deactivates the activefilter viaeci Deacti vat eFil ter.

e virtual ECIFilterError deleteFilter();

This method iswhat is responsible for deleting the filter and performing any required cleanup of the
filter object. Thismethodiscalled viaeci Del eteFil ter.

e virtual ECIFilterError updateFilter(const char *key, const char

*transl ati on);

Thisisthe method that will set the rules used to filter text that is processed withf i | t er Text . Itis
called fromeci Updat eFi |l t er.

* FILTER APl Bool ean get Obj ect (unsigned long idlnterface, void **ppUnknown)
Thisfunction is the required entry point of the dynamic filter. It isresponsible for creating the Filter
object and returning afilter handle to the client. Itiscalled fromeci NewFi | t er.

IBM Text-to-Speech 171

Dynamic Filters

Dynamic Filter Sample Code

#include “sinplefilter.h” // definition of the SinpleFilter class
sinpleFilter::sinmpleFilter() : filteredText (NULL) ({
} /] sinpleFilter::sinpleFilter()
sinpleFilter::~sinpleFilter() {
if (filteredText) {
delete [] filteredText;
filteredText = NULL;
} I/ if (filteredText)
} /] simpleFilter::~sinpleFilter()
ECIFilterError sinpleFilter::deleteFilter() {
delete this;
return FilterNoError
} /] EClFilterError sinpleFilter::deleteFilter()

ECIFilterError simpleFilter::filterText(const char *input, char
**clientFilteredText, bool forceFiltering) {
if (forceFiltering || isActive()) {
if (filteredText) {
delete [] filteredText;
filteredText = NULL;
Y I/ if (filteredText)
/1 TODO Insert code to filter text here
/1l Filter object should allocate a new filteredText buffer and send
/1 a pointer to that buffer back to the client.
} // if (forceFiltering || isActive())
el se {
/1 copy input to filteredText
}

*clientFilteredText = filteredText.
return FilterNoError
} // int sinpleFilter::filterText(const char *input, char *filteredText)

} // FILTER _API Bool ean get Obj ect (unsigned |ong idlnterface, voice
**ppUnknown)

} // extern "C

#endif // __cplusplus

172 IBM Text-to-Speech

Dynamic Filters

#i fdef __cplusplus
extern "C' {
FI LTER_API Bool ean get Cbj ect (unsigned long idlnterface, void
** ppUnknown)
{
if ((idinterface == I D UNKNOMW) || (idlnterface == ID_FILTERI NST)) {
void *pFilter = NULL;
pFilter = new sinpleFilter();
if (pFilter) {
*ppUnknown = pFilter;
Yy /1 if (pFilter)
Y} /1 if ((idlinterface == ID_UNKNOMW) || (idlinterface ==
| D_FI LTERI NST))
return (*ppUnknown != NULL);

Dynamic Filter Sample Code

Once the custom dynamic filter is developed, it must be installed for client applications to be able to
accessit. A filter number identifies dynamic filters for alanguage/dialect combination. To make a
dynamic filter available to client applications, it must be added to the registry on Windows platforms
or to the eci.ini file on Unix platforms.

HKEY_LOCAL_MACHI NE\ SOFTWARE\ | BM Vi aVoi ce Qut | oud
5,0\ECIININ1.0\Path _Filterl = c:\ProgramFilter\IBM TTS 6. 22
SDK\ sanmpl es\sinplefilter\rel ease\sinmplefilter.dll

Registry example (Windows platforms)

[1.0]

Pat h=enu50. syn

Pat h_Filter1=/usr/I pp/viavoi ce/ sdk/ sanpl es/sinplefilter/rel ease/
libsimplefilter.a

eci.ini file example (Unix platforms):

The Filter base class implementation is contained in the header filef i | t er . h and thelibrary
filters.lib (libfilters.aonUnix platforms).

The IBM Text-to-Speech SDK includes a complete example of a simple dynamic filter (SimpleFilter).

IBM Text-to-Speech 173

Dynamic Filters

NOTE:
Client applications that will use a dynamic filter should not includeeci filter. h.

174 IBM Text-to-Speech

Satic Filters

Satic Filters

Implementing a static filter consists of creating alibrary that implements the following functions:
e eci NewFilter

e eciActivateFilter

e eciDeleteFilter

e eci UpdateFilter

e eciGetFilteredText

e« eciDeactivateFilter

IBM Text-to-Speech 175

Satic Filters

Satic Custom Filter Sample Code

#i nclude “ecifilter.h”
#i ncl ude "eci.h"

EClI Fil t erHand eci NewFi | t er (ECl Hand hEngi ne, unsigned int filterNunber) {
/1 Insert code for eci NewFilter here

} /1 ECFilterHand eci NewFi |l ter (ECl Hand hEngi ne, unsigned int
filterNunber)

ECIFilterError eciActivateFilter(ECI Hand hEngi ne, ECIFilterHand

whi chFi | t er Hand) {

/1 Insert code to eciActivateFilter here

} // ECIFilterError eciActivateFilter(EC Hand hEngi ne, ECIFilterHand
whi chFi | t er Hand)

ECI Fil terHand eci Del eteFi |l ter (ECl Hand hEngi ne, ECIFilterHand

whi chFi | t er Hand) {

/1 Insert code for eciDeleteFilter here

} // ECFilterHand eciDel eteFilter(EC Hand hEngi ne, ECIFilterHand
whi chFi | t er Hand)

ECIFilterError eci UpdateFilter(ECH Hand hEngi ne, ECIFilterHand

whi chFi | ter Hand, ECI | nput Text key, EC | nputText translation) {

/1 Insert code for eciUpdateFilter here

} // ECIFilterError eciUpdateFilter(ECI Hand hEngi ne, ECIFilterHand
whi chFi | terHand, ECI | nput Text key, EC | nputText translation

ECIFilterError eciDeactivateFilter(EC Hand hEngi ne, EC FilterHand

whi chFi | t er Hand) {

/1 Insert code for eciDeactivateFilter here

} /1 ECIFilterError eciDeactivateFilter(ECI Hand hEngi ne, ECIFilterHand
whi chFi | t er Hand)

ECIFilterError eciGetFilteredText(ECI Hand hEngi ne, ECIFilterHand

whi chFi |l terHand, ECI | nput Text input, EClIInputText *filteredText) {

/1 Insert code for eciGetFilteredText here

} // ECIFilterError eciCGetFilteredText (EC Hand hEngi ne, ECIFilterHand
whi chFi | terHand, ECI | nput Text input, EClIInputText *filteredText)

176 IBM Text-to-Speech

Satic Filters

Static Custom Filter Sample Code

A client application that wishesto use the static filter must include eci fi | t er. h beforeincluding
eci . h and link with thefilter library.

The IBM Text-to-Speech SDK version 6.2.2.1 includes a static email filter. To use the static email
filter, aclient application iscompiled witheci fil ter. h andlinkedwithmai I filter.lib
(I'i brai | filter.aonUnix plaforms).

IBM Text-to-Speech 177

Satic Filters

Sample client code using the default dynamic filter:

#i ncl ude "eci.h"
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int main(int argc, char* argv[])

{

ECI FilterHand filterObject;
ECI Hand handl e;

ECI Di ct Hand di ct Hand;
ECIDi ctError drc;

ECl | nput Text filteredText;

handl e = eci Newkx(eci Gener al Aneri cankEngl i sh);
eci Set Par am(handl e, eci Synt hMbde, 1);
eci Set Par an(handl e, ecil nput Type, 1);
eci Set Par am handl e, eci Sanpl eRate, 0);

di ct Hand = eci NewDi ct (handl e);

/* maildict.dct contains the translations for some of the nobre common
emai | jargon and

abbrevi ations */

drc = eci LoadDi ct(handl e, dictHand, eci MainDict, “.\\nuaildict.dct");
eci Set Di ct (handl e, dictHand);

}

178 IBM Text-to-Speech

Satic Filters

filterQObject = eci NewFilter(handle);
eci ActivateFilter(handle, filterCbject);

if (argc > 1)
{

FILE *fp = fopen(argv[1], "r");

char *charBuffer = new char[256];

void *ptr = (void *) charBuffer

it (fp){

while ((ptr = (void *) fgets((char *) ptr, 256, fp)) != NULL) {

eci AddText (handl e, ptr); /* The filtered text is synthesized. */

}
}

eci Synt hesi ze(handl e) ;
eci Synchroni ze(handl e) ;
fclose(fp);

getchar ();

}
eciDel eteFilter(handle, filterCbject);
eci Del et eDi ct (handl e, dictHand);

eci Del et e(handl e) ;

return O;

Sample client code using the default dynamic filter

IBM Text-to-Speech

179

Satic Filters

180 IBM Text-to-Speech

Symbolic Phonetic Representations

A Symbolic Phonetic Representation (SPR) is the phonetic spelling used by IBM TTSto represent the
pronunciation of asingle word. An SPR represents the sounds of the word, how these sounds are
divided into syllables, and which syllables receive stress.

SPRs can be generated by IBM TTS as output (see eci GeneratePhonemes), and they can be used as
input into IBM TTS in order to specify pronunciations which are not produced by the ordinary letter-
to-sound rules.

You can enter an SPR directly into atext in place of the ordinary spelling of aword, or you can enter
an SPR as the trandlation value of either amain dictionary or roots dictionary entry, so that the desired
pronunciation is generated whenever that word is encountered in any text (see Main Dictionary
(eciMainDict) and Roots Dictionary (eciRootDict) for more information on these topics).

IBM Text-to-Speech 181

SPR Form

SPR Form

An SPR consists of a sequence of alowable SPR symbols for a given language, enclosed in square
brackets [] and preceded by a backquote character . For example, the following are valid SPRsin
English:

t hough “[.1Do]

shocking "[.1Sa. 0kl G

A period signals the beginning of anew syllable, the digits 1 and O indicate the stress level of the
syllables, and theletters D, 0, S, a, k, |, and G represent specific English speech sounds. Each of these
elements of the SPR is discussed in further detail below. An SPR entry which does not follow the
requirements detailed below isinvalid, and is spelled out character by character.

Syllable Boundaries

A period is used to mark the beginning of each syllable in the SPR output generated by IBM TTS.
However, periods are optional in SPR input in all languages, and, except in German, will not have any
effect on the way the word is syllabified by the text-to-speech rules. In German, a period can be used
in SPR input to trigger a syllable boundary at the specified location (see German SPRs).

Syllable Stress

Syllables can be marked for stress with the digits 1, or 2, or 0, for primary stress, secondary stress, and
no stress, respectively. Some languages do not use secondary stress and thus do not accept the use of
the digit 2 in SPRs; see sections on specific languages below. |f aword has more than one syllable, at
least one of these syllables must be marked for primary stress, or the SPR will be considered invalid
and will be read out character by character. Other syllables can be marked with either secondary or no
stress. Syllablesthat are not marked for stress are assumed to have no stress.

The syllable stress marker (1, 2, or 0) should be within the syllable's boundaries but aways to the left
of the vowel of the syllable. If you do not know where the syllable boundariesin aword like
construction are located, any of the following SPRswill correctly place the primary stress on the vowel
in bold type:

" construction"
" [kXnlst r HkSXn]

182 IBM Text-to-Speech

SPR Form

" [kXns 1t r HkSXn]
" [kXnst 1r HkSXn]
" [kXnst r 1HKSXn]

In French, the syllable stress marker must directly precede the vowel of the syllable (see examplesin
the section on French SPRs).

Speech Sound Symbols

Each language uses its own inventory of SPR symbols for representing the speech sounds of that
language. The section SPR Tables contains tables of valid SPR symbols for the sounds of each
language, with examples of words in which each sound occurs. L etters are case-sensitive, so ‘[€] and
‘[E] represent two different sounds. Two-character symbols must be contained in single quotes; for
example, German heim "[h'g'm]. SPRs containing sound symbolsthat are not allowable in the current
language will be considered invalid, and spelled out character by character.

The sounds of every language have specific distributional patterns within that language. For example,
in all dialects of English, the sound [G] of sing "[.1sIG] does not occur at the beginning of aword.
Other American English sounds that have a particularly narrow distribution are the glottal stop [7], the
flap [F], and the syllabic nasal [N]. (See American English SPRs). If you enter asound symbol in a
context where it does not normally occur, the resulting speech may sound unnatural.

IBM TTS applies a sophisticated set of linguistic rulesto itsinput to reflect the processes by which
sounds change in specific contextsin natural language. For example, in American English, the sound
[t] of write "[.1r1Yt] is pronounced as aflap [F] in writer '[.1rY.OFR]. SPR input will undergo these
modifications just as ordinary input text does. In this example, whether you enter *[.1rY.OtR] or
“[.1rY.OFR], the output of the program will be the same.

IBM Text-to-Speech 183

SPR Tables

SPR Tables

The following tables show the inventory of allowable SPR symbolsin each IBM TTS language/
dialect. Each sound symbol is accompanied by examples showing typical spellings of the sound in
actual words, with the letters representing the given sound underlined. (Dueto dialectal differences,
the examples may not always match your pronunciation.) Remarks specific to SPRsin individual
languages are also included in the appropriate sections. Refer to SPR Form for general guidelines on

creating and using SPRs.

American English SPRs

Regular Vowels

The following table includes the symbols for regular vowels.

American English Symboal

Example Words

a

father, lot

back, had

cake, pain

A
e
E

hedge, let

see, speak, believe

pick, il

both, oak

law, cough

Z0o, truth

took, put

but, mug, son

|l IT|CcCle|0|0

butter, hurt

184

IBM Text-to-Speech

American English SPRs

Diphthongs

The following table includes the symbols for diphthongs.

American English Symbol

Example Words

0 toil, boy

w out, cow

Y life, fine
Reduced Vowels

The following table includes the symbols for reduced vowels.

American English Symboaol

Example Words

X

sofa, alone, suppose, tedious, America

X

roses, connect, melody, symphony, hinted

Consonants

The following table includes the symbols for consonants.

American English Symboaol

Example Words

bad, sob

pit, rip

dip, had

tip, pet

good, bug

kill, cat, make, back

this, breathe

thing, Beth

vase, save

fidd, if, graph

b
p
d
t
g
k
D
T
v
f
z

Zip, phase

IBM Text-to-Speech

185

American English SPRs

American English Symbol | Example Words
S seal, miss, ceiling
Z treasure, garage

S ship, wish

J Jane, huge

C chip, witch, nature
h hot, hero

m man, hum, summer
n never, sun, winner
G sing, finger

r borrow, rake

I low, hall

w wear, quick

y yes, Virginia

M hmmm

? ("glotta stop") kitten, Latin

F ("flap™) writer, fiddle

N ("syllabic nasal") button, satin, eaten, burden

Syllable Stress

The following table includes the symbols for syllable stress.

1 primary stress (most prominent stress in the word)

2 secondary stress

0 no stress

Syllable Boundary

The following table includes the symbol for a syllable boundary.

‘ . | (period) beginning of a syllable

186

IBM Text-to-Speech

British English SPRs

British English SPRs

Regular Vowels

The following table includes the symbols for regular vowels.

British English Symbol Example Words

a path, father, chant

A back, had

e cake, pain

E hedge, let

[see, speak, believe

| pick, ill

o] both, oak

c law, court, hall, water

@ rod, cough

u Z0o, truth

U took, put

H but, mug, son

R butter, hurt
Diphthongs

The following table includes the symbols for diphthongs.

British English Symbol

Example Words

(@] toil, boy
W out, cow
Y life, fine

IBM Text-to-Speech

187

British English SPRs

Reduced Vowels

The following table includes the symbols for reduced vowels.

British English Symbol

Example Words

X

sofa, alone, suppose, America

X

roses, hinted

Consonants

The following table includes the symbols for consonants.

British English Symbol

Example Words

b

bad, sob

pit, rip

dip, had

~+ |l oo

tip, pet

good, bug

kill, make, back

this, breathe

thing, Beth

vase, save

field, if, graph

Zip, phase

seal, miss, ceiling

treasure, garage

ship, wish

Jane, huge

chip, witch

hot, hero

man, hum, summer

S|3|T]0|«ln|N|o|N|*<|H gl ~|la

never, sun, winner

188

IBM Text-to-Speech

British English SPRs

British English Symbol Example Words
G sing, finger
r borrow, rake
I low, hall
candle
y yes, Virginia
w wear, quick
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

Syllable Boundary

The following table includes the symbol for a syllable boundary.

‘ (period) beginning of asyllable

IBM Text-to-Speech

189

German SPRs

German SPRs

Vowels

The following table includes the symbols for vowels.

German Symbol Example Words

[lieben, Titel, tief

| bitte, Tisch, Licht

e geben, Ehre, See

E treffen, Geld, kdmmen

'E: Kése, Madchen, wagen

a Haar, haben, fahren

A lassen, matt, Apfel

u gut, Uhr, Uwe

U Hund, FluR, Mutter

o] Qber, ohne, Boot

o Kopf, Stopp

y Bicher, Tar, kihn

Y funf, fdllen, Kinstler

‘o€ Lowe, héren, Sohne

'OF' kdnnen, hdlzern, ostlich

@ bitte, Kamera, Boden
Diphthongs

The following table includes the symbols for diphthongs.

German Symbol

Example Words

E

heim, Waise, Mai

190

IBM Text-to-Speech

German SPRs

German Symboal

Example Words

Haus, Maul, Frau

heute, Gebaude, Hauser

Nasalized Vowels (occur in borrowings only)

The following table includes the symbols for nasalized vowels.

German Symbol

Example Words

ol Chance
'E~ Teint
‘o~ Pardon
‘oe~' Parfum
Consonants
The following table includes the symbols for consonants.
German Symbol Example Words
b Boden, Bett, oben
p Papier, Lippe, Grab
d dunkel, kindisch, Helden
t Tag, hitte, Rad
g geben, grau, Tage
k Katze, Ecke, Skulptur, lag, quitt
Vv Wagen, viskds, Volum, oval
f fast, hoffen, Vater
z See, Satz, lesen
S FuR3, lassen, Last, Haus
Z Garage, Genie
S schon, spielen, Sil, wascht

IBM Text-to-Speech

191

German SPRs

German Symboal Example Words
X ich, Chemie, Kelch, mancher
X Buch, Bach, Wochen
P Pflanze, Stumphen
T Zauber, Polizei, Glanz
J Job, Dschungel
C deutsch, Chile, Cello
m Mann, kommen, Atem
n Nacht, kénnen, Kind
G Finger, léngs, Anfang
I lesen, fallen, Pult
r Rad, fihren
R Wieder, Uber
] Junge, ja, Jahr, Ministerium
w Eduard, aktuell, Januar
h hoch, Hand, Ahorn
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

Syllable Boundary
The following table includes the symbol for a syllable boundary.
‘ . ‘ (period) beginning of a syllable
In German, aperiod in an SPR entry will trigger a syllable boundary at that location.

192 IBM Text-to-Speech

Canadian French SPRs

Canadian French SPRs

Vowels

The following table includes the symbols for vowels.

French Symbol

Example Words

a

pattes, lac, cave

char, bois, méle

café, déformer, été

A
e
E

faite, dresser

film, typique

site, plastique, ride

taurillon, vaudevilliste

paul, note, échalotte

roue, ou, tour

foule, mousse

utile, pure, Bruno

autobus, chute

X|<|<|cle|o|o

litres, marbre (note: le [x] sefface dans
certains contextes.)

meuglement

cependant, cheval

voyage, information

steak (anglicismes)

pere, annuaire, féte

paule, beau, tot, coté

loge, encore

four, douze

dur, buse

IBM Text-to-Speech

193

Canadian French SPRs

French Symbol Example Words

‘eu:’ jedine, émeute

‘'oe’ peur, jeune, déjeuner

‘a' banc, en, temps

‘B fin, plein, faim

‘o~ bon, pont, mon

‘oe~' un, aucun
Consonants
The following table includes the symbols for consonants.

French Symbol Example Words

b bébé, balle, robe

p porte, prét, guépe

d dort, dolmen

t ton, patte, théatre

g guerre, bague, garer

k kilo, caler, quai

Y laver, wagon, visiter

f chef, faim, phare

D duque, dire

T petit, tuque

z jaser, réseau, zigzaguer

S sans, ambition, fagon

Z rage, dite, jouer

S cheval, lache, schéma

J jeans, jogging

C gaucho, gaspacho

m maman, femme, miser
194 IBM Text-to-Speech

Canadian French SPRs

French Symbol Example Words

n Anne, ni, maniague
nj’ agneau, campagne
'ng' parking, camping

r parer, rare, carreau

I litre, illisible, péle

j hiérarchie, paille, yoga

w oui, mai, vaila
H lui, nuit, nuée

Syllable Stress

The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

In French, the stress marker must immediately precede the vowel of the syllable.

Syllable Boundary

The following table includes the symbol for a syllable boundary.
‘ . ‘ (period) beginning of asyllable ‘

Liaison
In French, the underscore can be used following a word-final consonant (but within the right bracket

which closesthe SPR) to indicate that it isaliaison consonant: that is, it will be pronounced only if the
following word begins with avowel.

For example, aroots dictionary key petit with the translation value “[p'o€e'tlit_] will have the final [t]
pronounced in the input string un petit ami but not in the input string un petit chien. On the other hand,
an entry with the tranglation value “[nEt] will have the final [t] pronounced regardless of context.

IBM Text-to-Speech 195

Canadian French SPRs

The following examples show how to use the symbol for liaison.

_ (underscore character) alow liaison if the following word begins with a vowe. For
example:
[pQ'oetlit_] The[t] will not be pronounced unless the following word
begins with avowsel.
[nEt] The [t] will always be pronounced.

196 IBM Text-to-Speech

French SPRs

French SPRs

Vowels
The following table includes the symbols for vowels.
French Symbol Example Words
a pattes, lac, cave
e café, déformer, été
E pére, annuaire, mer
[film, type, rythmique
o] paule, tét, eaux
c paul, note, échalotte
u roue, ou, abut, tour
y utile, pure, Bruno
‘e’ peu, jelner, émeute
'oe peur, jeune, déjeuner
‘a' banc, en, temps
‘B fin, plein, faim
‘o~ bon, pont, mon
X litres, marbre
Consonants
The following table includes the symbols for consonants.
French Symbol Example Words
b bébé, balle, robe
p porte, prét, guépe
d dort, dolmen, addition
t ton, patte, théétre

IBM Text-to-Speech

197

French SPRs

French Symbol Example Words
g guerre, bague, garer
k kilo, caler, quai
\% laver, wagon, visiter
f chef, faim, phare
z jaser, réseau, zigzaguer
S sans, ambition, fagon
Z rage, dite, jouer
S cheval, 1&che, schéma
m maman, femme, mettre
n Anne, ni, anonyme
nj’ agneau, campagne
'ng parking, camping
r parer, rare, carreau
I litre, illisible, péle
j hiérarchie, paille, yéyé
w oui, moi, voila
H lui, nuit, nuée
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

In French, the stress marker must immediately precede the vowel of the syllable.

198 IBM Text-to-Speech

French SPRs

Syllable Boundary

The following table includes the symbol for a syllable boundary.
‘ . ‘ (period) beginning of asyllable ‘

Liaison
In French, the underscore can be used following aword-final consonant (but within the right bracket

which closesthe SPR) to indicate that it isaliaison consonant: that is, it will be pronounced only if the
following word begins with avowel.

For example, arootsdictionary key petit with the translation value “[p'o€'tlit_] will have the final [t]
pronounced in the input string un petit ami but not in the input string un petit chien. On the other hand,
an entry with the tranglation value "[nEt] will have the final [t] pronounced regardless of context.

The following examples show how to use the symboal for liaison.

_ (underscore character) alow liaison if the following word begins with avowel. For
example:
[pO'oetlit_] The[t] will not be pronounced unlessthe following word
begins with avowsel.
[nEt] The [t] will always be pronounced.

IBM Text-to-Speech 199

Sandard Italian SPRs

Sandard Italian SPRs

Vowels
The following table includes the symbols for vowels.
Italian Symbol Example Words
a lasagna, allegro
e nero, duetto
E ecco, liceo
i isola, formica
o] padrone, attore
c costa, mosse
u luna, ufficio

Consonants

The following table includes the symbols for consonants.

Italian Symbol Example Words

b bocca

partire

p
d data
t toccare

grande

casa, vecchio

vano, vivere

fare

paese, sbaglio

pesto, stasera

nlvw|[N|+l<|x|a

scegliere, lasciare

200

IBM Text-to-Speech

Sandard Italian SPRs

Italian Symboal Example Words
J Giovanni, congelare
C cece, ciao
D zabaione
T pizza, zuppa
m mamma
n niente
N gnocchi, lasagna
r caro
R terra
| lento, palma
L figlio, gl
y ieri, rasoio
w nuovo
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
0 no stress

Syllable Boundary
The following table includes the symbol for a syllable boundary.

‘ . ‘ (period) beginning of asyllable

IBM Text-to-Speech

201

M exican Spanish SPRs

Mexican Spanish SPRs

Vowels

The following table includes the symbols for vowels.

Spanish Symbol Example Words
a agua
e este
[igua
(o] 00
uve
Consonants
The following table includes the symbols for consonants.
Spanish Symboal Example Words
b basta, hubo
p parte, apagar
d dar
t toma, atar
g goma, haga
k coger, irak
L milla, llueve
f flaco, afuera
z mismo, desde
S S, casa
R ropa, perro
C coche, chico
B daba
202 IBM Text-to-Speech

Mexican Spanish SPRs

Spanish Symbol Example Words
D cada
G hagalo
% vaca
Z llave
ng angel
] jota, gente
m mano, amor
n no, mano
N Espafia
r arena, pero
| loco, algo
y 0igo, tiesto
w fuera, deuda
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stress in the word)
0 no stress

Syllable Boundary
The following table includes the symbol for a syllable boundary.

‘ . ‘ (period) beginning of asyllable

IBM Text-to-Speech

203

Castilian Spanish SPRs

Castilian Spanish SPRs

Vowels
The following table includes the symbols for vowels.
Spanish Symbol Example Words
a agua
e este
[igua
o 00
uve
Consonants
The following table includes the symbols for consonants.
Spanish Symboal Example Words
b basta
B daba, hubo
p parte, apagar
d dar
D nada
t toma, atar
g goma, haga
G hagalo
k coger, irak
f flaco, afuera
z mismo, desde
S S, casa
R ropa, perro
204 IBM Text-to-Speech

Castilian Spanish SPRs

Spanish Symbol Example Words
T ciudad, manzana
C coche, chico
i jota, gente
m mano, amor
n no, mano
N Espafia
r arena, pero
| loco, algo
L llegar, pollo
y 0igo, tiesto
Y playa, mayor
w fuera, deuda
Syllable Stress
The following table includes the symbols for syllable stress.
1 primary stress (most prominent stressin the word)
0 no stress

Syllable Boundary
The following table includes the symbol for a syllable boundary.

‘ (period) beginning of asyllable

IBM Text-to-Speech

205

Brazilian Portuguese SPRs

Brazilian Portuguese SPRs

Vowels

The following table includes the symbols for vowels.

Brazilian Portuguese

Symbol Example Words

a vira, g, dlgebra

e dedo, portugués

E és, belo

| fizesse, bode

o] cor, balha

C préximo, parta

u Cura, campo, peru

‘a campo, |3, atlantico

‘e~ alguém, tem, aglientar

“~ trinca, assim

‘o~ tom, consul, licdes

‘u~’ alguns, um
Consonants

The following table includes the symbols for consonants.

Brazilian Portuguese
Symbol Example Words
b abre, Brasil, bode
p pluma, primo, pampa
d dedal, draga
t topada, ponto, trinca
g gato, guarda, portugués
206 IBM Text-to-Speech

Brazilian Portuguese SPRs

Brazilian Portuguese
Symbol

Example Words

k

cama, kilo, queda

vila, breve

faixa, flauta, abafado

Zero, caso, COSMoS

certo, extra, avangar

gerd, jarro, bafejo

acho, xicara, baixa

bode, diz, adjetivo, admirar

bote, tive

fome, macaco

dona, novo

Z:BOQ(]‘)NU)N‘"<

inhame, cunha

—_

caro, trem, falar

Py

carro, rio, guelra

|eite, cavalo, claro

—

mal, relva

<

Ihe, bagulho

falei

cal6es, caibra

guardo, meu, aglientar

s|=|<|<

capitao

Syllable Stress

The following table includes the symbols for syllable stress.

1 primary stress (most prominent stressin the word)

0 no stress

IBM Text-to-Speech

207

Finnish SPRs

Finnish SPRs

Vowels

The following table includes the symbols for vowels.

Finnish Symbol Example Words
a tavara
a’ taas
A kasi
AT péés
e ele
e’ tullee
[lihas
i kiitos
o] kotiin
0!’ koossa
(0] Oljyta
'O To016
u puhu
u’ luussa
y yksi
'y pyyhki&
‘a0’ Hakan
208 IBM Text-to-Speech

Finnish SPRs

Glides
The following table includes the symbols for vowel offglides, which follow avowel to form a
diphthong.
Finnish Symbol Example Words
I leipa
U hius
Y [6yden
Consonants

The following table includes the symbols for consonants.

Finnish Symbol

Example Words

b

tabu

poika, kauppa

tiede

~+ 1 o|oT

tama, etta

teknologia

rikas, Pekka

vamo

profeetta

Zagreb

suu, pass

Zhironofski

plyys

Juneau

Chile

huomenta, vaahtoa

maa, ymmaarra

S|3|T]0|«|ln|N|o|N|~*<|x|a@

nappi, lennéttéa

IBM Text-to-Speech

209

Finnish SPRs

Finnish Symbol Example Words

G Helsingin

r raha, varis, Tarja

R piirros

I laula, illalle

j ja, gjatus

w Washington
Syllable Stress

The following table includes the symbols for syllable stress.

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

Syllable Boundary

The following table includes the symbol for a syllable boundary.

‘ (period) beginning of a syllable

210

IBM Text-to-Speech

Chinese SPRs

Chinese SPRs

The section describes the SPR for Chinese.

Vowels
The following table includes the symbols for vowels.
Symbol | Example Words
a bal, ban4, shuang3
e ked, jie2, xug2, me0, er0
i pi4, zi4, shil, dui4, xie3, yingl
0] bol, hongl
u [u4, junl, dunl, shuol
a pai3, lai2, hai2er0
ao pao3, lao2
e beil, beider0
ou youl, hou4, poul, lou4
u: nuu3
ue lue:4, nue:d4
Constants

The following table includes the symbols for consonants.

Symbol Example Words
p piaol, pin4
b bol, biao3

IBM Text-to-Speech

211

Chinese SPRs

t tal, ting2
d diao4, du2
k kai4, kuangl
g geng4, gul
Z zail, zuan3
zh zhenl, zhuang4
c ci4, cai2
ch chen2, chuang3
q gi4, gian2
j jil, jiong4
f feil, feng2
s sanl, song4
sh shengl, shao3
X Xxiad, xue2
h han3, hua2
m mad, ming2
n na2, duan3, lin2
ng rang4, nong2
r rou4, er0
| led, liang2, lul
y yel, yong4, ying2
w wang2
212 IBM Text-to-Speech

Chinese SPRs

Tone
The following table includes the symbols for tones.
neutral tone -no need to attach symbol for neutral tone
1 tone 1
2 tone 2
3 tone 3
4 tone 4

Chinese Sarting Syllable
The following table includes the symbol for a syllable boundary.

| + | beginning of Chinese syllables

Syllable Boundary
The following table includes the symbol for a syllable boundary.

‘ . ‘ (period) beginning of asyllable

Chinese SPR example

The following table shows examples of Chinese SPRs.
Word SPR
JinlTianl | [+jinl.tianl]
Ni2Hao3 | '[+.ni2.haog]
ZaidJand | [+.zaid.jiand]
Note

Traditional Chinese TTS also uses the same SPR as Simplified Chinese does (not ZhuYin).
Simplified Chinese and Traditional Chinese TTS can also accept mixed language (Chinese/
English) SPRs, such as:
“[+.ni 2. hao3] "[.1ltan]

IBM Text-to-Speech

213

Japanese SPRs

Japanese SPRs

This section describes the SPR symbols for Japanese vowels and consonants.

Vowels

The following table shows the symbols for Japanese vowels.

Symbol Example Words

a sake, haba

A maaku, meekaa

e te, suteru

E keisatsu, heisel

i ima, miru

I ii, atarashii

0 hodo, soba

@) koujou, oozei

u fuyu, sushi

U kyuushuu, yuumei
Consonants

The following table shows the symbols for Japanese consonants.

Symbol Example Words
b kabi, chiba
p shimpai, kappa
d mada, deru
t toki, atta
g tamago, jitusgyou
214 IBM Text-to-Speech

Japanese SPRs

Symbol Example Words
k kakaru, sakka
f gifu, futatsu
z mizu, zasshi
S sakana, issel
S shima, isshou
s tsunami, tatsu, ittsuu
'dz' jibun, meiji
1S chizu, machi, micchaku
h haba, iroha, hima, zehi, hyouban
m maru, sama
n nori, hana
N shimbun, gengo, insatsu, jin
r ryokan, kiru
y yoru, toyota, kyoukai
w wareware, ava
Examples

The following table shows examples of Japanese SPRs.

Word SPR

gambaru “[.OgaN.1ba.Oru]
kesson "[.1kes.0soN]

obaasan "[.00.1bA.0saN]

chiji 1.2°tS1.0'dZ’i]
isshoukenmei "[.0iS.0S0.1keN.OmE]

IBM Text-to-Speech

215

Japanese SPRs

Word SPR
ryokakki “[.Oryo.1kak.Oki]
micchaku [.0mit.0'tS a.0ku]
oosakaben "[.00.0sa.0ka.0beN]
insatsubutsu [.0IN.Osa.1’ts u.0bu.0’ts u]
kudamono “[.Oku.1da.0mo.0no]
ittsuu [.0it.1°ts' U]
atarimae “[.0a.0ta.0ri.Oma.O€]
hikkosu “[.Ohik.1ko.0su]
tanin “[Ota.0niN]
erai “[.0e.1ra.0i]
zannen "[.0zaN.1neN]
housou "[0hO.0s0O]

216 IBM Text-to-Speech

Code Samples

The following code samples illustrate how to use some of the IBM Text-to-Speech API’s. Link with
ibmeci.lib on Windows and libibmeci.aon Al X.

Hello world!

#i ncl ude <eci. h>

int main()

{
ECl Hand eci | nstance = eci NewW);

eci AddText (eci I nstance, "Hello world!");
eci Synt hesi ze(eci | nst ance) ;
eci Synchroni ze(eci | nstance);

eci Del et e(eci | nstance);
return O;

Input from file
#i ncl ude <eci . h>

int main()

{
ECl Hand eci | nstance = eci New);

eci Synt hesi zeFi | e(eci I nstance, "C:\\helloworld.txt");
eci Synchroni ze(eci | nstance);

eci Del et e(eci | nstance);
return O;

IBM Text-to-Speech 217

Specifying a language

Specifying a language

#i ncl ude <eci. h>

i nt

{

mai n()

ECl Hand eci | nstance = eci NewkEx(eci St andar dFr ench);
eci AddText (eci | nstance, "Bonjour |e nonde!");

eci Synt hesi ze(eci I nst ance) ;

eci Synchroni ze(eci | nst ance) ;

eci Del et e(eci | nstance);
return O;

Specifying a voice

#i ncl ude <eci. h>

int main()
{
ECl Hand eci | nstance = eci New();
eci CopyVoi ce(ecilnstance, 3, 0); // use Voice 3 (child)
eci AddText (eci | nst ance,
"I"'mthe only child in the IBMfamly.")
eci Synt hesi ze(eci | nst ance) ;
eci Synchroni ze(eci | nst ance) ;
eci Del et e(eci I nstance);
return O;
}
218 IBM Text-to-Speech

Specifying a samplerate

Specifying a samplerate

#i ncl ude <eci. h>

int main()
{
EClI Hand eci | nstance = eci New();
eci CopyVoi ce(eci l nstance, 3, 0); // use Voice 3 (child)
eci Set Par an(eci | nst ance, eci Sanpl eRate, 0); // use 8k
eci AddText (eci I nstance, "Now my voice is lower quality.");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance);
eci Del et e(eci | nstance);
return O;
}
Samplerates:
eciSampleRate =0
8k (8000 Hz)

Lowest quality, but sufficient for telephony applications

eciSampleRate = 1
11k (11025 Hz)
Higher quality

eciSampleRate = 2
22k (22050 Hz)
Best quality, and compatible with desktop speech recognition

IBM Text-to-Speech 219

Specifying voice parameters

Specifying voice parameters
#i ncl ude <eci. h>

int main()

{
ECl Hand ecil nstance = eci New();
eci CopyVoi ce(eci l nstance, 3, 0); // use Voice 3 (child)
eci Set Voi cePar an{ eci | nstance, 0, eci Speed, 75);

eci AddText (eci I nstance, "I'mfast yet very accurate.");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;

eci Del et e(eci | nstance);
return O;

Using annotations

#i ncl ude <eci. h>

int main()
{
ECl Hand ecil nstance = eci New();
eci CopyVoi ce(ecilnstance, 3, 0); // use Voice 3 (child)

eci Set Paramn(eci | nstance, ecilnputType, 1); // annotations on

eci AddText (eci I nstance, "“vs75 Annotations are another");
eci AddText (eci I nstance, "way to change speed.");

eci Synt hesi ze(eci | nst ance) ;

eci Synchroni ze(eci | nst ance) ;

eci Del et e(eci I nstance);
return O;

220

IBM Text-to-Speech

Concatenative TTS

Concatenative TTS

#i ncl ude <eci. h>

int main()

{
EClI Hand eci | nstance = eci New();
eci CopyVoi ce(ecil nstance, 1, 0); // use Voice 1 (adult nale)
eci Set Par an(eci | nst ance, eci Sanpl eRate, 0); // use 8k

eci AddText (eci | nstance, "Look, now |I'm using");
eci AddText (eci | nstance, "a concatenative voice!l");
eci Synt hesi ze(eci I nst ance) ;

eci Synchroni ze(eci | nst ance) ;

eci Del et e(eci | nstance);
return O;

IBM Text-to-Speech 221

Inserting indices

Inserting indices

#i ncl ude <stdio. h>
#i ncl ude <eci . h>
int main()
{
ECl Hand ecil nstance = eci New();
eci Regi st er Cal | back(ecil nstance, f, 0);
eci I nsert | ndex(ecilnstance, 0);
eci AddText (eci | nstance, "hi");
eci I nsert | ndex(ecilnstance, 1);
eci AddText (eci | nstance, "there");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;
eci Del et e(eci | nstance);
return O;
}
222 IBM Text-to-Speech

Catching indices—the callback function

Catching indices—the callback function

ECI Cal | backRet urn f (ECl Hand hEngi ne, EClI Message Msg,
I ong | Param void *pData)

{
switch (MsQ)
{
case ecil ndexReply:
swi tch (I Param
{
case 0: // about to say "hi"
printf("hi\n");
br eak;
case 1: // about to say "there"
printf("there\n");
br eak;
}
br eak;
}
return eci Dat aProcessed;
}

IBM Text-to-Speech 223

User

dictionaries—main volume

User dictionaries— main volume

#i ncl ude <eci. h>

int main()
{
ECl Hand ecil nstance = eci New();
EClI Di ct Hand di ct Hand = eci NewDi ct (eci | nst ance);
eci Set Di ct (eci | nstance, dictHand);
eci Updat eDi ct (eci I nst ance, dictHand, eci MainbDict,
"world", "friends");
eci AddText (eci I nstance, "Hello world!");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;
eci Del et eDi ct (eci I nstance, dictHand);
eci Del et e(eci | nstance);
return O;
}
224 IBM Text-to-Speech

User dictionaries—rootsvolume

User dictionaries—rootsvolume

#i ncl ude <eci. h>

int main()

{
EClI Hand eci | nstance = eci New();

ECI Di ct Hand di ct Hand = eci NewDi ct (eci | nst ance) ;

eci Set Di ct (eci I nstance, dictHand);

eci Updat eDi ct (eci | nst ance, dictHand, eci RootDict,
"prograni, "bow ");

eci AddText (eci I nstance, "I |ove progranmng!");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;

eci Del et eDi ct (eci I nstance, dictHand);
eci Del et e(eci | nstance);
return O;

IBM Text-to-Speech 225

User dictionaries— abbreviations volume

User dictionaries— abbreviations volume

#i ncl ude <eci. h>

int main()

{
ECl Hand ecil nstance = eci New();

EClI Di ct Hand di ct Hand = eci NewDi ct (eci | nst ance);

eci Set Di ct (eci | nstance, dictHand);

eci Updat eDi ct (eci I nst ance, dictHand, eci AbbvDi ct,

n ex. n ; " exan,.pl en) ,

eci AddText (eci I nstance, "One ex. is this.");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;

eci Del et eDi ct (eci I nstance, dictHand);
eci Del et e(eci | nstance);
return O;

226

IBM Text-to-Speech

User dictionaries— extended volume

User dictionaries—extended volume

#i ncl ude <eci. h>

int main()

{
ECl Hand eci | nstance = eci Newkx(eci St andar dJapanese);

ECI Di ct Hand di ct Hand = eci NewDi ct (eci | nst ance) ;

eci Set Di ct (eci I nstance, dictHand);

eci Updat eDi ct A(eci | nstance, dictHand, eci Mai nDi ct Ext,
" ", "fYf fE", eci KoyuuMeishi);

eci AddText (eci I nstance, "__—+");
eci Synt hesi ze(eci I nst ance) ;
eci Synchroni ze(eci | nst ance) ;

eci Del et eDi ct (eci I nstance, dictHand);
eci Del et e(eci | nstance);
return O;

IBM Text-to-Speech 227

User dictionaries— extended volume

228 IBM Text-to-Speech

Glossary of Linguistics Terms

Glossary of Linguistic Terms

Alphanumeric symbols

Compound word

Content word

Alphabetic (a, b, ¢) and numeric (1, 2, 3) symbols.

A word created from two other words. Here are some examples of
compound words:
hardwood, moon dancer, widespread, hand carry, tree trunk,
overpower, outgrown, cow punch

A compound word can be combined with another word (which can
be a compound), so there is no theoretical limit to the length of a
compound:

firewood bin, graham cracker pie crust, greenhouse gas

English spelling does not indicate whether or not something isa
compound. The component words can be separated with a space or a
hyphen, or not separated at all:

free-fall, freeway, free will, highland, high-rise, high school

A compound word has a different stress pattern than a noun phrase
consisting of the same words. For example, compare the
pronunciation of the following:

Ouch! That's hard wood.

It's not a pine tree; it's a hardwood.
Please paint that black board yellow.

Please erase the blackboard this afternoon.

The type of word that constitutes most of the vocabulary, such as.
* Nouns (story, happiness, sun, mile)

« Verbs (ride, chew, listen, bring, believe, remain)

» Adjectives (brilliant, awful, three, new, darkest)

» Adverbs (often, far, much, calmly, happily)
Content words are distinguished from function words.

IBM Text-to-Speech

229

Glossary of Linguistics Terms

Emphasis Emphasisis the prominence given to aword relative to other words
in an utterance.
Function word Grammatical words such as.

e Conjunctions (and, or, but)

« Articlesand determiners (a, an, the, this, those...)
e Auxiliaries (can, may, will, must, should...)

» Prepositions (to, from, over...)

* Pronouns (she, her, we, they, it...)

Function words are distinguished from content words and are
normally pronounced with reduced emphasis.

Intonation Changesin pitch across an utterance which are not related to the
meaning of individual words. Intonation conveys, for example:

« The difference between questions and statements

e Contrastive emphasis, used in statements that contradict or
parallel aprevious statement (e.g., Terry has a cold but JANET
has pneumonia.)

« Statement completion or closure

Intonational phrase InIBM TTS, anintonational phraseis usually marked off by
punctuation, such as a comma, period, or question mark.
One phrase: He's a child?
Two phrases: He's a child, though growing quickly.
Three phrases: He's a child, an old child, but nevertheless a child.

Key A key isthefirst half of auser dictionary entry. The key isthe string
of characters that will be searched for by the dictionary routine.

Nuclear accent The last emphasized word in an intonational phrase that has a degree
of emphasis of 2 or higher.

230 IBM Text-to-Speech

Glossary of Linguistics Terms

Phonetic spelling A phonetic spelling uses specia symbols like those found in the
pronunciation guide of adictionary. It has one symbol for each sound
and indicates which syllables receive stress.

Pitch How high or low avoice sounds.

Reduced emphasis A word with reduced emphasis is shorter than normal and has ho
pitch accent (tone). A word that simply has no emphasis rather than
reduced emphasis has no pitch accent, but it is not shortened.

Root The base form of aword, without prefixes (like un-) or suffixes (like
plural -s or past tense -ed).

Sress Stress is the prominence given to a syllable, relative to other
syllablesin the word. For example, in sentence (a) the word desert
has the greatest stress on the first syllable, and in sentence (b) the
word desert has the greatest stress on the second syllable.

(@) “I've been through the desert in a car with no air conditioner.”
(b) “Let's desert this old car and walk from here.”

Syllable A syllable isaunit of speech containing, at a minimum, a sonorant
nucleus such as avowel or diphthong. The syllable may aso contain
one or more consonants surrounding the vowel.

Trandlation A trangdlation is the second half of a user dictionary entry. The
tranglation is the pronunciation or output specified by the user.

White space One or more spaces made with the spacebar or Tab key.

IBM Text-to-Speech 231

Glossary of Linguistics Terms

232 IBM Text-to-Speech

Appendix A NOUC%

Referencesin this publication to IBM products, programs, or services do not imply that IBM intendsto
make these available in all countriesin which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only that IBM product, program, or service
may be used.

Subject to IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product, program, or service.

The evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and Licensing,
IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo 106, Japan.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Department TO1B, 3039 Cornwallis, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of afee.

IBM Text-to-Speech 233

Trademarks

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or
both:
IBM

ViaVoice
Adobe Acrobat is atrademark or registered trademark of Adobe Systems Incorporated.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the United States
and/or other countries.

Microsoft, Windows, Windows NT, Windows 95, Windows98, and Windows 2000 logo are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Other company, product, and service names may be trademarks or service marks of others.

234 IBM Text-to-Speech

| ndex

A
abbreviations dictionary, 18-19
abbreviations dictionary processing
annotations, 167
alternative pronunciations, choosing
annotations, 167
American English SPRs, 184
annotations
assigning tones to words, 162
emphasis, 160-161
entering SPRs, 168
modifying phrase-final intonation, 163
pronouncing numbers and years, 167

B
Brazilian Portuguese SPRs, 206
British English SPRs, 187

C
callback

function, 42
callback function, 42
calling conventions

ECI functions, 44
Canadian French SPRs, 193

Catching indices — the callback function,

223
Chinese SPRs, 211
Code Samples, 217
Concatenative TTS, 221
Custom Filters, 43, 169

D

Data Types, 21

diagnostics functions, 42

dictionary, 12-20
abbreviations, 18-20

main, 13-14

main extended - used with Asian languages, 15

roots, 16-17

dictionary processing of abbreviations

annotations, 167

dynamic dictionary maintenance functions,

41

E

eciAbbvDict, 18-19
eciActivateFilter, 45
eciAddText, 6, 7, 46-48, 140
eciBreathiness, 34
ECICallbackReturn, 21
eciClearErrors, 49
eciClearlnput, 50-52
eciCopyVoice, 6, 53-55
eciDataProcessed, 104
eciDeactivateFilter, 56
eciDelete, 57
eciDeleteDict, 59
eciDeleteFilter, 60
ECIDictError, 22
eciDictFindFirst, 61-62
eciDictFindFirstA, 63-64
eciDictFindNext, 65-66
eciDictFindNextA, 67-68
ECIDictHand, 22
eciDictionary, 29
eciDictLookup, 69
ECIDictVolume, 23
eciErrorMessage, 73
ECIFilterError, 23
eciGender, 34

eci GeneratePhonemes, 74-75
eciGetAvailablelL anguages, 76

eciGetDefaultParam, 78

IBM Text-to-Speech

Index

eciGetDict, 79
eciGetFilteredText, 80
eciGetlndex, 82
eciGetParam, 29, 83
eciGetV oiceName, 84-85
eciGetV oiceParam, 34, 86-87
ECIHand, 23

ECIHand parameters, 44
eciHeadSize, 35
ecilndexReply, 104
EClInputText, 24
ecilnputType, 6, 29
ecilnsertlndex, 88-89, 104
ECILanguageDialect, 24
eciLanguageDialect, 29
eciLoadDict, 90-91
eciMainDict, 13-14, 15-2?
ECIMessage, 25, 103-105
ECIMouthData, 26, 104
eciNew, 92-93
eciNewDict, 96
eciNewEXx, 94-95
eciNumberM ode, 30
eciNumParams, 30, 35
ECIlParam, 25

eciPause, 98
eciPhonemeBuffer, 104
eciPhonemel ndexReply, 26, 104
eciPitchBaseline, 35
eciPitchFluctuation, 35
eciProgStatus, 99-100
eciRealWorldUnits, 31
eciRegisterCallback, 101-109
eciReset, 110
eciRootDict, 16-17
eciRoughness, 36
eciSampleRate, 31
eciSaveDict, 111
eciSetDefaultParam, 113
eciSetDict, 115

eci SetOutputBuffer, 103, 117-118

eciSetOutputDevice, 119-120
eci SetOutputFilename, 121-122
eciSetParam, 6, 29, 123-124

eci SetVoiceName, 125-126

eci SetV oiceParam, 34, 127, 127-2?
eci Speaking, 129-130
eciSpeakText, 6, 131-133
eciSpeak TextEXx, 134-135

eci Speed, 36

eciStop, 136
eciSynchronize, 137-138
eciSynthesize, 7, 139-140
eciSynthesizeFile, 141-142
eciSynthMode, 31
eciTestPhrase, 143
eciTextMode, 31
eciUpdateDict, 144-145
eciUpdateDictA, 146-147
eciUpdateFilter, 148
eciVersion, 149
ECIVoiceParam, 25
eciVolume, 36
eciWantPhonemelndices, 32
eciWaveformBuffer, 103

Eloguence Command Interface, 5

F
Finnish SPRs, 208
French SPRs, 197

G
German SPRs, 190
glossary, 229-231

H
Hello world!, 217

I
Indices, 5
Inserting indices, 222

236

IBM Text-to-Speech

Index

intonation
annotations, 163
Italian SPRs, 200

J
Japanese SPRs, 214

L
language and dial ect, choosing, 152

M
main dictionary, 13-14
Mexican Spanish SPRs, 202

N
NULL_ECI_HAND, 44

O

output
audio device, 5
callback function, 5
file, 5

F)

pauses, inserting
annotations, 164

phrase-final intonation, modifying
annotations, 163

preset voice definitions, 37

pronouncing numbers and years
annotations, 167

R
roots dictionary, 16-17

S
sample C programs, 6
Spanish (Castilian) SPRs, 204

Spanish (Mexican) SPRs, 202
speaking style, choosing
annotations, 159
Specifying a language, 218
Specifying a sample rate, 219
Specifying a voice, 218
Specifying voice parameters, 220
SPR symbols
American English, 184
Brazilian Portuguese, 206
British English, 187
Chinese, 211
Finnish, 208
French, 197
German, 190
Italian, 200
Japanese, 214
Spanish (Castilian), 204
SPRs
annotations, 168
tables, 184
synthesis state parameters, 29-33
defaults, 33
synthesizing
annotated text, 6
system control functions, 39

T

Table, 39

tones, assigning to words
annotations, 162

Trademarks, 234

U

User dictionaries — abbreviations volume,

226
User dictionaries — extended volume, 227
User dictionaries — main volume, 224
User dictionaries — roots volume, 225
using a preset voices, 6

IBM Text-to-Speech

237

Index

Using annotations, 220

V

voice characteristics
annotations, 157

voice definitions
preset, 37

voice parameter controls, 41

voice parameters, 34-37
defaults, 37

238 IBM Text-to-Speech

	Contents
	About This Book
	Who�Should�Read�This�Book?
	Organization�of�This�Book
	Typographical�Conventions

	The IBM Text-to-Speech Software Developer’s Kit
	Overview
	Eloquence Command Interface (ECI)

	The ECI Application Programming Interface
	Overview
	Structuring an ECI Program
	Using eciSpeakText for Simple Programs
	Managing an ECI Instance

	Threading
	Callbacks
	User Dictionaries
	Main Dictionary (eciMainDict)
	Main Extension Dictionary (eciMainDictExt)
	Roots�Dictionary�(eciRootDict)
	Abbreviations�Dictionary�(eciAbbvDict)

	ECI Reference
	Data Types
	Boolean
	ECICallbackReturn
	ECIDictError
	ECIDictHand
	ECIDictVolume
	ECIFilterError
	ECIHand
	ECIInputText
	ECILanguageDialect
	ECIMessage
	ECIParam
	ECIVoiceParam
	ECIMouthData

	Synthesis�State�Parameters
	eciDictionary
	eciInputType
	eciLanguageDialect
	eciNumberMode
	eciNumParams
	eciRealWorldUnits
	eciSampleRate
	eciSynthMode
	eciTextMode
	eciWantPhonemeIndices
	Synthesis State Parameter Defaults

	Voice Parameters
	eciBreathiness
	eciGender
	eciHeadSize
	eciNumVoiceParams
	eciPitchBaseline
	eciPitchFluctuation
	eciRoughness
	eciSpeed
	eciVolume:

	Preset Voice Definitions
	Voice Parameter Defaults

	Table of Functions
	System Control
	Synthesis Control
	Output Control
	Speech Environment Parameter Selection
	Voice Parameter Control
	Dynamic Dictionary Maintenance
	Diagnostics
	Callback
	Custom Filters

	Alphabetical Index of Functions
	eciActivateFilter
	eciAddText
	eciClearErrors
	eciClearInput
	eciCopyVoice
	eciDeactivateFilter
	eciDelete
	eciDeleteDict
	eciDeleteFilter
	eciDictFindFirst
	eciDictFindFirstA
	eciDictFindNext
	eciDictFindNextA
	eciDictLookup
	eciDictLookupA
	eciErrorMessage
	eciGeneratePhonemes
	eciGetAvailableLanguages
	eciGetDefaultParam
	eciGetDict
	eciGetFilteredText
	eciGetIndex
	eciGetParam
	eciGetVoiceName
	eciGetVoiceParam
	eciInsertIndex
	eciLoadDict
	eciNew
	eciNewEx
	eciNewDict
	eciNewFilter
	eciPause
	eciProgStatus
	eciRegisterCallback
	eciReset
	eciSaveDict
	eciSetDefaultParam
	eciSetDict
	eciSetOutputBuffer
	eciSetOutputDevice
	eciSetOutputFilename
	eciSetParam
	eciSetVoiceName
	eciSetVoiceParam
	eciSpeaking
	eciSpeakText
	eciSpeakTextEx
	eciStop
	eciSynchronize
	eciSynthesize
	eciSynthesizeFile
	eciTestPhrase
	eciUpdateDict
	eciUpdateDictA
	eciUpdateFilter
	eciVersion

	Annotations
	ECI Annotations
	Selecting�a�Language�and�Dialect
	Selecting a Voice or Voice Characteristics
	Selecting�a�Speaking�Style
	Modifying�Word�Emphasis�and�Tone
	Assigning Tones to Words

	Modifying Phrase-Final Intonation
	Adding�Pauses
	Filters
	Specifying�Alternative�Pronunciations
	Character Spelling Modes
	Pronouncing Numbers and Years
	Dictionary Processing of Abbreviations
	Entering Symbolic Phonetic Representations

	Custom Filters
	Implementing a Custom Filter
	Dynamic Filters
	Dynamic Filter Sample Code

	Static Filters
	Static Custom Filter Sample Code
	Sample client code using the default dynamic filter:

	Symbolic Phonetic Representations
	SPR Form
	SPR Tables
	American English SPRs
	British�English�SPRs
	German�SPRs
	Canadian French SPRs
	French�SPRs
	Standard�Italian�SPRs
	Mexican Spanish SPRs
	Castilian�Spanish�SPRs
	Brazilian�Portuguese�SPRs
	Finnish SPRs
	Chinese SPRs
	Japanese SPRs

	Code Samples
	Hello world!
	Specifying a language
	Specifying a voice
	Specifying a sample rate
	Specifying voice parameters
	Using annotations
	Concatenative TTS
	Inserting indices
	Catching indices – the callback function
	User dictionaries – main volume
	User dictionaries – roots volume
	User dictionaries – abbreviations volume
	User dictionaries – extended volume

	Appendix A Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

