
IBM Text-to-Speech
API Reference

Version 6.4.0

Printed in the USA

Note:
Before using this information and the product it supports, be sure to read the general information under
Appendix A, "Notices."

Twelfth Edition (March 2002)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you. This publication could include
technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time.
It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Requests f or technical information about IBM products should be made to your IBM reseller or
IBM marketing representative.

©Copyright International Business Machines Corporation 1994-2002. All Rights Reserved.
Note to U.S. Government Users—Documentation related to restricted rights— Use, duplication or disclosure is
subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

Copyright License

This information contains sample application programs in source language, which illustrates
programming techniques. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee
or imply reliability, serviceability, or functionality of these programs. You may
also copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include
a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp.

enter the year or years. All rights reserved

IBM Text-to-Speech
Contents
About This Book 1
Who Should Read This Book? . 1
Organization of This Book . 1
Typographical Conventions . 2

The IBM Text-to-Speech Software Developer’s Kit 3
Overview . 3
Eloquence Command Interface (ECI) . 3

The ECI Application Programming Interface 5
Overview . 5
Structuring an ECI Program . 6
Threading . 10
Callbacks . 10
User Dictionaries . 12

ECI Reference 21
Data Types . 21
Synthesis State Parameters . 29
Voice Parameters . 34
Preset Voice Definitions . 37
Table of Functions . 39
Alphabetical Index of Functions . 44

Annotations 151
v

About This Document
ECI Annotations . 151
Selecting a Language and Dialect . 152
Selecting a Voice or Voice Characteristics . 157
Selecting a Speaking Style . 159
Modifying Word Emphasis and Tone . 160
Modifying Phrase-Final Intonation . 163
Adding Pauses . 164
Filters . 166
Specifying Alternative Pronunciations . 167

Custom Filters 169
Implementing a Custom Filter . 170
Dynamic Filters . 171
Static Filters . 175

Symbolic Phonetic Representations 181
SPR Form . 182
SPR Tables . 184
American English SPRs. 184
British English SPRs . 187
German SPRs. 190
Canadian French SPRs . 193
French SPRs . 197
Standard Italian SPRs . 200
Mexican Spanish SPRs . 202
Castilian Spanish SPRs . 204
Brazilian Portuguese SPRs . 206
Finnish SPRs . 208
Chinese SPRs. 211
Japanese SPRs . 214

Code Samples 217
vi IBM Text-to-Speech

About This Document
Hello world! . 217
Specifying a language. 218
Specifying a voice . 218
Specifying a sample rate. 219
Specifying voice parameters. 220
Using annotations . 220
Concatenative TTS . 221
Inserting indices . 222
Catching indices – the callback function . 223
User dictionaries – main volume . 224
User dictionaries – roots volume . 225
User dictionaries – abbreviations volume . 226
User dictionaries – extended volume . 227

Appendix A Notices 233
Trademarks . 234

Index 235
IBM Text-to-Speech vii

About This Document
viii IBM Text-to-Speech

About This Book
This book provides information on incorporating IBM Text-to-Speech technology into other
applications. It describes the programming interfaces available for developers to take advantage of
these features within their applications. This book is prepared in Portable Document Format (PDF) to
provide the advantages of text search and cross-reference hyperlinking and is viewable with the Adobe
Acrobat Reader v.3.x or higher. We recommend that you print all or part of this guide for quick
reference.

Who Should Read This Book?
Read this book if you are a software developer interested in writing applications that use IBM Text-to-
Speech technology. This document describes the use of IBM Text-to-Speech technology for
beginning to advanced software engineers.

Organization of This Book
This document is organized in the following manner:

• “The IBM Text-to-Speech Software Developer’s Kit” contains general information about
the structure and organization of the IBM Text-to-Speech SDK, including an overview of the
API interfaces and a description of the SDK-provided tools.

• “The ECI Application Programming Interface” contains information about using IBM
Text-to-Speech with its proprietary “Eloquence Command Interface” API.

• “ECI Reference” contains detailed information about the data types and functions available
for use with the Eloquence Command Interface.

• “Annotations” includes a description of the use of special codes that can be inserted into the
input text to customize the behavior of IBM Text-to-Speech .

• “Symbolic Phonetic Representations” describes the use of special phonetic symbols to
customize pronunciations in IBM Text-to-Speech.
IBM Text-to-Speech 1

About This Book
• “Glossary of Linguistic Terms” contains definitions of linguistic terms used in this manual.

Typographical Conventions
The following typographical conventions are used throughout this document to facilitate reading and
comprehension. They are outlined in the following table.

Text Format Applies to
Monospace font Code samples, file and directory names.
Bold Function and callback names; data types (including

structures and enumerations).
Italics Parameter and structure member names; sample text; the

introduction of a new term.
UPPERCASE Property, enumerator, mode, and state names.
2 IBM Text-to-Speech

The IBM Text-to-Speech Software
Developer’s Kit
Overview
The IBM TTS allows you to incorporate high-quality text-to-speech functionality into your
applications. This SDK offers developers the application programming interfaces (APIs) for the
proprietary, platform-independent Eloquence Command Interface (ECI). The typical installation of
the IBM Text-to-Speech SDK, which includes this document, along with the IBM TTS RunTime,
provides all the necessary software and support files for these APIs.

The following sections include a brief description of each of the available APIs and directory structure
of this SDK.

Eloquence Command Interface (ECI)
The Eloquence Command Interface (ECI) is a proprietary, platform independent API that allows direct
access to all the functionality and power of the IBM Text-to-Speech. This API:
• Is supported on a variety of operating systems.
• Allows customization of speech output both through function calls and textual annotations.
• Does not use the Windows Registry to find components, allowing developers to include a private

copy of the text-to-speech engine with their application that is less likely to be accidentally
modified by later installations or by other applications.

See the sections The ECI Application Programming Interface and ECI Reference for details on how to
use this API. See the section Annotations for details on the use of ECI annotations to customize
speech output.
IBM Text-to-Speech 3

Eloquence Command Interface (ECI)
4 IBM Text-to-Speech

The ECI Application Programming
Interface
Overview
The Eloquence Command Interface (ECI) is a library that provides an interface between applications
and the IBM Text-to-Speech system. Version 6.2 of ECI has been re-architected to provide support for
multiple concurrent speech synthesis threads, and a consistent interface on all supported platforms.

As in prior versions of ECI, text is appended to the input buffer. Each word takes its voice definition
from the active voice. Speech is synthesized from the input buffer according to the associated voice
parameters, placed in the output audio buffer, and sent to the appropriate destination. The active voice
can be set from a number of built-in voices or from a user-defined voice. Language, dialect, and voice
parameters can be modified individually using either ECI function calls or annotations inserted into the
input buffer with the input text. As text is added to the input buffer, the active voice definition is stored
with it, so that changes to the active voice do not affect text already in the input buffer.

Indices can be used to determine when the delimited text fragment has been synthesized. A message
will be received when all text inserted before the index has been synthesized.

Output can be sent to one of three types of destinations: a callback function, a file, or an audio device.
These destination types are mutually exclusive, so sending output to one of them turns off output to the
previous destination. The default destination is an available audio device.
IBM Text-to-Speech 5

Structuring an ECI Program
Structuring an ECI Program

Using eciSpeakText for Simple Programs
The simplest way to incorporate text-to-speech into your application is by using the high-level ECI
function eciSpeakText, which speaks the given text to the default audio device. This first sample C
program speaks a short phrase and then exits:

Managing an ECI Instance

In order to use the more powerful features of the ECI API, you will have to manage ECI instances
directly. An ECI instance, in accordance with standard object-oriented procedure, originates with a
call to eciNew and ends with a call to eciDelete.

One basic strategy for managing an ECI instance is outlined below:
• Create a new ECI instance by invoking eciNew.
• If you want ECI to notify you of certain events, register a callback function with a call to

eciRegisterCallback.
• Interact with the ECI instance. You may, for example:

• Add text to the ECI instance’s input buffer with one or more calls to eciAddText.
• To synthesize annotated text, call eciSetParam(eciInstance, eciInputType, 1) before

calling eciAddText. This lets ECI know that the text may contain annotations.
• To use one of the preset voices, call eciCopyVoice before calling eciAddText. The active

voice (voice 0) specifies values for a set of voice characteristics, such as pitch baseline and

#include <eci.h>

int main(int argc, char *argv[])
{
eciSpeakText ("Hello World!", false);

return 0;
}

6 IBM Text-to-Speech

Structuring an ECI Program
pitch fluctuation, which are applied to all new text added to the input buffer. See Voice
Parameters for more detailed discussion.

• Change the state of the active voice with calls to eciSetVoiceParam.
• Call eciSynthesize when all text has been added to the input buffer. To synthesize text in line-

oriented format, such as a table or list, call eciAddText and eciSynthesize for each line, to
ensure that each line is spoken as a separate sentence.

• If the thread that is managing this ECI instance does not contain a Windows message loop, you
must ask your instance of ECI to report that synthesis is complete. This step will also allow
your registered callback to be called by ECI. You can do this in more than one way:
• Call eciSynchronize, which waits in an efficient state, allowing callbacks to be called,

until synthesis is finished. When synthesis is complete, the function will return control to
the calling thread. Do not call eciSynchronize from a thread that has a Windows message
loop.

• Call eciSpeaking until it returns false. Each call to eciSpeaking will allow your
callback to be called.

If the thread that is managing this ECI instance contains a Windows message loop, this step is
not necessary.

• Use eciDelete to free the resources dedicated to your instance.
IBM Text-to-Speech 7

Structuring an ECI Program
The following example speaks a phrase in English, then a phrase in French, then exits:

#include <eci.h>

int main(int argc, char *argv[])
{

ECIHand eciHandle;

eciHandle = eciNew();//Create a new ECI Instance
if (eciHandle!= NULL_ECI_HAND) //Success?
{//Give some text to the instance
if (!eciAddText(eciHandle, "Hello World!"))
{
//We failed to add text
//Print an error message
printf("eciAddText failed\n");

}
//Change the language to Standard French,
//if available
if (eciSetParam(eciHandle, eciLanguageDialect,
eciStandardFrench) == -1)
{
//Error Changing to French
printf("Could not change to French\n");
}
else
{
//Give some text in French
if (!eciAddText(eciHandle, "Un. Deux. Trois."))
{
//We failed to add text
//Print an error message
printf("eciAddText failed\n");
}

Continued on the next page
8 IBM Text-to-Speech

Structuring an ECI Program
Continued from previous page
//Start ECI speaking
if (!eciSynthesize(eciHandle))
{
//We failed to synthesize
//Print an error message

printf("eciSynthesize failed\n");
}
}
//Wait until ECI finishes speaking
if (!eciSynchronize(eciHandle))
{
//We failed to synchronize
//Print an error message
printf("eciSynchronize failed\n");
}
//Delete our ECI Instance; deallocates memory
eciDelete(eciHandle);
}
else
{
//We failed to create a new ECI Instance
//Print an error message
printf("eciNew failed\n");
}

return 0;
}

IBM Text-to-Speech 9

Threading
Threading
The ECI API is structured on a principle called the "Single-Threaded Apartment Model", which means
that each individual instance can be called only upon the thread that created it; that is, it should not be
affected by the existence of other instances or threads. All callbacks are called by the thread that
created the instance.

The eciSpeakText function is a blocking function that creates, manages, and destroys its own private
ECI instance. The application thread of execution is blocked until the function returns. eciSpeakText
requires no special thread handling, since it does not return control to the main thread until it has
completed all synthesis.

Other ECI functions are non-blocking: the application thread of execution remains available during
their execution. Applications using animated mouths, multiple voices, multiple conversations or
requiring the highest possible performance depend on these non-blocking functions, which are only
accessible through the handle created by eciNew. See also eciNewEx.

Callbacks
A callback is a mechanism for temporarily passing control of execution out of an instance of ECI to a
function provided by the developer when certain events take place. The ECI API provides for four
callback events:

• eciIndexReply: Sends notification when a particular point in the input text is reached. To set
these points in the text, call eciInsertIndex after calls to eciAddText.

• eciPhonemeBuffer: Sends notification when the Symbolic Phonetic Representations buffer is
full. Call eciGeneratePhonemes after a call to eciAddText to enable this event.

• eciPhonemeIndexReply: Sends notification when a particular phoneme is spoken, including
mouth animation data for that phoneme. Set eciWantPhonemeIndices to 1 with eciSetParam
to enable this event.

• eciWaveformBuffer: Sends notification when a sample-capture buffer is full (so, e.g., the
developer can send the samples to a custom audio destination). Call eciSetOutputBuffer to
enable this event.
10 IBM Text-to-Speech

Callbacks
Only one callback function may be registered for each instance of ECI. This function will receive all
four types of callback events. No events are set by default.

Callback functions must return promptly, returning a flag indicating completion of processing.
Callbacks may not call ECI functions.

Register your callback with eciRegisterCallback immediately after calling eciNew. For any given
ECI instance, your callback will be called from the same thread on which your application calls ECI.
See eciRegisterCallback for more details on use of callbacks.
IBM Text-to-Speech 11

User Dictionaries
User Dictionaries
IBM TTS allows you to explicitly specify pronunciations for words, abbreviations, acronyms, and
other sequences, preventing the normal pronunciation rules from applying. One way you can do this is
to enter a Symbolic Phonetic Representation (SPR) annotation directly into the input text (see
Symbolic Phonetic Representations). A more permanent way is to enter the word (the input string or
key) and the pronunciation you want (the output or translation value) in one of the user dictionaries.

A dictionary set consists of 4 volumes. Each volume differs from the kinds of keys and translation
values it accepts.

Main Dictionary (eciMainDict)
Main Extension Dictionary (eciMainDictExt)
Roots Dictionary (eciRootDict)
Abbreviations Dictionary (eciAbbvDict)

A dictionary file consists of ASCII text with one dictionary entry per line. Each input line contains a
key and a translation value, separated by a tab character. An invalid key or translation will cause the
dictionary look-up to fail, and the pronunciation of the word will be generated by the normal
pronunciation rules. Valid entries for each dictionary are discussed in the subsections below.

To add, modify, or delete an entry in any of the dictionaries, use the eciUpdateDict function of the
API.

For Asian languages, such as Chinese and Japanese, the client application should use the dictionary
maintenance functions that are named with an A at the end in place of the same-name function. For
example, use eciDictFindFirstA, in stead of eciDictFindFirst.

ForChinese, Roots Dictionary (eciRootDict) functionality is not supported.
12 IBM Text-to-Speech

User Dictionaries
Main Dictionary (eciMainDict)
The Main Dictionary is distinguished from the other user dictionaries in two ways: a valid translation
consists of any valid input string, and the key of a Main Dictionary entry may contain any characters
other than white space, except that the final character of the key may not be a punctuation symbol.
You can thus use the Main Dictionary for:

• Strings that translate into more than one word
• Keys that require translations which include annotations or SPRs
• URLS and email addresses
• Keys containing digits or other non-letter symbols
• Acronyms with special pronunciations

The Main Dictionary is case-sensitive. For example, if you enter the key "WHO" with the translation
"World Health Organization", lower case who will still be pronounced as expected (`[hu]).

Note: The Main Dictionary translations may include ECI annotations.

Valid Main Dictionary Entries
The following table summarizes the valid Main Dictionary keys and translations:

Key Translation
· letters, both upper and lower case
· digits
· non-alphanumeric characters like @,
#, $, %, &, *, +
· apostrophes, quotation marks,
parentheses, brackets, etc.
· punctuation, except as the final
character

Anything that is legal input to the text-
to-speech engine, including white
space, punctuation, SPRs, and
annotations.

NO: white space
IBM Text-to-Speech 13

User Dictionaries
Main Dictionary Examples
The following table shows examples of Main Dictionary entries:

See Also
Abbreviations Dictionary (eciAbbvDict), Roots Dictionary (eciRootDict).

Key Translation
AWSA American Woman Suffrage `0 Association
jeb@notreal.org j e b at not real dot o r g
ECSU `[1i] `[1si] `[1Es] `[1yu]
UConn `[2yu1kan]
WYSIWYG `[1wI0zi0wIg]
Win32 win thirty two
486DX 4 86 dee ecks
14 IBM Text-to-Speech

User Dictionaries
Main Extension Dictionary (eciMainDictExt)
The Main Extension Dictionary is the used for Asian languages and provides support for Chinese,
Japanese, and Korean.

You can use the Main Extension Dictionary for:

• Strings for DBCS languages (other than white space)
• Strings that translate into more than one word
• Keys that require translations which include annotations or SPRs
• Keys containing digits or other non-letter symbols
• Acronyms with special pronunciation

Translation is language dependent. For example in Japanese, Katakana Yomi strings are valid
translations. Any other SBCS/DBCS characters except the accent mark (^) will cause an error.

Each Main Extension Dictionary entry requires a part of speech which specifies the grammatical
category. The possible values are:

Note: The Main Extension Dictionary can be accessed with eciUpdateDictA, eciDictFindFirstA,
eciDictFindNextA, eciDictLookupA.

Language Part of Speech (POS)
Chinese eciUndefinedPOS

eciMingCi
Japanese eciUndefinedPOS

eciFutsuuMeishi
eciKoyuuMeishi
eciSahenMeishi

Korean eciUndefinedPOS
IBM Text-to-Speech 15

User Dictionaries
Roots Dictionary (eciRootDict)
The Roots Dictionary is used for ordinary words, like nouns (including proper names), verbs, or
adjectives, and for proper names. The distinctive feature of the Roots Rictionary is that you only have
to enter the root form of a word; all other forms of the word will automatically get pronounced in the
same way. For example, the letter-to-sound rules normally pronounce roof as [ruf] (which has the
vowel of boot). You can use the Roots Dictionary to specify the alternate pronunciation [rUf] (which
has the vowel of book). Then, all words with this root, such as roofer and roofing will also be
pronounced this way; there is no need to list the other words separately in the dictionary.
• The Roots Dictionary is not case-sensitive. So, for example, when you enter a root in lowercase, it

will still be found and pronounced as specified even when it begins with an uppercase (capital)
letter (for example, as the first word in a sentence).

• The Roots Dictionary is designed to provide alternate pronunciations of existing roots, and may not
work properly in the case of unknown roots. For example, the entry prego occurring in the
hypothetical word pregoness will not be accessed from the user roots dictionary because the
linguistic analysis rules assume that the word contains the root go rather than the root prego.

• The roots dictionary cannot be used to specify an alternate pronunciation of a function word, such
as the or to.

Valid Roots Dictionary Entries
The following table summarizes valid Roots Dictionary keys and translations:

Roots Dictionary Examples
The following table shows examples of Roots Dictionary entries:

Keys Translations
A single word in ordinary spelling, all
lowercase letters

· A single word in ordinary spelling
· A valid SPR

NO: digits, punctuation, white space, or
other non-letter characters

NO: digits, punctuation, or other non-letter
characters, white space, tags, or annotations

Key Translation Would apply to:
figure `[.1fI.0gR] figures, figuring, figured, refigure
tomato `[.0tx.1ma.0to] tomatoes, tomato’s
16 IBM Text-to-Speech

User Dictionaries
See Also
Main Dictionary (eciMainDict), Abbreviations Dictionary (eciAbbvDict)

wash `[.1warS] wash, washing, washed, washes
wilhelmina wilma Wilhelmina, Wilhelmina’s

Key Translation Would apply to:
IBM Text-to-Speech 17

User Dictionaries
Abbreviations Dictionary (eciAbbvDict)
The Abbreviations Dictionary is used for abbreviations (both with and without periods) which do not
require the use of annotations in their translation.

The Abbreviations Dictionary is case-sensitive. So for example, if you entered the key Mar with
translation "march," lower-case "mar" would still be pronounced as expected (`[mar]).

When you enter a key in the Abbreviations Dictionary, it is not necessary to include the "trailing"
period (as in the final period of "etc."). However, if you want an abbreviation to be pronounced as
specified in the translation only when it is followed by a period in the text, then you must enter the
trailing period in the key. The following table summarizes the use of trailing periods:

An Abbreviations Dictionary entry invokes different assumptions about how to interpret the trailing
period in the text than does a Main Dictionary entry. Since the period cannot be part of a Main
Dictionary entry key, it is automatically interpreted as end-of-sentence punctuation. A period
following an Abbreviations Dictionary entry, on the other hand, is ambiguous. It will only be
interpreted as end-of-sentence punctuation if other appropriate conditions obtain (e.g., if it is followed
by two spaces and an upper-case letter). For example, input (a) will be interpreted as one sentence,
while (b) will be interpreted as two sentences.

(a) It rained 2 cm. on Monday.
(b) On Sunday it rained 2 cm. On Monday, it was sunny.

Key entry: Will match:
inv inv.

inv
sid. sid.

(not sid)
18 IBM Text-to-Speech

User Dictionaries
Valid Abbreviations Dictionary Entries
The following table summarizes valid Abbreviations Dictionary keys and translations:

Abbreviations Dictionary Examples
The following table shows examples of Abbreviations Dictionary entries:

See Also
Main Dictionary (eciMainDict), Roots Dictionary (eciRootDict).

Keys Translation
• Sequences of one or more letters

separated by periods (x.x.x. or
xx.xx.xx)

• Sequences of letters, with or without
the trailing period that may be
considered part of the abbreviation
(xxx. or xxx)

• Upper or lower case letters
• Internal apostrophes (not the first or

last character in the sequence)

• One or more valid words in ordinary spelling,
including both upper and lower case letters,
separated by white space or hyphen

NO: digits, non-letter symbols, white
space, or punctuation other than periods

NO: digits, punctuation, SPRs, tags, or annotations

Key Translation
Is.D. eye ess dee
punct punctuation
para paragraph
Ltjg lieutenant junior-grade
Fr Friar
int'l international
IBM Text-to-Speech 19

User Dictionaries
You can temporarily override the use of both internal and user-defined abbreviations with an
annotation; see Dictionary Processing of Abbreviations.
20 IBM Text-to-Speech

ECI Reference
This section contains the following reference information:
• Data Types
• Synthesis State Parameters
• Voice Parameters
• Table of Functions
• Alphabetical Index of Functions

Data Types
ECI defines the following data types in the header file eci.h which should be included in any source
file that uses ECI functions.

Boolean
typedef int Boolean;

Many ECI functions return Boolean values.

ECICallbackReturn
typedef enum{
eciDataNotProcessed,
eciDataProcessed
eciDataAbort

}ECICallbackReturn

If you register a callback function, it must return one of these enumerated values.
IBM Text-to-Speech 21

Data Types
ECIDictError
typedef enum{
DictNoError,

The call executed properly.
DictNoEntry,

The dictionary is empty, or there are no more entries.
DictFileNotFound,

The specified file could not be found.
DictOutOfMemory,

Ran out of heap space when creating internal data structures.
DictInternalError,

An error occurred in the internal synthesis engine.
DictAccessError

An error occurred when claiming operating-system specific resources for dictionary access.
DictErrLookUpKey

An error occurred when looking up the key.
DictInvalidVolume

The dictionary volume is not supported by the current language.

}ECIDictError

Most dictionary volume access functions return a value of this type to report errors.

ECIDictHand
typedef void* ECIDictHand

A handle to an ECI dictionary set.
22 IBM Text-to-Speech

Data Types
ECIDictVolume
typedef enum {

eciMainDict,
eciRootDict,
eciAbbvDict,
eciMaindDictExt

}ECIDictVolume;

Identifies dictionary set volumes. See User Dictionaries.

ECIFilterError
typedef enum {
FilterNoError,

The call executed properly.
FilterFileNotFound,

The specified filter could not be found.
FilterOutOfMemory,

Ran out of heap space when creating internal data structures
FilterInternalError,

An error occurred in the internal synthesis engine.
FilterAccessError,

An error occurred when claiming operating-system specific resources for filter access.
} ECIFilterError

ECIHand
typedef void* ECIHand

A handle to an instance of ECI.
IBM Text-to-Speech 23

Data Types
ECIInputText
typedef const void* ECIInputText

Contains an NULL terminated string using a system-dependent character set (currently ANSI for all
platforms).

ECILanguageDialect
typedef enum {
eciGeneralAmericanEnglish,
eciBritishEnglish,
eciCastilianSpanish,
eciMexicanSpanish,
eciStandardFrench,
eciCanadianFrench
eciStandardGerman,
eciStandardItalian,
eciMandarinChinese,
eciTaiwaneseMandarin,
eciBrazilianPortuguese
eciStandardJapanese,
eciStandardFinnish,
eciStandardNorwegian
eciStandardSwedish,
eciStandardDanish

} ECILanguageDialect

Identifies a language and dialect.
24 IBM Text-to-Speech

Data Types
ECIMessage
typedef enum{
eciWaveformBuffer,
eciPhonemeBuffer,
eciIndexReply,
eciPhonemeIndexReply

}ECIMessage

Indicates why a callback has been called.

ECIParam
typedef enum{

eciSynthMode,
eciInputType,
eciTextMode,
eciDictionary,
eciSampleRate,
eciWantPhonemeIndices,
eciRealWorldUnits,
eciLanguageDialect,
eciNumberMode,
eciPhrasePrediction,
eciNumParams

}ECIParam

Specifies a synthesis state parameter for function calls that get and set synthesis state attributes.

ECIVoiceParam
typedef enum{
eciGender,
eciHeadSize,
eciPitchBaseline,
eciPitchFluctuation,
eciRoughness,
IBM Text-to-Speech 25

Data Types
eciBreathiness,
eciSpeed,
eciVolume,
eciNumVoiceParams

}ECIVoiceParam

Specifies a voice parameter for function calls that get and set voice attributes.

ECIMouthData
Consists of a phoneme, language and dialect of the phoneme, and mouth position data for the
phoneme. Returned by callbacks with the eciPhonemeIndexReply message. See
eciRegisterCallback for more details.

In addition to the phoneme symbols defined for SPR input, the symbol ¤ (0xA4) is also used to
indicate end of utterance, and is sent with a set of neutral mouth position parameters.

typedef struct {
char szPhoneme[eciPhonemeLength+1];
ECILanguageDialect eciLanguageDialect;
unsigned char mouthHeight;
unsigned char mouthWidth;
unsigned char mouthUpturn;
unsigned char jawOpen;
unsigned char teethUpperVisible;
unsigned char teethLowerVisible;
unsigned char tonguePosn;
unsigned char lipTension;

} ECIMouthData;

Members
szPhoneme

Null-terminated, ASCIIZ string containing the name of a phoneme, or ¤ (0xA4) for end-of-
utterance.

eciLanguageDialect
Language and dialect of this phoneme.

mouthHeight
26 IBM Text-to-Speech

Data Types
Height of the mouth and lips. This is a linear range from 0-255, where 0 = minimum height (that is,
mouth and lips are closed) and 255 = maximum possible height for the mouth.

mouthWidth
Width of the mouth and lips. This is a linear range from 0-255, where 0 = minimum width (that is,
the mouth and lips are puckered) and 255 = maximum possible width for the mouth.

mouthUpturn
Extent to which the mouth turns up at the corners, that is, how much it smiles. This is a linear
range from 0-255, where 0 = mouth corners turning down, 128 = neutral, and 255 = mouth is fully
upturned.

jawOpen
Angle to which the jaw is open. This is a linear range from 0-255, where 0 = fully closed, and 255
= completely open.

teethUpperVisible
Extent to which the upper teeth are visible. This is a linear range from 0-255, where 0 = upper
teeth are completely hidden, 128 = only the teeth are visible, and 255 = upper teeth and gums are
completely exposed.

teethLowerVisible
Extent to which the lower teeth are visible. This is a linear range from 0-255, where 0 = lower
teeth are completely hidden, 128 = only the teeth are visible, and 255 = lower teeth & gums are
completely exposed.

tonguePosn
Tongue position. This is a linear range from 0-255, where 0 = tongue is completely relaxed, and
255 = tongue is against the upper teeth.

lipTension
Lip tension. This is a linear range from 0-255, where 0 = lips are completely relaxed, and 255 =
lips are very tense.

Remarks
The inventory of phoneme symbols used as the values of szPhoneme is similar but not necessarily
identical to the inventory of Symbolic Phonetic Representations (SPR) phoneme symbols. The values
of szPhoneme are taken directly from the phonemic representation generated by the IBM Text-to-
Speech TTS engine, whereas the symbols used in SPRs are normalized versions of these phonemes.
IBM Text-to-Speech 27

Data Types
In addition to the phoneme symbols used in each language, the symbol ¤ (0xA4) is used to indicate the
end of a sentence and is sent with a set of neutral mouth position parameters.
28 IBM Text-to-Speech

Synthesis State Parameters
Synthesis State Parameters
When you create a new ECI instance, it is given a default synthesis state. As you interact with the
instance, its state changes. You can:
• Get the current synthesis state using eciGetParam.
• Set the synthesis state directly, through eciSetParam, or indirectly, by sending annotated text in

calls to eciAddText.

This section describes the synthesis state parameters that can be passed to eciGetParam and
eciSetParam.

eciDictionary
0: Abbreviations dictionaries (both internal and user) are used (default).

1: Abbreviations dictionaries (both internal and user) are not used.

Enables or disables the internal and user abbreviations dictionaries. You can also turn abbreviations
dictionary lookups on and off the using the ‘daN annotation (see Dictionary Processing of
Abbreviations).

eciInputType
0: Plain: input consists of unannotated text. Any annotations will be spelled out (e.g., `v2 will be
pronounced "backquote vee two") (default).

1: Annotated: input text includes annotations. See Annotations for more details.

eciLanguageDialect
enum
{
eciGeneralAmericanEnglish,
IBM Text-to-Speech 29

Synthesis State Parameters
eciBritishEnglish,
eciCastilianSpanish,
eciMexicanSpanish,
eciStandardFrench,
eciStandardGerman,
eciStandardItalian,
eciMandarinChinese,
eciTaiwaneseMandarin,
eciBrazilianPortuguese
eciStandardJapanese,
eciStandardFinnish,
eciStandardKorean

} ECILanguageDialect

A value specifying the language and dialect. These should be of type ECILanguageDialect. Not all
languages are available with all installations. The language defaults to the “lowest-numbered”
language installed on the system. Languages are numbered in the order specified by the
ECILanguageDialect enum.

This parameter can be set by the ‘lN annotation; see Selecting a Language and Dialect for more detail.

eciNumberMode
0: Pronounce 4-digit numbers as “nonyears” (e.g., “1984” would be pronounced “one thousand nine
hundred eighty four”).

1: Pronounce 4-digit numbers as “years” (e.g., “1984” would be pronounced “nineteen eighty four”)
(default)

This parameter can be set by the ‘tyN annotation; see Specifying Alternative Pronunciations for more
detail.

eciNumParams
Total number of ECIParams. Passing eciNumParams to eciGetParam will cause a -1 (error) return,
which is an expected behavior.
30 IBM Text-to-Speech

Synthesis State Parameters
eciRealWorldUnits
0: Use ECI values (default).

1: Use Real World units.

Selects the units for the values of the voice parameters eciPitchBaseline, eciSpeed, and eciVolume as
either ECI units or Real World units.

eciSampleRate

0: 8000 samples per second.

1: 11,025 samples per second (default).

2: 22,050 samples per second.

eciSynthMode
0: Sentence: The input buffer is synthesized and cleared at the end of each sentence (default).

1: Manual: Synthesis and input clearing is controlled by commands only.

eciTextMode

0: Default: no special interpretation (default).

1: AlphaSpell: letters and digits are spelled out, punctuation is treated normally to identify ends of
phrases and sentences, and other symbols are ignored.

2: AllSpell: all symbols are spelled out. Note that sentence ends are not recognized in this mode.
IBM Text-to-Speech 31

Synthesis State Parameters
3: IRCSpell: like AlphaSpell, except that letters are spelled out using the International Radio Code
(“alpha, bravo, charlie”) rather than their conventional names.

This corresponds to the annotation ‘tsN, described in Specifying Alternative Pronunciations.

eciWantPhonemeIndices
0: Phoneme indices are not generated. (default)

1: If a callback has been registered (see eciRegisterCallback below), phoneme indices will be sent to
the callback as each phoneme is being spoken. See also the eciPhonemeIndexReply message and the
ECIMouthData type.
32 IBM Text-to-Speech

Synthesis State Parameters
Synthesis State Parameter Defaults
The following table provides a summary of the synthesis state parameters and their default behavior.

Parameter Default value Default behavior
eciDictionary 0 User dictionaries are used.
eciInputType 0 Annotations in input will be spelled out.
eciLanguageDialect lowest number

installed
The lowest-numbered language/dialect on
the system is used.

eciNumberMode 1 Four-digit numbers are pronounced as
“years”.

eciNumParams 0 Total number of ECIParams.
eciRealWorldUnits 0 ECI units are used for all voice definition

parameters.
eciSampleRate 1 The sample rate is 11,025 samples per

second.
eciSynthMode 0 The input buffer is synthesized and cleared

at the end of each sentence.
eciTextMode 0 No special spelling interpretation is

performed on the text.
eciWantPhonemeIndices 0 Phoneme indices are not generated.
IBM Text-to-Speech 33

Voice Parameters
Voice Parameters
Voice parameters are commands used to define and adjust individual voice characteristics. A set of
voice parameters makes a voice definition. You can create custom voices by selecting unique
combinations of voice parameters. In addition, there are five predefined voice definitions, as discussed
in the next section.

When you create a new ECI instance, it is given the default voice parameters. You can:

• Get the current voice parameters using eciGetVoiceParam.
• Set the voice parameters directly through eciSetVoiceParam, or indirectly by sending annotated

text in calls to eciAddText.

This section describes the voice parameters that can be passed to eciGetVoiceParam and
eciSetVoiceParam.

eciBreathiness
Range: 0-100

This parameter controls the amount of breathiness in the voice. The higher the value, the more
breathiness the voice has. A value of 100 produces a whisper.

This voice parameter can be changed using the annotation ‘vyN (see Selecting a Voice or Voice
Characteristics).

eciGender
0: male
1: female

Male and female vocal tracts have physical differences that affect the voice, some of which are
reflected in the vocal tract setting. Other differences between male and female voices, namely pitch
and head size, are controlled independently.
34 IBM Text-to-Speech

Voice Parameters
This voice parameter can be changed using the annotation ‘vgN (see Selecting a Voice or Voice
Characteristics).

eciHeadSize
Range: 0-100

This parameter controls the size of the head for the speaker, changing the perceived pitch and other
acoustic characteristics of the voice. A large number indicates a large head and a deeper voice.

This voice parameter can be changed using the annotation ‘vhN (see Selecting a Voice or Voice
Characteristics).

eciNumVoiceParams
Total number of ECIVoiceParams. Passing eciNumVoiceParams to eciGetVoiceParam will cause a -1
(error) return, which is an expected behavior.

eciPitchBaseline
Range: 0-100 (ECI units); 40-422 (Real World Units = cycles per second)

Changing the pitch baseline will affect the overall pitch of the voice. The larger the pitch value, the
higher the pitch of the voice.

This voice parameter can be changed using the annotation ‘vbN (see Selecting a Voice or Voice
Characteristics).

eciPitchFluctuation
Range: 0-100
IBM Text-to-Speech 35

Voice Parameters
This parameter controls the degree of pitch fluctuation in the voice. A value of zero produces a voice
with no pitch fluctuation, resulting in monotone speech. A high value produces a voice with large pitch
fluctuations, typical of excited speech.

This voice parameter can be changed using the annotation ‘vfN (see Selecting a Voice or Voice
Characteristics).

eciRoughness
Range: 0-100

This parameter adds roughness or "creakiness" to the voice. A low value produces a smooth voice,
while a high value is rough or scratchy.

This voice parameter can be changed using the annotation ‘vrN (see Selecting a Voice or Voice
Characteristics).

eciSpeed
Range: 0-250 (ECI Units); 70-1297 (Real World Units = words per minute)

Speed controls the number of words spoken per minute.

This voice parameter can be changed using the annotation ‘vsN (see Selecting a Voice or Voice
Characteristics).

eciVolume:
Range: 0-100 (ECI Units); 1-65535 (Real World Units)

The smaller the value, the lower the volume. Louder settings may cause distortion when combined
with other attribute changes.
36 IBM Text-to-Speech

Preset Voice Definitions
This voice parameter can be changed using the annotation ‘vvN (see Selecting a Voice or Voice
Characteristics).

Preset Voice Definitions
Voice definitions are sets of parameter values that make an individual voice. There are five preset
voice definitions for each dialect of each language (three more are reserved for future use).

Each voice definition contains a set of parameter values that control the attributes of the voice.

The preset voices in each language are:

1. Adult Male 1
2. Adult Female 1
3. Child 1
4. Adult Male 2
5. Adult Male 3
6. Adult Female 2
7. Elderly Female 1
8. Elderly Male 1

Voice Parameter Defaults

The following chart shows the voice definition parameters for all languages, except as noted:

1 2 3 4 5 6 7 8

Voice
Parameters

Adult
Male 1

Adult
Female 1 Child 1

Adult
Male 2

Adult
Male 3

Adult
Female 2

Elderly
Female 1

Elderly
Male 1

Breathiness 0** 50 0 0 0 40 40 20

Gender 0 1 1 0 0 1 1 0

Head size 50 50 22 86 50 56 45 30
IBM Text-to-Speech 37

Preset Voice Definitions
*In French, the Pitch Baseline parameter is 69. ** In Taiwanese Mandarin, the Breathiness paramter is
34.

Pitch
Baseline
(ECI units)

65* 81 93 56 69 89 68 61

Pitch
Fluctuation

30 30 35 47 34 35 30 44

Roughness 0 0 0 0 0 0 3 18

Speed
(ECI units)

50 50 50 50 70 70 50 50

Volume
(ECI units)

92 100 90 93 92 95 90 90

1 2 3 4 5 6 7 8

Voice
Parameters

Adult
Male 1

Adult
Female 1 Child 1

Adult
Male 2

Adult
Male 3

Adult
Female 2

Elderly
Female 1

Elderly
Male 1
38 IBM Text-to-Speech

Table of Functions
Table of Functions
This table outlines the available ECI functions. Detailed information about each function can be found
in the Alphabetical Index of Functions.

System Control
Use the following functions for system control:

Synthesis Control
Use the following functions for Synthesis Control:

Function Description
eciDeactivateFilter Disables the specified filter for the ECI instance.
eciNew Creates a new ECI instance and returns a handle to it.
eciNewEx Creates a new instance of ECI and returns a handle to it.

The client indicates the language, dialect and character set
for the new engine instance

eciReset Resets the ECI instance to the default state.
eciSpeakText Synthesizes text to the default audio device.
eciSpeakTextEx Synthesizes text to the default audio device with ability for

selection of language dialect and character set of its text

Function Description
eciAddText Appends new text to the input buffer.
eciClearInput Clears the input buffer.
eciGeneratePhonemes Converts text to phonemes.
eciGetIndex Returns the last index reached in an output buffer.
eciInsertIndex Inserts an index into an input buffer.
eciPause Pauses or unpauses speech synthesis and playback.
IBM Text-to-Speech 39

Table of Functions
Output Control
Use the following functions for output control:.

Speech Environment Parameter Selection
Use the following functions for speech environment parameter selection:

eciSpeaking Determines whether synthesis is in progress.
eciStop Stops synthesis.
eciSynchronize Waits for an ECI instance to finish processing its

output and then synchronizes it with a device.
eciSynthesize Starts synthesis of text in an input buffer.
eciSynthesizeFile Synthesizes the contents of a file.

Function Description
eciSetOutputBuffer Sets an output buffer as the synthesis destination.
eciSetOutputDevice Sets an audio output hardware device as the

synthesis destination.
eciSetOutputFilename Sets an output file as the synthesis destination.

Function Description
eciGetDefaultParam Returns the default values for an environment

speech parameter.
eciGetParam Returns the value of an environment parameter.
eciSetDefaultParam Sets the default values for an environment

speech parameter.
eciSetParam Sets an environment parameter.

Function Description
40 IBM Text-to-Speech

Table of Functions
Voice Parameter Control
Use the following functions for voice parameter control:

Dynamic Dictionary Maintenance
Use the following functions for dictionary maintenance (for Asian languages such as Chinese and
Japanese, use the functions that end with the letter A):

Function Description
eciCopyVoice Makes a copy of a set of voice parameters.
eciGetVoiceName Returns the voice name and then copies it to a name

buffer.
eciGetVoiceParam Returns a voice parameter.
eciSetVoiceName Sets a voice parameter.

Function Description
eciDeleteDict Deletes a specified dictionary set.
eciDictFindFirst Retrieves the first entry in a dictionary.
eciDictFindFirstA Retrieves the first entry in a Chinese or Japanese

dictionary.
eciDictFindNext Retrieves the next entry in a dictionary.
eciDictFindNextA Retrieves the next entry in a Chinese or Japanese

dictionary.
eciDictLookup Returns a pointer to the translation value for a key.
eciDictLookupA Returns a pointer to the Chinese or Japanese

translation value for a key.
eciGetDict Returns a handle to an active dictionary set.
eciLoadDict Loads a dictionary volume.
eciNewDict Creates a new dictionary set for a given ECI handle.
eciSaveDict Writes the contents of a dictionary volume to a file.
IBM Text-to-Speech 41

Table of Functions
Diagnostics
Use the following table for diagnostics:

Callback
Use the following function to register callbacks:

eciSetDict Sets a dictionary set as the current dictionary set for
a given ECI instance and the active language.

eciUpdateDict Updates a dictionary volume with a key/translation
pair.

eciUpdateDictA Updates a Chinese or Japanese dictionary with a
key/translation pair.

Functions Description
eciClearErrors Clears error bits.
eciErrorMessage Returns an error message describing the last error

encountered.
eciProgStatus Returns a set of error-reporting bits.
eciTestPhrase Synthesizes a test phrase.
eciVersion Returns the IBM TTS version number.

Function Description
eciRegisterCallback Registers a callback function with the ECI instance.

Function Description
42 IBM Text-to-Speech

Table of Functions
Custom Filters
Use the following functions to use custom filters:

Function Description
eciDeactivateFilter Disables the specified filter for the ECI instance.
eciDeleteFilter Deletes a specified filter handle, deactivating all

transformation performed by this filter if it is active,
and freeing all resources used by the filter.

eciGetFilteredText Returns the resulting filtered text for the input string
processed by the specified filter. This function
allows client applications to determine the text that
will be sent to the synthesis engine after filtering.

eciNewFilter Creates a new instance of an ECI Filter and returns a
handle to it.

eciActivateFilter Enables the specified filter for the ECI instance.
eciUpdateFilter Allow runtime update of the token replacement

applied to known fields.
IBM Text-to-Speech 43

Alphabetical Index of Functions
Alphabetical Index of Functions
Following is an alphabetical description of the syntax and semantics of all ECI functions. Refer to the
Table of Functions to find the function names associated with specific operations.

Parameters
Unless otherwise specified, valid ECIHand parameters are assumed to be non-NULL (not equal to
NULL_ECI_HAND), and all pointers are assumed to be non-NULL. All strings are in ASCIIZ format.

Calling Conventions
On Win32 platforms, ECI functions are defined as __stdcall, formerly known as the PASCAL calling
convention. Refer to the Microsoft Visual C++ Programmers’ Guide for more information about this
convention.

On UNIX platforms, ECI functions default to ordinary C functions.
44 IBM Text-to-Speech

Alphabetical Index of Functions
eciActivateFilter
Enables the specified filter for the ECI instance.

Syntax
ECIFilterError eciActivateFilter (
ECIHand hEngine,
ECIFilterHand whichFilterHand

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichFilterHand
Handle to indicate the ECI Filter Instance that is going to be transforming the text. This is the
value returned by eciNewFilter.

Return Values
ECIFilterError

One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks
Multiple filter can be active at the same time.

See Also
eciNew, eciNewEx, Custom Filters
IBM Text-to-Speech 45

Alphabetical Index of Functions
eciAddText
Appends new text to the input buffer.

Syntax
Boolean eciAddText(
ECIHand eciHandle,
ECIInputText text

);

Parameters
eciHandle

Handle to the speech synthesis engine instance. This is the value returned by eciNew or
eciNewEx.

text
Non-NULL pointer to the text to be synthesized (a null-terminated C-string).

Return Values
true

A copy of your text was added to the input buffer.

false
Failure. Check eciErrorMessage and/or eciProgStatus for additional error information.

Remarks
Appends new text to the end of the input buffer. When synthesized, the newly-added text will be
spoken with the voice definition specified by the state of the active voice when the text is inserted.

You can add more text while the engine is still synthesizing previously added text. Sentences may be
split between calls to eciAddText, but words may not. See eciSynthesize below for more information
on sentence parsing.
46 IBM Text-to-Speech

Alphabetical Index of Functions
Example
#include <stdio.h>
#include "eci.h"

//print a string to stdout and wait for any key
void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIHand myECI;
FILE *myFP;
char errorMsg[100];
myECI = eciNew(); // create a new ECIHand
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
if (NULL != (myFP = fopen(argv[1], "rt")))
{
char buffer[1000];
eciSetParam(myECI, eciSynthMode, 1); //set manual mode
while(fgets(buffer, 1000, myFP)) //read entire file
{
if (!eciAddText(myECI, buffer))
{
eciErrorMessage(myECI, errorMsg);
showMessage(errorMsg);

}
}

continued on next page
IBM Text-to-Speech 47

Alphabetical Index of Functions
See Also
eciSynthesize, eciSynchronize, eciSetParam, eciSetVoiceName, eciCopyVoice, eciErrorMessage,
eciProgStatus

eciSynthesize(myECI); //start synthesis
eciSynchronize(myECI); //wait for synthesis complete
fclose(myFP);

}
eciDelete(myECI);//clean up

}
}

48 IBM Text-to-Speech

Alphabetical Index of Functions
eciClearErrors
Resets error-reporting bits.

Syntax
void eciClearErrors(
ECIHand hEngine,

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
None.

See Also
eciErrorMessage, eciProgStatus
IBM Text-to-Speech 49

Alphabetical Index of Functions
eciClearInput
Clears the input buffer. Does not abort any synthesis already in progress.

Syntax
Boolean eciClearInput(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

The input buffer has been cleared.

false
An error occurred.

Remarks
The input buffer can be cleared only if the ECI instance is in manual mode. In automatic mode, the
input buffer is transferred immediately to the synthesis engine and cannot be cleared.

Other functions that clear the input buffer are: eciDelete, eciReset, and eciStop.

When this function succeeds, text that has been added to the input buffer in manual mode is removed
from the buffer unless it has already been sent to the engine. All resources associated with the input
buffer are returned to the system.
50 IBM Text-to-Speech

Alphabetical Index of Functions
Example

#include <stdio.h>
#include "eci.h"

//print a string to stdout and wait for any key
void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIHand myECI;
FILE *myFP;
char errorMsg[100];

myECI = eciNew();//create a new ECIHand
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
if (NULL != (myFP = fopen(argv[1], "rt")))
{
char buffer[1000];
eciSetParam(myECI, eciSynthMode, 1); //set manual mode
while(fgets(buffer, 1000, myFP))//read entire file
{
if (!eciAddText(myECI, buffer))
{
eciErrorMessage(myECI, errorMsg);showMessage(errorMsg);
showMessage(errorMsg);

}
}

continued on next page
IBM Text-to-Speech 51

Alphabetical Index of Functions
See Also
eciDeactivateFilter, eciReset, eciStop

continued from previous page
if (ferror(myFP))
{
showMessage("Error reading input file\n");
if (!eciClearInput(myECI))
showMessage("Error clearing input buffer\n");

}
else
{
eciSynthesize(myECI); //start synthesis
eciSynchronize(myECI); //wait for synthesis complete

}
fclose(myFP);

}
eciDelete(myECI); //clean up

}
}

52 IBM Text-to-Speech

Alphabetical Index of Functions
eciCopyVoice
Makes a copy of a set of voice parameters.

Syntax
Boolean eciCopyVoice(
ECIHand hEngine,
int voiceFrom,
int voiceTo

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

voiceFrom
Voice to copy. You can copy a preset voice (1-3, 7-8), a user-defined voice (9-16), or the active
voice (0).

voiceTo
Voice to store the copy of voiceFrom. Either 0 (the active voice), or 9–16 (a user-defined voice).

Return Values
true

The voice was copied.

false
Failure. Parameter may be out of range.

Remarks
A “voice” is a set of voice parameters. Voice 0 indicates the active voice. When you add text to the
input buffer, it is synthesized with voice 0.
IBM Text-to-Speech 53

Alphabetical Index of Functions
Each IBM Text-to-Speech language comes with five preset voices. The default voice is voice 1. When
you create a new ECI instance, voice 1 is automatically copied to voice 0 and becomes the active
voice. The user-defined voices are initially undefined.

You can change the parameters of the active voice, and of the user-defined voices, by calling
eciSetVoiceParam. You cannot change any of the preset voices with eciSetVoiceParam. If you want
to change any of the preset voices, then you must first use eciCopyVoice to copy it to either the active
voice or one of the user-defined voices.

Example

#include <stdio.h>
#include "eci.h"

//print a string to stdout and wait for any key
void showMessage(char *msg)
{
printf(msg);
getchar();

}

continued on next page
54 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
eciSetVoiceName, eciGetVoiceParam, eciGetVoiceName

continued from previous page
int main(int argc, char *argv[])
{
ECIHand myECI;
int voice;
char buffer[64];

myECI = eciNew();
//create a new ECIHand
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
eciAddText(myECI, "Default voice.");
for(voice = 1; voice <= ECI_PRESET_VOICES; voice++)
{
if (!eciCopyVoice(myECI, voice, 0))
{
sprintf(buffer, "Cannot not copy voice %d to 0\n", voice);
showMessage(buffer);

}
else
{
sprintf(buffer, "Preset voice %d.", voice);
eciAddText(myECI, buffer);

}
}
eciSynthesize(myECI); //start synthesis
eciSynchronize(myECI);//wait for synthesis complete
eciDelete(myECI);//clean up

}
}

IBM Text-to-Speech 55

Alphabetical Index of Functions
eciDeactivateFilter
Disables the specified filter for the ECI instance.

Syntax
ECIFilterError eciDeactivateFilter (
ECIHand hEngine,
ECIFilterHand whichFilterHand

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichFilterHand
Handle to indicate the ECI Filter Instance to disable. This is the value returned by eciNewFilter.

Return Values
ECIFilterError

One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks

See Also
eciActivateFilter, eciNew, eciNewEx, Custom Filters
56 IBM Text-to-Speech

Alphabetical Index of Functions
eciDelete
Terminates synthesis and deletes the ECI instance.

Syntax
ECIHand eciDelete(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
NULL_ECI_HAND

The ECI instance was successfully destroyed.

Remarks
This function closes and returns to the system all resources associated with this ECI instance, including
memory, handles, etc. Any synthesis which is underway when this function is called it is immediately
terminated.
IBM Text-to-Speech 57

Alphabetical Index of Functions
Example

See Also
eciNew, eciStop, eciReset

#include <stdio.h>
#include "eci.h"

void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIHand myECI;

myECI = eciNew();
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
showMessage("eciNew succeeded!\n");
eciAddText(myECI, "This is a test.");
eciSynthesize(myECI);
eciSynchronize(myECI);
eciDelete(myECI);

}
}

58 IBM Text-to-Speech

Alphabetical Index of Functions
eciDeleteDict
Deletes a specified dictionary set, deactivating all dynamic dictionary lookups for this ECI instance.

Syntax
ECIDictHand eciDeleteDict(
ECIHand hEngine,
ECIDictHand dictHandle

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set to be deleted.

Return Values
NULL_DICT_HAND

The requested dictionary set was successfully deleted.

See Also
eciNewDict, eciGetDict
IBM Text-to-Speech 59

Alphabetical Index of Functions
eciDeleteFilter
Deletes a specified filter handle, deactivating all transformation performed by this filter if it is active,
and freeing all resources used by the filter.

Syntax
ECIFilterHand eciDeleteFilter (
ECIHand hEngine,
ECIFilterHand whichFilterHand

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be deleted. This is the value returned by eciNewFilter.

Return Values
ECIFilterHand

NULL_FILTER_HAND.

Remarks

See Also
eciNewFilter, eciNew, eciNewEx, Custom Filters
60 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictFindFirst
Retrieves the first entry in a dictionary volume.

Syntax
ECIDictError eciDictFindFirst(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText *ppKey,
ECIInputText *ppTranslationValue

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

ppKey
Pointer to the address of the key to the first entry in this dictionary. The key is a constant C-string.

pptranslationValue
Pointer to the address of the translation value of the first entry in this dictionary. The translation
value is a constant C-string.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.
IBM Text-to-Speech 61

Alphabetical Index of Functions
Remarks
Retrieves the first dictionary entry. The ppKey and ppTranslationValue will receive pointers to their
corresponding strings in the dictionary. These should not be modified (or deallocated), as the
dictionary may become corrupted and synthesis may fail. ECIDictError indicates whether any errors
occurred in the call to eciDictFindFirst.
Refer to the section on User Dictionaries for more information about the ppKey and
ppTranslationValue parameters.

See Also
eciNewDict, eciSetDict, eciDictFindNext, eciUpdateDict, User Dictionaries, Symbolic Phonetic
Representations
62 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictFindFirstA
Retrieves the first entry in a dictionary volume. This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax
ECIDictError eciDictFindFirstA(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText *ppKey,
ECIInputText *ppTranslationValue
ECIPartOfSpeech *pPartOfSpeech

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

ppKey
Pointer to the address of the key to the first entry in this dictionary. This is the address of the
variable where a pointer to a constant buffer is returned.

ppTranslationValue
Pointer to the address of the translation value of the first entry in this dictionary. This is the address
of the variable where a pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECIPartOfSpeech enumeration, which specifies the grammatical category.
IBM Text-to-Speech 63

Alphabetical Index of Functions
Return Codes
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
This function supports all dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function starts scanning through the dictionary from the
beginning and retrieves the first entry. The ppKey and ppTranslationValue parameters receive pointers
to their corresponding strings in the dictionary. These should neither be modified nor deallocated
because the dictionary can become corrupted, causing speech synthesis to fail. ECIDictError indicates
whether any errors occurred in the call to eciDictFindFirstA.

The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, ppKey and ppTranslationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, ppKey and ppTranslationValue should be an 8-
bit, NULL-terminated C string.

See Also
eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictLookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA
64 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictFindNext
Retrieves the next dictionary entry following the last entry retrieved.

Syntax
ECIDictError eciDictFindNext(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText *ppKey,
ECIInputText *ppTranslationValue

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

ppKey
Pointer to the address of the key to the next entry in this dictionary. The key is a constant C string.

ppTranslationValue
Pointer to the address of the translation value of the next entry in this dictionary. The translation
value is a constant C string.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.
IBM Text-to-Speech 65

Alphabetical Index of Functions
Remarks
The input and output parameters have the same meaning as they do for the eciDictFindFirst function.
The first call to this function should be preceded by a call to eciDictFindFirst. Entries are not returned
in any particular order. An ECIDictError is returned which indicates any errors that occurred in the
call to eciDictFindNext. DictNoEntry is returned if there are no more entries in the dictionary.

Parameter and return code enumerations are declared in eci.h.

See Also
eciNewDict, eciDictFindFirst, eciUpdateDict
66 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictFindNextA
Retrieves the next dictionary entry following the last entry retrieved. This function supports all
dictionary volumes, including Main Extension Dictionary (eciMainDictExt), which is used for Asian
languages.

Syntax
ECIDictError eciDictFindNextA(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText *ppKey,
ECIInputText *ppTranslationValue
ECIPartOfSpeech *pPartOfSpeech

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

ppKey
Pointer to a key to the next entry in this dictionary. This is the address of the variable where a
pointer to a constant buffer is returned.

ppTranslationValue
Pointer to the value of the next entry in this dictionary. This is the address of the variable where a
pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECIPartOfSpeech enumeration, which specifies the grammatical category.
IBM Text-to-Speech 67

Alphabetical Index of Functions
Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
This function supports all dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function retrieves the next entry in the dictionary. The input
and output parameters have the same meaning as they do for eciDictFindFirstA. This function returns
DictNoEntry if there are no more entries in the dictionary. The first call to this function should be
preceded by a call to eciDictFindFirstA. Entries are not returned in any particular order. This function
returns ECIDictError if any errors occurred in the call to eciDictFindNextA.

The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, ppKey and ppTranslationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, ppKey and ppTranslationValue should be an 8-
bit, NULL-terminated C string.

Parameter and return code enumerations are declared in eci.h.

See Also
eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictLookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA
68 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictLookup
Returns a pointer to the translation value for key.

Syntax
const char* eciDictLookup(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText key

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

key
Pointer to a key to the entry whose value you want. The key is a null-terminated C string.

Return Values
NULL

The key is not in the dictionary.

non-NULL
A pointer to the translation value for key.
IBM Text-to-Speech 69

Alphabetical Index of Functions
Remarks
Returns a pointer to the translation value for key or NULL if the key is not in the dictionary. The string
referenced by the return value should not be modified, as the dictionary may become corrupted and
synthesis may fail. Parameter and return code enumerations are declared in eci.h.

See Also
eciNewDict, eciUpdateDict
70 IBM Text-to-Speech

Alphabetical Index of Functions
eciDictLookupA
Returns a pointer to the translation value for pkey.This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax
ECIDictError eciDictLookupA(
ECIHand hEngine,
ECIDictHand hDict,
ECIDictVolume DictVol,
ECIInputText pKey,
ECIInputText *ppTranslationValue,
ECIPartOfSpeech *pPartOfSpeech

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or
eciNewEx.

hDict
Handle to the dictionary set. This is the value returned by eciNewDict or eciGetDict.

DictVol
Volume of the dictionary set. This function supports all dictionary volumes, including Main
Extension Dictionary (eciMainDictExt), which is used for Asian languages.

pKey
Pointer to a key to the entry whose value you want. This is a NULL-terminated buffer containing
the key.

ppTranslationValue
Pointer to the value of the next entry in this dictionary. This is the address of the variable where a
pointer to a constant buffer is returned.

pPartOfSpeech
Pointer to the ECIPartOfSpeech enumeration, which specifies the grammatical category.
IBM Text-to-Speech 71

Alphabetical Index of Functions
Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
This function supports all dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages.This function returns a pointer to the translation value for key, or
NULL if the key is not in the dictionary. The string referenced by the return value should not be
modified because the dictionary can become corrupted, causing speech synthesis to fail.
The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, pKey and ppTranslationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, pKey and ppTranslationValue should be an 8-
bit, NULL-terminated C string.

See Also
eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictLookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA
72 IBM Text-to-Speech

Alphabetical Index of Functions
eciErrorMessage
Copies an error message describing the last error encountered into the buffer as an ASCIIZ string.

Syntax
void eciErrorMessage(
ECIHand eciHandle,
void* buffer

);

Parameters
eciHandle

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

buffer
Pointer to the buffer to receive the error message. This buffer must have room for at least 100
characters.

Return Values
None.

Remarks

Copies an error message describing the latest error into the buffer pointed to by buffer. The buffer will
contain an empty string if there have been no errors. If eciHandle is NULL_ECI_HAND, copies a
message about insufficient memory to buffer.

See Also
eciClearErrors, eciProgStatus
IBM Text-to-Speech 73

Alphabetical Index of Functions
eciGeneratePhonemes
Converts text to phonemes.

Syntax
Boolean eciGeneratePhonemes(
ECIHand eciHandle,
int size,
void* buffer

);

Parameters
eciHandle

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

size
Size of buffer (in bytes). 0 cancels phoneme generation

buffer
Pointer to the buffer to receive phonemes. NULL cancels phoneme generation.

Return Values
true

Phoneme generation was successfully performed.

false
Failure. Check eciErrorMessage and/or eciProgStatus for additional error information. See
remarks.

Remarks
The eciSynthMode must be set to manual using eciSetParam before text is added to the input buffer.

A callback should be registered with eciRegisterCallback before you call eciGeneratePhonemes.
Synthesis may not be underway when this function is called.
74 IBM Text-to-Speech

Alphabetical Index of Functions
The text in the synthesis engine’s input buffer is converted to phonemes and placed in the designated
phoneme buffer. When your buffer is full, or all the text has been converted, whichever comes first,
your callback is called with an eciPhonemeBuffer message. If your phoneme buffer cannot hold all
the generated phonemes, your callback is called repeatedly. You need to process the contents of your
phoneme buffer every time your callback is called; otherwise, the contents may be overwritten as the
input text continues to be converted to phonemes.

eciGeneratePhonemes returns synchronously when phoneme conversion is complete.

Common conditions that cause this function to return "false":

• eciSynthMode is set to sentence.
• No callback is registered.
• Synthesis is already underway.

See Also
eciAddText, eciSetParam, eciSpeaking, eciRegisterCallback, eciProgStatus, eciErrorMessage

eciGetAvailableLanguages
IBM Text-to-Speech 75

Alphabetical Index of Functions
eciGetAvailableLanguages
Returns and identifies the number of installed and available languages.

Syntax
int (ECILanguageDialect *paLangs,

int *piNumLangs
);

Parameters
paLangs

Pointer to an array of installed languages. Each element in the array is of type
ECILAnguageDialect enumeration (defined in eci.h).

piNumLangs
[On input] Pointer to the number of available elements in the paLangs array. If this number is less
than the number of available languages, then paLangs contains only that number of languages
(starting from the lowest-numbered language).

[On output] Pointer to how many elements were filled in. If the number is 0 on input, then the
number on output is the size required to hold the array.

Return Values
0

Success.

ECI_PARAMETERERROR
An error occurred because of improper parameters.

Remarks
This function allows a developer to query the installed languages without incurring the overhead of
loading a language to see if it is present. It is the caller's responsibility to manage the dynamic memory
that is required to hold the array.
76 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
N/A
IBM Text-to-Speech 77

Alphabetical Index of Functions
eciGetDefaultParam
Returns the default value for an environment speech parameter.

Syntax
int eciGetDefaultParam(

ECIParam Param
);

Parameters
Param

Parameter value taken from the existing ECIParam enumeration in eci.h. These are the
same enumeration values that are used by eciSetParam and eciGetParam.

Return Values
>= 0

The default Param value.
-1

An error. Param is out of range.

Remarks
N/A

See Also
N/A
78 IBM Text-to-Speech

Alphabetical Index of Functions
eciGetDict
Returns the handle to the active dictionary set for the current language.

Syntax
ECIDictHand eciGetDict(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
Non-null

A valid dictionary set handle.

NULL_DICT_HAND
There is no active dictionary set for this instance.

Remarks
This function returns the handle to the currently active dictionary set for the current language, or
NULL_DICT_HAND, if there is no active set. The synthesis engine does not perform any dynamic
dictionary lookups until a dictionary set is established as the current set using eciSetDict.

See Also
eciNewDict, eciSetDict
IBM Text-to-Speech 79

Alphabetical Index of Functions
eciGetFilteredText
Returns the resulting filtered text for the input string processed by the specified filter. This function
allows client applications to determine the text that will be sent to the synthesis engine after filtering.

Syntax
ECIFilterError eciGetFilteredText (
ECIHand hEngine,
ECIFilterHand whichFilterHand,
ECIInputText input,
ECIInputText* filteredText

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be used. This is the value returned by eciNewFilter.

input
Text to apply filter to.

filteredText
The resulting text after the specified filter is applied. The value of filteredText is only valid until
the next call to eciGetFilteredText or eciDeleteFilter.

Return Values
ECIFilterError

One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks
For static filters, this function must be called first on the text to be filtered. The resulting text can then
be sent to the synthesis engine using eciAddText.
80 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
eciAddText, eciNewFilter, eciNew, eciNewEx, Custom Filters
IBM Text-to-Speech 81

Alphabetical Index of Functions
eciGetIndex
Returns the last index reached in an output buffer.

Syntax
int eciGetIndex(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
0

No indices have been encountered yet.

non-zero
The last index encountered in the output buffer.

Remarks
Returns the last index reached in the output buffer, or 0 if no index has been encountered. All inserted
indices must be nonzero integer values; thus, the return value of eciGetIndex is unambiguous.

See Also
eciInsertIndex
82 IBM Text-to-Speech

Alphabetical Index of Functions
eciGetParam
Returns the value of an environment parameter.

Syntax
int eciGetParam(
ECIHand hEngine,
ECIParam eciParameter

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

eciParameter
One of the values enumerated in type ECIParam. See Data Types for this enumeration.

Return Values
>= 0

The eciParameter value.

-1
An error occurred. Parameter may be out of range.

Remarks
Gets the value of an environment parameter. Returns a value greater than or equal to 0 on success, or -1
on failure.

See Also
Synthesis State Parameters
IBM Text-to-Speech 83

Alphabetical Index of Functions
eciGetVoiceName
Copies the voice name to a name buffer.

Syntax
Boolean eciGetVoiceName(
ECIHand hEngine,
int voiceNum,
void* nameBuffer

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

voiceNum
Number of the voice whose name you want: 0, 1-8, 9-16.

nameBuffer
Pointer to the buffer where a null-terminated C string containing the name will be copied. Must be
non-NULL.

Return Values
true

The text string was successfully copied to the nameBuffer.
false

An error occurred. Check for invalid or out of range parameter.

Remarks
Your nameBuffer should be ECI_VOICE_NAME_LENGTH + 1 bytes long. Otherwise, a long voice
name may corrupt memory.
84 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
eciSetVoiceName, Voice Parameters
IBM Text-to-Speech 85

Alphabetical Index of Functions
eciGetVoiceParam
Returns a voice parameter.

Syntax
int eciGetVoiceParam(
ECIHand hEngine,
int voiceNum,
ECIVoiceParam voiceParameter

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

voiceNum
The number of the voice whose parameter value you want. 0, 1-8, 9-16

voiceParameter
One of the values enumerated in type ECIVoiceParam. See Data Types for this enumeration.

Return Values
>= 0

The voice parameter value you requested.

-1
Failure. Parameter may be out of range.

Remarks
Gets the specified voice parameter value for the specified voice. A voice of 0 indicates the active
voice.
86 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
eciSetVoiceName, Voice Parameters
IBM Text-to-Speech 87

Alphabetical Index of Functions
eciInsertIndex
Inserts an index into the input buffer.

Syntax
Boolean eciInsertIndex(
ECIHand hEngine,
int indexNum

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

indexNum
Unique index number to be inserted. If it is not unique, you may later be unable to determine
which index is being returned.

Return Values
true

Index inserted successfully.

false
Error inserting index. Check eciErrorMessage and/or eciProgStatus for additional error
information.

Remarks
Appends an index, with the specified number, to the input buffer. After all the text prior to this index
has been synthesized, an eciIndexReply message containing this index number is sent to your callback
function. If you are synthesizing to an audio device, then the index reply message is sent at about the
same time the text is being heard on the speakers.

Indices must be nonzero integer values.
88 IBM Text-to-Speech

Alphabetical Index of Functions
If no callback has been registered, the index reply message cannot be sent. You can still query the latest
index with eciGetIndex.

See Also
eciGetIndex, eciRegisterCallback, eciErrorMessage, eciProgStatus
IBM Text-to-Speech 89

Alphabetical Index of Functions
eciLoadDict
Loads a dictionary volume.

Syntax
ECIDictError eciLoadDict(
ECIHand whichECI,
ECIDictHand whichDictHand,
ECIDictVolume whichDictionay,
const void* filename

);

Parameters
whichECI

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichDictHand
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

filename
Pointer to a null-terminated C string containing the name of a dictionary file, which may contain a
path.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
Loads the dictionary volume identified by whichDictionary from the file named by filename. The input
file consists of ASCII text with one dictionary entry on each line. Each input line contains a key and
the corresponding translation value, separated by a tab character. See User Dictionaries for a full
90 IBM Text-to-Speech

Alphabetical Index of Functions
discussion of valid keys and translation values within each type of dictionary. An ECIDictError is
returned, which indicates any error that occurred in the call to eciLoadDict.

See Also
eciNewDict, eciSetDict, eciSaveDict, eciDeleteDict, eciDictFindFirst, eciDictFindNext,
eciDictLookup
IBM Text-to-Speech 91

Alphabetical Index of Functions
eciNew
Creates a new instance of ECI and returns a handle to it.

Syntax
ECIHand eciNew(
void

);

Parameters
None.

Return Values
ECIHand

Handle to an ECI instance. This same value must be used in all subsequent calls to this ECI
instance, such as eciAddText, eciSynthesize, eciSynchronize, eciDelete, and so on.

NULL_ECI_HAND
An unrecoverable error occurred. Usually, this is because ECI could not locate the synthesis
engine.

Remarks
This is typically the first call you will make to the ECI API unless you are using eciSpeakText. It
creates a new ECI instance with default attributes. See Synthesis State Parameter Defaults.
92 IBM Text-to-Speech

Alphabetical Index of Functions
Example

See Also
eciAddText, eciSynchronize, eciDeactivateFilter, Synthesis State Parameters

#include <stdio.h>
#include "eci.h"

void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIHand myECI;

myECI = eciNew();
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
showMessage("eciNew succeeded!\n");
eciAddText(myECI, "This is a test.");
eciSynthesize(myECI);
eciSynchronize(myECI);
eciDelete(myECI);

}
}

IBM Text-to-Speech 93

Alphabetical Index of Functions
eciNewEx
Creates a new instance of ECI and returns a handle to it. The client indicates the language, dialect and
character set for the new engine instance.

Syntax
ECIHand eciNewEx(
ECILanguageDialect value

);

Parameters
value

Value to indicate the ECI language dialect.

Return Values
ECIHand

Handle to one instance of the synthesis engine. This same value must be used in all subsequent
calls to this instance of the synthesis engine, such as eciAddText, eciSynthesize, eciSynchronize,
eciDelete, and so on.

NULL_ECI_HAND
An unrecoverable error occurred.

Remarks
This is typically the first call you will make to the ECI API. It creates a new ECI instance with default
attributes for the language specified as argument.
94 IBM Text-to-Speech

Alphabetical Index of Functions
Example

See Also
eciAddText, eciSynchronize, eciDeactivateFilter, Synthesis State Parameters

#include <stdio.h>
#include "eci.h"

void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIHand myECI;

myECI = eciNewEx();
if (NULL_ECI_HAND == myECI)
showMessage("eciNew failed.\n");

else
{
showMessage("eciNewEx succeeded!\n");
eciAddText(myECI, "This is a test.");
eciSynchronize(myECI);
eciDelete(myECI);

}
}

IBM Text-to-Speech 95

Alphabetical Index of Functions
eciNewDict
Creates a new dictionary set for a given ECI instance.

Syntax
ECIDictHand eciNewDict(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
ECIDictHand

Handle to the dictionary set. Use this handle in subsequent dictionary calls that require an
eciDictHand handle.

NULL_DICT_HAND
The dictionary set could not be created.

Remarks
Creates a new, empty dictionary set for the given ECI instance and the current language. Use this
function to create different dictionary handles for different languages by setting the language
parameter using eciSetParam before each call to eciNewDict. IBM TTS will not look up entries in the
new dictionary until it is activated with a call to eciSetDict. Returns NULL_DICT_HAND if the
dictionary set could not be created.

See Also
eciLoadDict, eciDeleteDict, User Dictionaries
96 IBM Text-to-Speech

Alphabetical Index of Functions
eciNewFilter
Creates a new instance of an ECI Filter and returns a handle to it.

Syntax
ECIFilterHand eciNewFilter (
ECIHand hEngine,
unsigned int filterNum

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

filterNum
Value indicating the numerical designation for this filter. If no value is specified, the default filter
(number 0) is used.

Return Values
ECIFilterHand

Handle to an ECI Filter instance. This same value must be used in all subsequent calls to use this
ECI Filter instance, such as, eciDeactivateFilter, eciActivateFilter,
eciDeleteFilter, eciUpdateFilter, and eciGetFilteredText.

NULL_ECI_HAND
An unrecoverable error occurred.

Remarks
If no filterNum parameter is specified, the default filter is used (filter number 0). Multiple filter
handles may be created for each ECI instance; also, multiple filters may be active at a time.

See Also
eciNew, eciNewEx, Custom Filters
IBM Text-to-Speech 97

Alphabetical Index of Functions
eciPause
Pauses or unpauses speech synthesis and playback.

Syntax
Boolean eciPause(
ECIHand hEngine,
Boolean fPauseon

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

fPauseon
Boolean value that indicates whether to pause (true) or resume (false).

Return Values
true

Successfully set pause status as indicated in fPauseon.

false
Failure. Check eciErrorMessage and/or eciProgStatus for additional error information.

Remarks
If the variable fPauseon is set to true, the synthesis engine and the output device are paused. During
a pause, no output is sent to the audio device or to your callback function. If the variable fPauseon is
set to false, synthesis resumes where it left off.

See Also

eciProgStatus, eciErrorMessage
98 IBM Text-to-Speech

Alphabetical Index of Functions
eciProgStatus
Returns a set of error-flag bits.

Syntax
Boolean eciProgStatus(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
0

No error.

Non-zero values are returned as an integer, composed of one or more of the following constants, joined
by bitwise "or":

ECI_SYSTEMERROR
Operating system returned an error.

ECI_MEMORYERROR
System resources low.

ECI_MODULELOADERROR
Unable to load necessary program module.

ECI_DELTAERROR
Error in Delta program.

ECI_SYNTHERROR
Error in synthesis engine.

ECI_DEVICEERROR
Error using sound device.
IBM Text-to-Speech 99

Alphabetical Index of Functions
ECI_PARAMETERERROR
Invalid or out of range parameter.

ECI_SYNTHESIZINGERROR
Synthesis engine is busy.

ECI_DEVICEBUSY
Audio device is busy.

ECI_SYNTHESISPAUSED
Synthesis engine is paused.

Remarks
All bits are cleared by eciReset and eciClearErrors. The last error set can be retrieved by calling
eciErrorMessage.

See Also
eciReset, eciClearErrors, eciErrorMessage
100 IBM Text-to-Speech

Alphabetical Index of Functions
eciRegisterCallback
Registers your callback function with an ECI instance.

Syntax
void eciRegisterCallback(
ECIHand hEngine,
ECICallback *pCallback
void* data

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

pCallback
Pointer to the ECICallback function. Can be NULL.

data
Pointer to an arbitrary value, or a key to the size of a void pointer. All values are allowed.

Return Values
None.

Remarks
This function registers your callback function with an ECI instance. If pCallback is NULL, the current
callback is removed. The supplied data pointer is associated with your callback. It is passed back to
your callback function on entry, so that your function can use it, if desired, for identification purposes,
such as a class pointer or an instance reference. Only one callback function can be registered at a time
with each ECI instance. ECI functions may not be called from within a callback.

Your callback must be registered with eciRegisterCallback before any function that creates messages
is called. The functions that cause messages to be sent to your callback are eciGeneratePhonemes,
IBM Text-to-Speech 101

Alphabetical Index of Functions
eciInsertIndex, and eciSetOutputBuffer, and setting eciWantPhonemeIndices to 1 with
eciSetParam.

For any given ECI instance, your callback will be called from the same thread on which your
application calls ECI. This is achieved by passing control from your application to ECI. When you call
eciSynchronize, ECI will retrieve all messages and execute your callback for each one, until synthesis
is complete. If you call eciSpeaking, ECI will retrieve just those messages that are ready, execute your
callback for each one, and then return. If you choose to use eciSpeaking, instead of eciSynchronize,
you must keep calling it until it returns false.

eciRegisterCallback may not be called while synthesis is in progress.

The syntax of your callback is as follows:

ECICallbackReturn callback(
ECIHand hEngine,
ECIMessage msg,
long lparam,
void* data

);

Callback Function Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

msg
Enumeration indicating the type of message (see Data Types):

eciWaveformBuffer
eciPhonemeBuffer
eciIndexReply
eciPhonemeIndexReply

eciWordIndexReply

lparam
A long whose value and interpretation depends on the ECIMessage type. See discussion below.

data
An arbitrary value which is the size of a void pointer. You specify this value in your call to
eciRegisterCallback. All values are allowed, including pointers.
102 IBM Text-to-Speech

Alphabetical Index of Functions
Callback Function Return Values
eciDataProcessed

You have processed the message and any associated data in your output buffer. Subsequent
messages may be sent to your callback.

eciDataNotProcessed
You could not process the message or associated data in your output buffer. The same message will
be sent to your callback later.

If your callback processes the ECIMessage, and does not wish to see that same message again, it
should return eciDataProcessed. If your callback function cannot process the message, and would like
to see the same message again, it should return eciDataNotProcessed; your callback will be called
with the same message at a later time. This is particularly useful if an eciWaveformBuffer message
cannot be processed because the buffer you are writing to is temporarily full. No new ECIMessage
will be sent if eciDataNotProcessed is returned. If your application continues to return
eciDataNotProcessed, synthesis will stop, aslo, eciDataAbort will stop sythesis and clear the text
buffer.

All callbacks should return quickly to ensure that there is no interruption of output. The value and
interpretation of lparam is dependent on ECIMessage.

ECIMessage eciWaveformBuffer
lparam indicates the number of samples (not bytes) that have just been added to your output buffer.
Your output buffer is specified in a call to eciSetOutputBuffer.

When phoneme indices are also being generated, this message is sent for the samples for each
phoneme.

Samples are 16-bit signed PCM values and are centered at 0.

Once your callback returns eciDataProcessed, the data in your output buffer is no longer protected;
therefore, your callback should only return eciDataProcessed when it has processed all the data in your
buffer. No more data will be added to your buffer until eciDataProcessed is returned.
IBM Text-to-Speech 103

Alphabetical Index of Functions
ECIMessage eciPhonemeBuffer
The lparam parameter indicates the number of characters (bytes) that have just been added to your
phoneme buffer. Your phoneme buffer address was given to the ECI instance in your call to
eciGeneratePhonemes.

Once your callback returns eciDataProcessed, the data in your phoneme buffer is no longer protected;
therefore, your callback should only return eciDataProcessed when it has processed all the data in the
buffer. More data will not be added to your phoneme buffer until eciDataProcessed is returned.

ECIMessage eciIndexReply
lparam is an index that was reached during synthesis and playback of the input text buffer. Indices are
inserted into the input text buffer with eciInsertIndex.

Your callback should return immediately to ensure that there is no interruption of output.

Receiving index notifications is useful for synchronizing text with user-defined events, for example,
word highlighting or simultaneous display of related graphics in a slideshow-style presentation.

ECIMessage eciPhonemeIndexReply
lparam is a pointer to an ECIMouthData structure.

This message is sent only when the eciWantPhonemeIndices environment parameter is set to 1. One of
these messages is sent for each phoneme spoken, just before the phoneme starts playing on the audio
device (or just before the associated waveform audio is placed in your output buffer, if you have called
eciSetOutputBuffer).

In addition to the language-specific phoneme symbols, the symbol ¤ (0xA4) is used to indicate the end
of an utterance, and is sent with a set of neutral mouth position parameters.

Receiving phoneme notifications this way is appropriate for synchronizing facial animation or other
graphics with the speech output. If your application only needs to synchronize with individual words
or larger units, use word indices (eciIndexReply messages). To convert text to phonemes, use the
eciGeneratePhonemes function and the eciPhonemeBuffer message will be sent.

As with other messages, your callback function must return quickly. If significant processing is
required, as with complex graphics, your application should spawn a new thread, and marshal the
104 IBM Text-to-Speech

Alphabetical Index of Functions
callback messages to the new thread. Your application is responsible for skipping messages, if it
receives them faster than it can process them.

Examples
The following example in C++ function converts an input string to phonemes and writes them to the
console.
#include <eci.h>
#include <iostream.h>

const int bufferSize = 100;
static char buffer[bufferSize];

static ECICallbackReturn callback(ECIHand eciHand,
ECIMessage msg, long lparam, void* data)

{
if (msg == eciPhonemeBuffer)
{
cout << buffer;

}
return eciDataProcessed;

}

void showPhonemes(const char* text)
{
//This function demonstrates the proper use of
//eciGeneratePhonemes. The standard error checking of
//ECI functions which return error codes is left out for
//the sake of simplicity
ECIHand eciHand = eciNew();

eciRegisterCallback(eciHand, callback, 0);
eciSetParam(eciHand, eciSynthMode,1);
eciAddText(eciHand, text);
eciGeneratePhonemes(eciHand, bufferSize, buffer);
eciDelete(eciHand);
return;

}

IBM Text-to-Speech 105

Alphabetical Index of Functions
The following C++ example illustrates how to capture the waveform samples in order to process them
using an alternate method, rather than sending them directly to the audio device:
106 IBM Text-to-Speech

Alphabetical Index of Functions
#include <eci.h>
#include <iostream.h>

const int bufferSize = 100;
static short buffer[bufferSize];

// This function performs some kind of processing on the samples
// It returns true if it is done with those samples,
// and false if it wants to be called with the same samples again.
extern Boolean handleSamples(const short* samples, long count);

static ECICallbackReturn callback(ECIHand eciHand,
ECIMessage msg, long lparam, void* data)

{
Boolean retval = true;
if (msg == eciWaveformBuffer)
{
retval = handleSamples(buffer, lparam);

}
return (retval?eciDataProcessed:eciDataNotProcessed);

}
void collectSamples(const char* text)
{
//This function demonstrates the proper use of the
//eciWaveformBuffer message. The standard error checking
//of ECI functions which return error codes is left out
//for the sake of simplicity

ECIHand eciHand = eciNew();

eciRegisterCallback(eciHand, callback, 0);
eciSetOutputBuffer(eciHand, bufferSize, buffer);
eciAddText(eciHand, text);
eciSynthesize(eciHand);
//Wait until synthesis is complete
eciSynchronize (eciHand);
eciDelete(eciHand);

}

IBM Text-to-Speech 107

Alphabetical Index of Functions
The following C++ program uses word indices to synchronize a visible countdown with an audible
one:

#include <iostream.h>
#include <stdio.h>
#include <eci.h>

static ECICallbackReturn callback(ECIHand eciHand,
ECIMessage msg, long lparam, void* data)

{
if (msg == eciIndexReply)
{
cout << param << "..." << endl;

}
return eciDataProcessed;

}

int main(int argc, const char* argv[])
{
//This function demonstrates the proper use of the
//eciIndexReply message. The standard error checking
//of ECI functions which return error codes is left out
//for the sake of simplicity

ECIHand eciHand = eciNew();

eciRegisterCallback(eciHand, callback, 0);
// count from 10 to 0, inserting an index at each count
for (int i = 10; i > 0; i--)
{
char buf[10];
sprintf(buf, "%d, ", i);
eciInsertIndex(eciHand, i);
eciAddText(eciHand, buf);

}
eciInsertIndex(eciHand, 0);
eciAddText(eciHand, "go!");

continued on next page
108 IBM Text-to-Speech

Alphabetical Index of Functions
Phoneme indices may be used in a similar way, except that there is no need for calls to eciInsertIndex.
The callback function might look like this:

See Also
eciSynchronize, eciSpeaking, Data Types

continued from previous page
// synthesize, and wait until speaking is finished
eciSynthesize(eciHand);
//Wait until synthesis is complete
eciSynchronize (eciHand);
cout << "Gone." << endl;

eciDelete(eciHand);
return 0;

}

static ECICallbackReturn callback(ECIHand eciHand,
ECIMessage msg, long lparam, void* data)

{
if (msg == eciPhonemeIndexReply)
{
const ECIMouthData* mouthData = (ECIMouthData*)lparam;

// process the mouth position data--here, we'll just
// print the phoneme name
cout << mouthData->phoneme << endl;

}
return eciDataProcessed;

}

IBM Text-to-Speech 109

Alphabetical Index of Functions
eciReset
Resets the ECI instance to the default state.

Syntax
Boolean eciReset(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Success

false
Failure. Check eciErrorMessage and/or eciProgStatus for additional error information.

Remarks
The default state is the same the state of a new instance returned by eciNew. See Synthesis State
Parameter Defaults.

If synthesis is underway when this function is called, the synthesis is terminated immediately.

See Also
eciNew, Synthesis State Parameters, eciErrorMessage, eciProgStatus
110 IBM Text-to-Speech

Alphabetical Index of Functions
eciSaveDict
Writes the contents of a dictionary volume to a file.

Syntax
ECIDictError eciSaveDict(
ECIHand whichECI,
ECIDictHand whichDictHand,
ECIDictVolume whichDictionary,
const void* filename

);

Parameters
whichECI.

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichDictHand
Handle to the dictionary set.

whichDictionary
One of the values enumerated in type ECIDictVolume. See Data Types for this enumeration.

filename
Pointer to the name of a dictionary file. This is a null-terminated C string containing the name of a
dictionary file.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
The ASCII file will be in a format suitable for reloading with eciLoadDict. The entries are listed in no
particular order, and will generally be different from the order entered or loaded. An ECIDictError is
returned which indicates any errors that occurred in the call to eciSaveDict.
IBM Text-to-Speech 111

Alphabetical Index of Functions
See Also
eciLoadDict, Synthesis State Parameters
112 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetDefaultParam
Sets the default value for an environment speech parameter.

Syntax
int eciSetDefaultParam(
ECIParam Param
int iValue

);

Parameters
Param

Parameter value taken from the existing ECIParam enumeration in eci.h. These are the
same enumeration values that are used by eciSetParam and eciGetParam.

iValue
Default value which you want to set for Param.

Return Values
>=0

The previous default Param value.

-1
An error. Param or iValue is out of range.

Remarks
Because the initial environment parameter defaults may not be suitable for all operating systems and
platforms, this function provides a means for modifying the initial environment parameter defaults to
be used on all subsequent speech synthesis engine instances created with eciNew, eciNewEx,
eciSpeakText, or eciSpeakTextEx. However, if you already have an existing speech synthesis engine
instance and you call eciSetDefaultParam, you must then call eciReset to have these defaults take
effect in that instance.

The following table shows the behavior for specific default parameters.
IBM Text-to-Speech 113

Alphabetical Index of Functions
Note
It is the application developer's responsibility to select defaults that are compatible with the
functions they are intending to use because changing defaults can affect the behavior of other
functions.

See Also
N/A

Default Parameter Behavior

eciLanguageDialect When called, eciNew, eciSpeakText, or eciReset attempts to load the
desired default language. If the desired default language is not avail-
able, NULL_ECI_HAND is returned.

eciSampleRate If a default sample rate selected is not supported by the audio device
(determined when eciNew, eciNewEx, eciSpeakText,
eciSpeakTextEx, or eciReset is called), then ECI attempts to select
another available sample rate for that particular speech synthesis
engine instance. The default remains unchanged.
114 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetDict
Activates a dictionary set for a given ECI instance in the currently active language.

Syntax
ECIDictError eciSetDict(
ECIHand hEngine,
ECIDictHand dictHandle

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
A dictionary set consists of a Main, Roots, and Abbreviations Dictionary. Each language can be
associated with a different dictionary set. eciSetDict activates a dictionary set only in that currently
active language. The user can call eciSetDict multiple times, switching languages before each call.

Dictionary lookups can be deactivated with eciSetDict by passing NULL_DICT_HAND to
dictHandle.

In this case, dictionary lookup is deactivated in all languages simultaneously. Note that this type of
dictionary deactivation differs from setting the eciDictionary parameter to 1 with a call to
IBM Text-to-Speech 115

Alphabetical Index of Functions
eciSetParam. The latter deactivates lookups in both the internal and user abbreviations dictionaries,
but not in any other user dictionaries, and remains in effect when another language becomes active.

See Also
eciNewDict, eciLoadDict, eciGetIndex, User Dictionaries
116 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetOutputBuffer
Sets an output buffer as the synthesis destination.

Syntax
Boolean eciSetOutputBuffer(
ECIHand hEngine,
int size,
short* buffer

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

size
Size of the buffer (in samples). Use 0 to cancel waveform buffer callbacks.

buffer
Pointer to the buffer to receive PCM audio samples. Use NULL to cancel waveform buffer
callbacks.

Return Values
true

Successfully set the output buffer.

false
Failure. Does not register a callback. Check eciErrorMessage and/or eciProgStatus for additional
error information.

Remarks
Registers your output buffer to receive 16-bit signed PCM audio samples. Signed PCM samples are
centered on 0. Calling this function with a size of 0 or a NULL buffer pointer reverts to the default
destination and cancels waveform buffer callbacks. Otherwise, when the buffer is full or speech is
finished, the eciWaveformBuffer message will be sent to your callback.
IBM Text-to-Speech 117

Alphabetical Index of Functions
If a callback has not been registered, eciSetOutputBuffer returns false. When an output buffer is
successfully registered, device and file output are cancelled. This function may not be called during
synthesis.

See Also
eciRegisterCallback, eciSetOutputDevice, eciSetOutputFilename, eciErrorMessage, eciProgStatus
118 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetOutputDevice
Sets an audio output hardware device as the synthesis destination.

Syntax
Boolean eciSetOutputDevice(
ECIHand hEngine,
int deviceNum

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

deviceNum
Hardware device number. Values are 0 and higher, or -1.

Return Values
true

The synthesis destination was successfully set.

false
An error occurred that prevents output from being sent to this audio device. Check
eciErrorMessage and/or eciProgStatus for additional error information.

Remarks
Sets the specified audio device as the destination for synthesis. On Windows, the number of devices is
returned by the waveOutGetNumDevs call, and devices are numbered sequentially starting with 0. If
deviceNum is -1, the default destination (device 0) is used. When a device is successfully set, buffer
and file output are cancelled. This function may not be called during synthesis.
IBM Text-to-Speech 119

Alphabetical Index of Functions
See Also

eciSetOutputBuffer, eciSetOutputFilename, eciErrorMessage, eciProgStatus
120 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetOutputFilename
Sets a file as the synthesis destination.

Syntax
Boolean eciSetOutputFilename(
ECIHand hEngine,
const void* filename

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

filename
Pointer to the name of the file in which to store audio samples. This is a null-terminated C string,
which may include a path.

Return Values
true

The output file was successfully set.

false
An error occurred that prevented setting the output file. Check eciErrorMessage and/or
eciProgStatus for additional error information.

Remarks
Sets the output file as the synthesis destination. If filename is NULL, or the C string it points to is
empty, the synthesis engine reverts to the default destination. The extension of the filename determines
the format of the audio samples written to the file:.

.WAV: PCM Sound in Windows format

.AU: u-law with header

.RAU: raw u-law without header
IBM Text-to-Speech 121

Alphabetical Index of Functions
The three audio formats are not supported on all operating systems. Windows only supports .wav
formats.

If the file does not exist, it is created. If the file already exists, output is appended to the existing
contents. ECI should only be used in append mode if it is appending to a file that was created by ECI,
since it does not currently support all features of complex “.wav” file formats.

When a file is successfully set, buffer and device output are cancelled.

See Also
eciSetOutputBuffer, eciSetOutputDevice, eciErrorMessage, eciProgStatus
122 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetParam
Sets an environment parameter.

Syntax
int eciSetParam(
ECIHand hEngine,
ECIParam eciParameter,
int value

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

eciParameter
One of the values enumerated in type ECIParam. See Data Types for this enumeration.

value
The value the parameter is to be set to, usually 0 or 1. See Synthesis State Parameters for details.

Return Values
>=0

Success. Returns the previous value.

-1
Failure. Parameter may be out of range.

Remarks
Sets an environment parameter. Does not affect text already in the input buffer. Returns the previous
value on success, or -1 on failure.
IBM Text-to-Speech 123

Alphabetical Index of Functions
See Also
eciAddText, eciGetParam, Voice Parameters
124 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetVoiceName
Sets the name of a voice.

Syntax
int eciSetVoiceName(
ECIHand hEngine,
int iVoice,
const void *pBuffer

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

iVoice
Number of the voice whose parameter value you want to set. Valid values are 0 – 16.

pBuffer
Pointer to a buffer containing the voice name.

Return Values
true

The voice name was successfully copied to pBuffer.

false
An error occurred. Check for valid or out-of-range parameter.

Remarks

The voice name should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, pBuffer should be in wide-character (Unicode) format with
a 16-bit terminator. Otherwise, pBuffer should be terminated with an 8-bit, NULL character.
IBM Text-to-Speech 125

Alphabetical Index of Functions
Your buffer should be less than or equal to ECI_VOICE_NAME_LENGTH characters long.
Otherwise, it will be truncated. The names of voices 1 - 8 cannot be set; they are read only.

See Also
eciGetVoiceName
126 IBM Text-to-Speech

Alphabetical Index of Functions
eciSetVoiceParam
Sets a voice parameter.

Syntax
int eciSetVoiceParam(
ECIHand hEngine,
int voiceNum,
ECIVoiceParam voiceParameter,
int value

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

voiceNum
Number of the voice whose parameter value you want to set: 0, 9-16.

voiceParameter
Voice parameter whose value you want to set:

eciGender
eciHeadSize
eciPitchBaseline
eciPitchFluctuation
eciRoughness
eciBreathiness
eciSpeed
eciVolume

value
Value to set for voiceParameter. See Voice Parameters for a description of values, ranges, and
defaults.
IBM Text-to-Speech 127

Alphabetical Index of Functions
Return Values
>=0

Success. Returns the previous value.

-1
Failure. Parameter may be out of range.

Remarks
Sets the specified voice parameter value for the specified voice. A voice of 0 indicates the active voice.
See Voice Parameters for more information.

Returns the previous parameter value, or -1 for error. On error, check the voice number, parameter
number, and value.

See Also
eciGetParam, Voice Parameters
128 IBM Text-to-Speech

Alphabetical Index of Functions
eciSpeaking
Indicates whether synthesis is in progress.

Syntax
Boolean eciSpeaking(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Synthesis is in progress.

false
Synthesis is not in progress.

Remarks
Use this function to poll the ECI instance for synthesis in progress. This function provides an
alternative to blocking your thread’s execution on eciSynchronize during synthesis.

When your application calls eciSpeaking, it gives the ECI instance an opportunity to check for
messages from the synthesis engine. If you have registered a callback, and there are one or more
callback messages from the engine, your callback will be executed on your thread from within this
function.

If accurate timing and synchronization are issues for your application, then you should call this
function frequently enough that messages and callbacks from the engine can be serviced in a timely
manner.
IBM Text-to-Speech 129

Alphabetical Index of Functions
See Also
eciRegisterCallback, eciSynchronize
130 IBM Text-to-Speech

Alphabetical Index of Functions
eciSpeakText
Synthesizes text to the default audio device.

Syntax
Boolean eciSpeakText(
ECIInputText szTextPhrase,
Boolean fAnnotations

);

Parameters
szTextPhrase

Text to be spoken. This is a null-terminated C-string.

fAnnotations
Boolean value that indicates whether annotations are embedded in szTextPhrase:

True

There are annotations in szTextPhrase. Annotations are to be interpreted.

False

There are no annotations in szTextPhrase. Any annotations which nevertheless occur in
szTextPhrase will not be interpreted.

Return Values
true

The requested string was successfully spoken.

false
An error occurred and the requested string was not spoken.
IBM Text-to-Speech 131

Alphabetical Index of Functions
Remarks
Creates a new ECI instance, speaks the null-terminated C string szTextPhrase to the default output
device, and destroys the ECI instance it created. When fAnnotations is true, annotations within the text
are processed, and the speech output is altered accordingly.

Does not return until all speech has been synthesized and played.

The function eciSpeakText always speaks the default language unless language-annotated text is
passed to it. To change the language, you must insert a language annotation into the text. For example,
if you have English and French installed, and szTextPhrase contains text in French, you can insert an
annotation to switch to the French synthesis engine. See the example below for details on language
annotation.

If you set fAnnotations to false, but there are annotations in szTextPhrase, then the synthesis engine
reads them as normal text.

Example

#include <stdio.h>
#include "eci.h"

void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIInputText szTextPhrase = "Hello world. `l3.0 Bonjour le monde."
if (eciSpeakText(szTextPhrase, true))
showMessage("Success!\n");

else showMessage("Failed.\n");
return 0;

}

132 IBM Text-to-Speech

Alphabetical Index of Functions
See Also
eciAddText, eciNew, eciSynchronize, eciDeactivateFilter
IBM Text-to-Speech 133

Alphabetical Index of Functions
eciSpeakTextEx
Synthesizes text to the default audio device with the indicated language, dialect and character set.

Syntax
Boolean eciSpeakTextEx(
ECIInputText text,
Boolean bAnnotationsInTextPhrase,
ECILanguageDialect value

);

Parameters
text

Text to be spoken. This is a null-terminated C-string

bannotationsInTextPhrase
Boolean value that indicate whether annotations are embedded in text:
True indicates annotations are in text and are to be interpreted.
False indicates annotations are not in text.

value
Value to indicate the ECI language dialect.

Return Values
true

The requested string was successfully spoken.

false
An error occurred and the requested string was not spoken.

Remarks
Creates a new ECI instance, speaks the null-terminated C-string text to the default output device, and
destroys the ECI instance it created. When bAnnotationsInTextPhrase is true, annotations within the
text are processed, and the voice and speaking characteristics are changed as appropriate.
134 IBM Text-to-Speech

Alphabetical Index of Functions
The function eciSpeakTextEx speaks in the indicated language and dialect.

You may enter a language-specific annotation to change the indicated language, dialect, and character
set. For example, if you have English and French installed, and the text in text is in French, you can
insert an annotation indicating that the French TTS engine should be used. See the example.

If you set bAnnotationsInTextPhrase to false, but there are annotations in text, then the synthesis
engine attempts to read them as normal text.

Example

See Also
eciAddText, eciNew, eciSynchronize, eciDeactivateFilter

#include <stdio.h>
#include "eci.h"

void showMessage(char *msg)
{
printf(msg);
getchar();

}

int main(int argc, char *argv[])
{
ECIInputText text = "Hello world. `l3.0 Bonjour le monde."
if (eciSpeakTextEz(text, true, eciGeneralAmericanEnglish))
showMessage("Success!\n");

else showMessage("Failed.\n");
return 0;

}

IBM Text-to-Speech 135

Alphabetical Index of Functions
eciStop
Stops synthesis.

Syntax
Boolean eciStop(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Synthesis is successfully stopped, and the input and output buffers are cleared.

false
An error occurred that prevented the termination of synthesis. Check eciErrorMessage and/or
eciProgStatus for additional error information.

Remarks
Aborts any synthesis in progress, clears the input buffer, clears the output buffer, and releases the audio
device if it has been claimed. This function is synchronous, so ECI will have stopped processing
before eciStop returns.

If the active voice has been changed by annotations during synthesis, then the state of the active voice
is undefined when eciStop returns. The active voice should be reset by your application to an
appropriate setting.

See Also
eciPause, eciSynthesize, eciSpeaking, eciErrorMessage, eciProgStatus
136 IBM Text-to-Speech

Alphabetical Index of Functions
eciSynchronize
Waits in an efficient state until all synthesis is finished.

Syntax
Boolean eciSynchronize(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Synthesis has successfully finished.

false
An error occurred or synthesis is not taking place. Check eciErrorMessage and/or eciProgStatus
for additional error information.

Remarks
If the synthesis destination is a device, this function does not return until the audio has been played on
the device.

While waiting, the ECI instance calls your callback, if you have registered one, and if the synthesis
engine has produced any messages for your callback.

Alternatives to eciSynchronize are:

• Insert an index using eciInsertIndex and wait in a message loop until your callback function
is called with that index.

• Wait in a loop that polls eciSpeaking and processes your application
messages.
IBM Text-to-Speech 137

Alphabetical Index of Functions
See Also
eciSpeaking, eciInsertIndex, eciErrorMessage, eciProgStatus
138 IBM Text-to-Speech

Alphabetical Index of Functions
eciSynthesize
Starts synthesis of text in an input buffer.

Syntax
Boolean eciSynthesize(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Synthesis has started.

false
 An error occurred that prevented synthesis from starting. Check eciErrorMessage and/or
eciProgStatus for additional error information.

Remarks
Starts synthesis of all text in the input buffer. Returns immediately.

It is important to call this function after the last text of an utterance has been passed to eciAddText so
that the synthesis process will begin, even if ECISynthMode is sentence, so that sentence ends may
be determined correctly.

For example, if you make one call to eciAddText with text set to "The value of pi is 3.", IBM TTS
must wait for the next call to eciAddText to see if the sentence ends there, in case the next addition to
the text buffer begins "14159". Calling eciSynthesize after all text buffers have been sent tells IBM
TTS that the last sentence is complete and can be synthesized.
IBM Text-to-Speech 139

Alphabetical Index of Functions
To synthesize text in line-oriented format, such as a table or list, call eciAddText and eciSynthesize
for each line, to ensure that each line is spoken as a separate sentence.

See Also
eciAddText, eciSynchronize, eciErrorMessage, eciProgStatus
140 IBM Text-to-Speech

Alphabetical Index of Functions
eciSynthesizeFile
Synthesizes the contents of a file.

Syntax
Boolean eciSynthesizeFile(
ECIHand eciHandle,
const void* filename

);

Parameters
eciHandle

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

filename
Pointer to the name of the text file (which may include a path) whose contents you want to
synthesize. This is a null-terminated C string.

Return Values
true

The file was successfully opened.

false
Error opening file. Check eciErrorMessage and/or eciProgStatus for additional error
information. See remarks.

Remarks
eciSynthesizeFile returns immediately, and does not wait for synthesis to complete.

Opens the named file and starts reading its contents. If the file does not exist, returns false with no
other error flags set. This function is equivalent to sending all the text in the named file using
eciAddText, followed by a call to eciSynthesize.
IBM Text-to-Speech 141

Alphabetical Index of Functions
Your application should wait for synthesis to complete before terminating. Use eciSpeaking or
eciSynchronize for this purpose.

See Also
eciAddText, eciSpeaking, eciSynchronize, eciErrorMessage, eciProgStatus
142 IBM Text-to-Speech

Alphabetical Index of Functions
eciTestPhrase
Synthesizes a test phrase.

Syntax
Boolean eciTestPhrase(
ECIHand hEngine

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

Return Values
true

Success

false
Failure. Check eciErrorMessage and/or eciProgStatus for additional error information.

Remarks
Aborts synthesis if it is underway, clears the input and output buffers, sets the active voice to preset
voice 1, loads the sentence “1 2 3.” starts synthesis, and returns.

Your application should wait for synthesis to complete before terminating. Use eciSpeaking or
eciSynchronize for this purpose.

See Also
eciSpeaking, eciSynchronize, eciErrorMessage, eciProgStatus
IBM Text-to-Speech 143

Alphabetical Index of Functions
eciUpdateDict
Updates a dictionary volume with a key/translation pair.

Syntax
ECIDictError eciUpdateDict(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText pkey,
ECIInputText ptranslationValue

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set. This the value returned by eciNewDict or eciGetDict.

whichDictionary
Enumeration value representing the particular dictionary volume:

eciMainDict – main dictionary
eciRootDict – root dictionary
eciAbbvDict – abbreviation dictionary

pkey
Pointer to a key to the entry in this dictionary. The key is a constant C string.

ptranslationValue
Pointer to a translation value for this entry in this dictionary. The translation value is a constant C
string.

Return Values
ECIDictError
144 IBM Text-to-Speech

Alphabetical Index of Functions
One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
Updates the dictionary volume. The update action depends on the existence of the key and value of the
translationValue parameter:

• The entry is added when the key does not exist and the translationValue is not NULL.
• The entry is updated if the key already exists and the translationValue is not NULL.
• The entry is deleted if the translationValue is NULL. An ECIDictError is returned which

indicates any errors that occurred in the call.

See Also
eciDictLookup, eciGetDict, eciNewDict
IBM Text-to-Speech 145

Alphabetical Index of Functions
eciUpdateDictA
Updates a dictionary volume with a key/translation pair. This function supports all dictionary volumes,
including Main Extension Dictionary (eciMainDictExt), which is used for Asian languages.

Syntax
ECIDictError eciUpdateDictA(
ECIHand hEngine,
ECIDictHand dictHandle,
ECIDictVolume whichDictionary,
ECIInputText pkey,
ECIInputText ptranslationValue
ECIPartOfSpeech PartOfSpeech

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

dictHandle
Handle to the dictionary set. This the value returned by eciNewDict or eciGetDict.

whichDictionary
Enumeration value representing the particular dictionary volume:

eciMainDict – main dictionary

eciRootDict – root dictionary

eciAbbvDict – abbreviation dictionary eci

eciMainDictExt - main dictionary used only with Asian languages

pKey
Pointer to a key to the entry in this dictionary. This is a constant buffer containing the key.

pTranslationValue
Pointer to a translation for this entry in this dictionary. This is a constant buffer containing the
value.

PartOfSpeech
146 IBM Text-to-Speech

Alphabetical Index of Functions
ECIPartOfSpeech enumeration, which specifies the grammatical category.

Return Values
ECIDictError

One of the values enumerated in type ECIDictError. See ECIDictError in Data Types for this
enumeration.

Remarks
This function supports all dictionary volumes, including Main Extension Dictionary (eciMainDictExt),
which is used for Asian languages. The update action depends on the existence of pKey and value of
pTranslationValue, as follows:
• The entry is added when key does not exist and pTranslationValue is non-NULL.
• The entry is updated if key already exists and pTranslationValue is non-NULL.
• The entry is deleted if pTranslationValue is NULL. An ECIDictError is returned, which indicates

any errors that occurred in the call.
The buffer contents should be in the same code page currently selected for this speech synthesis engine
instance. If a Unicode code page is active, pKey and pTranslationValue should be in wide-character
(Unicode) format with a 16-bit terminator. Otherwise, pKey and pTranslationValue should be an 8-bit,
NULL-terminated C string.

See Also
eciDeleteDict, eciDictFindFirstA,eciDictFindNextA, eciDictLookupA , eciLoadDict, eciSaveDict,
eciSetDict, eciUpdateDictA
IBM Text-to-Speech 147

Alphabetical Index of Functions
eciUpdateFilter
Allow runtime update of the token replacement applied to known fields.

Syntax
ECIFilterError eciUpdateFilter(
ECIHand hEngine,
ECIFilterHand whichFilterHand,
ECIInputText key,
ECIInputText translation);

);

Parameters
hEngine

Handle to the speech synthesis engine instance. This is the value returned by eciNew or eciNewEx.

whichFilterHand
Handle to the filter to be updated. This is the value returned by eciNewFilter.

key
Field that requires special handling.

translation
Text that will replace the key.

Return Values
ECIFilterError

One of the values enumerated in type ECIFilterError. See Data Types for this enumeration.

Remarks

See Also
eciNewFilter, eciNew, eciNewEx, Custom Filters
148 IBM Text-to-Speech

Alphabetical Index of Functions
eciVersion
Returns the current IBM Text-to-Speech version number.

Syntax
void eciVersion(
char* buffer

);

Parameters
buffer

Pointer to the buffer containing the version string. Must be at least 20 bytes. Should not be NULL.

Return Values
None.

Remarks
This function copies the IBM Text-to-Speech version number as a null-terminated C string to the
specified buffer, which must have room for at least 20 characters, including the terminating null.
IBM Text-to-Speech 149

Alphabetical Index of Functions
150 IBM Text-to-Speech

ECI Annotations
Annotations

Annotations are special codes placed in text to customize the speech output generated by IBM TTS.
You can use them for:

• Selecting a Language and Dialect
• Selecting a Voice or Voice Characteristics
• Selecting a Speaking Style
• Modifying Word Emphasis and Tone
• Modifying Phrase-Final Intonation
• Adding Pauses
• Specifying Alternative Pronunciations
• Filters

All annotations must be preceded by at least one unit of white space.

ECI Annotations
An annotation consists of a backquote (`) followed immediately by a string of characters. For example:

The Symbolic Phonetic Representations provides a complete listing of the available annotations.

`vs5 Use a speaking rate of 5.
`4 Put very heavy emphasis (level 4) on the following word.
`ts2 Pronounce all characters individually by name.
IBM Text-to-Speech 151

Selecting a Language and Dialect
Selecting a Language and Dialect
In order to use an annotation for a language or dialect, you must have installed the text-to-speech
engine for that language and dialect. For example, you must install the Standard German text-to-
speech engine in order for the German annotation to work.

• If you hear the text being pronounced using the accent of the last active language, then the
language of the text has not been installed.

• If you get an error message, then the language you want to hear has probably been installed
incorrectly.

Selecting a language will change only the language, not the voice characteristics. The last selected
voice characteristics will remain in effect.

The ECI language annotation begins with `l (backquote L), followed by a decimal number specifying
the language and dialect. If you specify a language/dialect combination that does not exist, (e.g.,
‘l2.3), then the annotation will be ignored because there is no dialect of Spanish corresponding to 2.3.

The following table shows the ECI language annotations:

ECI Annotations Language or Dialect
`l1 English
`l1.0 American English (default)
`l1.1 British English
`l2 Spanish
`l2.0 Castilian Spanish (default)
`l2.1 Mexican Spanish
`l3 French
`l3.0 Standard French (default)
`l3.1 Canadian French
`l4 German
`l4.0 Standard German (default)
`l5 Italian
`l5.0 Standard Italian (default)
152 IBM Text-to-Speech

Selecting a Language and Dialect
`l6 Chinese
`l6.0 Standard Mandarin Chinese (default) with GBK support
`l6.0.1 Standard Mandarin Chinese with only Pin Yin support
`l6.0.8 Standard Mandarin Chinese with UCS support
`l6.1 Taiwanese Mandarin Chinese with Big5 support
`l6.1.1 Taiwanese Mandarin Chinese with Zhu Yin support
`l6.1.2 Taiwanese Mandarin Chinese with only Pin Yin support
`l6.1.8 Taiwanese Mandarin Chinese with UCS support
`l7 Portuguese
`l7.0 Brazilian Portuguese (default)
`l8 Japanese
`l8.0 Standard Japanese (default) with Shift-JIS support
`l8.0.8 Standard Japanese with UCS support
`19 Finnish
`19.0 Standard Finnish
`113 Norwegian
`113.0 Standard Norwegian (default)
`114 Swedish
`114.0 Standard Swedish (default)
`115 Danish
`115.0 Standard Danish (default)

ECI Annotations Language or Dialect
IBM Text-to-Speech 153

Selecting a Language and Dialect
Choosing a Speaker

ECI annotations for each language and speaker, as indicated.

ECI Annotation Description
`l1.0 `v1 Set voice to the “Reed,” the American English adult male voice.
`l1.0 `v2 Set voice to “Shelley,” the American English adult female voice.
`l1.0 `v3 Set voice to “Sandy,” the American English child voice.
`l1.0 `v7 Set voice to “Grandma,” the American English elderly female voice.
`l1.0 `v8 Set voice to “Grandpa,” the American English elderly male voice.
`l1.1 `v1 Set voice to the “Justin,” the British English adult male voice.
`l1.1 `v2 Set voice to “Jane,” the British English adult female voice.
`l1.1 `v3 Set voice to “Nicky,” the British English child voice.
`l1.1 `v7 Set voice to “Nanny,” the British English elderly female voice.
`l1.1 `v8 Set voice to “Gramps,” the British English elderly male voice.
`l2.0 `v1 Set voice to the “Carlos,” the Castilian Spanish adult male voice.
`l2.0 `v2 Set voice to “Pilar,” the Castilian Spanish adult female voice.
`l2.0 `v3 Set voice to “Pepe,” the Castilian Spanish child voice.
`l2.0 `v7 Set voice to “Abuela,” the Castilian Spanish elderly female voice.
`l2.0 `v8 Set voice to “Abuelo,” the Castilian Spanish elderly male voice.
`l3.0 `v1 Set voice to the “Jacques,” the Standard French adult male voice.
`l3.0 `v2 Set voice to “Jacqueline,” the Standard French adult female voice.
`l3.0 `v3 Set voice to “Marius,” the Standard French child voice.
`l3.0 `v7 Set voice to “Mamie,” the Standard French elderly female voice.
`l3.0 `v8 Set voice to “Grandpère,” the Standard French elderly male voice.
`l4.0 `v1 Set voice to the “Max,” the Standard German adult male voice.
`l4.0 `v2 Set voice to “Gisela,” the Standard German adult female voice.
`l4.0 `v3 Set voice to “Matti,” the Standard German child voice.
`l4.0 `v7 Set voice to “Oma,” the Standard German elderly female voice.
`l4.0 `v8 Set voice to “Opa,” the Standard German elderly male voice.
154 IBM Text-to-Speech

Selecting a Language and Dialect
`l5.0 `v1 Set voice to the “Enrico,” the Standard Italian adult male voice.
`l5.0 `v2 Set voice to “Lucia,” the Standard Italian adult female voice.
`l5.0 `v3 Set voice to “Chicco,” the Standard Italian child voice.
`l5.0 `v7 Set voice to “Nonna,” the Standard Italian elderly female voice.
`l5.0 `v8 Set voice to “Nonno,” the Standard Italian elderly male voice.
`l6.0 `v1 Set voice to the “Li3 Jing4,” the Standard Chinese adult male voice.
`l6.0 `v2 Set voice to “Wang2 Yan4,” the Standard Chinese adult female voice.
`l6.0 `v3 Set voice to “Li3 Dong1 Dong1,” the Standard Chinese child voice.
`l6.0 `v7 Set voice to “Nai3 Nai,” the Standard Chinese elderly female voice.
`l6.0 `v8 Set voice to “Ye2 Ye,” the Standard Chinese elderly male voice.
`l6.1 `v1 Set voice to the “Zhi4 Ming2,” the Taiwanese Mandarin Chinese adult

male voice.
`l6.1 `v2 Set voice to “Chun1 Jiao1,” the Taiwanese Mandarin Chinese adult female

voice.
`l6.1 `v3 Set voice to “Xiao3 Bu4 Dian3,” the Taiwanese Mandarin Chinese child

voice.
`l6.1 `v7 Set voice to “A3 Ma4,” the Taiwanese Mandarin Chinese elderly female

voice.
`l6.1 `v8 Set voice to “A3 Gong1,” the Taiwanese Mandarin Chinese elderly male

voice.
`l7.0 `v1 Set voice to the “João,” the Brazilian Portuguese adult male voice.
`l7.0 `v2 Set voice to “Cláudia,” the Brazilian Portuguese adult female voice.
`l7.0 `v3 Set voice to “Chico,” the Brazilian Portuguese child voice.
`l7.0 `v7 Set voice to “Avó,” the Brazilian Portuguese elderly female voice.
`l7.0 `v8 Set voice to “Avô,” the Brazilian Portuguese elderly male voice.
`l8.0 `v1 Set voice to “Taroo,” the Standard Japanese adult male voice.
`l8.0 `v2 Set voice to “Hanako,” the Standard Japanese adult female voice.
`l8.0 `v3 Set voice to “Jiroo,” the Standard Japanese child voice.
`l8.0 `v7 Set voice to “Obaachan”, the Standard Japanese elderly female voice.

ECI Annotation Description
IBM Text-to-Speech 155

Selecting a Language and Dialect
`l8.0 `v8 Set voice to “Taroo,” the Standard Japanese elderly male voice.

`l9.0 `v1 Set voice to “Antti,” the Standard Finnish adult male voice.
`l9.0 `v2 Set voice to “Tarja,” the Standard Finnish adult female voice.
`l9.0 `v3 Set voice to “Pekka,” the Standard Finnish child voice.
`l9.0 `v7 Set voice to “Isoäiti,” the Standard Finnish elderly female voice.
`l9.0 `v8 Set voice to “Isoisä,” the Standard Finnish elderly male voice.

ECI Annotation Description
156 IBM Text-to-Speech

Selecting a Voice or Voice Characteristics
Selecting a Voice or Voice Characteristics
IBM TTS provides five pre-defined (built-in) voices. Each one has a corresponding voice annotation
that can be inserted into the text. In addition, there are a variety of annotations which allow you to
directly manipulate individual voice characteristics.

Selecting a Voice in the Current Language

Use the following tags or annotations to choose a built-in voice in the current language:

The voice annotation will stay in effect until you enter a new voice annotation.

Selecting Voice Characteristics

Individual voices derive their uniqueness from a number of physical factors. In addition, an
individual's voice can take on different qualities at different times, depending on such things as mood
and circumstance. You can modify these attributes using voice characteristics annotations.

ECI
Annotation Description
`v1 Set voice to the default male voice 1.
`v2 Set voice to the default female voice 1.
`v3 Set voice to the default child voice 1.
`v4 Set voice to the default male voice 2.
`v5 Set voice to the default male voice 3.
`v6 Set voice to the default female voice 2.
`v7 Set voice to the default older female voice 1.
`v8 Set voice to the default older male voice 1.

ECI Annotation Description
`vg0 Set vocal tract configuration to male.
`vg1 Set vocal tract configuration to female.
IBM Text-to-Speech 157

Selecting a Voice or Voice Characteristics
Voice characteristics tags affect the currently selected voice and remain in effect until a new voice or
speaker is specified with a ‘vN annotation, or until the annotation is used again with a different value.
Restarting the program resets all of the characteristics to their default values.

`vbN Set pitch baseline to N.
Annotation range is 0-100.

`vhN Set head size to N.
Range is 0 (very small head) to 100 (very large head).

`vrN Set voice roughness (creakiness) to N.
Range is 0 (smooth) to 100 (rough).

`vyN Set breathiness to N.
Range is 0 (not breathy) to 100 (99 is very breathy; 100 is a whisper).

`vfN Set pitch fluctuation to N.
Range is 0 (narrow=monotonic) to 100 (wide).

`vsN Set speed of the utterance to N.
Annotation range is 0-250.

`vvN Set speech volume to N.
Annotation range is 0-100.

(no annotation) Reset the voice to the original characteristics for the selected speaker.

ECI Annotation Description
158 IBM Text-to-Speech

Selecting a Speaking Style
Selecting a Speaking Style
Use the following tags or annotations to choose a speaking style:

ECI Annotation Description
`vy100 Set voice to a whisper.
`vf0 Set voice to a monotone.
varies Restore voice to the speaking style in use before the \Chr\

command was invoked. The equivalent annotation will vary
depending on the original breathiness or pitch fluctuation values
for the selected speaker.
IBM Text-to-Speech 159

Modifying Word Emphasis and Tone
Modifying Word Emphasis and Tone
Each word in an utterance is pronounced with a level of emphasis relative to other words in the
utterance. You can override the default emphasis patterns by placing an annotation before the
word you want to modify.

Emphasis level 1, or normal emphasis, is the default level of emphasis for a content word, and
emphasis level 00 is the default emphasis for a function word. The last content word in an intonation
phrase (the nuclear accent) will receive emphasis level 2, unless you annotate the utterance to change
the default pattern.

For example, the default emphasis pattern for the phrase run through fields of barley is:

Reduced Emphasis
The reduced emphasis annotation can be used to reduce a word to a function word.

No Emphasis
When two words form a single compound word (as in wet suit in example (b) below), the second word
receives less emphasis than the first. The no-emphasis annotation is used to achieve this effect.

(a) He wore a wet suit to work because his umbrella broke.
(b) He wore a wet `0 suit while diving.

ECI Annotation Description
`00 Reduced emphasis
`0 No emphasis
`1 Normal emphasis
`2 Added emphasis
`3 Heavy emphasis
`4 Very heavy emphasis

Run through fields of barley
 1 1 1 00 2
160 IBM Text-to-Speech

Modifying Word Emphasis and Tone
Normal Emphasis
The normal-emphasis annotation can be used to mark a word like can (in sentence (b)) as a content
word rather than a function word.

(a) Eating fat can make you fat.
(b) You're going to need a very fat `1 can to hold all those

peaches.

While this annotation is used to assign normal emphasis to a word that would otherwise receive no
emphasis, the word will still receive the nuclear accent in appropriate contexts. You can use the added-
emphasis annotation to shift the nuclear accent of the phrase to another word.

Added Emphasis
Typically, the last content word in an intonational phrase receives emphasis level 2 automatically.
Sometimes, however, it is more appropriate for this emphasis to fall earlier in the phrase. The added-
emphasis annotation can be used to mark words in this way. Note that this causes all subsequent words
to be de-emphasized.

(a) We demand absolute equality.
(b) We demand `2 absolute equality.
(c) We `2 demand absolute equality.

Heavy Emphasis and Very Heavy Emphasis
To give added emphasis to a word, you can increase the emphasis level. Note that setting the emphasis
level to 4 also causes all preceding words to be de-emphasized. The higher levels of emphasis are also
useful in contradicting a previous statement or expressing incredulity.

Your brother has a dog named Spot?
No, my brother has a dog named `3 Fido.

It's not `3 Monday, it's `4 Tuesday.

My aunt has a cat named Fido.
Your aunt has a `3 cat named Fido?
IBM Text-to-Speech 161

Modifying Word Emphasis and Tone
Assigning Tones to Words
Use the following annotations to assign tones to words:

Annotation Description
`al Low Tone
`ah High Tone (this is the default for content words)
`af Falling Tone
`ar Rising Tone
`as Scooped Tone
`ad Downstepped Tone
162 IBM Text-to-Speech

Modifying Phrase-Final Intonation
Modifying Phrase-Final Intonation
Use the following annotations to modify phrase-final intonation:

The phrase-final annotations must be immediately followed by the punctuation ending the intonational
phrase: either a period, comma, exclamation point, question mark, colon, or semicolon. If the required
punctuation is missing, the annotation is ignored.

Annotation Description
`% Small pitch rise at the end of the phrase
`%% Continuation rise at the end of the phrase and low pitch on the nuclear

accented word of the phrase.
`%%% Flat, high pitch at the end of the phrase.
`/ Large pitch fall, as at the end of a paragraph. More perceived finality than at

the end of a sentence.
IBM Text-to-Speech 163

Adding Pauses
Adding Pauses
You can use the pause annotation to:
• Modify the pause length created by punctuation symbols.
• Insert pauses between words where there is no punctuation.

Use the following annotations to create a pause.

ECI Annotation Description
`pN Create a pause N milliseconds long. The maximum length for a single

pause annotation is about 330 seconds.
`epfN The environmental phrase final (epfN) pause is used to adjust the

duration of the final pause at the end of a set of sentences.

Default: N = 10
Range: N = 0 to 100

Interpretation: At the end of the final sentence (whether explicit or
implied), after calculating final pause value in milliseconds, multiply the
value by N/10. The range of the multiplier is thus 0.0 - 10.0. The default
factor, 10, produces a multiplier of 1.0 (ie, no change). A factor of 0
produces a multiplier of 0.0, thus producing no pause at all. For example:

`epf0 This is the first sentence. This is a test.
No pause after "test."

`epf5 This is a test.
Pause period is 50% of normal.

`epf10 This is a test.
Pause period is 100% of normal. That is, the default pause length
is generated.

`epf20 This is a test.
Pause period is twice normal.

`epf100 This is a test.
Pause period is 10 times normal.
164 IBM Text-to-Speech

Adding Pauses
Punctuation Pauses

You can add to the length of a pause associated with a punctuation symbol, or you can replace that
pause with a pause of a different length.

• To add to the pause, insert a pause annotation after the punctuation.
(a)Avoid the following routes: Thirteen north, Ninety-six west, and
Thirty-two south.
(b)Avoid the following routes: Thirteen north, `p400 Ninety-six west,
`p400 and Thirty-two south.

• To replace the pause, place a pause annotation immediately before the punctuation. There should
be no white space between the annotation and the punctuation.
(c)I thought I saw Kris. But I'm not sure about it.
(d)I thought I saw Kris `p250. But I'm not sure about it.

• To replace the pause at the end of a set of sentences, use the epfN annotation. The epfN annotation
can be placed anywhere. In the following example, the normal pause of the final sentence is
changed to 0 and the normal pause remains between the two sentences. Only the last sentence is
affected.
(e)`epf0 I thought I saw Kris. But I'm not sure about it.

Inserting Pauses

Inserting pauses can be useful for synthesizing the hesitations that occur in natural speech:

(a)Amy saw him `p450 well `p450 `3 us `p150 last night.
(b)Take the square root of `p450 no `p450 forget that. Multiply the total
by .05.
IBM Text-to-Speech 165

Filters
Filters
Use the following annotations to activate/deactivate a particular filter.

N is optional. If N is ommitted, the default filter will be used. The default filter is 0.

ECI Annotation Description
`faN To activate filter N.
`fdN To deactivate filter N.
166 IBM Text-to-Speech

Specifying Alternative Pronunciations
Specifying Alternative Pronunciations

Character Spelling Modes

Use the following annotations to set the character spelling mode:

Pronouncing Numbers and Years
Use the following annotations to pronounce numbers and years:

Dictionary Processing of Abbreviations
Use the following annotations to process abbreviations:

ECI Annotation Description
`ts0 No special interpretation (default setting).
`ts1 Pronounce only alphanumeric characters by name.
`ts2 Pronounce all characters individually by name.
`ts3 Pronounce alphabet characters according to the International Radio

Alphabet. (This is currently limited to U.S. English only.)

ECI Annotation Description
`ty0 Pronounce 4-digit numbers as "nonyears."
`ty1 Pronounce 4 digit numbers as "years" (default setting).

ECI Annotation Description
`da0 Turn off both internal and user Abbreviations Dictionary lookups.
`da1 Use the abbreviation dictionaries (default setting).
IBM Text-to-Speech 167

See User Dictionaries for more information on the user’s Main, Roots, and Abbreviations Dictionaries.
Entering Symbolic Phonetic Representations
Use the following annotation to enter SPRs:

Unlike other annotations, the `[SPR] annotation does not modify the word or words which follow it.
Instead, it is used in place of the word for which it specifies a pronunciation.

See the section titled SPR Tables for more information and tables of symbols in US English and other
languages.

Annotation Description
`[SPR] Pronounce the word phonetically as contained in `[SPR].
IBM Text-to-Speech 168

Custom Filters
IBM Text-to-Speech offers the ability to transform textual data prior to synthesis through custom
filters. These plug-in libraries are ideal for transforming complex raw data into more a suitable format
for listening. Although dictionaries are good means of transforming text, some transformations may
involve more than simple text substitution. Transformation of text through filters in conjunction with
an active dictionary is the most powerful combination.

The following example is the conversion of an E-mail message to a format that is much easier to
understand.

‘Raw’ Email Data (Complex)

‘Filtered’ Email Data (Simplified)

From: root <root@lab.ibm.com>
Full-name: CHRISTINA
Message-ID: <blahblahblah@aol.com>
Date: 10 Oct
Subject: Humans find it hard to listen to all the tagged fields
To: tofield@aol.com
CC: cc@aol.com
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="part2_13.cc11a1a.272ef411_boundary"
X-Mailer: Windows AOL sub 125

Email may become complex and embed some strange colloquialisms.

;)
:)
;-)

This message is from: root.
The message was sent: 10 October.
The subject of this message is: Humans find it hard to listen to all the
tagged fields.
Email may become complex and embed some strange colloquialisms.
IBM Text-to-Speech 169

Implementing a Custom Filter
In the example the filter was used to drop lines such as Message-ID:, CC:, and X-Mailer:. The filter
was also used to insert ‘This message is from’ and ‘This message was sent’, and to remove the “smiley
faces” from the text. A dictionary, however, was used to convert Oct to October. Notice that a
dictionary (which simply replaces text) alone cannot remove text based solely on what the line begins
with.

Many other transformations (raw stock quotes, directions, recipes, movie listings, etc.) are possible
with custom filtering. However the order in which the transformations take place is very important.
Currently the following rules apply:

1.An available filter is selected as the active filter.

2.The active filter is then applied to the text.

3.Finally, dictionary rules are applied.

Implementing a Custom Filter
The IBM Text-to-Speech SDK provides a mechanism to develop both “static” and “dynamic” filters.
A static filter is one that the client application links with directly at build time. A static filter allows
client applications that use a version of the IBM Text-to-Speech runtime prior to version 6.2.2.1 to use
text filtering. A client application that uses a static filter must call eciGetFilteredText to
determine the value of an input string once it has been run through the filter. The value returned in
filteredText is the string to send to eciAddText for synthesis. A dynamic filter, however, is loaded at
runtime, so client applications do not need to be aware of it at build time. No separate call to
eciGetFilteredText is required to cause filtering. If a filter has been created and activated, the
active filter will automatically filter text that is sent to the synthesis engine with eciAddText.
Additionally, using dynamic filters allows client applications to use more than one type of filter. For
client applications that will use the IBM Text-to-Speech version 6.2.2.1 or later, it is recommended that
they use dynamic filtering.
170 IBM Text-to-Speech

Dynamic Filters
Dynamic Filters
Implementing a dynamic filter consists of creating a library that implements the following methods of
the Filter base class:
• virtual ECIFilterError filterText(const char *input, char **filteredText,
bool forceFiltering = false);
This is the method that performs the text filtering. It is called from eciGetFilteredText and
eciAddText if the filter is active. The filter object is responsible for the allocation and deallocation
of the filteredText buffer The value of filteredText is only valid until the next call to filterText or
deleteFilter. If forceFiltering is true, the filter object will filter the input text even if it is not
active (for example, if the client application calls eciGetFilteredText on an inactive filter).
• virtual ECIFilterError activateFilter();
This method is what sets the filter to the “active” state via eciActivateFilter.
• virtual ECIFilterError deactivateFilter();
This method is what deactivates the active filter via eciDeactivateFilter.
• virtual ECIFilterError deleteFilter();
This method is what is responsible for deleting the filter and performing any required cleanup of the
filter object. This method is called via eciDeleteFilter.
• virtual ECIFilterError updateFilter(const char *key, const char
*translation);
This is the method that will set the rules used to filter text that is processed with filterText. It is
called from eciUpdateFilter.
• FILTER_API Boolean getObject(unsigned long idInterface, void **ppUnknown)
This function is the required entry point of the dynamic filter. It is responsible for creating the Filter
object and returning a filter handle to the client. It is called from eciNewFilter.
IBM Text-to-Speech 171

Dynamic Filters
Dynamic Filter Sample Code

#include “simplefilter.h” // definition of the SimpleFilter class
simpleFilter::simpleFilter() : filteredText(NULL) {
} // simpleFilter::simpleFilter()
simpleFilter::~simpleFilter() {

if (filteredText) {
delete [] filteredText;
filteredText = NULL;

} // if (filteredText)
} // simpleFilter::~simpleFilter()
ECIFilterError simpleFilter::deleteFilter() {

delete this;
return FilterNoError;

} // ECIFilterError simpleFilter::deleteFilter()

ECIFilterError simpleFilter::filterText(const char *input, char
**clientFilteredText, bool forceFiltering) {
if (forceFiltering || isActive()) {

if (filteredText) {
delete [] filteredText;
filteredText = NULL;

} // if (filteredText)
// TODO: Insert code to filter text here
// Filter object should allocate a new filteredText buffer and send
// a pointer to that buffer back to the client.

} // if (forceFiltering || isActive())
else {

// copy input to filteredText
}
*clientFilteredText = filteredText.
return FilterNoError;

} // int simpleFilter::filterText(const char *input, char *filteredText)

} // FILTER_API Boolean getObject(unsigned long idInterface, voice
**ppUnknown)
} // extern "C"
#endif // __cplusplus
172 IBM Text-to-Speech

Dynamic Filters
Dynamic Filter Sample Code

Once the custom dynamic filter is developed, it must be installed for client applications to be able to
access it. A filter number identifies dynamic filters for a language/dialect combination. To make a
dynamic filter available to client applications, it must be added to the registry on Windows platforms
or to the eci.ini file on Unix platforms.

Registry example (Windows platforms)

eci.ini file example (Unix platforms):

The Filter base class implementation is contained in the header file filter.h and the library
filters.lib (libfilters.a on Unix platforms).

The IBM Text-to-Speech SDK includes a complete example of a simple dynamic filter (SimpleFilter).

#ifdef __cplusplus
extern "C" {
FILTER_API Boolean getObject(unsigned long idInterface, void
**ppUnknown)
{

if ((idInterface == ID_UNKNOWN) || (idInterface == ID_FILTERINST)) {
void *pFilter = NULL;
pFilter = new simpleFilter();
if (pFilter) {

*ppUnknown = pFilter;
} // if (pFilter)

} // if ((idInterface == ID_UNKNOWN) || (idInterface ==
ID_FILTERINST))

return (*ppUnknown != NULL);

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\ViaVoice Outloud
5.0\ECIINI\1.0\Path_Filter1 = c:\Program Filter\IBM TTS 6.22
SDK\samples\simplefilter\release\simplefilter.dll

[1.0]
Path=enu50.syn
Path_Filter1=/usr/lpp/viavoice/sdk/samples/simplefilter/release/
libsimplefilter.a
IBM Text-to-Speech 173

Dynamic Filters
NOTE:
Client applications that will use a dynamic filter should not include ecifilter.h.
174 IBM Text-to-Speech

Static Filters
Static Filters
Implementing a static filter consists of creating a library that implements the following functions:
• eciNewFilter

• eciActivateFilter

• eciDeleteFilter

• eciUpdateFilter

• eciGetFilteredText

• eciDeactivateFilter
IBM Text-to-Speech 175

Static Filters
Static Custom Filter Sample Code
#include “ecifilter.h”
#include "eci.h"

ECIFilterHand eciNewFilter(ECIHand hEngine, unsigned int filterNumber) {
// Insert code for eciNewFilter here
} // ECIFilterHand eciNewFilter(ECIHand hEngine, unsigned int
filterNumber)

ECIFilterError eciActivateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand) {
// Insert code to eciActivateFilter here
} // ECIFilterError eciActivateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand)

ECIFilterHand eciDeleteFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand) {
// Insert code for eciDeleteFilter here
} // ECIFilterHand eciDeleteFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand)

ECIFilterError eciUpdateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand, ECIInputText key, ECIInputText translation) {
// Insert code for eciUpdateFilter here
} // ECIFilterError eciUpdateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand, ECIInputText key, ECIInputText translation

ECIFilterError eciDeactivateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand) {
// Insert code for eciDeactivateFilter here
} // ECIFilterError eciDeactivateFilter(ECIHand hEngine, ECIFilterHand
whichFilterHand)

ECIFilterError eciGetFilteredText(ECIHand hEngine, ECIFilterHand
whichFilterHand, ECIInputText input, ECIInputText *filteredText) {
// Insert code for eciGetFilteredText here
} // ECIFilterError eciGetFilteredText(ECIHand hEngine, ECIFilterHand
whichFilterHand, ECIInputText input, ECIInputText *filteredText)
176 IBM Text-to-Speech

Static Filters
Static Custom Filter Sample Code

A client application that wishes to use the static filter must include ecifilter.h before including
eci.h and link with the filter library.

The IBM Text-to-Speech SDK version 6.2.2.1 includes a static email filter. To use the static email
filter, a client application is compiled with ecifilter.h and linked with mailfilter.lib
(libmailfilter.a on Unix platforms).
IBM Text-to-Speech 177

Static Filters
Sample client code using the default dynamic filter:
#include "eci.h"
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

ECIFilterHand filterObject;
ECIHand handle;

ECIDictHand dictHand;
ECIDictError drc;

ECIInputText filteredText;

handle = eciNewEx(eciGeneralAmericanEnglish);
eciSetParam(handle, eciSynthMode, 1);
eciSetParam(handle, eciInputType, 1);
eciSetParam(handle, eciSampleRate, 0);

dictHand = eciNewDict(handle);
/* maildict.dct contains the translations for some of the more common
email jargon and
abbreviations */
drc = eciLoadDict(handle, dictHand, eciMainDict, “.\\maildict.dct");
eciSetDict(handle, dictHand);

}

178 IBM Text-to-Speech

Static Filters
Sample client code using the default dynamic filter

filterObject = eciNewFilter(handle);
eciActivateFilter(handle, filterObject);

if (argc > 1)
{

FILE *fp = fopen(argv[1], "r");
char *charBuffer = new char[256];
void *ptr = (void *) charBuffer;
if (fp){
while ((ptr = (void *) fgets((char *) ptr, 256, fp)) != NULL) {

eciAddText(handle, ptr); /* The filtered text is synthesized. */
}
}
eciSynthesize(handle);
eciSynchronize(handle);
fclose(fp);
getchar();
}
eciDeleteFilter(handle, filterObject);
eciDeleteDict(handle, dictHand);
eciDelete(handle);
return 0;
IBM Text-to-Speech 179

Static Filters
180 IBM Text-to-Speech

Symbolic Phonetic Representations
A Symbolic Phonetic Representation (SPR) is the phonetic spelling used by IBM TTS to represent the
pronunciation of a single word. An SPR represents the sounds of the word, how these sounds are
divided into syllables, and which syllables receive stress.

SPRs can be generated by IBM TTS as output (see eciGeneratePhonemes), and they can be used as
input into IBM TTS in order to specify pronunciations which are not produced by the ordinary letter-
to-sound rules.

You can enter an SPR directly into a text in place of the ordinary spelling of a word, or you can enter
an SPR as the translation value of either a main dictionary or roots dictionary entry, so that the desired
pronunciation is generated whenever that word is encountered in any text (see Main Dictionary
(eciMainDict) and Roots Dictionary (eciRootDict) for more information on these topics).
IBM Text-to-Speech 181

SPR Form
SPR Form
An SPR consists of a sequence of allowable SPR symbols for a given language, enclosed in square
brackets [] and preceded by a backquote character `. For example, the following are valid SPRs in
English:

though `[.1Do]
shocking `[.1Sa.0kIG]

A period signals the beginning of a new syllable, the digits 1 and 0 indicate the stress level of the
syllables, and the letters D, o, S, a, k, I, and G represent specific English speech sounds. Each of these
elements of the SPR is discussed in further detail below. An SPR entry which does not follow the
requirements detailed below is invalid, and is spelled out character by character.

Syllable Boundaries
A period is used to mark the beginning of each syllable in the SPR output generated by IBM TTS.
However, periods are optional in SPR input in all languages, and, except in German, will not have any
effect on the way the word is syllabified by the text-to-speech rules. In German, a period can be used
in SPR input to trigger a syllable boundary at the specified location (see German SPRs).

Syllable Stress
Syllables can be marked for stress with the digits 1, or 2, or 0, for primary stress, secondary stress, and
no stress, respectively. Some languages do not use secondary stress and thus do not accept the use of
the digit 2 in SPRs; see sections on specific languages below. If a word has more than one syllable, at
least one of these syllables must be marked for primary stress, or the SPR will be considered invalid
and will be read out character by character. Other syllables can be marked with either secondary or no
stress. Syllables that are not marked for stress are assumed to have no stress.

The syllable stress marker (1, 2, or 0) should be within the syllable's boundaries but always to the left
of the vowel of the syllable. If you do not know where the syllable boundaries in a word like
construction are located, any of the following SPRs will correctly place the primary stress on the vowel
in bold type:

"construction"
`[kXn1strHkSXn]
182 IBM Text-to-Speech

SPR Form
In French, the syllable stress marker must directly precede the vowel of the syllable (see examples in
the section on French SPRs).

Speech Sound Symbols
Each language uses its own inventory of SPR symbols for representing the speech sounds of that
language. The section SPR Tables contains tables of valid SPR symbols for the sounds of each
language, with examples of words in which each sound occurs. Letters are case-sensitive, so ‘[e] and
‘[E] represent two different sounds. Two-character symbols must be contained in single quotes; for
example, German heim `[h'aj'm]. SPRs containing sound symbols that are not allowable in the current
language will be considered invalid, and spelled out character by character.

The sounds of every language have specific distributional patterns within that language. For example,
in all dialects of English, the sound [G] of sing `[.1sIG] does not occur at the beginning of a word.
Other American English sounds that have a particularly narrow distribution are the glottal stop [?], the
flap [F], and the syllabic nasal [N]. (See American English SPRs). If you enter a sound symbol in a
context where it does not normally occur, the resulting speech may sound unnatural.

IBM TTS applies a sophisticated set of linguistic rules to its input to reflect the processes by which
sounds change in specific contexts in natural language. For example, in American English, the sound
[t] of write `[.1r1Yt] is pronounced as a flap [F] in writer `[.1rY.0FR]. SPR input will undergo these
modifications just as ordinary input text does. In this example, whether you enter `[.1rY.0tR] or
`[.1rY.0FR], the output of the program will be the same.

`[kXns1trHkSXn]

`[kXnst1rHkSXn]

`[kXnstr1HkSXn]
IBM Text-to-Speech 183

SPR Tables
SPR Tables
The following tables show the inventory of allowable SPR symbols in each IBM TTS language/
dialect. Each sound symbol is accompanied by examples showing typical spellings of the sound in
actual words, with the letters representing the given sound underlined. (Due to dialectal differences,
the examples may not always match your pronunciation.) Remarks specific to SPRs in individual
languages are also included in the appropriate sections. Refer to SPR Form for general guidelines on
creating and using SPRs.

American English SPRs

Regular Vowels
The following table includes the symbols for regular vowels.

American English Symbol Example Words
a father, lot
A back, had
e cake, pain
E hedge, let
i see, speak, believe
I pick, ill
o both, oak
c law, cough
u zoo, truth
U took, put
H but, mug, son
R butter, hurt
184 IBM Text-to-Speech

American English SPRs
Diphthongs
The following table includes the symbols for diphthongs.

Reduced Vowels
The following table includes the symbols for reduced vowels.

Consonants
The following table includes the symbols for consonants.

American English Symbol Example Words
O toil, boy
W out, cow
Y life, fine

American English Symbol Example Words
x sofa, alone, suppose, tedious, America
X roses, connect, melody, symphony, hinted

American English Symbol Example Words
b bad, sob
p pit, rip
d dip, had
t tip, pet
g good, bug
k kill, cat, make, back
D this, breathe
T thing, Beth
v vase, save
f field, if, graph
z zip, phase
IBM Text-to-Speech 185

American English SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

s seal, miss, ceiling
Z treasure, garage
S ship, wish
J Jane, huge
C chip, witch, nature
h hot, hero
m man, hum, summer
n never, sun, winner
G sing, finger
r borrow, rake
l low, hall
w wear, quick
y yes, Virginia
M hmmm
? ("glottal stop") kitten, Latin
F ("flap") writer, fiddle
N ("syllabic nasal") button, satin, eaten, burden

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

. (period) beginning of a syllable

American English Symbol Example Words
186 IBM Text-to-Speech

British English SPRs
British English SPRs

Regular Vowels
The following table includes the symbols for regular vowels.

Diphthongs
The following table includes the symbols for diphthongs.

British English Symbol Example Words
a path, father, chant
A back, had
e cake, pain
E hedge, let
i see, speak, believe
I pick, ill
o both, oak
c law, court, hall, water
@ rod, cough
u zoo, truth
U took, put
H but, mug, son
R butter, hurt

British English Symbol Example Words
O toil, boy
W out, cow
Y life, fine
IBM Text-to-Speech 187

British English SPRs
Reduced Vowels
The following table includes the symbols for reduced vowels.

Consonants
The following table includes the symbols for consonants.

British English Symbol Example Words
x sofa, alone, suppose, America
X roses, hinted

British English Symbol Example Words
b bad, sob
p pit, rip
d dip, had
t tip, pet
g good, bug
k kill, make, back
D this, breathe
T thing, Beth
v vase, save
f field, if, graph
z zip, phase
s seal, miss, ceiling
Z treasure, garage
S ship, wish
J Jane, huge
C chip, witch
h hot, hero
m man, hum, summer
n never, sun, winner
188 IBM Text-to-Speech

British English SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

G sing, finger
r borrow, rake
l low, hall
L candle
y yes, Virginia
w wear, quick

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

. (period) beginning of a syllable

British English Symbol Example Words
IBM Text-to-Speech 189

German SPRs
German SPRs

Vowels
The following table includes the symbols for vowels.

Diphthongs
The following table includes the symbols for diphthongs.

German Symbol Example Words
i lieben, Titel, tief
I bitte, Tisch, Licht
e geben, Ehre, See
E treffen, Geld, kämmen
'E:' Käse, Mädchen, wägen
a Haar, haben, fahren
A lassen, matt, Apfel
u gut, Uhr, Uwe
U Hund, Fluß, Mutter
o Ober, ohne, Boot
O Kopf, Stopp
y Bücher, Tür, kühn
Y fünf, füllen, Künstler
'oe' Löwe, hören, Söhne
'OE' können, hölzern, östlich
@ bitte, Kamera, Boden

German Symbol Example Words
'aj' heim, Waise, Mai
190 IBM Text-to-Speech

German SPRs
Nasalized Vowels (occur in borrowings only)
The following table includes the symbols for nasalized vowels.

Consonants
The following table includes the symbols for consonants.

'aw' Haus, Maul, Frau
'oj' heute, Gebäude, Häuser

German Symbol Example Words
'a~' Chance
'E~' Teint
'o~' Pardon
'oe~' Parfum

German Symbol Example Words
b Boden, Bett, oben
p Papier, Lippe, Grab
d dunkel, kindisch, Helden
t Tag, bitte, Rad
g geben, grau, Tage
k Katze, Ecke, Skulptur, lag, quitt
v Wagen, viskös, Volum, oval
f fast, hoffen, Vater
z See, Satz, lesen
s Fuß, lassen, Last, Haus
Z Garage, Genie
S schon, spielen, Stil, wäscht

German Symbol Example Words
IBM Text-to-Speech 191

German SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

In German, a period in an SPR entry will trigger a syllable boundary at that location.

X ich, Chemie, Kelch, mancher
x Buch, Bach, Wochen
P Pflanze, Stumphen
T Zauber, Polizei, Glanz
J Job, Dschungel
C deutsch, Chile, Cello
m Mann, kommen, Atem
n Nacht, können, Kind
G Finger, längs, Anfang
l lesen, fallen, Pult
r Rad, führen
R Wieder, über
j Junge, ja, Jahr, Ministerium
w Eduard, aktuell, Januar
h hoch, Hand, Ahorn

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

. (period) beginning of a syllable

German Symbol Example Words
192 IBM Text-to-Speech

Canadian French SPRs
Canadian French SPRs

Vowels
The following table includes the symbols for vowels.

French Symbol Example Words
a pattes, lac, cave
A char, bois, mâle
e café, déformer, été
E faite, dresser
i film, typique
I site, plastique, ride
o taurillon, vaudevilliste
c paul, note, échalotte
u roue, où, tour
U foule, mousse
y utile, pure, Bruno
Y autobus, chute
x litres, marbre (note: le [x] s'efface dans

certains contextes.)
'eu' meuglement
'oe' cependant, cheval
'a:' voyage, information
'e:' steak (anglicismes)
'E:' père, annuaire, fête
'o:' paule, beau, tôt, côté
'c:' loge, encore
'u:' four, douze
'y:' dur, buse
IBM Text-to-Speech 193

Canadian French SPRs
Consonants
The following table includes the symbols for consonants.

'eu:' jeûne, émeute
'oe:' peur, jeune, déjeuner
'a~' banc, en, temps
'E~' fin, plein, faim
'o~' bon, pont, mon
'oe~' un, aucun

French Symbol Example Words
b bébé, balle, robe
p porte, prêt, guêpe
d dort, dolmen
t ton, patte, théâtre
g guerre, bague, garer
k kilo, caler, quai
v laver, wagon, visiter
f chef, faim, phare
D duque, dire
T petit, tuque
z jaser, réseau, zigzaguer
s sans, ambition, façon
Z rage, gîte, jouer
S cheval, lâche, schéma
J jeans, jogging
C gaucho, gaspacho
m maman, femme, miser

French Symbol Example Words
194 IBM Text-to-Speech

Canadian French SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

In French, the stress marker must immediately precede the vowel of the syllable.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

Liaison
In French, the underscore can be used following a word-final consonant (but within the right bracket
which closes the SPR) to indicate that it is a liaison consonant: that is, it will be pronounced only if the
following word begins with a vowel.

For example, a roots dictionary key petit with the translation value `[p'oe't1it_] will have the final [t]
pronounced in the input string un petit ami but not in the input string un petit chien. On the other hand,
an entry with the translation value `[nEt] will have the final [t] pronounced regardless of context.

n Anne, ni, maniaque
'nj' agneau, campagne
'ng' parking, camping
r parer, rare, carreau
l litre, illisible, pâle
j hiérarchie, paille, yoga
w oui, moi, voilà
H lui, nuit, nuée

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

. (period) beginning of a syllable

French Symbol Example Words
IBM Text-to-Speech 195

Canadian French SPRs
The following examples show how to use the symbol for liaison.

_ (underscore character) allow liaison if the following word begins with a vowel. For
example:
`[p0'oe't1it_] The [t] will not be pronounced unless the following word

begins with a vowel.
`[nEt] The [t] will always be pronounced.
196 IBM Text-to-Speech

French SPRs
French SPRs

Vowels
The following table includes the symbols for vowels.

Consonants
The following table includes the symbols for consonants.

French Symbol Example Words
a pattes, lac, cave
e café, déformer, été
E père, annuaire, mer
i film, type, rythmique
o paule, tôt, eaux
c paul, note, échalotte
u roue, où, aôut, tour
y utile, pure, Bruno
'eu' peu, jeûner, émeute
'oe' peur, jeune, déjeuner
'a~' banc, en, temps
'E~' fin, plein, faim
'o~' bon, pont, mon
x litres, marbre

French Symbol Example Words
b bébé, balle, robe
p porte, prêt, guêpe
d dort, dolmen, addition
t ton, patte, théâtre
IBM Text-to-Speech 197

French SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

In French, the stress marker must immediately precede the vowel of the syllable.

g guerre, bague, garer
k kilo, caler, quai
v laver, wagon, visiter
f chef, faim, phare
z jaser, réseau, zigzaguer
s sans, ambition, façon
Z rage, gîte, jouer
S cheval, lâche, schéma
m maman, femme, mettre
n Anne, ni, anonyme
'nj' agneau, campagne
'ng' parking, camping
r parer, rare, carreau
l litre, illisible, pâle
j hiérarchie, paille, yéyé
w oui, moi, voilà
H lui, nuit, nuée

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

French Symbol Example Words
198 IBM Text-to-Speech

French SPRs
Syllable Boundary
The following table includes the symbol for a syllable boundary.

Liaison
In French, the underscore can be used following a word-final consonant (but within the right bracket
which closes the SPR) to indicate that it is a liaison consonant: that is, it will be pronounced only if the
following word begins with a vowel.

For example, a roots dictionary key petit with the translation value `[p'oe't1it_] will have the final [t]
pronounced in the input string un petit ami but not in the input string un petit chien. On the other hand,
an entry with the translation value `[nEt] will have the final [t] pronounced regardless of context.

The following examples show how to use the symbol for liaison.

. (period) beginning of a syllable

_ (underscore character) allow liaison if the following word begins with a vowel. For
example:
`[p0'oe't1it_] The [t] will not be pronounced unless the following word

begins with a vowel.
`[nEt] The [t] will always be pronounced.
IBM Text-to-Speech 199

Standard Italian SPRs
Standard Italian SPRs

Vowels
The following table includes the symbols for vowels.

Consonants
The following table includes the symbols for consonants.

Italian Symbol Example Words
a lasagna, allegro
e nero, duetto
E ecco, liceo
i isola, formica
o padrone, attore
c costa, mosse
u luna, ufficio

Italian Symbol Example Words
b bocca
p partire
d data
t toccare
g grande
k casa, vecchio
v vano, vivere
f fare
z paese, sbaglio
s pesto, stasera
S scegliere, lasciare
200 IBM Text-to-Speech

Standard Italian SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

J Giovanni, congelare
C cece, ciao
D zabaione
T pizza, zuppa
m mamma
n niente
N gnocchi, lasagna
r caro
R terra
l lento, palma
L figlio, gli
y ieri, rasoio
w nuovo

1 primary stress (most prominent stress in the word)
0 no stress

. (period) beginning of a syllable

Italian Symbol Example Words
IBM Text-to-Speech 201

Mexican Spanish SPRs
Mexican Spanish SPRs

Vowels
The following table includes the symbols for vowels.

Consonants
The following table includes the symbols for consonants.

Spanish Symbol Example Words
a agua
e este
i igual
o oso
u uve

Spanish Symbol Example Words
b basta, hubo
p parte, apagar
d dar
t toma, atar
g goma, haga
k coger, irak
L milla, llueve
f flaco, afuera
z mismo, desde
s si, casa
R ropa, perro
C coche, chico
B daba
202 IBM Text-to-Speech

Mexican Spanish SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

D cada
G hagalo
v vaca
Z llave
ng angel
j jota, gente
m mano, amor
n no, mano
N España
r arena, pero
l loco, algo
y oigo, tiesto
w fuera, deuda

1 primary stress (most prominent stress in the word)
0 no stress

. (period) beginning of a syllable

Spanish Symbol Example Words
IBM Text-to-Speech 203

Castilian Spanish SPRs
Castilian Spanish SPRs

Vowels
The following table includes the symbols for vowels.

Consonants
The following table includes the symbols for consonants.

Spanish Symbol Example Words
a agua
e este
i igual
o oso
u uve

Spanish Symbol Example Words
b basta
B daba, hubo
p parte, apagar
d dar
D nada
t toma, atar
g goma, haga
G hagalo
k coger, irak
f flaco, afuera
z mismo, desde
s si, casa
R ropa, perro
204 IBM Text-to-Speech

Castilian Spanish SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

T ciudad, manzana
C coche, chico
j jota, gente
m mano, amor
n no, mano
N España
r arena, pero
l loco, algo
L llegar, pollo
y oigo, tiesto
Y playa, mayor
w fuera, deuda

1 primary stress (most prominent stress in the word)
0 no stress

. (period) beginning of a syllable

Spanish Symbol Example Words
IBM Text-to-Speech 205

Brazilian Portuguese SPRs
Brazilian Portuguese SPRs

Vowels
The following table includes the symbols for vowels.

Consonants
The following table includes the symbols for consonants.

Brazilian Portuguese
Symbol Example Words
a vira, à, álgebra
e dedo, português
E és, belo
I fizesse, bode
o cor, bolha
c próximo, porta
u cura, campo, peru
‘a~’ campo, lã, atlântico
‘e~’ alguém, tem, agüentar
‘I~’ trinca, assim
‘o~’ tom, cônsul, lições
‘u~’ alguns, um

Brazilian Portuguese
Symbol Example Words
b abre, Brasil, bode
p pluma, primo, pampa
d dedal, draga
t topada, ponto, trinca
g gato, guarda, português
206 IBM Text-to-Speech

Brazilian Portuguese SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

k cama, kilo, queda
v vila, breve
f faixa, flauta, abafado
z zero, caso, cosmos
s certo, extra, avançar
Z geral, jarro, bafejo
S acho, xícara, baixa
J bode, diz, adjetivo, admirar
C bote, tive
m fome, macaco
n dona, novo
N inhame, cunha
r caro, trem, falar
R carro, rio, guelra
l leite, cavalo, claro
L mal, relva
‘ly’ lhe, bagulho
y falei
Y calões, cãibra
w guardo, meu, agüentar
W capitão

1 primary stress (most prominent stress in the word)
0 no stress

Brazilian Portuguese
Symbol Example Words
IBM Text-to-Speech 207

Finnish SPRs
Finnish SPRs

Vowels
The following table includes the symbols for vowels.

Finnish Symbol Example Words
a tavara
’a:’ taas
A käsi
’A:’ pääsi
e ele
’e:’ tullee
i lihas
’i:’ kiitos
o kotiin
’o:’ koossa
O öljyta
’O:’ Töölö
u puhu
’u:’ luussa
y yksi
’y:’ pyyhkiä
’ao’ Håkan
208 IBM Text-to-Speech

Finnish SPRs
Glides
The following table includes the symbols for vowel offglides, which follow a vowel to form a
diphthong.

Consonants
The following table includes the symbols for consonants.

Finnish Symbol Example Words
I leipä
U hius
Y löyden

Finnish Symbol Example Words
b tabu
p poika, kauppa
d tiede
t tämä, että
g teknologia
k rikas, Pekka
v vaimo
f profeetta
z Zagreb
s suu, pässi
Z Zhironofski
S plyysi
J Juneau
C Chile
h huomenta, vaahtoa
m maa, ymmäarrä
n nappi, lennättää
IBM Text-to-Speech 209

Finnish SPRs
Syllable Stress
The following table includes the symbols for syllable stress.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

G Helsingin
r raha, varis, Tarja
R piirros
l laula, illalle
j ja, ajatus
w Washington

1 primary stress (most prominent stress in the word)
2 secondary stress
0 no stress

. (period) beginning of a syllable

Finnish Symbol Example Words
210 IBM Text-to-Speech

Chinese SPRs
Chinese SPRs
The section describes the SPR for Chinese.

Vowels
The following table includes the symbols for vowels.

Constants

The following table includes the symbols for consonants.

Symbol Example Words

a ba1, ban4, shuang3

e ke4, jie2, xue2, me0, er0

i pi4, zi4, shi1, dui4, xie3, ying1

o bo1, hong1

u lu4, jun1, dun1, shuo1

ai pai3, lai2, hai2er0

ao pao3, lao2

ei bei1, bei4er0

ou you1, hou4, pou1, lou4

u: nuu3

ue: lue:4, nue:4

Symbol Example Words

p piao1, pin4

b bo1, biao3
IBM Text-to-Speech 211

Chinese SPRs
t ta1, ting2

d diao4, du2

k kai4, kuang1

g geng4, gu1

z zai1, zuan3

zh zhen1, zhuang4

c ci4, cai2

ch chen2, chuang3

q qi4, qian2

j ji1, jiong4

f fei1, feng2

s san1, song4

sh sheng1, shao3

x xia4, xue2

h han3, hua2

m ma4, ming2

n na2, duan3, lin2

ng rang4, nong2

r rou4, er0

l le4, liang2, lu1

y ye1, yong4, ying2

w wang2
212 IBM Text-to-Speech

Chinese SPRs
Tone
The following table includes the symbols for tones.

Chinese Starting Syllable
The following table includes the symbol for a syllable boundary.

Syllable Boundary
The following table includes the symbol for a syllable boundary.

 Chinese SPR example
The following table shows examples of Chinese SPRs.

Note
Traditional Chinese TTS also uses the same SPR as Simplified Chinese does (not ZhuYin).
Simplified Chinese and Traditional Chinese TTS can also accept mixed language (Chinese/
English) SPRs, such as:
`[+.ni2.hao3] `[.1tam]

neutral tone -no need to attach symbol for neutral tone
1 tone 1
2 tone 2
3 tone 3
4 tone 4

+ beginning of Chinese syllables

. (period) beginning of a syllable

Word SPR

Jin1Tian1 `[+.jin1.tian1]

Ni2Hao3 `[+.ni2.hao3]

Zai4Jian4 `[+.zai4.jian4]
IBM Text-to-Speech 213

Japanese SPRs
Japanese SPRs
This section describes the SPR symbols for Japanese vowels and consonants.

Vowels
The following table shows the symbols for Japanese vowels.

Consonants
The following table shows the symbols for Japanese consonants.

Symbol Example Words

a sake, haba
A maaku, meekaa
e te, suteru
E keisatsu, heisei
i ima, miru
I ii, atarashii
o hodo, soba
O koujou, oozei
u fuyu, sushi
U kyuushuu, yuumei

Symbol Example Words

b kabi, chiba
p shimpai, kappa
d mada, deru
t toki, atta
g tamago, jitusgyou
214 IBM Text-to-Speech

Japanese SPRs
Examples
The following table shows examples of Japanese SPRs.

k kakaru, sakka
f gifu, futatsu
z mizu, zasshi
s sakana, issei
S shima, isshou
'ts' tsunami, tatsu, ittsuu
'dZ' jibun, meiji
'tS' chizu, machi, micchaku
h haba, iroha, hima, zehi, hyouban
m maru, sama
n nori, hana
N shimbun, gengo, insatsu, jin
r ryokan, kiru
y yoru, toyota, kyoukai
w wareware, awa

Word SPR

gambaru `[.0gaN.1ba.0ru]
kesson `[.1kes.0soN]
obaasan `[.0o.1bA.0saN]
chiji `[.1’tS’i.0’dZ’i]
isshoukenmei `[.0iS.0SO.1keN.0mE]

Symbol Example Words
IBM Text-to-Speech 215

Japanese SPRs
ryokakki `[.0ryo.1kak.0ki]
micchaku `[.0mit.0’tS’a.0ku]
oosakaben `[.0O.0sa.0ka.0beN]
insatsubutsu `[.0iN.0sa.1’ts’u.0bu.0’ts’u]
kudamono `[.0ku.1da.0mo.0no]
ittsuu `[.0it.1’ts’U]
atarimae `[.0a.0ta.0ri.0ma.0e]
hikkosu `[.0hik.1ko.0su]
tanin `[0ta.0niN]
erai `[.0e.1ra.0i]
zannen `[.0zaN.1neN]
housou `[0hO.0sO]

Word SPR
216 IBM Text-to-Speech

Code Samples
The following code samples illustrate how to use some of the IBM Text-to-Speech API’s. Link with
ibmeci.lib on Windows and libibmeci.a on AIX.

Hello world!
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();

eciAddText(eciInstance, "Hello world!");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

Input from file
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();

eciSynthesizeFile(eciInstance, "C:\\helloworld.txt");
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

IBM Text-to-Speech 217

Specifying a language
Specifying a language
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNewEx(eciStandardFrench);

eciAddText(eciInstance, "Bonjour le monde!");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

Specifying a voice
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciCopyVoice(eciInstance, 3, 0); // use Voice 3 (child)

eciAddText(eciInstance,
"I'm the only child in the IBM family.");

eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

218 IBM Text-to-Speech

Specifying a sample rate
Specifying a sample rate
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciCopyVoice(eciInstance, 3, 0); // use Voice 3 (child)
eciSetParam(eciInstance, eciSampleRate, 0); // use 8k

eciAddText(eciInstance, "Now my voice is lower quality.");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

Sample rates:
eciSampleRate = 0
8k (8000 Hz)
Lowest quality, but sufficient for telephony applications

eciSampleRate = 1
11k (11025 Hz)
Higher quality

eciSampleRate = 2
22k (22050 Hz)
Best quality, and compatible with desktop speech recognition
IBM Text-to-Speech 219

Specifying voice parameters
Specifying voice parameters
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciCopyVoice(eciInstance, 3, 0); // use Voice 3 (child)
eciSetVoiceParam(eciInstance, 0, eciSpeed, 75);

eciAddText(eciInstance, "I'm fast yet very accurate.");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

Using annotations
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciCopyVoice(eciInstance, 3, 0); // use Voice 3 (child)
eciSetParam(eciInstance, eciInputType, 1); // annotations on

eciAddText(eciInstance, "`vs75 Annotations are another");
eciAddText(eciInstance, "way to change speed.");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

220 IBM Text-to-Speech

Concatenative TTS
Concatenative TTS
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciCopyVoice(eciInstance, 1, 0); // use Voice 1 (adult male)
eciSetParam(eciInstance, eciSampleRate, 0); // use 8k

eciAddText(eciInstance, "Look, now I'm using");
eciAddText(eciInstance, "a concatenative voice!");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

IBM Text-to-Speech 221

Inserting indices
Inserting indices
#include <stdio.h>
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();
eciRegisterCallback(eciInstance, f, 0);

eciInsertIndex(eciInstance, 0);
eciAddText(eciInstance, "hi");
eciInsertIndex(eciInstance, 1);
eciAddText(eciInstance, "there");

eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDelete(eciInstance);
return 0;

}

222 IBM Text-to-Speech

Catching indices – the callback function
Catching indices – the callback function
ECICallbackReturn f(ECIHand hEngine, ECIMessage Msg,

long lParam, void *pData)
{

switch (Msg)
{
case eciIndexReply:

switch (lParam)
{
case 0: // about to say "hi"

printf("hi\n");
break;

case 1: // about to say "there"
printf("there\n");
break;

}
break;

}
return eciDataProcessed;

}

IBM Text-to-Speech 223

User dictionaries – main volume
User dictionaries – main volume
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();

ECIDictHand dictHand = eciNewDict(eciInstance);
eciSetDict(eciInstance, dictHand);
eciUpdateDict(eciInstance, dictHand, eciMainDict,

"world", "friends");

eciAddText(eciInstance, "Hello world!");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDeleteDict(eciInstance, dictHand);
eciDelete(eciInstance);
return 0;

}

224 IBM Text-to-Speech

User dictionaries – roots volume
User dictionaries – roots volume
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();

ECIDictHand dictHand = eciNewDict(eciInstance);
eciSetDict(eciInstance, dictHand);
eciUpdateDict(eciInstance, dictHand, eciRootDict,

"program", "bowl");

eciAddText(eciInstance, "I love programming!");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDeleteDict(eciInstance, dictHand);
eciDelete(eciInstance);
return 0;

}

IBM Text-to-Speech 225

User dictionaries – abbreviations volume
User dictionaries – abbreviations volume
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNew();

ECIDictHand dictHand = eciNewDict(eciInstance);
eciSetDict(eciInstance, dictHand);
eciUpdateDict(eciInstance, dictHand, eciAbbvDict,

"ex.", "example");

eciAddText(eciInstance, "One ex. is this.");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDeleteDict(eciInstance, dictHand);
eciDelete(eciInstance);
return 0;

}

226 IBM Text-to-Speech

User dictionaries – extended volume
User dictionaries – extended volume
#include <eci.h>

int main()
{

ECIHand eciInstance = eciNewEx(eciStandardJapanese);

ECIDictHand dictHand = eciNewDict(eciInstance);
eciSetDict(eciInstance, dictHand);
eciUpdateDictA(eciInstance, dictHand, eciMainDictExt,

"__—t", "ƒYƒˆƒE", eciKoyuuMeishi);

eciAddText(eciInstance, "__—t");
eciSynthesize(eciInstance);
eciSynchronize(eciInstance);

eciDeleteDict(eciInstance, dictHand);
eciDelete(eciInstance);
return 0;

}

IBM Text-to-Speech 227

User dictionaries – extended volume
228 IBM Text-to-Speech

Glossary of Linguistics Terms
Glossary of Linguistic Terms
Alphanumeric symbols Alphabetic (a, b, c) and numeric (1, 2, 3) symbols.

Compound word A word created from two other words. Here are some examples of
compound words:

hardwood, moon dancer, widespread, hand carry, tree trunk,
overpower, outgrown, cow punch

A compound word can be combined with another word (which can
be a compound), so there is no theoretical limit to the length of a
compound:

firewood bin, graham cracker pie crust, greenhouse gas

English spelling does not indicate whether or not something is a
compound. The component words can be separated with a space or a
hyphen, or not separated at all:

free-fall, freeway, free will, highland, high-rise, high school

A compound word has a different stress pattern than a noun phrase
consisting of the same words. For example, compare the
pronunciation of the following:

Ouch! That's hard wood.

It's not a pine tree; it's a hardwood.

Please paint that black board yellow.

Please erase the blackboard this afternoon.

Content word The type of word that constitutes most of the vocabulary, such as:
• Nouns (story, happiness, sun, mile)
• Verbs (ride, chew, listen, bring, believe, remain)
• Adjectives (brilliant, awful, three, new, darkest)
• Adverbs (often, far, much, calmly, happily)
Content words are distinguished from function words.
IBM Text-to-Speech 229

Glossary of Linguistics Terms
Emphasis Emphasis is the prominence given to a word relative to other words
in an utterance.

Function word Grammatical words such as:
• Conjunctions (and, or, but)
• Articles and determiners (a, an, the, this, those...)
• Auxiliaries (can, may, will, must, should...)
• Prepositions (to, from, over...)
• Pronouns (she, her, we, they, it...)
Function words are distinguished from content words and are
normally pronounced with reduced emphasis.

Intonation Changes in pitch across an utterance which are not related to the
meaning of individual words. Intonation conveys, for example:
• The difference between questions and statements
• Contrastive emphasis, used in statements that contradict or

parallel a previous statement (e.g., Terry has a cold but JANET
has pneumonia.)

• Statement completion or closure

Intonational phrase In IBM TTS, an intonational phrase is usually marked off by
punctuation, such as a comma, period, or question mark.
One phrase: He's a child?
Two phrases: He's a child, though growing quickly.
Three phrases: He's a child, an old child, but nevertheless a child.

Key A key is the first half of a user dictionary entry. The key is the string
of characters that will be searched for by the dictionary routine.

Nuclear accent The last emphasized word in an intonational phrase that has a degree
of emphasis of 2 or higher.
230 IBM Text-to-Speech

Glossary of Linguistics Terms
Phonetic spelling A phonetic spelling uses special symbols like those found in the
pronunciation guide of a dictionary. It has one symbol for each sound
and indicates which syllables receive stress.

Pitch How high or low a voice sounds.

Reduced emphasis A word with reduced emphasis is shorter than normal and has no
pitch accent (tone). A word that simply has no emphasis rather than
reduced emphasis has no pitch accent, but it is not shortened.

Root The base form of a word, without prefixes (like un-) or suffixes (like
plural -s or past tense -ed).

Stress Stress is the prominence given to a syllable, relative to other
syllables in the word. For example, in sentence (a) the word desert
has the greatest stress on the first syllable, and in sentence (b) the
word desert has the greatest stress on the second syllable.
(a) “I've been through the desert in a car with no air conditioner.”
(b) “Let's desert this old car and walk from here.”

Syllable A syllable is a unit of speech containing, at a minimum, a sonorant
nucleus such as a vowel or diphthong. The syllable may also contain
one or more consonants surrounding the vowel.

Translation A translation is the second half of a user dictionary entry. The
translation is the pronunciation or output specified by the user.

White space One or more spaces made with the spacebar or Tab key.
IBM Text-to-Speech 231

Glossary of Linguistics Terms
232 IBM Text-to-Speech

Appendix A Notices
References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only that IBM product, program, or service
may be used.

Subject to IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product, program, or service.

The evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and Licensing,
IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo 106, Japan.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Department T01B, 3039 Cornwallis, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA
IBM Text-to-Speech 233

Trademarks
Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or
both:

IBM

ViaVoice

Adobe Acrobat is a trademark or registered trademark of Adobe Systems Incorporated.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the United States
and/or other countries.

Microsoft, Windows, Windows NT, Windows 95, Windows98, and Windows 2000 logo are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Other company, product, and service names may be trademarks or service marks of others.
234 IBM Text-to-Speech

IBM Text-to-Speech
Index
A
abbreviations dictionary, 18–19
abbreviations dictionary processing

annotations, 167
alternative pronunciations, choosing

annotations, 167
American English SPRs, 184
annotations

assigning tones to words, 162
emphasis, 160–161
entering SPRs, 168
modifying phrase-final intonation, 163
pronouncing numbers and years, 167

B
Brazilian Portuguese SPRs, 206
British English SPRs, 187

C
callback

function, 42
callback function, 42
calling conventions

ECI functions, 44
Canadian French SPRs, 193
Catching indices – the callback function,

223
Chinese SPRs, 211
Code Samples, 217
Concatenative TTS, 221
Custom Filters, 43, 169

D
Data Types, 21
diagnostics functions, 42
dictionary, 12–20

abbreviations, 18–20

main, 13–14
main extended - used with Asian languages, 15
roots, 16–17

dictionary processing of abbreviations
annotations, 167

dynamic dictionary maintenance functions,
41

E
eciAbbvDict, 18–19
eciActivateFilter, 45
eciAddText, 6, 7, 46–48, 140
eciBreathiness, 34
ECICallbackReturn, 21
eciClearErrors, 49
eciClearInput, 50–52
eciCopyVoice, 6, 53–55
eciDataProcessed, 104
eciDeactivateFilter, 56
eciDelete, 57
eciDeleteDict, 59
eciDeleteFilter, 60
ECIDictError, 22
eciDictFindFirst, 61–62
eciDictFindFirstA, 63–64
eciDictFindNext, 65–66
eciDictFindNextA, 67–68
ECIDictHand, 22
eciDictionary, 29
eciDictLookup, 69
ECIDictVolume, 23
eciErrorMessage, 73
ECIFilterError, 23
eciGender, 34
eciGeneratePhonemes, 74–75
eciGetAvailableLanguages, 76
eciGetDefaultParam, 78
235

Index

23
eciGetDict, 79
eciGetFilteredText, 80
eciGetIndex, 82
eciGetParam, 29, 83
eciGetVoiceName, 84–85
eciGetVoiceParam, 34, 86–87
ECIHand, 23
ECIHand parameters, 44
eciHeadSize, 35
eciIndexReply, 104
ECIInputText, 24
eciInputType, 6, 29
eciInsertIndex, 88–89, 104
ECILanguageDialect, 24
eciLanguageDialect, 29
eciLoadDict, 90–91
eciMainDict, 13–14, 15–??
ECIMessage, 25, 103–105
ECIMouthData, 26, 104
eciNew, 92–93
eciNewDict, 96
eciNewEx, 94–95
eciNumberMode, 30
eciNumParams, 30, 35
ECIParam, 25
eciPause, 98
eciPhonemeBuffer, 104
eciPhonemeIndexReply, 26, 104
eciPitchBaseline, 35
eciPitchFluctuation, 35
eciProgStatus, 99–100
eciRealWorldUnits, 31
eciRegisterCallback, 101–109
eciReset, 110
eciRootDict, 16–17
eciRoughness, 36
eciSampleRate, 31
eciSaveDict, 111
eciSetDefaultParam, 113
eciSetDict, 115
eciSetOutputBuffer, 103, 117–118

eciSetOutputDevice, 119–120
eciSetOutputFilename, 121–122
eciSetParam, 6, 29, 123–124
eciSetVoiceName, 125–126
eciSetVoiceParam, 34, 127, 127–??
eciSpeaking, 129–130
eciSpeakText, 6, 131–133
eciSpeakTextEx, 134–135
eciSpeed, 36
eciStop, 136
eciSynchronize, 137–138
eciSynthesize, 7, 139–140
eciSynthesizeFile, 141–142
eciSynthMode, 31
eciTestPhrase, 143
eciTextMode, 31
eciUpdateDict, 144–145
eciUpdateDictA, 146–147
eciUpdateFilter, 148
eciVersion, 149
ECIVoiceParam, 25
eciVolume, 36
eciWantPhonemeIndices, 32
eciWaveformBuffer, 103
Eloquence Command Interface, 5

F
Finnish SPRs, 208
French SPRs, 197

G
German SPRs, 190
glossary, 229–231

H
Hello world!, 217

I
Indices, 5
Inserting indices, 222
6 IBM Text-to-Speech

Index
intonation
annotations, 163

Italian SPRs, 200

J
Japanese SPRs, 214

L
language and dialect, choosing, 152

M
main dictionary, 13–14
Mexican Spanish SPRs, 202

N
NULL_ECI_HAND, 44

O
output

audio device, 5
callback function, 5
file, 5

P
pauses, inserting

annotations, 164
phrase-final intonation, modifying

annotations, 163
preset voice definitions, 37
pronouncing numbers and years

annotations, 167

R
roots dictionary, 16–17

S
sample C programs, 6
Spanish (Castilian) SPRs, 204

Spanish (Mexican) SPRs, 202
speaking style, choosing

annotations, 159
Specifying a language, 218
Specifying a sample rate, 219
Specifying a voice, 218
Specifying voice parameters, 220
SPR symbols

American English, 184
Brazilian Portuguese, 206
British English, 187
Chinese, 211
Finnish, 208
French, 197
German, 190
Italian, 200
Japanese, 214
Spanish (Castilian), 204

SPRs
annotations, 168
tables, 184

synthesis state parameters, 29–33
defaults, 33

synthesizing
annotated text, 6

system control functions, 39

T
Table, 39
tones, assigning to words

annotations, 162
Trademarks, 234

U
User dictionaries – abbreviations volume,

226
User dictionaries – extended volume, 227
User dictionaries – main volume, 224
User dictionaries – roots volume, 225
using a preset voices, 6
IBM Text-to-Speech 237

Index

23
Using annotations, 220

V
voice characteristics

annotations, 157
voice definitions

preset, 37
voice parameter controls, 41
voice parameters, 34–37

defaults, 37
8 IBM Text-to-Speech

	Contents
	About This Book
	Who�Should�Read�This�Book?
	Organization�of�This�Book
	Typographical�Conventions

	The IBM Text-to-Speech Software Developer’s Kit
	Overview
	Eloquence Command Interface (ECI)

	The ECI Application Programming Interface
	Overview
	Structuring an ECI Program
	Using eciSpeakText for Simple Programs
	Managing an ECI Instance

	Threading
	Callbacks
	User Dictionaries
	Main Dictionary (eciMainDict)
	Main Extension Dictionary (eciMainDictExt)
	Roots�Dictionary�(eciRootDict)
	Abbreviations�Dictionary�(eciAbbvDict)

	ECI Reference
	Data Types
	Boolean
	ECICallbackReturn
	ECIDictError
	ECIDictHand
	ECIDictVolume
	ECIFilterError
	ECIHand
	ECIInputText
	ECILanguageDialect
	ECIMessage
	ECIParam
	ECIVoiceParam
	ECIMouthData

	Synthesis�State�Parameters
	eciDictionary
	eciInputType
	eciLanguageDialect
	eciNumberMode
	eciNumParams
	eciRealWorldUnits
	eciSampleRate
	eciSynthMode
	eciTextMode
	eciWantPhonemeIndices
	Synthesis State Parameter Defaults

	Voice Parameters
	eciBreathiness
	eciGender
	eciHeadSize
	eciNumVoiceParams
	eciPitchBaseline
	eciPitchFluctuation
	eciRoughness
	eciSpeed
	eciVolume:

	Preset Voice Definitions
	Voice Parameter Defaults

	Table of Functions
	System Control
	Synthesis Control
	Output Control
	Speech Environment Parameter Selection
	Voice Parameter Control
	Dynamic Dictionary Maintenance
	Diagnostics
	Callback
	Custom Filters

	Alphabetical Index of Functions
	eciActivateFilter
	eciAddText
	eciClearErrors
	eciClearInput
	eciCopyVoice
	eciDeactivateFilter
	eciDelete
	eciDeleteDict
	eciDeleteFilter
	eciDictFindFirst
	eciDictFindFirstA
	eciDictFindNext
	eciDictFindNextA
	eciDictLookup
	eciDictLookupA
	eciErrorMessage
	eciGeneratePhonemes
	eciGetAvailableLanguages
	eciGetDefaultParam
	eciGetDict
	eciGetFilteredText
	eciGetIndex
	eciGetParam
	eciGetVoiceName
	eciGetVoiceParam
	eciInsertIndex
	eciLoadDict
	eciNew
	eciNewEx
	eciNewDict
	eciNewFilter
	eciPause
	eciProgStatus
	eciRegisterCallback
	eciReset
	eciSaveDict
	eciSetDefaultParam
	eciSetDict
	eciSetOutputBuffer
	eciSetOutputDevice
	eciSetOutputFilename
	eciSetParam
	eciSetVoiceName
	eciSetVoiceParam
	eciSpeaking
	eciSpeakText
	eciSpeakTextEx
	eciStop
	eciSynchronize
	eciSynthesize
	eciSynthesizeFile
	eciTestPhrase
	eciUpdateDict
	eciUpdateDictA
	eciUpdateFilter
	eciVersion

	Annotations
	ECI Annotations
	Selecting�a�Language�and�Dialect
	Selecting a Voice or Voice Characteristics
	Selecting�a�Speaking�Style
	Modifying�Word�Emphasis�and�Tone
	Assigning Tones to Words

	Modifying Phrase-Final Intonation
	Adding�Pauses
	Filters
	Specifying�Alternative�Pronunciations
	Character Spelling Modes
	Pronouncing Numbers and Years
	Dictionary Processing of Abbreviations
	Entering Symbolic Phonetic Representations

	Custom Filters
	Implementing a Custom Filter
	Dynamic Filters
	Dynamic Filter Sample Code

	Static Filters
	Static Custom Filter Sample Code
	Sample client code using the default dynamic filter:

	Symbolic Phonetic Representations
	SPR Form
	SPR Tables
	American English SPRs
	British�English�SPRs
	German�SPRs
	Canadian French SPRs
	French�SPRs
	Standard�Italian�SPRs
	Mexican Spanish SPRs
	Castilian�Spanish�SPRs
	Brazilian�Portuguese�SPRs
	Finnish SPRs
	Chinese SPRs
	Japanese SPRs

	Code Samples
	Hello world!
	Specifying a language
	Specifying a voice
	Specifying a sample rate
	Specifying voice parameters
	Using annotations
	Concatenative TTS
	Inserting indices
	Catching indices – the callback function
	User dictionaries – main volume
	User dictionaries – roots volume
	User dictionaries – abbreviations volume
	User dictionaries – extended volume

	Appendix A Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

