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Abstract

Max" (Luckhardt and Irani, 1986) is the extension of the mini-
max backup rule to multi-player games. We have shown that
only a limited version of alpha-beta pruning, shallow prun-
ing, can be applied to a nfagearch tree. We extend this
work by calculating the exact bounds needed to use this prun-
ing technique. In addition, we show that branch-and-bound
pruning, using a monotonic heuristic, has the same limita-
tions as alpha-beta pruning in a méee. We present a hy-
brid of these algorithms, alpha-beta branch-and-bound prun-
ing, which combines a monotonic heuristic and backed-up
values to prune even more effectively. We also briefly dis-
cuss the reduction ofraplayer game to a ‘paranoid’ 2-player
game. In Sergeant Major, a 3-player card game, we averaged
node expansions over 200 height 15 trees. Shallow pruning
and branch-and-bound each reduced node expansions by a
factor of about 100. Alpha-beta branch-and-bound reduced
the expansions by an additional factor of 19. The 2-player
reduction was a factor of 3 better than alpha-beta branch-
and-bound. Using heuristic bounds in the 2-player reduction
reduced node expansions another factor of 12.

Introduction and Overview

ing method, branch-and-bound pruning, showing that it faces
the same limitations as alpha-beta pruning when applied to
max' trees. Finally, we present a hybrid algorithm, alpha-
beta branch-and-bound, which combines these two pruning
techniques in multi-player games for more effective prun-
ing. We will also analyze the reduction of-glayer game

to a 2-player game.

Examples: Hearts and Sergeant Major (8-5-3)

To help make the concepts in this paper more clear, we chose
two card games, Hearts and Sergeant Major, to highlight the
successes and failures of the various algorithms presented.
Note that while the game of bridge is played with 4 players,
each player has the goal of maximizing the joint score they
share with their partner, so bridge is really a two-team game,
and standard minimax applies.

Hearts and Sergeant Major, also known as 8-5-3, are both
trick-based card games. That is, the first player plays (leads)
a card face-up on the table, and the other players follow in
order, playing the same suit if possible. When all players
have played, the player who played the highest card in the

Much work and attention has been focused on two-player suit that was led “wins” or “takes” the trick. He then places
games and alpha-beta minimax search (Knuth, Moore, 1975).the played cards in his discard pile, and leads the next trick.
This is the fundamental technique used by computers to play This continues until all cards have been played. Cards are
at the championship level in games such as chess and checkdealt out to each player before the game begins, and each
ers. Alpha-beta pruning works particularly well on games of game has special rules about passing cards between players
two players, or games with two teams, such as bridge. Much before starting. Card passing has no bearing on the work
less work has been focused on games with three or morepresented here, so we ignore it.
teams or players, such as Hearts. In h{axckhardt and Hearts is usually played with four players, but there are
Irani, 1986), the extension of minimax to multi-player games, variations for playing with three or more players. The goal
pruning is not as successful. of Hearts is to take as few points as possible. Each card in the
This paper focus on pruning techniques. There are many suit of hearts is worth one point, and the queen of spades is
open questions in multi-player games, and we cannot coverworth 13. A player takes points when he takes a trick which
them all here. For instance, it is unclear what the ‘best’ prac- contains point cards. At the end of the game, the sum of all
tical backup rule is. The techniques presented in this paperscores is always 26, and each player can score between 0 and
represent just one way we can evaluate the effectiveness of26. If aplayer takes 26 points, or “shoots the moon, Giftrer
an algorithm. players all get 26 points each. For now, we ignore this rule.
We first review the madalgorithm and the conditions un- Sergeant Major is a three-player game. Each player is dealt
der which pruning can be applied to maased on this, we 16 cards, and the remainder of the deck is set aside. The
show that shallow pruning in magannot occur in many  ultimate goal for each player is to take as many tricks as
multi-player games. We will examine another common prun- possible. Similar to Hearts, the sum of scores is always 16,
and each individual player can get any score from 0 to 16.
More in-depth descriptions of these and other games men-
tioned here can be found in (Hoyle et al. 1991).

Copyright © 2000, American Association for Atrtificial Intelligence
(www.aaai.org). All rights reserved.



maxsunF 10 (7,3, 0) open (double-dummy) game where all cards are available

maxp= 10 — for all to see. In a real game, we would model the probabil-
ity of our opponent holding any given card, and then gener-
ate hundreds of random hands according to these probabil-
ity models. It is expected that solving these hands will give
a good indication of which card should actually be played.
See (Ginsberg, 1999) for an explanation of how this has been
applied to Bridge.

(7, 3,0)3, 2, 50, 10, O§4, 2, 4)Y1, 4, 5Y4, 3, 3)

Figure 1: A 3-player mabgame tree. Duality of Maximization and Minimization
N Throughout this paper we deal with games that are usually
Max described in terms of either maximization or minimization.
Since minimization and maximization are symmetric, we
briefly present here how the bounds used by pruning algo-
rithms are transformed when we switch from one type of
game to the other type.

There are four values we can use to describe the bounds
on players’ scores in a ganiinp andmaxpare a player’s
respective minimum and maximum possible schliesum
andmaxsunare the respective minimum and maximum pos-
sible sum of all players scores. In Heamg)pis 0 andnaxp

Luckhardt’'s and Irani's extension of minimax for multi-

player games is called mfakor a n-player game, an n-tuple

of scores records each player’s individual score for that par-

ticular game state. That is, thé @lement in the tuple repre-

sents the score of thé player. At each node in a miasearch

tree, the player to move selects the move that maximizes his

own component of the score. The entire tuple is backed up

as the makvalue of that node. In a three-player game, we

propagate triples from the leaves of the tree up to the root. > ; > e
For example, in Figure 1, the triples on the leaves are the = MaXSUME minsume= 26. In Sergeant Majaminpis also 0

terminal values of the tree. The number inside each squareﬁ}ndtma)(p: rrgaxsglmf[ mmsum:ﬁlg (K.?rf: 1991d) showed
represents the player to move at that node. At the node la- atwe may be able 1o prune a mage ifminpandmaxsum

belled (a), Player 2 will choose to back up the triple (7, 3, 0) arr(]e bOL;]nded. ?N(? are intergster(]j in h%V\;these _bqurjds.change
from the left child, because the second component of the When the goal of a game is changed from minimization to

left child of (a), 3, is greater than the second component of Maximization. The transformation does not change the prop-
the right child of (a), 2. Player 2 does likewise at nodes (b) €rties of the game, it simply allows us to talk about games in
and (c). Player 1 then chooses a triple from those backed upt €Il maximization forms without loss of generality.

by Player 2. At the root, the first component of Player 1's The .one:-to-one.mappifng betwe_en Lhe mi_ni¢izba|1tioln ?Ed
children is greatest at node (a). Player 1 will back this triple maximization versions of a game is shown in Table 1. The

up, giving the final maxvalue of the tree, (7, 3, 0). Because first row in the table contains the variable names for a mini-
the mag value is calculated in a left-to-right depth-first or- m|zat|0nhprobltehm, follok\)/ved fby| sample \’3al_llj_ﬁs Ior afHearts
der, a partial bound on the mtasalue of a node is available ~ 93ME, Wher@, theé NUMDEr o players, IS 5. 1he transforma-

before the entire calculation is complete. Throughout this t|?rt1happl|.eq t? th? valules are in t_?ﬁ.th'rd row: trll.e ne?ﬁtlon

paper we assume that nodes are generated from left to right0 € original value plusmaxpy, 'Nnis re-normalizes the

in the tree, and that all ties are broken to the left. SCOres so thaninpis always 0. Since Hearts and _Sergeant
When generating a Hearts game tree, the terminal values'vla]ort?]re Z€ro-sum or co_Pstapt-slum ganmeistxs_urphs al-

will be the number of points taken in the game. In Sergeant &S f? s?me ?mmsq[_m ed |tr;]a rows con Sl'n € neWTh

Major, the terminal values will be the number of tricks taken, SCOr€ alter transiormation and th€ new variablé names. 1he

If we are not able to search to the end of the game, we canPTOCESS can be reversed to turn a maximization game into a

apply an evaluation function at the frontier nodes to gener- mlgllmlzatlhon game. f minimizati d Lo

ate appropriate backup values. At a minimum, this evalua- lven the symmetry of minimization and maximization,

tion would be the exact evaluation of what has occurred so there is also a duality in pruning algorithms. That is, for any

far in the game, but might also contain an estimate of what Pruning algorithm that works on a maximization tree, we
scores are expected in the remainder of the game can write the dual of that algorithm that works the same

In most card games, one is not normally allowed to see ynderthe equivalent minimization tree. However, just chang-

one’s opponents cards. As was suggested by (Ginsberg ing the goal of a game from minimization to maximization
1996), we first concentrate on being able to play a completely does not create the dual of the game. The other parameter,

minimization variable| s S, S, maxp.. minp_. maxsum. & minsum_
.. ) ) min min min min

minimization value 3 10 13 26 0 26

transformation s + maxp.. -maxp - +maxp.  -minp_+maxp.  -maxsum +nmaxp.

. i A | min min min min min min min
maximization value 23 16 13 0 26 52
maximization variable st s? s minp maxp maxsum_ & minsum

max max max max

Table 1: The transformation between a maximization and minimization problem, and examples for a 3-player game.



maxsun¥ 10

)
(6, 3, 1
(4,51
(7,3,0)
Figure 3: A generic métree.
(2’02r' 6) (a), and<5 points at (b). So, Player 1 will never move to-
(0,4, 6) wards node (b) no matter what maalues the other chil-

dren have, and the remaining children of (b) are pruned. This
is shallow pruning, because the bound used to prune came
maxsummust also be calculated. Given these observations, from (a), the parent of (b).

we will not explicitly show dual algorithms. Unless other-

wise stated, all trees and algorithms presented here will be General Bounds for Shallow Max Pruning

for maximization problems. Figure 3 shows a generic nidree. In this Figure we have

only included the values needed for shallow pruning. Other
Pruning in Max" Trees values are marked by a ‘*’. When Player 1 gets a scoxe of

at node (a), the lower bound on Player 1's score at the root is

In a two-player zero-sum game, there are three types of al-thenx. Assume Player 2 gets a scorg/at node (c). Player

pha-beta pruning that occur: immediate, shallow, and deep 2 will then have a lower bound gfat node (b). Because of

pruning. Not all of these are valid in multi-player games.  the upper bound ehaxsuron the sum of scores, Player 1 is
guaranteed less than or equalntaxsum- y at node (b).

Immediate Pruning Thus, no matter what value is at (dyidxsumy < x, Player

1 will not choose to move towards node (b) because he can

LTemerﬂlr?iLe ;?rr]ugltr\:vgol_nlg rgrult;ﬁqlgyﬁ: g?ﬂi "T’am;? Igmeed\li\-/e always do no worse by moving to node (a), and we can prune
P 9 playerg . playerg § the remaining children of node (b).

immediately prune when a player gets the best possible score, In the maximization version of Heartaaxsunis 52, and

> for mahx ar:ﬁ“’ for mitn. lln a mu{ti-player %&mteﬁ wbe c?n x andy will range between 0 and 26, meaning that we only
prune when the current player gets a scoraatp the bes prune when 52y < x, which is only possible & =y = 26.

SC'CI)'Leelg acrnglg_iijlagerrgggqi?ﬁmediatel is seen in Figure 1 In Sergeant Majomaxsumis 16, andx andy will range
At node?tp))) PIaer 2 E):an get 10 pointsyby choosing t% mové from 0 to 16, meaning that we will prune when ¥ox
towards his' left child. Sincmaxp= 10, Player 2 can do no Glyen.these (_examples, we extract general condltlons for
better than 10 point§ Thus, after ex'amining the first child pruning in multl—player games. We WI” use the following
the second child can .be pru’ned ’ yarlables:n is the number of players in the gamegxsum
: is the upper bound on the sum of players scoresnamngis
. the upper bound on any given players score. We assume a
Shallow Pruning lower bound of zero on each score without loss of general-
While having a zero-sum game is a sufficient condition to ity. So, by definitionmaxp< maxsums n-maxp.
apply alpha-beta pruning to a two-player game tree, it is not
sufficient for a multi-player game tree. Given just one com- Lemma L
ponent of a zero-sum multi-player game, we cannot restrict To shallow prune in a matree,maxsun< 2maxp
any other single score in the game, because one of the re-
maining scores might be arbitrarily large, and another arbi- Proof:
trarily small. But, given a lower bound on each individual We will use the generic tree of Figure 3. To prune:
score, and an upper bound on the sum of scores, we can prune. X > maxsumy
Figure 2 contains a sample 3-player mage. At node By definition:
(a), Player 1 can get at least 6 points by choosing the left- 2maxp> X+y
most branch of node (a). When Player 2 examines the first So,
child of node (b), Player 2 gets a score of 5, meaning Player 2:maxpx X+ Y > maxsum
2 will get at least 5 by choosing the left-most branch at (b). ~ 2:maxp> maxsum
There are 10 points available in the game, and since Player 2
will get at least 5 at node (b), Player 1 can get no more thanHowever, if maxsum= 2maxp we can only prune when
10 - 5 = 5 points at (b). Player 1 is guarante6goints at bothx andy equalmaxp But, if y = maxp we can also im-

Figure 2: Pruning in a magee.



mediate prune. Because of this, we tighten the bound to ex-
clude this case, and the lemma holds.

We can now verify what we suggested before. In the maxi-
mization version of 3-player Heartaaxsun= 52, andnaxp
= 26. Since the strict inequality of Lemma 1, 52 < 2-26, does
not hold, we can only immediate prune in Hearts. In Ser-
geant Major, the inequality 16 < 2-16 does hold, so we will
be able to shallow prune a Sergeant Major hir@e.
Intuitive Approach. Speaking in terms of the games as they . .
are normally played, it may seem odd that we can't prune in  Figure 4: The reduction ofreplayer game to a 2-player game.

Hearts and we can prune in Sergeant Major, when the only \ o, 5 s higher than the second component of the max
real difference in the games is that it one you try to minimize valué a,t (c), 2. This will result in the ntavalue of (7, 3, 0)
your score, and in the other you try to maximize it. While the ¢, ,0"a sire tree, since Player 1 can then get a score of 7.
preceding lemma explains the difference mathematically, Alternatively, if the value of (d) is (0, 4, 6), the Maalue

there is another explanation that may be more intuitive. of (c) will be (0, 4, 6). Then, at node (e), Player 2 will choose

Suppose in Sergeant Major that a player is deciding be- to backu i
p (O, 4, 6) because the second component, 4, is higher
tween two cards, the Ace of Spades and the Ten of CIUbS'than that in the other child, 3. This means the final"max

When we calculate the maxalue of the search tree, we are value of the tree will be (6, 3, 1).

calculating how well the player can expect to do when play- Thus, while the bounds predicted correctly that no value
ing a given card. Once we have the result of how well the at (d) will ever be the final maxalue of the tree, the differ-

player can do with the Ace of Spades, we begin to look at ent : -
. possible values at (d) may affect the final hwakue of
the prospects for the Ten of Clubs. We prune this search the tree, and so (d) cannot be pruned.

when we have enough information to guarantee that the

player will always do no better with the Ten of Clubs than .

with the Ace of Spades. We get this information based on Asymptotic Results

the dependence between the players’ scores. In SergeanThe asymptotic branching factor of mawvth shallow prun-

Major, there are only 16 points available, and all players are ing in the best case (i$+ 4; 4b-3 )/2, whereb is the brute-

competing to get as many points as possible. Each trick takenforce branching factor without any pruning. An average case

by one player is a trick denied to another player. This direct model predicts that even under shallow pruning, the asymp-

dependence between any two players score is what gives ugotic branching factor will bé. (Korf, 1991)

the information that allows us to prune. When the next player We have shown here that in many cases, such as the game

is guaranteed enough points to deny a better score than camf Hearts, even under an optimal ordering of the tree, we

be achieved by playing the Ace of Spades, the line of play would still be unable to do anything besides immediate prun-

originating from the Ten of Clubs is pruned. ing. This compares poorly with the 2-player best-case as-
In the standard minimization form of Hearts, the goal is to ymptotic branching factor of b (Knuth, Moore 1975),

take as few points as possible. Points taken by one player aravhich can very nearly be achieved in two-player games.

points denied to the other players. But, since all players are

trying to take as few points as possible, they don’t mind be- Reduction to a Paranoid 2-Player Game

ing denied points. Thus, when another player takes points, it

simply tells us that the current line of play may be better than

previous lines of play, and that we should keep exploring our ; ) - /

current line of play. When one player avoids taking points, done by making the "paranoid" assumption that all our oppo-

those points must be taken by the other players. But, there is{;ggt\,svgi\;ﬁ Losrén;gn%;?ggﬁ'ohn;gggstgusrug:gi; ggz r'(la'?\?sci-s
nothing that says which player must take the points. So, in - 'd alp P o
contrast to Sergeant Major, there is a lack of direct depen- not a realistic assumption and can lead to suboptimal play,

dence between two players scores, and we are unable to prundUt dueé to the pruning allowed, it may be worthwhile to ex-
amine. We will only analyze the pruning potential here.

. To calculate the minimum number of nodes that need to

Deep Pruning be examined within the game tree, we need a strategy for
Returning to Figure 2, Player 1 is guaranteed a score greatemin and a strategy for max. Min and max will play on the
than or equal to 6 at the root node (a). We might be temptedtree in Figure 4, where max is to move at the root, with a
to prune node (d), because the bound on Player 1's score abranching factor o, and min moves next, with a branching
(c), =5, says that Player 1 will get less than 6 points. This factor ofb™*. Min is the combination of the 1 players play-
would be deep pruning, because (a) is a grandparent of (c).ing against the first player.
However, as we demonstrate here, the value at node (d) can Within a strategy for max, max must look at one succes-
still affect the makvalue of the tree. (Korf 1991) sor of each max node in the strategy, and all possible suc-

If the value of (d) is (2, 2, 6), Player 3 will choose this cessors of each min node in the strategy. Suppose the full
value as the mawalue of (c). Player 2 at (e) will then choose tree is of deptD. Max will expandb™? nodes at every
(7, 3, 0) as the mawalue of (e) since the second compo- other level, meaning that there &&Y??|eaf nodes in the

max

branching factob
min
branching factob™?

Another method to increase the pruning in a multi-player
game is to reduce the game to a two-player game. This is



cost bound = ¢ ) (7,9,0)

or
maxsun¥ 16 (10, 5, 1)
maxp= 16

Figure 5: A single-agent depth-first branch-and-bound problem. (7,9,0)

tree. Similarly, a min strategy must look at only one succes-
sor of each min node, and all successors of each max node,
so min will look ath®? nodes total. We have two players in
the reduced game, and each player has an equal number of Figure 6Branchand-bound pruning in a nigree.

turns, sdD is even, meaning we don't have to consider the .

floor or ceiling in the exponent. In order to draw parallels between alpha-beta pruning, we

The total nodes examined by both algorithms will be about Will describe the pruning that occurs in the same terms that
b2 4 P2 nodes, which is ®MDP). But, D is the depth we use to describe alpha-beta pruning: immediate, shallow
in the tree of Figure 4. We really want our results in terms of @nd deep pruning. In a two-player game, immediate pruning
the real tree that we will search. For example, if the original occurs when we get the best score possible, a win. In the
tree has 3 players and is depth 12 (4 tricks), the new tree hadresence of a heuristic, the best score possible is best that we
2 players and will also contains 4 tricks, so it will be height can get given the heuristic. In Figure 5, the heuristic at node
8. So, for the actual tree searched, which has hdjght (a) says the best score we can get is 2. Since we have a path
d-2h. Thus, we re-write the asymptotic branching factor in of total cost 2 through the first child, we can prune the re-

the best case as (V") to reflect the branching factor in maining children, as we have found the best possible path.
the actual tree. After finding the path with cost 2, we use that cost as a

bound while searching subsequent children. At node (b), our

heuristic tells us that all paths through (b) have cost higher

Depth-First Branch-and-Bound Pruning than the bound of 2, so all children of (b) are pruned. This is

) ) ) like shallow pruning, since the bound comes from the parent

Branch-and-Bound is another common pruning technique. of (b). Finally, at node (c) we can prune based on the bound

It requires a monotonic heuristic, and many card games haveof 2 on the path cost from the grandparent of (c), which is
natural monotonic heuristics. In Hearts and Sergeant Major, |ike deep pruning.

once you have taken a trick or a point you cannot lose it.
Thus, an evaluation can be applied within the tree to give a s ) )
bound on the points or tricks to be taken by a player in the Multi-Player Branch a_nd Bound

game. We use the notation)hf j to indicate that the heu- ~ Branch-and-bound pruning can be used to prune atnes

ristic is giving a lower bound scorejdfor playeri, and hi) but u_nder makit is limited by the same factors as alpha-beta

< j to indicate that the heuristic is giving an upper bound of Pruning, namely we cannot use the bound at a node to prune
j on p|ayeri’s score. Suppose’ for a Sergeant Major game, at its grandChI|d. As with deep alpha-be'[a pruning, while the
the players have taken 3, 2, and 6 points respectively. Then,max value of the pruned nodes will never be the'alue
h(1) > 3 because Player 1 has taken 3 points. Also,h@L) of the tree, they still have the potential to affect it. We will

the proof of why deep alpha-beta pruning does not work

; ) ) (Korf, 1991), we omit the proof.
Single Agent Branch-and |.30ur.1d ) In Figure 6 we show a portion of a nidsee and demon-
The branch-and-bound algorithm is most commonly used in strates how branch-and-bound can prune parts of the tree.
a depth-first search to prune single-agent minimization searchjmmediate pruning occurs at node (a). At the left child of
trees, such as the Travelling Salesman Problem. In Figure 5,(a), Player 2 can get a score of 9. Since the h(2) we

we are trying to find the shortest path to a leaf from the root, know Player 2 cannot get a better score from another child,
where edges have positive costs as labelled. Since all pathgnd the remaining children are pruned.

have positive length, the cost along a path will monotoni-  shallow pruning occurs at node (b) when the bound from
cally increase, giving a lower bound on the cost to a leaf the parent combines with the heuristic to prune the children
along that path. The labels at the leaves are the actual pathyf (b). Player 1 is guaranteed 7 or more at the root. So, when
costs. Next to a node is a limit on the optimal cost of a path pjayer 1's heuristic at (b) guarantees a score of 5 or less, we
going through that node. If unexplored paths through a node prune all the children of (b), since Player 1 can always do
are guaranteed to be greater than the best path found so falpetter by moving to node (a).

we Can prune the children of that node in the tree. Fina”y’ deep branch-and-bound pruning, like deep a|pha_




maxsum= 10 not get 7 points at the left child of (a), the shallow bound
maxp= 10 itself is sufficient to prune the right branch of (a).
In an-player game where we normally only compare the
scores of two players, we can further decrease our bound for

(a) pruning by subtracting the heuristic value for the remaining
h(3)> 2 (n - 2) players. That is, if we have a lower bound on Player

N i's score from our parent, and Playé&srto play at the current
node, the upper bound on Playerscore at the next node is
maxsum scoref) - Yh(x) {for x i or j}. In a two-player

shallow &7, >3, <7

(6.3.1)2] ABng (<5, 3, <7)

(4,3, 3) game, this reduces to plain alpha-beta.
The alpha-beta branch-and-bound procedure is as follows.
Figure 7: Alpha-beta branch-and-bound pruning. In this procedure, we usg,ho represent a heuristic upper

bound and j, to represent a heuristic lower bouBdundis

beta pruning, can incorrectly affect the calculation of the the upper bound oRlayers score.
max' value of the game tree. The partial realue at the
root of the tree in Figure 6 guarantees Player 1 a score of 7ABBnB(Node, Player, Bound)
or better. At node (c), Player 1 is guaranteed less than orlIF Node is terminal, RETURN static value
equal to 5 points by the heuristic. Thus, we might be tempted /* shallow branch-and-bound pruningy
to prune the children of (c), since Player 1 can do better by IF (h ,(Prev Player) < maxsum- Bound)
moving to node (a). But, this reasoning does not take into RETURN static value
account the actions of Player 2. Best=ABBnB(first Child, next Player, maxsurm

Depending on which value we place at the child of (c), (5, /* Calculate our opponents guaranteed poirits
8, 3) or (5, 3, 8), Player 2 will either select (5, 8, 3) from Heuristic = She(n)[n  #Player or prev. Player]
node (c) or (10, 5, 1) from node (d)’s right branch to back up FOR each remaining Child
as the maxvalue of node (d). Player 1 would then choose IF (Best[Player] > Bound-Heuristic) OR
the root makvalue to be either (7, 9, 0) or (10, 5, 1). So, (Best[Player] = h w(Player))
while the bounds on node (c) will keep it from being the RETURN Best
max' value of the tree, it has the potential to affect the’'max  Current = ABBnB(next Child, next Player,
value of the tree. maxsum- Best[Player])

IF (Current[Player] > Best[Player])

Alpha-Beta Branch-and-Bound Pruning Best = Current
. : . RETURN Best
Now that we have two relatively independent techniques for

pruning a multi-player game tree, we show how these tech- This procedure will always prune as much as shallow branch-

nigues can be combined. Shallow pruning makes compari- ) ; i . X
sons between two players’ backed up scores to prune. Branch-and bound pruning or shallow alpha-beta pruning. So, while

and-bound compares a monotonic heuristic to a player’s score. lose the ability to do deep pruning in a multi-player game,
to prune. Al hal?beta branch-and-bound runir? ﬁses both V& May be able to use alpha-beta branch-and-bound prun-

p - AIp P 9 . ing to prune more than we would be able to with just alpha-
the comparison between backed up scores and monotoni

heuristic limits on scores to prune even more effectivel “beta or branch-and-bound pruning alone.
: ; P . Disregarding immediate branch-and-bound pruning, Al-
Looking at Figure 7, we see an example where shallow

pruning applies, We have bounds on the root value of the pha-beta branch-and-bound will have the same best-case

) ; ; performance as shallow pruning. If we have perfect order-
tree from its left branch. After searching the left child of node ing and a perfect heuristic, immediate branch-and-bound
(a) we get bounds on the maslue of (a). We place an up-

per bound of 7 on Player 1's score, because Player 2 is guar—prunlng could drastically shrink the search tree.

anteed at least 3 points, and htagsurn- 3 = 7. This value

does not conflict with the partial miaxound on the root, so Experimental Results

we cannot prune. We have a bound from our heuristic, but

because it is not Player 3’s turn, we can not use that by itself We tested alpha-beta branch-and-bound (ABBnB) to see how

to prune either. But, if we combine this information, we can it compared to branch-and-bound (BnB), alpha-beta shal-

tighten our bounds. We know from backed up values that low pruning, and the paranoid 2-player reduction. Our test

Player 2 will get at least 3 points and from our heuristic that domain was the game of Sergeant Major, and our heuristic

Player 3 will get at least 2 points at (a). So, the real bound onwas the number of tricks taken so far in the game. We search-

Player 1's score imaxsunm score(2) - h(3) =10-3-2=5. ed 200 random game trees to a depth of 5 tricks, which is 15
As an aside, one may notice another slight, but effective cards. Consecutive cards in a player’s hand were generated

optimization in this example. At (a), Player 2 will not choose as a single successor. Moves were ordered from high cards

another path unless he gets at least 4 points, and thus Playetio low cards. We initially did not use a transposition table or

1 gets no more than 6. Thus, since ties are broken to the leftany other techniques to speed the search. Our code expands

we have integer terminal values, and because Player 1 didabout 150k nodes per second on a Pentium Il 233 laptop,



Algorithm Full Tree DFBnB Shallow ABBnB Paranoid Paranoidtlf heuristic)
Avg. Nodes in Tree 3.33 billion  32.7 million  26.8 million  1.43 million 437,600 36,121
Reduction factor 1 102 1.22 18.7 3.27 12.1

Table 2: The average nodes expanded of the first 5 tricks in Sergeant Major and reduction factor over the next best algorithm.

depending on the problem. More research needs to be done to see what other algo-
The number of nodes in the entire tree varied from 78 rithms or methods might be applied to help with multi-player

million to 64 billion, with the average tree containing 33 search. We are continuing to work to compare the value of

billion nodes. The number of nodes expanded by each of thethese and other algorithms in real play, and as this work

algorithms varied widely, based on the difficulty of the hand. progresses we will be evaluating the assumption that we can

Because of this, we have chosen to report our results accordingise double-dummy play to model our opponents hands. It

to the average number of nodes expanded by an algorithm ovemwould be worthwhile to develop a different theoretical model

all 200 trees. These results are found in Table 2. to better explain how shallow and alpha-beta branch-and-
The first line in the table contains the average number of bound pruning works in practic&dditional work on heuris-

nodes in the entire tree. The second line contains the factortics and game search can be found in (Prieditis, Fletcher, 1998).

in reduction over the next best algorithm. The algorithms  One possibility for improving our search is to use domain

are listed left to right from worst to best. We ran the para- specific knowledge for a particular game to simplify the prob-

noid algorithm twice, once without using the heuristic in- lem. In most trick games, for instance, you must follow suit.

formation, and once using the heuristic information. This creates a loose independence between suits, which may
One interesting result is that the shallow pruning proce- be exploited to simplify the search process.

dure provides significant savings over the full tree expan-  Research in practical multi-player game search has been

sion. Thus, despite the negative theoretical results, there isvery limited. We expect that in the next few years this will

still some potential for this algorithm. change and that much progress will be made in multi-player
Another thing to notice is how much faster the paranoid game search.

algorithm is than the standard maackup rule. This speed

increase will not, however, guarantee an increase in play

quality. Under this model, a player may make very poor Acknowledgments

moves assuming all the other players might work together

much more than they really do. Double dummy play can

magnify this problem. Clearly more work is needed to dis-

tinguish which algorithms are the best to use in practice.
Unfortunately, the most obvious heuristic in Hearts, the

points taken by a player so far in the game, will only allow

branch-and-bound pruning, and not for alpha-beta branch-
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