
Abstract
Maxn (Luckhardt and Irani, 1986) is the extension of the mini-
max backup rule to multi-player games. We have shown that
only a limited version of alpha-beta pruning, shallow prun-
ing, can be applied to a maxn search tree. We extend this
work by calculating the exact bounds needed to use this prun-
ing technique. In addition, we show that branch-and-bound
pruning, using a monotonic heuristic, has the same limita-
tions as alpha-beta pruning in a maxn tree. We present a hy-
brid of these algorithms, alpha-beta branch-and-bound prun-
ing, which combines a monotonic heuristic and backed-up
values to prune even more effectively. We also briefly dis-
cuss the reduction of a n-player game to a ‘paranoid’ 2-player
game. In Sergeant Major, a 3-player card game, we averaged
node expansions over 200 height 15 trees. Shallow pruning
and branch-and-bound each reduced node expansions by a
factor of about 100. Alpha-beta branch-and-bound reduced
the expansions by an additional factor of 19. The 2-player
reduction was a factor of 3 better than alpha-beta branch-
and-bound. Using heuristic bounds in the 2-player reduction
reduced node expansions another factor of 12.

Introduction and Overview

Much work and attention has been focused on two-player
games and alpha-beta minimax search (Knuth, Moore, 1975).
This is the fundamental technique used by computers to play
at the championship level in games such as chess and check-
ers. Alpha-beta pruning works particularly well on games of
two players, or games with two teams, such as bridge. Much
less work has been focused on games with three or more
teams or players, such as Hearts. In maxn (Luckhardt and
Irani, 1986), the extension of minimax to multi-player games,
pruning is not as successful.

This paper focus on pruning techniques. There are many
open questions in multi-player games, and we cannot cover
them all here. For instance, it is unclear what the ‘best’ prac-
tical backup rule is. The techniques presented in this paper
represent just one way we can evaluate the effectiveness of
an algorithm.

We first review the maxn algorithm and the conditions un-
der which pruning can be applied to maxn. Based on this, we
show that shallow pruning in maxn cannot occur in many
multi-player games. We will examine another common prun-

ing method, branch-and-bound pruning, showing that it faces
the same limitations as alpha-beta pruning when applied to
maxn trees. Finally, we present a hybrid algorithm, alpha-
beta branch-and-bound, which combines these two pruning
techniques in multi-player games for more effective prun-
ing. We will also analyze the reduction of a n-player game
to a 2-player game.

Examples: Hearts and Sergeant Major (8-5-3)

To help make the concepts in this paper more clear, we chose
two card games, Hearts and Sergeant Major, to highlight the
successes and failures of the various algorithms presented.
Note that while the game of bridge is played with 4 players,
each player has the goal of maximizing the joint score they
share with their partner, so bridge is really a two-team game,
and standard minimax applies.

Hearts and Sergeant Major, also known as 8-5-3, are both
trick-based card games. That is, the first player plays (leads)
a card face-up on the table, and the other players follow in
order, playing the same suit if possible. When all players
have played, the player who played the highest card in the
suit that was led “wins” or “takes” the trick. He then places
the played cards in his discard pile, and leads the next trick.
This continues until all cards have been played. Cards are
dealt out to each player before the game begins, and each
game has special rules about passing cards between players
before starting. Card passing has no bearing on the work
presented here, so we ignore it.

Hearts is usually played with four players, but there are
variations for playing with three or more players. The goal
of Hearts is to take as few points as possible. Each card in the
suit of hearts is worth one point, and the queen of spades is
worth 13. A player takes points when he takes a trick which
contains point cards. At the end of the game, the sum of all
scores is always 26, and each player can score between 0 and
26. If a player takes 26 points, or “shoots the moon,” the other
players all get 26 points each. For now, we ignore this rule.

Sergeant Major is a three-player game. Each player is dealt
16 cards, and the remainder of the deck is set aside. The
ultimate goal for each player is to take as many tricks as
possible. Similar to Hearts, the sum of scores is always 16,
and each individual player can get any score from 0 to 16.

More in-depth descriptions of these and other games men-
tioned here can be found in (Hoyle et al. 1991).
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Maxn

Luckhardt’s and Irani’s extension of minimax for multi-
player games is called maxn. For a n-player game, an n-tuple
of scores records each player’s individual score for that par-
ticular game state. That is, the nth element in the tuple repre-
sents the score of the nth player. At each node in a maxn search
tree, the player to move selects the move that maximizes his
own component of the score. The entire tuple is backed up
as the maxn value of that node. In a three-player game, we
propagate triples from the leaves of the tree up to the root.

For example, in Figure 1, the triples on the leaves are the
terminal values of the tree. The number inside each square
represents the player to move at that node. At the node la-
belled (a), Player 2 will choose to back up the triple (7, 3, 0)
from the left child, because the second component of the
left child of (a), 3, is greater than the second component of
the right child of (a), 2. Player 2 does likewise at nodes (b)
and (c). Player 1 then chooses a triple from those backed up
by Player 2. At the root, the first component of Player 1’s
children is greatest at node (a). Player 1 will back this triple
up, giving the final maxn value of the tree, (7, 3, 0). Because
the maxn value is calculated in a left-to-right depth-first or-
der, a partial bound on the maxn value of a node is available
before the entire calculation is complete. Throughout this
paper we assume that nodes are generated from left to right
in the tree, and that all ties are broken to the left.

When generating a Hearts game tree, the terminal values
will be the number of points taken in the game. In Sergeant
Major, the terminal values will be the number of tricks taken.
If we are not able to search to the end of the game, we can
apply an evaluation function at the frontier nodes to gener-
ate appropriate backup values. At a minimum, this evalua-
tion would be the exact evaluation of what has occurred so
far in the game, but might also contain an estimate of what
scores are expected in the remainder of the game.

In most card games, one is not normally allowed to see
one’s opponents cards. As was suggested by (Ginsberg,
1996), we first concentrate on being able to play a completely

open (double-dummy) game where all cards are available
for all to see. In a real game, we would model the probabil-
ity of our opponent holding any given card, and then gener-
ate hundreds of random hands according to these probabil-
ity models. It is expected that solving these hands will give
a good indication of which card should actually be played.
See (Ginsberg, 1999) for an explanation of how this has been
applied to Bridge.

Duality of Maximization and Minimization

Throughout this paper we deal with games that are usually
described in terms of either maximization or minimization.
Since minimization and maximization are symmetric, we
briefly present here how the bounds used by pruning algo-
rithms are transformed when we switch from one type of
game to the other type.

There are four values we can use to describe the bounds
on players’ scores in a game. Minp and maxp are a player’s
respective minimum and maximum possible score. Minsum
and maxsum are the respective minimum and maximum pos-
sible sum of all players scores. In Hearts, minp is 0 and maxp
= maxsum = minsum = 26. In Sergeant Major, minp is also 0
and maxp = maxsum = minsum = 16. (Korf, 1991) showed
that we may be able to prune a maxn tree if minp and maxsum
are bounded. We are interested in how these bounds change
when the goal of a game is changed from minimization to
maximization. The transformation does not change the prop-
erties of the game, it simply allows us to talk about games in
their maximization forms without loss of generality.

The one-to-one mapping between the minimization and
maximization versions of a game is shown in Table 1. The
first row in the table contains the variable names for a mini-
mization problem, followed by sample values for a Hearts
game, where n, the number of players, is 3. The transforma-
tion applied to the values are in the third row: the negation
of the original value plus maxpmin. This re-normalizes the
scores so that minp is always 0. Since Hearts and Sergeant
Major are zero-sum or constant-sum games, maxsum is al-
ways the same as minsum. The final rows contain the new
score after transformation and the new variable names. The
process can be reversed to turn a maximization game into a
minimization game.

Given the symmetry of minimization and maximization,
there is also a duality in pruning algorithms. That is, for any
pruning algorithm that works on a maximization tree, we
can write the dual of that algorithm that works the same
under the equivalent minimization tree. However, just chang-
ing the goal of a game from minimization to maximization
does not create the dual of the game. The other parameter,
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Figure 1: A 3-player maxn game tree.
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Table 1: The transformation between a maximization and minimization problem, and examples for a 3-player game.



maxsum, must also be calculated. Given these observations,
we will not explicitly show dual algorithms. Unless other-
wise stated, all trees and algorithms presented here will be
for maximization problems.

Pruning in Maxn Trees

In a two-player zero-sum game, there are three types of al-
pha-beta pruning that occur: immediate, shallow, and deep
pruning. Not all of these are valid in multi-player games.

Immediate Pruning
Immediate pruning in a multi-player game is like immedi-
ate pruning in a two-player game. In a two-player game, we
immediately prune when a player gets the best possible score,
4 for max and -4 for min. In a multi-player game, we can
prune when the current player gets a score of maxp, the best
score in a multi-player game.

The opportunity to prune immediately is seen in Figure 1.
At node (b), Player 2 can get 10 points by choosing to move
towards his left child. Since maxp = 10, Player 2 can do no
better than 10 points. Thus, after examining the first child,
the second child can be pruned.

Shallow Pruning
While having a zero-sum game is a sufficient condition to
apply alpha-beta pruning to a two-player game tree, it is not
sufficient for a multi-player game tree. Given just one com-
ponent of a zero-sum multi-player game, we cannot restrict
any other single score in the game, because one of the re-
maining scores might be arbitrarily large, and another arbi-
trarily small. But, given a lower bound on each individual
score, and an upper bound on the sum of scores, we can prune.

Figure 2 contains a sample 3-player maxn tree. At node
(a), Player 1 can get at least 6 points by choosing the left-
most branch of node (a). When Player 2 examines the first
child of node (b), Player 2 gets a score of 5, meaning Player
2 will get at least 5 by choosing the left-most branch at (b).
There are 10 points available in the game, and since Player 2
will get at least 5 at node (b), Player 1 can get no more than
10 - 5 = 5 points at (b). Player 1 is guaranteed $6 points at

(a), and #5 points at (b). So, Player 1 will never move to-
wards node (b) no matter what maxn values the other chil-
dren have, and the remaining children of (b) are pruned. This
is shallow pruning, because the bound used to prune came
from (a), the parent of (b).

General Bounds for Shallow Maxn Pruning
Figure 3 shows a generic maxn tree. In this Figure we have
only included the values needed for shallow pruning. Other
values are marked by a ‘•’. When Player 1 gets a score of x
at node (a), the lower bound on Player 1’s score at the root is
then x. Assume Player 2 gets a score of y at node (c). Player
2 will then have a lower bound of y at node (b). Because of
the upper bound of maxsum on the sum of scores, Player 1 is
guaranteed less than or equal to maxsum - y at node (b).
Thus, no matter what value is at (d), if maxsum - y # x, Player
1 will not choose to move towards node (b) because he can
always do no worse by moving to node (a), and we can prune
the remaining children of node (b).

In the maximization version of Hearts, maxsum is 52, and
x and y will range between 0 and 26, meaning that we only
prune when 52 - y # x, which is only possible if x = y = 26.
In Sergeant Major maxsum is 16, and x and y will range
from 0 to 16, meaning that we will prune when 16 - y # x.

Given these examples, we extract general conditions for
pruning in multi-player games. We will use the following
variables: n is the number of players in the game, maxsum
is the upper bound on the sum of players scores, and maxp is
the upper bound on any given players score. We assume a
lower bound of zero on each score without loss of general-
ity. So, by definition, maxp # maxsum # n·maxp.

Lemma 1:
To shallow prune in a maxn tree, maxsum < 2·maxp.

Proof:
We will use the generic tree of Figure 3. To prune:

x $ maxsum - y
By definition:

2·maxp $ x + y
So,

2·maxp $ x + y $ maxsum
2·maxp $ maxsum

However, if maxsum = 2·maxp, we can only prune when
both x and y equal maxp. But, if y = maxp, we can also im-
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Figure 2: Pruning in a maxn tree.
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mediate prune. Because of this, we tighten the bound to ex-
clude this case, and the lemma holds. ¨

We can now verify what we suggested before. In the maxi-
mization version of 3-player Hearts, maxsum = 52, and maxp
= 26. Since the strict inequality of Lemma 1, 52 < 2·26, does
not hold, we can only immediate prune in Hearts. In Ser-
geant Major, the inequality 16 < 2·16 does hold, so we will
be able to shallow prune a Sergeant Major maxn tree.
Intuitive Approach.  Speaking in terms of the games as they
are normally played, it may seem odd that we can’t prune in
Hearts and we can prune in Sergeant Major, when the only
real difference in the games is that it one you try to minimize
your score, and in the other you try to maximize it. While the
preceding lemma explains the difference mathematically,
there is another explanation that may be more intuitive.

Suppose in Sergeant Major that a player is deciding be-
tween two cards, the Ace of Spades and the Ten of Clubs.
When we calculate the maxn value of the search tree, we are
calculating how well the player can expect to do when play-
ing a given card. Once we have the result of how well the
player can do with the Ace of Spades, we begin to look at
the prospects for the Ten of Clubs. We prune this search
when we have enough information to guarantee that the
player will always do no better with the Ten of Clubs than
with the Ace of Spades. We get this information based on
the dependence between the players’ scores. In Sergeant
Major, there are only 16 points available, and all players are
competing to get as many points as possible. Each trick taken
by one player is a trick denied to another player. This direct
dependence between any two players score is what gives us
the information that allows us to prune. When the next player
is guaranteed enough points to deny a better score than can
be achieved by playing the Ace of Spades, the line of play
originating from the Ten of Clubs is pruned.

In the standard minimization form of Hearts, the goal is to
take as few points as possible. Points taken by one player are
points denied to the other players. But, since all players are
trying to take as few points as possible, they don’t mind be-
ing denied points. Thus, when another player takes points, it
simply tells us that the current line of play may be better than
previous lines of play, and that we should keep exploring our
current line of play. When one player avoids taking points,
those points must be taken by the other players. But, there is
nothing that says which player must take the points. So, in
contrast to Sergeant Major, there is a lack of direct depen-
dence between two players scores, and we are unable to prune.

Deep Pruning
Returning to Figure 2, Player 1 is guaranteed a score greater
than or equal to 6 at the root node (a). We might be tempted
to prune node (d), because the bound on Player 1’s score at
(c), $5, says that Player 1 will get less than 6 points. This
would be deep pruning, because (a) is a grandparent of (c).
However, as we demonstrate here, the value at node (d) can
still affect the maxn value of the tree. (Korf 1991)

If the value of (d) is (2, 2, 6), Player 3 will choose this
value as the maxn value of (c). Player 2 at (e) will then choose
(7, 3, 0) as the maxn value of (e) since the second compo-

nent, 3, is higher than the second component of the maxn

value at (c), 2. This will result in the maxn value of (7, 3, 0)
for the entire tree, since Player 1 can then get a score of 7.

Alternatively, if the value of (d) is (0, 4, 6), the maxn value
of (c) will be (0, 4, 6). Then, at node (e), Player 2 will choose
to backup (0, 4, 6) because the second component, 4, is higher
than that in the other child, 3. This means the final maxn

value of the tree will be (6, 3, 1).
Thus, while the bounds predicted correctly that no value

at (d) will ever be the final maxn value of the tree, the differ-
ent possible values at (d) may affect the final maxn value of
the tree, and so (d) cannot be pruned.

Asymptotic Results
The asymptotic branching factor of maxn with shallow prun-
ing in the best case is á 1 + 4 b − 3 é / 2 , where b is the brute-
force branching factor without any pruning. An average case
model predicts that even under shallow pruning, the asymp-
totic branching factor will be b. (Korf, 1991)

We have shown here that in many cases, such as the game
of Hearts, even under an optimal ordering of the tree, we
would still be unable to do anything besides immediate prun-
ing. This compares poorly with the 2-player best-case as-
ymptotic branching factor of b  (Knuth, Moore 1975),
which can very nearly be achieved in two-player games.

Reduction to a Paranoid 2-Player Game
Another method to increase the pruning in a multi-player
game is to reduce the game to a two-player game. This is
done by making the ‘paranoid’ assumption that all our oppo-
nents have formed a coalition against us. Under this reduc-
tion we can use standard alpha-beta to prune our tree. This is
not a realistic assumption and can lead to suboptimal play,
but due to the pruning allowed, it may be worthwhile to ex-
amine. We will only analyze the pruning potential here.

To calculate the minimum number of nodes that need to
be examined within the game tree, we need a strategy for
min and a strategy for max. Min and max will play on the
tree in Figure 4, where max is to move at the root, with a
branching factor of b, and min moves next, with a branching
factor of bn-1. Min is the combination of the n-1 players play-
ing against the first player.

Within a strategy for max, max must look at one succes-
sor of each max node in the strategy, and all possible suc-
cessors of each min node in the strategy. Suppose the full
tree is of depth D. Max will expand b(n-1) nodes at every
other level, meaning that there are b(n-1)·D/2 leaf nodes in the

Figure 4: The reduction of a n-player game to a 2-player game.
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tree. Similarly, a min strategy must look at only one succes-
sor of each min node, and all successors of each max node,
so min will look at bD/2 nodes total. We have two players in
the reduced game, and each player has an equal number of
turns, so D is even, meaning we don’t have to consider the
floor or ceiling in the exponent.

The total nodes examined by both algorithms will be about
b(n-1)·D/2 + bD/2 nodes, which is O(b(n-1)·D/2). But, D is the depth
in the tree of Figure 4. We really want our results in terms of
the real tree that we will search. For example, if the original
tree has 3 players and is depth 12 (4 tricks), the new tree has
2 players and will also contains 4 tricks, so it will be height
8. So, for the actual tree searched, which has height d, D =
d·2/n. Thus, we re-write the asymptotic branching factor in
the best case as O(bd·(n-1)/n) to reflect the branching factor in
the actual tree.

Depth-First Branch-and-Bound Pruning

Branch-and-Bound is another common pruning technique.
It requires a monotonic heuristic, and many card games have
natural monotonic heuristics. In Hearts and Sergeant Major,
once you have taken a trick or a point you cannot lose it.
Thus, an evaluation can be applied within the tree to give a
bound on the points or tricks to be taken by a player in the
game. We use the notation h(i) $ j to indicate that the heu-
ristic is giving a lower bound score of j for player i, and h(i)
# j to indicate that the heuristic is giving an upper bound of
j on player i’s score. Suppose, for a Sergeant Major game,
the players have taken 3, 2, and 6 points respectively. Then,
h(1) $ 3 because Player 1 has taken 3 points. Also, h(1) # 8
because maxsum (16) minus the other players’ scores (8) is 8.

Single Agent Branch-and-Bound
The branch-and-bound algorithm is most commonly used in
a depth-first search to prune single-agent minimization search
trees, such as the Travelling Salesman Problem. In Figure 5,
we are trying to find the shortest path to a leaf from the root,
where edges have positive costs as labelled. Since all paths
have positive length, the cost along a path will monotoni-
cally increase, giving a lower bound on the cost to a leaf
along that path. The labels at the leaves are the actual path
costs. Next to a node is a limit on the optimal cost of a path
going through that node. If unexplored paths through a node
are guaranteed to be greater than the best path found so far,
we can prune the children of that node in the tree.

In order to draw parallels between alpha-beta pruning, we
will describe the pruning that occurs in the same terms that
we use to describe alpha-beta pruning: immediate, shallow
and deep pruning. In a two-player game, immediate pruning
occurs when we get the best score possible, a win. In the
presence of a heuristic, the best score possible is best that we
can get given the heuristic. In Figure 5, the heuristic at node
(a) says the best score we can get is 2. Since we have a path
of total cost 2 through the first child, we can prune the re-
maining children, as we have found the best possible path.

After finding the path with cost 2, we use that cost as a
bound while searching subsequent children. At node (b), our
heuristic tells us that all paths through (b) have cost higher
than the bound of 2, so all children of (b) are pruned. This is
like shallow pruning, since the bound comes from the parent
of (b). Finally, at node (c) we can prune based on the bound
of 2 on the path cost from the grandparent of (c), which is
like deep pruning.

Multi-Player Branch-and-Bound
Branch-and-bound pruning can be used to prune a maxn tree,
but under maxn it is limited by the same factors as alpha-beta
pruning, namely we cannot use the bound at a node to prune
at its grandchild. As with deep alpha-beta pruning, while the
maxn value of the pruned nodes will never be the maxn value
of the tree, they still have the potential to affect it. We will
demonstrate this here, but because the proof is identical to
the proof of why deep alpha-beta pruning does not work
(Korf, 1991), we omit the proof.

In Figure 6 we show a portion of a maxn tree and demon-
strates how branch-and-bound can prune parts of the tree.
Immediate pruning occurs at node (a). At the left child of
(a), Player 2 can get a score of 9. Since the h(2) # 9, we
know Player 2 cannot get a better score from another child,
and the remaining children are pruned.

Shallow pruning occurs at node (b) when the bound from
the parent combines with the heuristic to prune the children
of (b). Player 1 is guaranteed 7 or more at the root. So, when
Player 1’s heuristic at (b) guarantees a score of 5 or less, we
prune all the children of (b), since Player 1 can always do
better by moving to node (a).

Finally, deep branch-and-bound pruning, like deep alpha-
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Figure 5: A single-agent depth-first branch-and-bound problem.
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Figure 6: Branch-and-bound pruning in a maxn tree.
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beta pruning, can incorrectly affect the calculation of the
maxn value of the game tree. The partial maxn value at the
root of the tree in Figure 6 guarantees Player 1 a score of 7
or better. At node (c), Player 1 is guaranteed less than or
equal to 5 points by the heuristic. Thus, we might be tempted
to prune the children of (c), since Player 1 can do better by
moving to node (a). But, this reasoning does not take into
account the actions of Player 2.

Depending on which value we place at the child of (c), (5,
8, 3) or (5, 3, 8), Player 2 will either select (5, 8, 3) from
node (c) or (10, 5, 1) from node (d)’s right branch to back up
as the maxn value of node (d). Player 1 would then choose
the root maxn value to be either (7, 9, 0) or (10, 5, 1). So,
while the bounds on node (c) will keep it from being the
maxn value of the tree, it has the potential to affect the maxn

value of the tree.

Alpha-Beta Branch-and-Bound Pruning
Now that we have two relatively independent techniques for
pruning a multi-player game tree, we show how these tech-
niques can be combined. Shallow pruning makes compari-
sons between two players’ backed up scores to prune. Branch-
and-bound compares a monotonic heuristic to a player’s score
to prune. Alpha-beta branch-and-bound pruning uses both
the comparison between backed up scores and monotonic
heuristic limits on scores to prune even more effectively.

Looking at Figure 7, we see an example where shallow
pruning applies. We have bounds on the root value of the
tree from its left branch. After searching the left child of node
(a) we get bounds on the maxn value of (a). We place an up-
per bound of 7 on Player 1’s score, because Player 2 is guar-
anteed at least 3 points, and 10 (maxsum) - 3 = 7. This value
does not conflict with the partial maxn bound on the root, so
we cannot prune. We have a bound from our heuristic, but
because it is not Player 3’s turn, we can not use that by itself
to prune either. But, if we combine this information, we can
tighten our bounds. We know from backed up values that
Player 2 will get at least 3 points and from our heuristic that
Player 3 will get at least 2 points at (a). So, the real bound on
Player 1’s score is maxsum - score(2) - h(3) = 10 - 3 - 2 = 5.

As an aside, one may notice another slight, but effective
optimization in this example. At (a), Player 2 will not choose
another path unless he gets at least 4 points, and thus Player
1 gets no more than 6. Thus, since ties are broken to the left,
we have integer terminal values, and because Player 1 did

not get 7 points at the left child of (a), the shallow bound
itself is sufficient to prune the right branch of (a).

In a n-player game where we normally only compare the
scores of two players, we can further decrease our bound for
pruning by subtracting the heuristic value for the remaining
(n - 2) players. That is, if we have a lower bound on Player
i’s score from our parent, and Player j is to play at the current
node, the upper bound on Player i’s score at the next node is
maxsum - score(j) - ∑h(x) {for x ≠ i or j}. In a two-player
game, this reduces to plain alpha-beta.

The alpha-beta branch-and-bound procedure is as follows.
In this procedure, we use hup to represent a heuristic upper
bound and hlow to represent a heuristic lower bound. Bound is
the upper bound on Player’s score.

ABBnB(Node, Player, Bound)
IF Node is terminal, RETURN static value
/*  shallow branch-and-bound pruning  */
IF (h up(Prev Player) # maxsum - Bound)
   RETURN static value
Best=ABBnB(first Child, next Player, maxsum)
/* Calculate our opponents guaranteed points  */
Heuristic = ∑hlow (n) [n ≠Player or prev. Player]
FOR each remaining Child
  IF (Best[Player] $ Bound-Heuristic) OR

   (Best[Player] = h up(Player))
RETURN Best

  Current = ABBnB(next Child, next Player,
maxsum - Best[Player])

  IF (Current[Player] > Best[Player])
Best = Current

RETURN Best

This procedure will always prune as much as shallow branch-
and-bound pruning or shallow alpha-beta pruning. So, while
we lose the ability to do deep pruning in a multi-player game,
we may be able to use alpha-beta branch-and-bound prun-
ing to prune more than we would be able to with just alpha-
beta or branch-and-bound pruning alone.

Disregarding immediate branch-and-bound pruning, Al-
pha-beta branch-and-bound will have the same best-case
performance as shallow pruning. If we have perfect order-
ing and a perfect heuristic, immediate branch-and-bound
pruning could drastically shrink the search tree.

Experimental Results

We tested alpha-beta branch-and-bound (ABBnB) to see how
it compared to branch-and-bound (BnB), alpha-beta shal-
low pruning, and the paranoid 2-player reduction. Our test
domain was the game of Sergeant Major, and our heuristic
was the number of tricks taken so far in the game. We search-
ed 200 random game trees to a depth of 5 tricks, which is 15
cards. Consecutive cards in a player’s hand were generated
as a single successor. Moves were ordered from high cards
to low cards. We initially did not use a transposition table or
any other techniques to speed the search. Our code expands
about 150k nodes per second on a Pentium II 233 laptop,
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Figure 7: Alpha-beta branch-and-bound pruning.
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depending on the problem.
The number of nodes in the entire tree varied from 78

million to 64 billion, with the average tree containing 33
billion nodes. The number of nodes expanded by each of the
algorithms varied widely, based on the difficulty of the hand.
Because of this, we have chosen to report our results according
to the average number of nodes expanded by an algorithm over
all 200 trees. These results are found in Table 2.

The first line in the table contains the average number of
nodes in the entire tree. The second line contains the factor
in reduction over the next best algorithm. The algorithms
are listed left to right from worst to best. We ran the para-
noid algorithm twice, once without using the heuristic in-
formation, and once using the heuristic information.

One interesting result is that the shallow pruning proce-
dure provides significant savings over the full tree expan-
sion. Thus, despite the negative theoretical results, there is
still some potential for this algorithm.

Another thing to notice is how much faster the paranoid
algorithm is than the standard maxn backup rule. This speed
increase will not, however, guarantee an increase in play
quality. Under this model, a player may make very poor
moves assuming all the other players might work together
much more than they really do. Double dummy play can
magnify this problem. Clearly more work is needed to dis-
tinguish which algorithms are the best to use in practice.

Unfortunately, the most obvious heuristic in Hearts, the
points taken by a player so far in the game, will only allow
branch-and-bound pruning, and not for alpha-beta branch-
and-bound pruning. This is because this heuristic comes di-
rectly from the evaluation function, which already doesn’t
allow shallow pruning. However, a heuristic that came from
a different evaluation might allow some pruning.

Conclusion and Future Work

We have refined the bounds needed to prune a maxn tree us-
ing shallow pruning and introduced the alpha-beta branch-
and-bound algorithm. While this algorithm is quite effective
at reducing the number of nodes expanded in a maxn tree, it
still cannot compare to two-player alpha-beta pruning. A
bridge hand can be search in its entirety, but we are not close
to doing this in multi-player games such as Sergeant Major,
and we are even farther from doing it in Hearts. Alpha-beta
branch-and-bound can solve 8-card hands (complete depth
24 trees) to completion in times ranging from a few seconds
to about a minute. We are working on a implementation of
Partition Search (Ginsberg, 1996) to see how this algorithm
benefits searches on deeper trees. Our initial transposition
table reduced node expansions by a factor of 3, but also
slowed our program by the same factor.

More research needs to be done to see what other algo-
rithms or methods might be applied to help with multi-player
search. We are continuing to work to compare the value of
these and other algorithms in real play, and as this work
progresses we will be evaluating the assumption that we can
use double-dummy play to model our opponents hands. It
would be worthwhile to develop a different theoretical model
to better explain how shallow and alpha-beta branch-and-
bound pruning works in practice. Additional work on heuris-
tics and game search can be found in (Prieditis, Fletcher, 1998).

One possibility for improving our search is to use domain
specific knowledge for a particular game to simplify the prob-
lem. In most trick games, for instance, you must follow suit.
This creates a loose independence between suits, which may
be exploited to simplify the search process.

Research in practical multi-player game search has been
very limited. We expect that in the next few years this will
change and that much progress will be made in multi-player
game search.
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