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Introduction

We introduce matrix differentiation concepts and techniques up to a level
commonly used in statistics and data science.

The main constraint for the set of functions that we will differentiate is
that the sum of dimensions across the input and output must be at most
two. (Why?)

Some examples of possible functions are:

f : R → Rn e.g. parameter of symmetric Dirichlet

f : Rn → R e.g. vector norm

f : Rn×n → R e.g. determinant

f : Rn → Rn e.g. linear transformations

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 3 / 39



Introduction

We introduce matrix differentiation concepts and techniques up to a level
commonly used in statistics and data science.

The main constraint for the set of functions that we will differentiate is
that the sum of dimensions across the input and output must be at most
two. (Why?)

Some examples of possible functions are:

f : R → Rn e.g. parameter of symmetric Dirichlet

f : Rn → R e.g. vector norm

f : Rn×n → R e.g. determinant

f : Rn → Rn e.g. linear transformations

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 3 / 39



Conventions

We will use:

a small letter (such as x and y) to refer to scalars

a small letter with an arrow (such as ~x or ~y) to refer to vectors

a capital letter (such as X or Y ) to refer to matrices

All vectors in this article are column vectors unless otherwise specified,
meaning that entries are stacked on top of each other; they could also be
seen as matrices with only one column.
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Conventions

It is often more convenient to write
dx2

dx
in place of

df

dx
, where f = x2.

In statistics in particular, we often write variables in terms of another, e.g.
~y = 2~x (we say that ~y is parametrized by ~x); then we might consider the

derivative of ~y with respect to ~x , which is written
d~y

d~x
.

For the rest of this lecture, we will use u, v , y to indicate variables
parametrized by x , and a, b to indicate constant variables.

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 5 / 39



Conventions

It is often more convenient to write
dx2

dx
in place of

df

dx
, where f = x2.

In statistics in particular, we often write variables in terms of another, e.g.
~y = 2~x (we say that ~y is parametrized by ~x); then we might consider the

derivative of ~y with respect to ~x , which is written
d~y

d~x
.

For the rest of this lecture, we will use u, v , y to indicate variables
parametrized by x , and a, b to indicate constant variables.

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 5 / 39



Vector Differentiation

The simplest form of multivariable differentiation, vector differentiation
generalizes the one-dimensional concept of a derivative to functions with
vector-valued inputs or outputs.

We develop the concept of the gradient by generalizing the limit definition
of the (single-variable) derivative, which is

lim
t→0

f (x + t)− f (x)

t
= f ′(x),

to functions where the input is a vector.

In the multivariable case, what t → 0 means is less clear, as there are
many directions in which one could approach a point in Rn.
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Gradient

Given a vector ~d with the same dimension as ~x , we could consider the limit

∇f (~x)[~d ] := lim
t→0

f (~x + t ~d)− f (~x)

t
,

which may be thought of as a function of both ~x and ~d .

If we want a definition for the multidimensional derivative
df

d~x
at a given

point ~x , it should not depend on d .
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Gradient

It turns out, assuming that the function f is differentiable, that there
exists a vector ∇f such that ∇f (~x)[~d ] = ∇f (~x) · ~d for all d ∈ Rn, allowing
us to separate the direction ~d and the actual multidimensional derivative.

In particular, the expression for this ∇f (~x) that satisfies the above
property is

∇f (~x) =

[
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

]
.

This gets the name “gradient” as it represents the set of slopes around a
point as one moves one unit in each dimension parallel to the n axes.
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Gradient

Let’s formally define the gradient.

Definition

The gradient vector represents the derivative for a function f : Rn → R.
If the function is differentiable, the gradient is equal to the 1× n vector

where the ith entry is

[
∂f

∂~x

]
i

=
∂f

∂xi
.

Example

Consider the function f (~x) = (x2
1 + x2

2 ). Then
∂f

∂x1
= 2x1,

∂f

∂x2
= 2x2, and

so
df

d~x
= ∇f (~x) = (2x1, 2x2).
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Jacobian

Next, we turn to functions ~f : Rn → Rm where both the input and output
are vectors. We treat the gradient vectors for each entry separately.

As we have defined the gradient for a single-variable function as a row
vector, for a function with vector output we could stack these m row
vectors on top of one another to get an m × n matrix.

This matrix is called the Jacobian.

df1
d~x
df2
d~x
...

dfm
d~x


=


∇f1(~x)

∇f2(~x)

...

∇fm(~x)

 =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


.
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Jacobian

This definition allows us to extend the limit definition of a multivariable
derivative to the Jacobian, as it only involves stacking gradients:

lim
t→0

~f (~x + t ~d)− ~f (~x)

t
= ∇~f (~x)[~d ] =


∇f1(~x)

∇f2(~x)

...

∇fn(~x)

 · ~d = Jf · ~d .
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Jacobian

Definition

The Jacobian matrix represents the derivative for a function
f : Rn → Rm. It is defined as the m × n matrix where the term at the ith

row and jth column is

[
∂~f

∂~x

]
ij

=
∂fi
∂xj

.

Example

Consider the function ~f (~x) = (x2
1 + x2

2 , x
3
2 ). Then,

d~f

d~x
=


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

[
2x1 2x2

0 3x2
2

]
.
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Hessian

In the one-dimensional case, f : R→ R, we can take the derivative f ′(x),
and then take the derivative f ′′(x) of f ′(x).

Now, if we have f : Rn → R, the cross-partial derivatives (i.e. ∂2f
∂xi∂xj

may

be of interest in certain applications.

We can arrange this into a matrix, called the Hessian matrix Hf of
function f , such that the entry at the ith row and jth column of the
Hessian is the partial derivative with respect to xi of the partial derivative
of the function with respect to xj .
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Hessian

This definition of Hf gives an analogue of the second derivative for
vectors, where the second derivative is taken with respect to the transpose
of the vector.

Indeed, basing off the above definition, we notice that the ith column of
the Hessian Hf is the the gradient vector of the ith entry of the gradient
∇f (~x), with respect to ~x .

Based on this interpretation, if we consider the gradient to be a function
itself, as in ∇f : Rn → Rn, transpose into a column vector, and then
taking the Jacobian of the transpose.

Transposing again gives the Hessian Hf :

Hf (~x) = Jf ((∇f (~x))T )T

.
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Hessian

Based on the above definition, we thus can write:

Hf (~x) =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

. . . ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
. . . ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

. . . ∂2f (x)
∂x2

n

 =



∂

∂~x
[∇f (~x)]1

∂

∂~x
[∇f (~x)]2

...

∂

∂~x
[∇f (~x)]n



T

= Jf ((∇f (~x))T )

Definition

The Hessian matrix, denoted Hf represents the second derivative for a
function f : Rn → R. It is defined as the n × n matrix where the term at

the ith row and jth column is

[
∂2f

∂~x∂~xT

]
ij

=
∂2f

∂xi∂xj
.
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Hessian

Based on the above definition, we thus can write:

Hf (~x) =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

. . . ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
. . . ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

. . . ∂2f (x)
∂x2

n

 =



∂

∂~x
[∇f (~x)]1

∂

∂~x
[∇f (~x)]2

...

∂

∂~x
[∇f (~x)]n



T

= Jf ((∇f (~x))T )

The Hessian matrix is symmetric because
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
subject to

certain analytic conditions that are satisfied by most continuous functions
used in statistics.
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Hessian

Example

Let f (~x) = x2
2 + x1x2 + x2

3 . Then

∂

∂x1

[
∂

∂x2
f (~x)

]
=

∂

∂x1
(2x2 + x1) = 1.

Another example is that

∂

∂x3

[
∂

∂x3

]
=

∂

∂x3
(2x3) = 2.

Computing all the other entries, we can get that the Hessian is0 1 0
1 2 0
0 0 2

 .
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Motivation for Layouts

At this point, although the definitions for the gradient, Jacobian, and
Hessian may make intuitive sense, some aspects of our definition may
seem to be a matter of preference.

For example, in the definition of the gradient, it is not clear why it is
defined as a row rather than a column of partial derivatives.

Consider f : Rn → Rm. Generalizing from the limit definition of a
derivative, we could write the linear approximation form

∆~f =

(
d~f

d~x

)
·∆~x .

As ∆~f is an m × 1 vector and ∆~x is an n × 1 vector, a single expression

for
d~f

d~x
will be an m × n matrix.
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Motivation for Layouts

In the scalar case, this definition is the only sensible one. In the case of a
scalar-valued function f , however, we might want to make ∆f be the dot

product of
df

d~x
and ∆~x , as this is typically how vectors are multiplied.

This gives the equation

∆f =

(
df

d~x

)T

·∆~x ,

and extending to a vector-valued function f gives

∆~f =

(
d~f

d~x

)T

·∆~x .

As

(
d~f

d~x

)T

has dimension m × n,

(
d~f

d~x

)
has dimension n ×m.
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Motivation for Layouts

The two possible equations representing the same concept is the basis for
the two multivariable differentiation layouts.

∆~f =

(
d~f

d~x

)
·∆~x leads to the numerator layout

∆f =

(
df

d~x

)T

·∆~x leads to the denominator layout

There is no one correct layout as it is possible to derive internally
consistent composition rules for both layouts.

Our composition rules below do not work even when you use denominator
layout consistently!

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 20 / 39



Motivation for Layouts

The two possible equations representing the same concept is the basis for
the two multivariable differentiation layouts.

∆~f =

(
d~f

d~x

)
·∆~x leads to the numerator layout

∆f =

(
df

d~x

)T

·∆~x leads to the denominator layout

There is no one correct layout as it is possible to derive internally
consistent composition rules for both layouts.

Our composition rules below do not work even when you use denominator
layout consistently!

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 20 / 39



Numerator Layout

If we start with the equation ∆~f = (
d~f

d~x
) ·∆~x , then column i of the matrix

d~f

d~x
must correspond to ith entry of the vector ∆~x for the dot product to

hold, i.e.

∆~f =
n∑

i=1

∂~f

∂xi
∆xi .

Hence each
∂~f

∂xi
would be the ith column of the matrix

d~f

d~x
, yielding

d~f

d~x
=

[
∂~f

∂x1

∂~f

∂x2
· · · ∂~f

∂xn

]
.
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Numerator Layout

Expanding each of the columns along the components of ~f gives

d~f

d~x
=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


=

[
∂fi
∂xj

]
1≤i≤m,1≤j≤n

.
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Numerator Layout

Another view involves compressing each row of the expanded form as a
single expression, as in

d~f

d~x
=



df1
d~x
df2
d~x
· · ·
dfm
d~x


.

This is called the numerator layout because the expression in the
numerator, which is a column vector, maintains its orientation in the

matrix
d~f

d~x
, if the expression is specialized to a single xi . Conversely, the

expression in the denominator, which is also a column vector, has its

orientation transposed in
d~f

d~x
, if the expression is specialized to a single fj .
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Denominator Layout

On the other hand, if we start with the equation ∆~f = (
d~f

d~x
)T ·∆~x , then

row i of the matrix
d~f

d~x
must correspond to ith entry of the vector ∆~x for

the dot product to hold, i.e.

∆~f =
n∑

i=1

(
∂~f

∂xi
)T∆xi .
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Denominator Layout

Hence each
∂~f

∂xi
would be the ith row of the matrix

d~f

d~x
, yielding

d~f

d~x
=



∂~f

∂x1

∂~f

∂x2

· · ·

∂~f

∂xn


.

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 25 / 39



Denominator Layout

Expanding each of the columns along the components of ~f gives

d~f

d~x
=



∂f1
∂x1

∂f2
∂x1

· · · ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fm
∂x2

...
...

. . .
...

∂f1
∂xn

∂f2
∂xn

· · · ∂fm
∂xn


=

[
∂fj
∂xi

]
1≤i≤n,1≤j≤m

.
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Denominator Layout

Another view involves compressing each column of the expanded form as a
single expression, as in

d~f

d~x
=

[
df1
d~x

df2
d~x

· · · dfm
d~x

]
.

This is called the denominator layout because the expression in the
denominator, which is a column vector, maintains its orientation in the

matrix
d~f

d~x
, if the expression is specialized to a single fi .

Conversely, the expression in the numerator, which is also a column vector,

has its orientation transposed in
d~f

d~x
, if the expression is specialized to a

single xj . Note that this class does not use this layout, we simply present
this for informational reasons.
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Introduction

The previous sections have discussed how to differentiate functions of the
general form f : Rn → Rm and take the second derivatives for functions of
the form f : Rn → R.

If we allow either the numerator or denominator expression in our
derivative to go beyond vectors, however, we run into a serious dimension
constraint, as a matrix has only two dimensions.

Therefore, we will only consider two forms of matrix derivatives:
df

dX
(f : Rm×n → R), and

dF

dx
(F : R → Rm×n).
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df

dX
This matrix derivative represents the matrix analogue for a gradient.

In the numerator layout, treating X as a row vector of column vectors,
df

dX
has dimension n ×m and could be seen as column vector of the gradients
of f with respect to each of the column vectors in X.

df

dX
=



∂f

∂~X·1
∂f

∂~X·2
...

∂f

∂~X·n


=



∂f

∂X11

∂f

∂X21
· · · ∂f

∂Xm1
∂f

∂X12

∂f

∂X22
· · · ∂f

∂Xm2
...

...
. . .

...

∂f

∂X1n

∂f

∂X2n
· · · ∂f

∂Xmn


=

[
∂f

∂Xji

]
1≤i≤m,1≤j≤n

.
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dF

dx

This matrix derivative represents the matrix analogue for a parametrized
vector derivative.

In the numerator layout,
dF

dx
is an m × n matrix where each entry is the

derivative of the corresponding entry in F with respect to x .

dF

dx
=



dF11

dx

dF12

dx
· · · dF1n

dx
dF21

dx

dF22

dx
· · · dF2n

dx
...

...
. . .

...

dFm1

dx

dFm2

dx
· · · dFmn

dx


=

[
dFij

dx

]
1≤i≤m,1≤j≤n

.
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Basic Example

Example

For any n-dimensional vector ~x ,

d~x

d~x
= In,

where In is the n × n identity matrix.

Proof: By definition, for any n-dimensional vector ~d ,

d~x

d~x
· ~d = lim

t→0

(~x + t ~d)− (~x)

t

= ~d .

We note that
d~x

d~x
= In satisfies the limit definition.
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More Involved Example

Example

For any n-dimensional vector ~x and n × n constant matrix A,

d~xTA~x

d~x
= ~xT (A + AT ).

Proof: By definition, for any n-dimensional vector ~d ,

d~xTA~x

d~x
· ~d = lim

t→0

(~x + t ~d)TA(~x + t ~d)− ~xTA~x

t

= lim
t→0

(
~dTA~x + ~xTA~d + t ~dTA~d

)
= ~dTA~x + ~xTA~d

= ~xTAT ~d + ~xTA~d

= ~xT (A + AT )~d .

We note that
d~xTA~x

d~x
= ~xT (A + AT ) satisfies the limit definition.

6.S087 IAP 2021, Lecture 1 (MIT EECS) Vector and Matrix Differentiation January 4, 2021 32 / 39



Constant Product

Since left- or right-multiplying by a matrix (or vector or scalar) are linear
transformations, the linearity of differentiation allows any constant factors
to be factored out of the differential term:

1
d(au)

dX
= a

du

dX
if a is constant with respect to X.

2
dA~u

d~x
= A

d~u

d~x
if A is a constant w.r.t ~x .

3
dAUB

dx
= A

dU

dx
B if A,B are constants with respect to x .

Entry-based proofs of these formulas are left as an exercise.
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Addition Rule

The linearity of differentiation shows the derivative of a sum is the sum of
the derivatives of the summands:

1
d(u + v)

dX
=

du

dX
+

dv

dX

2
d(~u + ~v)

d~x
=

d~u

d~x
+

d~v

d~x

3
d(U + V)

dx
=

dU

dx
+

dV

dx

Entry-based proofs of these formulas are left as an exercise.
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Product Rule

We know that a product rule for vector and matrix differentiation
necessarily holds for one-entry vectors and matrices, so it necessarily has a
similar form as the product rule for scalars. However, bear in mind that
transposes and the order of multiplication both matter when the terms
involved are multidimensional.

1
duv

dX
= u

dv

dX
+ v

du

dX

2
d~uT~v

d~x
= ~uT

d~v

d~x
+ ~vT

d~u

d~x

3
dUV

dx
= U

dV

dx
+

dU

dx
V

We will use an entry-wise proof for Rule 3; similar proofs for the other
formulae are left as an exercise.
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Proof of
dUV

dx
= U

dV

dx
+

dU

dx
V

Proof.

For any indices i , j ,[
dUV

dx

]
ij

=
d [UV]ij

dx
=
∑
k

dUikVkj

dx

=
∑
k

(
Uik

dVkj

dx
+ Vkj

dUik

dx

)
=
∑
k

Uik

[
dV

dx

]
kj

+
∑
k

Vkj

[
dU

dx

]
ik

=

[
U
dV

dx

]
ij

+

[
dU

dx
V

]
ij

.
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Chain Rule

Similar to the one-dimensional chain rule, we can write the derivative of y

with respect to x when y = y(u), u = u(x) in terms of
dy

du
and

du

dx
.

However, in the multidimensional case, we instead seek is the sum of the
partial derivatives; in particular, if ui is a (scalar) entry of u, then the total
derivative is

dy

dx
=
∑
i

∂y

∂ui

dui
dx

1
dy

dX
=

dy

du
· du
dX

2
d~y

d~x
=

d~y

d~u
· d

~u

d~x

3
dY

dx
=

dY

du
· du
dx
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Proof of
d~y

d~x
=

d~y

d~u
· d

~u

d~x

Proof.

For any indices i , j , [
d~y

d~x

]
ij

=
∂yi
∂xj

=
∑
k

∂yi
∂uk

∂uk
∂xj

=
∑
k

[
d~y

d~u

]
ik

[
d~u

d~x

]
kj

=

[
d~y

d~u
· d

~u

d~x

]
ij

.

Hence
d~y

d~x
=

d~y

d~u
· d

~u

d~x
as desired.
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Chain Rule

We note that we cannot use a matrix as U in a chain rule with our
definitions so far.

The reason that we can use a vector as ~u is because matrix multiplication

sums up the partial derivatives correctly; each row in
d~y

d~u
is the row vector

d~yi
d~u

, and each column in
d~u

d~x
is the column vector

d~u

d~xj
. Matrix

multiplication takes the dot product of the two vectors, thus summing the
product of the corresponding partial derivatives together.

We can easily observe that if U were a matrix and x , y scalars, the matrix

product would not sum up
∂y

∂Uij
·
∂Uij

∂x
correctly. The correct approach is

to take the sum of the element-wise product of the two matrices.
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