
PARSHL: An Analysis/Synthesis Program for Non-Harmonic

Sounds Based on a Sinusoidal Representation∗

Julius O. Smith III†(jos@ccrma.stanford.edu)
Xavier Serra (xjs@ccrma.stanford.edu)

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

Abstract

This paper describes a peak-tracking spectrum analyzer, called Parshl, which is useful for
extracting additive synthesis parameters from inharmonic sounds such as the piano. Parshl is
based on the Short-Time Fourier Transform (STFT), adding features for tracking the amplitude,
frequency, and phase trajectories of spectral lines from one FFT to the next. Parshl can be
thought of as an “inharmonic phase vocoder” which uses tracking vocoder analysis channels
instead of a fixed harmonic filter bank as used in previous FFT-based vocoders.

∗This is the original full version from which the Technical Report (CCRMA STAN-M-43) and conference paper
(ICMC-87) were prepared. Additionally, minor corrections are included, and a few pointers to more recent work have
been added.

†Work supported in part by Dynacord, Inc., 1985

1

http://www-ccrma.stanford.edu/~{}jos
mailto:jos@ccrma.stanford.edu
http://www.iua.upf.es/~xserra/articles/msm/
mailto:xjs@ccrma.stanford.edu
http://www-ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Contents

1 Introduction and Overview 3

2 Outline of the Program 5

3 Analysis Window (Step 1) 6

4 Filling the FFT Input Buffer (Step 2) 9

5 Peak Detection (Steps 3 and 4) 10

6 Peak Matching (Step 5) 13

7 Parameter Modifications (Step 6) 14

8 Synthesis (Step 7) 16

9 Magnitude-only Analysis/Synthesis 18

10 Preprocessing 18

11 Applications 19

12 Conclusions 20

2

1 Introduction and Overview

Short-Time Fourier Transform (STFT) techniques [1, 3, 2, 5, 17, 18, 19] are widely used in computer
music applications [6, 13] for analysis-based additive synthesis. With these techniques, the signal
is modeled as a sum of sine waves, and the parameters to be determined by analysis are the slowly
time-varying amplitude and frequency for each sine wave.

In the following subsections, we will review the short-time Fourier transform, the phase vocoder,
additive synthesis, and overlap-add synthesis. We then close the introduction with an outline of
the remainder of the paper.

The Short-Time Fourier Transform (STFT)

Computation of the STFT consists of the following steps:
1. Read M samples of the input signal x into a local buffer,

xm(n)
∆
= x(n − mR), n = −Mh,−Mh + 1, . . . ,−1, 0, 1, . . . , Mh − 1, Mh

where xm is called the mth frame of the input signal, and M
∆
= 2Mh +1 is the frame length (which

we assume is odd for reasons to be discussed later). The time advance R (in samples) from one
frame to the next is called the hop size.

2. Multiply the data frame pointwise by a length M spectrum analysis window w(n), n =
−Mh, . . . , Mh to obtain the mth windowed data frame:

x̃m(n)
∆
= xm(n)w(n), n = −

M − 1

2
, . . . ,

M − 1

2

3. Extend x̃m with zeros on both sides to obtain a zero-padded windowed data frame:

x̃′
m(n)

∆
=















x̃m(n), |n| ≤ M−1
2

0, M−1
2 < n ≤ N

2 − 1

0, −N
2 ≤ n < −M−1

2

where N is the FFT size, chosen to be a power of two larger than M . The number N/M is called
the zero-padding factor.

4. Take a length N FFT of x̃m to obtain the STFT at time m:

x̃′
m(ejωk) =

N/2−1
∑

n=−N/2

x̃′
m(n)e−jωknT

where ωk = 2πkfs/N , and fs = 1/T is the sampling rate in Hz. The STFT bin number is k. Each
bin x̃′

m(ejωk) of the STFT can be regarded as a sample of the complex signal at the output of a
lowpass filter whose input is x̃′

m(n)e−jωkmT ; this signal is x̃′
m(n) frequency-shifted so that frequency

ωk is moved to 0 Hz. In this interpretation, the hop size R is the downsampling factor applied to
each bandpass output, and the analysis window w(·) is the impulse response of the anti-aliasing

filter used with the downsampling.
The zero-padding factor is the interpolation factor for the spectrum, i.e., each FFT bin is

replaced by N/M bins, interpolating the spectrum.

3

The Phase Vocoder

The steps normally taken by a “phase vocoder” to measure instantaneous amplitude and frequency
for each bin of the current STFT frame are as follows (extending the four steps of the previous
section):

5. Convert each FFT bin x̃′
m(ejωk) from rectangular to polar form to get the magnitude and

phase in each FFT bin, and differentiate the unwrapped phase to obtain instantaneous frequency:

Ak(m)
∆
=

∣

∣x̃′
m(ejωk)

∣

∣ (1)

Θk(m)
∆
= ∠x̃′

m(ejωk) (radians) (2)

Fk(m)
∆
=

Θk(m) − Θk(m − 1)

2πRT
(Hz) (3)

Additive Synthesis

To obtain oscillator-control envelopes for additive synthesis, the amplitude, frequency, and phase
trajectories are estimated once per FFT hop by the STFT. It is customary in computer music
to linearly interpolate the amplitude and frequency trajectories from one hop to the next. Call
these signals Âk(n) and F̂k(n), defined now for all n at the normal signal sampling rate. The
phase is usually discarded at this stage and redefined as the integral of the instantaneous frequency

when needed: Θ̂k(n)
∆
= Θ̂k(n − 1) + 2πT F̂k(n). When phase must be matched in a given frame,

the frequency can instead move quadratically across the frame to provide cubic polynomial phase
interpolation [12], or a second linear breakpoint can be introduced somewhere in the frame for the
frequency trajectory.

6. Apply any desired modification to the analysis data, such as time scaling, pitch transposition,
formant modification, etc.

7. Use the (possibly modified) amplitude and frequency trajectories to control a summing
oscillator bank:

x̂(n)
∆
=

1

N

N/2−1
∑

k=−N/2+1

Âk(n)ejΘ̂k(n) (4)

=
2

N

N/2−1
∑

k=0

Âk(n) cos(Θ̂k(n)) (5)

Overlap-Add Synthesis

A less computationally expensive alternative to sinusoidal summation is called overlap-add recon-
struction [1, 3] which consists of the following steps:

6. Apply any desired modification to the spectra, such as multiplying by a filter frequency
response function, to obtain the modified frame spectrum X̂ ′

m. Additionally, desired spectral com-
ponents can be added to the FFT buffer [4, 21].

4

7. Inverse FFT X̂ ′
m to obtain the windowed output frame:

x̂′
m(n) =

1

N

N/2−1
∑

k=−N/2

X̂ ′
m(ejωk)ejωkn

8. Reconstruct the final output by overlapping and adding the windowed output frames:

x̂(n) =
∑

m

x̂′
m(n − mR)

Analysis and resynthesis by overlap-add (in the absence of spectral modifications) is an identity

operation if the overlapped and added analysis windows sum to unity, i.e., if

Aw(n)
∆
=

∞
∑

m=−∞

w(n − mR) = 1 (6)

for every n. If the overlap-added window function Aw(n) is not constant, it is then an amplitude

modulation envelope with period R. That is, when the analysis window does not displace and
add to a constant, the output is amplitude modulated by a periodic signal having its fundamental
frequency at the frame rate fs/R. Frame rate distortion of this kind may be seen as AM sidebands
with spacing fs/R in a spectrogram of the output signal. Not too surprisingly, condition Eq. (6)
can be shown (by means of the “digital Poisson summation formula” [16]) to be equivalent to the
condition that W (ejωk) be 0 at all harmonics of the frame rate fs/R.

Parshl

Parshl performs data-reduction on the STFT appropriate for inharmonic, quasi-sinusoidal-sum
signals. The goal is to track only the most prominent peaks in the spectrum of the input signal,
sampling the amplitude approximately once per period of the lowest frequency in the analysis
band. Parshl will do either additive synthesis or overlap-add synthesis, or both, depending on the
application.

An outline of Parshl appears in §2, and Sections 3 to 8 discuss parameter-selection and algo-
rithmic issues. Section 9 discusses analysis and resynthesis without phase information. Section 10
centers on the preprocessing of the input signal for better analysis/synthesis results. In §11 some
applications are mentioned.

2 Outline of the Program

Parshl follows the amplitude, frequency, and phase1 of the most prominent peaks over time in
a series of spectra, computed using the Fast Fourier Transform (FFT). The synthesis part of the
program uses the analysis parameters, or their modification, to generate a sinewave for every peak
track found.

The steps carried out by Parshl are as follows:

1The version written in 1985 did not support phase. Phase support was added much later by the second author
in the context of his Ph.D. research, based on the work of McAulay and Quatieri [12].

5

1. Compute the STFT x̃′
m(ejωk) using the frame size, window type, FFT size, and hop size

specified by the user.
2. Compute the squared magnitude spectrum in dB (20 log10

∣

∣x̃′
m(ejωk)

∣

∣).
3. Find the bin numbers (frequency samples) of the spectral peaks. Parabolic interpolation is

used to refine the peak location estimates. Three spectral samples (in dB) consisting of the local
peak in the FFT and the samples on either side of it suffice to determine the parabola used.

4. The magnitude and phase of each peak is calculated from the maximum of the parabola
determined in the previous step. The parabola is evaluated separately on the real and imaginary
parts of the spectrum to provide a complex interpolated spectrum value.

5. Each peak is assigned to a frequency track by matching the peaks of the previous frame with
the current one. These tracks can be “started up,” “turned-off” or “turned-on” at any frame by
ramping in amplitude from or toward 0.

6. Arbitrary modifications can be applied to the analysis parameters before resynthesis.
7. If additive synthesis is requested, a sinewave is generated for each frequency track, and all

are summed into an output buffer. The instantaneous amplitude, frequency, and phase for each
sinewave are calculated by interpolating the values from frame to frame. The length of the output
buffer is equal to the hop size R which is typically some fraction of the window length M .

8. Repeat from step 1, advancing R samples each iteration until the end of the input sound is
reached.

3 Analysis Window (Step 1)

The choice of the analysis window is important. It determines the trade-off of time versus frequency
resolution which affects the smoothness of the spectrum and the detectability of the frequency peaks.
The most commonly used windows are called Rectangular, Triangular, Hamming, Hanning, Kaiser,
and Chebyshev. Harris [7, 14] gives a good discussion of these windows and many others.

To understand the effect of the window lets look at what happens to a sinusoid when we Fourier
transform it. A complex sinusoid of the form

x(n) = AejωxnT

when windowed, transforms to

Xw(ω) =
∞

∑

n=−∞

x(n)w(n)e−jωnT (7)

= A

(M−1)/2
∑

n=−(M−1)/2

w(n)e−j(ω−ωx)nT (8)

= AW (ω − ωx) (9)

Thus, the transform of a windowed sinusoid, isolated or part of a complex tone, is the transform
of the window scaled by the amplitude of the sinusoid and centered at the sinusoid’s frequency.

All the standard windows are real and symmetric and have spectra of a sinc-like shape (as
in Fig. 1). Considering the applications of the program, our choice will be mainly determined
by two of the spectrum’s characteristics: the width of the main lobe, defined as the number of
bins (DFT-sample points) between the two zero crossings, and the highest side-lobe level, which

6

Figure 1: Log magnitude of the transform of a triangle window.

measures how many dB down is the highest side-lobe from the main lobe. Ideally we would like
a narrow main lobe (good resolution) and a very low side-lobe level (no cross-talk between FFT
channels). The choice of window determines this trade-off. For example, the rectangular window
has the narrowest main lobe, 2 bins, but the first side-lobe is very high, −13dB relative to the
main-lobe peak. The Hamming window has a wider main lobe, 4 bins, and the highest side-lobe
is 42dB down. The Blackman window worst-case side-lobe rejection is 58 dB down which is good
for audio applications. A very different window, the Kaiser, allows control of the trade-off between
the main-lobe width and the highest side-lobe level. If we want less main-lobe width we will get
higher side-lobe level and vice versa. Since control of this trade-off is valuable, the Kaiser window
is a good general-purpose choice.

Let’s look at this problem in a more practical situation. To “resolve” two sinusoids separated
in frequency by ∆ Hz, we need (in noisy conditions) two clearly discernible main lobes; i.e., they
should look something like in Fig. 2. To obtain the separation shown (main lobes meet near a
0-crossing), we require a main-lobe bandwidth Bf in Hz such that

Bf ≤ ∆.

In more detail, we have

Bf = K
fs

M
(10)

∆ = f2 − f1 (11)

where K is the main-lobe bandwidth (in bins), fs the sampling rate, M is the window length, and
f1, f2 are the frequencies of the sinusoids. Thus, we need

M ≥ K
fs

∆
= K

fs

f2 − f1

7

Figure 2: Spectrum of two clearly separated sinusoids.

If fk and fk+1 are successive harmonics of a fundamental frequency f1, then f1 = fk+1−fk = ∆.
Thus, harmonic resolution requires Bf ≤ f1 and thus M ≥ Kfs/f1. Note that fs/f1 = T1/T = P ,
the period in samples. Hence,

M ≥ KP

Thus, with a Hamming window, with main-lobe bandwidth K = 4 bins, we want at least four
periods of a harmonic signal under the window. More generally, for two sinusoids at any frequencies
f1 and f2, we want four periods of the difference frequency |f2 − f1| under the window.

While the main lobe should be narrow enough to resolve adjacent peaks, it should not be
narrower than necessary in order to maximize time resolution in the STFT.

Since for most windows the main lobe is much wider than any side lobe, we can use this fact
to avoid spurious peaks due to side-lobes oscillation. Any peak that is substantially narrower than
the main-lobe width of the analysis window will be rejected as a local maximum due to side-lobe
oscillations.

A final point we want to make about windows is the choice between odd and even length. An
odd length window can be centered around the middle sample, while an even length one does not
have a mid-point sample. If one end-point is deleted, an odd-length window can be overlapped and
added so as to satisfy Eq. (6). For purposes of phase detection, we prefer a zero-phase window
spectrum, and this is obtained most naturally by using a symmetric window with a sample at the
time origin. We therefore use odd length windows exclusively in Parshl.

Choice of Hop Size

Another question related to the analysis window is the hop size R, i.e., how much we can advance the
analysis time origin from frame to frame. This depends very much on the purposes of the analysis.
In general, more overlap will give more analysis points and therefore smoother results across time,
but the computational expense is proportionately greater. For purposes of spectrogram display or
additive synthesis parameter extraction, criterion Eq. (6) is a good general purpose choice. It states

8

that the succesive frames should overlap in time in such a way that all data are weighted equally.
However, it can be overly conservative for steady-state signals. For additive synthesis purposes, it
is more efficient and still effective to increase the hop size to the number of samples over which
the spectrum is not changing appreciably. In the case of the steady-state portion of piano tones,
the hop size appears to be limited by the fastest amplitude envelope “beat” frequency caused by
mistuning strings on one key or by overlapping partials from different keys.

For certain window types (sum-of-cosine windows), there exist perfect overlap factors in the
sense of Eq. (6). For example, a Rectangular window can hop by M/k, where k is any positive
integer, and a Hanning or Hamming window can use any hop size of the form (M/2)/k. For the
Kaiser window, on the other hand, there is no perfect hop size other than R = 1.

The perfect overlap-add criterion for windows and their hop sizes is not the best perspective
to take when overlap-add synthesis is being constructed from the modified spectra x̃′

m(ejωk) [1].
As mentioned earlier, the hop size R is the downsampling factor applied to each FFT filter-bank
output, and the window is the envelope of each filter’s impulse response. The downsampling
by R causes aliasing, and the frame rate fs/R is equal to twice the “folding frequency” of this
aliasing. Consequently, to minimize aliasing, the choice of hop size R should be such that the
folding frequency exceeds the “cut-off freqency” of the window. The cut-off frequency of a window
can be defined as the frequency above which the window transform magnitude is less than or equal
to the worst-case sidelobe level. For convenience, we typically use the frequency of the first zero-
crossing beyond the main lobe as the definition of cut-off frequency. Following this rule yields 50%
overlap for the rectangular window, 75% overlap for Hamming and Hanning windows, and 83%
(5/6) overlap for Blackman windows. The hop size useable with a Kaiser window is determined
by its design parameters (principally, the desired time-bandwidth product of the window, or, the
“beta” parameter) [8].

One may wonder what happens to the aliasing in the perfect-reconstruction case in which Eq. (6)
is satisfied. The answer is that aliasing does occur in the individual filter-bank outputs, but this
aliasing is canceled in the reconstruction by overlap-add if there were no modifications to the STFT.
For a general discussion of aliasing cancellation in downsampled filter banks, see [23, 24].

4 Filling the FFT Input Buffer (Step 2)

The FFT size N is normally chosen to be the first power of two that is at least twice the window
length M , with the difference N − M filled with zeros (“zero-padded”). The reason for increasing
the FFT size and filling in with zeros is that zero-padding in the time domain corresponds to
interpolation in the frequency domain, and interpolating the spectrum is useful in various ways.
First, the problem of finding spectral peaks which are not exact bin frequencies is made easier
when the spectrum is more densely sampled. Second, plots of the magnitude of the more smoothly
sampled spectrum are less likely to confuse the untrained eye. (Only signals truly periodic in
M samples should not be zero-padded. They should also be windowed only by the Rectangular
window.) Third, for overlap-add synthesis from spectral modifications, the zero-padding allows
for multiplicative modification in the frequency domain (convolutional modification in the time
domain) without time aliasing in the inverse FFT. The length of the allowed convolution in the
time domain (the impulse response of the effective digital filter) equals the number of extra zeros
(plus one) in the zero padding.

If K is the number of samples in the main lobe when the zero-padding factor is 1 (N = M),

9

then a zero-padding factor of N/M gives KN/M samples for the same main lobe (and same main-
lobe bandwidth). The zero-padding (interpolation) factor N/M should be large enough to enable
accurate estimation of the true maximum of the main lobe after it has been frequency shifted
by some arbitrary amount equal to the frequency of a sinusoidal component in the input signal.
We have determined by computational search that, for a rectangularly windowed sinusoid (of any
frequency), quadratic frequency interpolation (using the three highest bins) yields at least 0.1% (of
the distance from the sinc peak to the first zero-crossing) accuracy if the zero-padding factor N/M
is 5 or higher.

As mentioned in the previous section, we facilitate phase detection by using a zero-phase window,
i.e., the windowed data (using an odd length window) is centered about the time origin. A zero-
centered, length M data frame appears in the length N FFT input buffer as shown in Fig. 3c. The
first (M − 1)/2 samples of the windowed data, the “negative-time” portion, will be stored at the
end of the buffer, from sample N − (M − 1)/2 to N − 1, and the remaining (M + 1)/2 samples,
the zero- and “positive-time” portion, will be stored starting at the beginning of the buffer, from
sample 0 to (M − 1)/2. Thus, all zero padding occurs in the middle of the FFT input buffer.

5 Peak Detection (Steps 3 and 4)

Due to the sampled nature of spectra obtained using the STFT, each peak (location and height)
found by finding the maximum-magnitude frequency bin is only accurate to within half a bin. A
bin represents a frequency interval of fs/N Hz, where N is the FFT size. Zero-padding increases
the number of FFT bins per Hz and thus increases the accuracy of the simple peak detection.
However, to obtain frequency accuracy on the level of 0.1% of the distance from a sinc maximum
to its first zero crossing (in the case of a rectangular window), the zero-padding factor required is
1000. (Note that with no zero padding, the STFT analysis parameters are typically arranged so
that the distance from the sinc peak to its first zero-crossing is equal to the fundamental frequency
of a harmonic sound. Under these conditions, 0.1% of this interval is equal to the relative accuracy
in the fundamental frequency measurement. Thus, this is a realistic specification in view of pitch
discrimination accuracy.) Since we would nominally take two periods into the data frame (for a
Rectangular window), a 100 Hz sinusoid at a sampling rate of 50 KHz would have a period of
50, 000/100 = 500 samples, so that the FFT size would have to exceed one million. A more efficient
spectral interpolation scheme is to zero-pad only enough so that quadratic (or other simple) spectral
interpolation, using only bins immediately surrounding the maximum-magnitude bin, suffices to
refine the estimate to 0.1% accuracy. Parshl uses a parabolic interpolator which fits a parabola
through the highest three samples of a peak to estimate the true peak location and height (cf.
Fig. 4).

We have seen that each sinusoid appears as a shifted window transform which is a sinc-like
function. A robust method for estimating peak frequency with very high accuracy would be to fit a
window transform to the sampled spectral peaks by cross-correlating the whole window transform
with the entire spectrum and taking and interpolated peak location in the cross-correlation function
as the frequency estimate. This method offers much greater immunity to noise and interference
from other signal components.

To describe the parabolic interpolation strategy, let’s define a coordinate system centered at
(kβ , 0), where kβ is the bin number of the spectral magnitude maximum, i.e., x̃′

m(e
jωkβ) ≥ x̃′

m(ejωk)

10

Figure 3: Illustration of the first two steps of Parshl. (a) Input data. (b) Windowed input
data. (c) FFT buffer with the windowed input data. (d) Resulting magnitude spectrum.

11

Figure 4: Parabolic interpolation of the highest three samples of a peak.

Figure 5: Coordinate system for the parabolic interpolation.

12

for all k 6= kβ . An example is shown in Figure 4. We desire a general parabola of the form

y(x)
∆
= a(x − p)2 + b

such that y(−1) = α, y(0) = β, and y(1) = γ, where α, β, and γ are the values of the three highest
samples:

α
∆
= 20 log10

∣

∣

∣
x̃′

m(e
jωkβ−1)

∣

∣

∣
(12)

β
∆
= 20 log10

∣

∣

∣
x̃′

m(e
jωkβ)

∣

∣

∣
(13)

γ
∆
= 20 log10

∣

∣

∣
x̃′

m(e
jωkβ+1)

∣

∣

∣
(14)

We have found empirically that the frequencies tend to be about twice as accurate when dB
magnitude is used rather than just linear magnitude. An interesting open question is what is the
optimum nonlinear compression of the magnitude spectrum when quadratically interpolating it to
estimate peak locations.

Solving for the parabola peak location p, we get

p =
1

2

α − γ

α − 2β + γ

and the estimate of the true peak location (in bins) will be

k∗ ∆
= kβ + p

and the peak frequency in Hz is fsk
∗/N . Using p, the peak height estimate is then

y(p) = β −
1

4
(α − γ)p

The magnitude spectrum is used to find p, but y(p) can be computed separately for the real and
imaginary parts of the complex spectrum to yield a complex-valued peak estimate (magnitude and
phase).

Once an interpolated peak location has been found, the entire local maximum in the spectrum
is removed. This allows the same algorithm to be used for the next peak. This peak detection and
deletion process is continued until the maximum number of peaks specified by the user is found.

6 Peak Matching (Step 5)

The peak detection process returns the prominent peaks in a given frame sorted by frequency. The
next step is to assign some subset of these peaks to oscillator trajectories, which is done by the
peak matching algorithm. If the number of spectral peaks were constant with slowly changing
amplitudes and frequencies along the sound, this task would be straightforward. However, it is not
always immediately obvious how to connect the spectral peaks of one frame with those of the next.

To describe the peak matching process, let’s assume that the frequency tracks were initialized
at frame 1 and we are currently at frame m. Suppose that at frame m− 1 the frequency values for
the p tracks are f1, f2, . . . , fp, and that we want to match them to the r peaks, with frequencies
g1, g2, . . . , gr, of frame m.

13

Each track looks for its peak in frame m by finding the one which is closest in frequency to
its current value. The ith track claims frequency gj for which |fi − gj | is minimum. The change
in frequency must be less than a specified maximum ∆(fi), which can be a frequency-dependent
limit (e.g., linear, corresponding to a relative frequency change limit). The possible situations are
as follows:

(1) If a match is found inside the maximum change limit, the track is continued (unless there
is a conflict to resolve, as described below).
(2) If no match is made, it is assumed that the track with frequency fi must “turn off” entering

frame m, and fi is matched to itself with zero magnitude. Since oscillator amplitudes are linearly
ramped from one the frame to the next, the terminating track will ramp to zero over the duration
of one frame hop. This track will still exist (at zero amplitude), and if it ever finds a frame with
a spectral peak within its capture range ∆(fi), it will “turned back on,” ramping its amplitude
up to the newly detected value. It is sometimes necessary to introduce some hysteresis into the
turning on and off process in order to prevent “burbling” of the tracks whose peaks sometimes
make the cut and sometimes don’t. Normally this problem can be avoided by searching for many
more spectral peaks than there are oscillators to allocate.
(3) If a track finds a match which has already been claimed by another track, we give the peak

to the track which is closest in frequency. and the “losing” looks for another match. If the
current track loses the conflict, it simply picks the best available non-conflicting peak. If the
current track wins the conflict, it calls the assignment procedure recursively on behalf of the
dislodged track. When the dislodged track finds the same peak and wants to claim it, it will
see there is a conflict which it loses and will move on. This process is repeated for each track,
solving conflicts recursively, until all existing tracks are matched or “turned-off”.
After each track has extended itself forward in time or turned off, the peaks of frame m which

have not been used are considered to be new trajectories and a new track is “started-up” for each
one of them up to the maximum number of oscillators specified (which again should be less than
the number of spectral peaks detected). The new oscillator tracks are started at frame n − 1 with
zero magnitude and ramp to the correct amplitude at the current frame m.

Once the program has finished, the peak trajectories for a sound look as in Fig. 6.

7 Parameter Modifications (Step 6)

The possibilities that STFT techniques offer for modifying the analysis results before resynthesis
have an enormous number of musical applications. Quatieri and McAulay [20] give a good discussion
of some useful modifications for speech applications. By scaling and/or resampling the amplitude
and the frequency trajectories, a host of sound transformations can be accomplished.

Time-scale modifications can be accomplished by resampling the amplitude, frequency, and
phase trajectories. This can be done simply by changing the hop size R in the resynthesis (although
for best results the hop size should change adaptively, avoiding time-scale modifications during voice
consonants or attacks, for example). This has the effect of slowing down or speeding up the sound
while maintaining pitch and formant structure. Obviously this can also be done for a time-varying
modification by having a time-varying hop size R. However, due to the sinusoidal representation,
when a considerable time stretch is done in a “noisy” part of a sound, the individual sinewaves
start to be heard and the noise-like quality is lost.

Frequency transformations, with or without time scaling, are also possible. A simple one is

14

Figure 6: Peak trajectories for a piano tone.

to scale the frequencies to alter pitch and formant structure together. A more powerful class of
spectral modifications comes about by decoupling the sinusoidal frequencies (which convey pitch
and inharmonicity information) from the spectral envelope (which conveys formant structure so
important to speech perception and timbre). By measuring the formant envelope of a harmonic
spectrum (e.g., by drawing straight lines or splines across the tops of the sinusoidal peaks in the
spectrum and then smoothing), modifications can be introduced which only alter the pitch or only
alter the formants. Other ways to measure formant envelopes include cepstral smoothing [15] and
the fitting of low-order LPC models to the inverse FFT of the squared magnitude of the spectrum
[9]. By modulating the flattened (by dividing out the formant envelope) spectrum of one sound
by the formant-envelope of a second sound, “cross-synthesis” is obtained. Much more complex
modifications are possible.

Not all spectral modifications are “legal,” however. As mentioned earlier, multiplicative mod-
ifications (simple filtering, equalization, etc.) are straightforward; we simply zero-pad sufficiently
to accomodate spreading in time due to convolution. It is also possible to approximate nonlinear
functions of the spectrum in terms of polynomial expansions (which are purely multiplicative).
When using data derived filters, such as measured formant envelopes, it is a good idea to smooth
the spectral envelopes sufficiently that their inverse FFT is shorter in duration than the amount
of zero-padding provided. One way to monitor time-aliasing distortion is to measure the signal
energy at the midpoint of the inverse-FFT output buffer, relative to the total energy in the buffer,
just before adding it to the final outgoing overlap-add reconstruction; little relative energy in the
“maximum-positive” and “minimum negative” time regions indicates little time aliasing. The gen-
eral problem to avoid here is drastic spectral modifications which correspond to long filters in
the time domain for which insufficient zero-padding has been provided. An inverse FFT of the
spectral modification function will show its time duration and indicate zero-padding requirements.

15

The general rule (worth remembering in any audio filtering context) is “be gentle in the frequency
domain.”

8 Synthesis (Step 7)

The analysis portion of Parshl returns a set of amplitudes Âm, frequencies ω̂m, and phases θ̂m,
for each frame index m, with a “triad” (Âm

r , ω̂m
r , θ̂m

r) for each track r. From this analysis data the
program has the option of generating a synthetic sound.

The synthesis is done one frame at a time. The frame at hop m, specifies the synthesis buffer

sm(n) =
Rm
∑

r=1

Âm
r cos[nω̂m

r + θ̂m
r]

where Rm is the number of tracks present at frame m; m = 0, 1, 2, . . . , S − 1; and S is the length
of the synthesis buffer (without any time scaling S = R, the analysis hop size). To avoid “clicks”
at the frame boundaries, the parameters (Âm

r , ω̂m
r , θ̂m

r) are smoothly interpolated from frame to
frame.

The parameter interpolation across time used in Parshl is the same as that used by McAulay

and Quatieri [12]. Let (Â
(m−1)
r , ω̂

(m−1)
r , θ̂

(m−1)
r) and (Âm

r , ω̂m
r , θ̂m

r) denote the sets of parameters at
frames m−1 and m for the rth frequency track. They are taken to represent the state of the signal
at time 0 (the left endpoint) of the frame.

The instantaneous amplitude Â(n) is easily obtained by linear interpolation,

Â(n) = Âm−1 +
(Âm − Âm−1)

S
n

where n = 0, 1, . . . , S − 1 is the time sample into the mth frame.
Frequency and phase values are tied together (frequency is the phase derivative), and they both

control the instantaneous phase θ̂(n). Given that four variables are affecting the instantaneous
phase: ω̂(m−1), θ̂(m−1), ω̂m, and θ̂m, we need at least three degrees of freedom for its control, while
linear interpolation only gives one. Therefore, we need at least a cubic polynomial as interpolation
function, of the form

θ̂(n) = ζ + γn + αn2 + βn3.

We will not go into the details of solving this equation since McAulay and Quatieri [12] go through
every step. We will simply state the result:

θ̂(n) = θ̂(m−1) + ω̂(m−1)n + αn2 + βn3

where α and β can be calculated using the end conditions at the frame boundaries,

α =
3

S2
(θ̂m − θ̂m−1 − ω̂m−1S + 2πM) −

1

S
(ω̂m − ω̂m−1) (15)

β =
−2

S3
(θ̂m − θ̂m−1 − ω̂m−1S + 2πM) +

1

S2
(ω̂m − ω̂m−1) (16)

This will give a set of interpolating functions depending on the value of M , among which we have
to select the “maximally smooth” one. This can be done by choosing M to be the integer closest
to x, where x is

x =
1

2π

[

(θ̂m−1 − ω̂m−1S − θ̂m) + (ω̂m − ω̂m+1)
S

2

]

16

and finally, the synthesis equation turns into

sm(n) =
Rm
∑

r=1

Âm
r (n) cos[θ̂m

r (n)]

which smoothly goes from frame to frame and where each sinusoid accounts for both the rapid
phase changes (frequency) and the slowly varying phase changes.

Figure 7 shows the result of the analysis/synthesis process using phase information and applied
to a piano tone.

Figure 7: (a) Original piano tone, (b) synthesis with phase information, (c) synthesis without
phase information.

17

9 Magnitude-only Analysis/Synthesis

A traditional result of sound perception is that the ear is sensitive principally to the short-time
spectral magnitude and not to the phase, provided phase continuity is maintained. Our experience
has been that this may or may not be true depending on the application, and in §11 we will
discuss it. Obviously if the phase information is discarded, the analysis, the modification, and the
resynthesis processes are simplified enormously. Thus we will use the magnitude-only option of the
program whenever the application allows it.

In the peak detection process we calculate the magnitude and phase of each peak by using the
complex spectrum. Once we decide to discard the phase information there is no need for complex
spectra and we simply can calculate the magnitude of the peak by doing the parabolic interpolation
directly on the log magnitude spectrum.

The synthesis also becomes easier; there is no need for a cubic function to interpolate the instan-
taneous phase. The phase will be a function of the instantaneous frequency and the only condition
is phase continuity at the frame boundaries. Therefore, the frequency can be linearly interpolated
from frame to frame, like the amplitude. Without phase matching the synthesized waveform will
look very different from the original (Fig. 7), but the sound quality for many applications will be
perceptually the same.

10 Preprocessing

The task of the program can be simplified and the analysis/synthesis results improved if the sound
input is appropiately manipulated before running the program.

Most important is to equalize the input signal. This controls what it means to find spectral
peaks in order of decreasing magnitude. Equalization can be accomplished in many ways and here
we present some alternatives.

(1) A good equalization strategy for audio applications is to weight the incoming spectrum by
the inverse of the equal-loudness contour for hearing at some nominal listening level (e.g. 60dB).
This makes spectral magnitude ordering closer to perceptual audibility ordering.
(2) For more analytical work, the spectrum can be equalized to provide all partials at nearly

the same amplitude (e.g., the asymptotic roll-off of all natural spectra can be eliminated). In
this case, the peak finder is most likely to find and track all of the partials.
(3) A good equalization for noise-reduction applications is to “flatten” the noise floor. This

option is useful when it is desired to set a fixed (frequency-independent) track rejection threshold
just above the noise level.
(4) A fourth option is to perform adaptive equalization of types (2) or (3) above. That is,

equalize each spectrum independently, or compute the equalization as a function of a weighted
average of the most recent power spectrum (FFT squared magnitude) estimates.
Apart from equalization, another preprocessing strategy which has proven very useful is to

reverse the sound in time. The attack of most sounds is quite “noisy” and Parshl has a hard time
finding the relevant partials in such a complex spectrum. Once the sound is reversed the program
will encounter the end of the sound first, and since in most instrumental sounds this is a very
stable part, the program will find a very clear definition of the partials. When the program gets to
the sound attack, it will already be tracking the main partials. Since Parshl has a fixed number
of oscillators which can be allocated to discovered tracks, and since each track which disappears

18

removes its associated oscillator from the scene forever,2 analyzing the sound tail to head tends to
allocate the oscillators to the most important frequency tracks first.

11 Applications

The simplest application of Parshl is as an analysis tool since we can get a very good picture of the
evolution of the sound in time by looking at the amplitude, frequency and phase trajectories. The
tracking characteristics of the technique yield more accurate amplitudes and frequencies than if the
analysis were done with an equally spaced bank of filters (the traditional STFT implementation).

In speech applications, the most common use of the STFT is for data-reduction. With a set of
amplitude, frequency and phase functions we can get a very accurate resynthesis of many sounds
with much less information than for the original sampled sounds. From our work it is still not
clear how important is the phase information in the case of resynthesis without modifications, but
McAulay and Quatieri [12] have shown the importance of phase in the case of speech resynthesis.

One of the most interesting musical applications of the STFT techniques are given by their
ability to separate temporal from spectral information, and, within each spectrum, pitch and har-
monicity from formant information. In §7, Parameter Modifications, we discussed some of them,
such as time scaling and pitch transposition. But this group of applications has a lot of possibilities
that still need to be carefully explored. From the few experiments we have done to date, the tools
presented give good results in situations where less flexible implementations do not, namely, when
the input sound has inharmonic spectra and/or rapid frequency changes.

The main characteristic that differentiates this model from the traditional ones is the selectivity
of spectral information and the phase tracking. This opens up new applications that are worth
our attention. One of them is the use of additive synthesis in conjunction with other synthesis
techniques. Since the program allows tracking of specific spectral components of a sound, we have
the flexibility of synthesizing only part of a sound with additive, synthesis, leaving the rest for some
other technique. For example, Serra [22] has used this program in conjunction with LPC techniques
to model bar percussion instruments, and Marks and Polito [11] have modeled piano tones by using
it in conjunction with FM synthesis. David Jaffe has had good success with birdsong, and Rachel
Boughton used Parshl to create abstractions of ocean sounds.

One of the problems encountered when using several techniques to synthesize the same sound
is the difficulty of creating the perceptual fusion of the two synthesis components. By using phase
information we have the possibility of matching the phases of the additive synthesis part to the rest
of the sound (independently of what technique was used to generate it). This provides improved
signal “splicing” capability, allowing very fast cross-fades (e.g., over one frame period).

Parshl was originally written to properly analyze the steady state of piano sounds; it did not
address modeling the attack of the piano sound for purposes of resynthesis. The phase tracking was
primarily motivated by the idea of splicing the real attack (sampled waveform) to its synthesized
steady state. It is well known that additive synthesis techniques have a very hard time synthesizing
attacks, both due to their fast transition and their “noisy” characteristics. The problem is made
more difficult by the fact that we are very sensitive to the quality of a sound’s attack. For plucked
or struck strings, if we are able to splice two or three periods, or a few milliseconds, of the original

2We tried reusing turned-off oscillators but found them to be more trouble than they were worth in our environ-
ment.

19

sound into our synthesized version the quality can improve considerably, retaining a large data-
reduction factor and the possibility of manipulating the synthesis part. When this is attempted
without the phase information, the splice, even if we do a smooth cross-fade over a number of
samples, can be very noticeable. By simply adding the phase data the task becomes comparatively
easy, and the splice is much closer to inaudible.

12 Conclusions

In this paper an analysis/synthesis technique based on a sinusoidal representation was presented
that has proven to be very appropriate for signals which are well characterized as a sum of inhar-
monic sinusoids with slowly varying amplitudes and frequencies. The previously used harmonic
vocoder techniques have been relatively unwieldy in the inharmonic case, and less robust even in
the harmonic case. Parshl obtains the sinusoidal representation of the input sound by tracking
the amplitude, frequency, and phase of the most prominent peaks in a series of spectra computed
using the Fast Fourier Transform of successive, overlapping, windowed data frames, taken over
the duration of a sound. We have mentioned some of the musical applications of this sinusoidal
representation.

Continuing the work with this analysis/synthesis technique we are implementing Parshl on a
Lisp Machine with an attached FPS AP120B array processor. We plan to study further its sound
transformation possibilities and the use of Parshl in conjunction with other analysis/synthesis
techniques such as Linear Predictive Coding (LPC) [10].

The basic “FFT processor” at the heart of Parshl provides a ready point of departure for
many other STFT applications such as FIR filtering, speech coding, noise reduction, adaptive
equalization, cross-synthesis, and many more. The basic parameter trade-offs discussed in this
paper are universal across all of these applications.

Although Parshl was designed to analyze piano recordings, it has proven very successful in
extracting additive synthesis parameters for radically inharmonic sounds. It provides interesting
effects when made to extract peak trajectories in signals which are not describable as sums of
sinusoids (such as noise or ocean recordings). Parshl has even demonstrated that speech can be
intelligible after reducing it to only the three strongest sinusoidal components.

The surprising success of additive synthesis from spectral peaks suggests a close connection
with audio perception. Perhaps timbre perception is based on data reduction in the brain similar
to that carried out by Parshl. This data reduction goes beyond what is provided by critical-
band masking. Perhaps a higher-level theory of “timbral masking” or “main feature dominance” is
appropriate, wherein the principal spectral features serve to define the timbre, masking lower-level
(though unmasked) structure. The lower-level features would have to be restricted to qualitatively
similar behavior in order that they be “implied” by the louder features. Another point of view is
that the spectral peaks are analogous to the outlines of figures in a picture—they capture enough
of the perceptual cues to trigger the proper percept; memory itself may then serve to fill in the
implied spectral features (at least for a time).

Techniques such as Parshl provide a powerful analysis tool toward extracting signal parameters
matched to the characteristics of hearing. Such an approach is perhaps the best single way to obtain
cost-effective, analysis-based synthesis of any sound.

20

Acknowledgments

We wish to thank Dynacord, Inc., for supporting the development of the first version of Parshl

in the summer of 1985. We also wish to acknowledge the valuable contributions of Gerold Schrutz
(Dynacord) during that time.

Software Listing

The online version3 of this paper contains a complete code listing for the original Parshl program.

References

[1] J. B. Allen, “Short term spectral analysis, synthesis, and modification by discrete Fourier trans-
form,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-25, pp. 235–238,
June 1977.

[2] J. B. Allen, “Application of the short-time Fourier transform to speech processing and spectral
analysis,” Proc. IEEE ICASSP-82, pp. 1012–1015, 1982.

[3] J. B. Allen and L. R. Rabiner, “A unified approach to short-time Fourier analysis and synthe-
sis,” Proc. IEEE, vol. 65, pp. 1558–1564, Nov. 1977.

[4] H. Chamberlin, Musical Applications of Microprocessors, New Jersey: Hayden Book Co., Inc.,
1980.

[5] R. Crochiere, “A weighted overlap-add method of short-time Fourier analysis/synthesis,” IEEE

Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-28, pp. 99–102, Feb 1980.

[6] M. Dolson, “The phase vocoder: A tutorial,” Computer Music Journal, vol. 10, pp. 14–27,
Winter 1986.

[7] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,”
Proceedings of the IEEE, vol. 66, pp. 51–83, Jan 1978.

[8] J. F. Kaiser, “Using the I0 − sinh window function,” IEEE Transactions on Circuits and

Systems—I: Fundamental Theory and Applications, pp. 20–23, April 22–25 1974, Reprinted
in [?], pp. 123–126.

[9] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE, vol. 63, pp. 561–
580, April 1975.

[10] J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976.

[11] J. Marks and J. Polito, “Modeling piano tones,” in Proceedings of the 1986 International

Computer Music Conference, The Hague, Computer Music Association, 1986.

3http://www-ccrma.stanford.edu/˜jos/parshl/

21

http://www-ccrma.stanford.edu/~{}jos/parshl/

[12] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based on a sinusoidal representa-
tion,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-34, pp. 744–754,
Aug 1986.

[13] J. A. Moorer, “The use of the phase vocoder in computer music applications,” Journal of the

Audio Engineering Society, vol. 26, pp. 42–45, Jan./Feb. 1978.

[14] A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Transactions on

Acoustics, Speech, Signal Processing, vol. ASSP-29, pp. 84–91, Feb 1981.

[15] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1975.

[16] A. Papoulis, Signal Analysis, New York: McGraw-Hill, 1977.

[17] M. R. Portnoff, “Implementation of the digital phase vocoder using the fast Fourier transform,”
IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-24, pp. 243–248, June
1976.

[18] M. R. Portnoff, “Time–frequency representation of digital signals and systems based on short–
time Fourier analysis,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-
28, pp. 55–69, Feb 1980.

[19] R. Portnoff, “Short-time Fourier analysis of sampled speech,” IEEE Transactions on Acoustics,

Speech, Signal Processing, vol. 29, no. 3, pp. 364–373, 1981.

[20] T. F. Quatieri and R. J. McAulay, “Speech transformations based on a sinusoidal represen-
tation,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-34, pp. 1449–
1464, Dec 1986.

[21] X. Rodet and P. Depalle, “Spectral envelopes and inverse FFT synthesis,” Proc. 93rd Conven-

tion of the Audio Engineering Society, San Francisco, 1992, Preprint 3393 (H-3).

[22] X. Serra, “A computer model for bar percussion instruments,” in Proceedings of the 1986 Inter-

national Computer Music Conference, The Hague, pp. 257–262, Computer Music Association,
1986.

[23] M. J. T. Smith and T. P. Barnwell, “A unifying framework for analysis/synthesis systems
based on maximally decimated filter banks,” in Proceedings of the International Conference

on Acoustics, Speech, and Signal Processing, Tampa, Florida, (New York), pp. 521–524, IEEE
Press, 1985.

[24] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993.

22

	Introduction and Overview
	Outline of the Program
	Analysis Window (Step 1)
	Filling the FFT Input Buffer (Step 2)
	Peak Detection (Steps 3 and 4)
	Peak Matching (Step 5)
	Parameter Modifications (Step 6)
	Synthesis (Step 7)
	Magnitude-only Analysis/Synthesis
	Preprocessing
	Applications
	Conclusions

