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Abstract. We study the expected distance of a two-dimensional walk in the plane with unitsteps in random directions.
A series evaluation and recursions are obtained making it possible to explicitly formulate this distance for small num-
ber of steps. Formulae for all the moments of a2-step and a3-step walk are given, and an expression is conjectured
for the4-step walk. The paper makes use of the combinatorical features exhibited by the even moments which, for
instance, lead to analytic continuations of the underlying integral.

Résuḿe.

Resumen.

Keywords: some well classifying words,mandatory!

1 Introduction and Preliminaries
This is an extended abstract of (BNSW09) which contains the exposition given here complemented with
much more details. In particular, we often refer to (BNSW09) for full proofs of statements that we present.

Throughout, we consider then-dimensional integral

Wn(s) :=

∫

[0,1]n

∣

∣

∣

∣

∣

n
∑

k=1

e2πxki

∣

∣

∣

∣

∣

s

dx (1)

which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step
is taken in a random direction, see Figure 1. As such, the integral (1) expresses thesth moment of the
expected distance to the origin aftern steps. Particularly interesting is the special case of the expected
distanceWn(1) aftern steps.

A lot is known about the one-dimensional random walk. E.g., its expected distance aftern unit-steps is
(n − 1)!!/(n − 2)!! whenn is even andn!!/(n − 1)!! whenn is odd (and asymptotically this distance is
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√

2n/π). For the two-dimensional walk no such explicit expressions were known, although the term ran-
dom walk first appears in a (related) question by Karl Pearsonin Nature in 1905 (Pea1905) for explicitly
this two-dimensional walk under consideration. Pearson triggered answers by Lord Rayleigh (Ray1905)
on the asymptotic behaviour of the probability forn very large and by Benett (referred to in (Pea1905b))
for the casen = 2, after which he concluded that there still was a large interest for the unresolved case of
smalln which is dramatically different from the case of largen. Note that the expected value for the root-
mean-square distance is well known to be just

√
n (in that case the implicit square root in (1) disappears

which greatly simplifies the problem).

(a) Several4-step walks (b) A 500-step walk

Fig. 1: Random walks in the plane.

We picked up the special cases = 1 of (1) from the whiteboard in the common room at UNSW where
it was written as a generalization of a discrete problem in a cryptographic context by Peter Donovan,
discussed in (Don09). However, the problem in itself appears in numerous applications, e.g., in problems
involving Brownian motion in physics. Numerical values ofWn evaluated at integers can be seen in
Tables 1 and 2. One immediately notices the apparent integersequences for the even moments—which are
the moments of the squared expected distance (thus the square root fors = 2 gives the root-mean-square
distance

√
n). By experimentation and some sketchy arguments we quicklyconjectured and believed that,

for k a nonnegative integer,

W3(k) = Re 3F2

( 1
2 ,−k

2 ,−k
2

1, 1

∣

∣

∣

∣

4

)

. (2)

(In fact, (2) also holds for negative odd integers.) This wasfor long a mystery, but it will be proven in the
final section of the paper.

In Section 2 we develop an infinite series expression forWn(s) which holds for all reals > 0, see
Theorem 2.1. From this it then follows in Corollary 2.2 that the even moments ofWn(s) are given by
integer sequences. The combinatorial features offn(k) := Wn(2k), k a nonnegative integer, are studied
in Section 3. We show that there is a recurrence relation for the numbersfn(k) and confirm that indeed,
an observation from Table 1, the last digit in the column fors = 10 is alwaysn mod 10.
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n s = 2 s = 4 s = 6 s = 8 s = 10 (Slo09)
2 2 6 20 70 252 A000984
3 3 15 93 639 4653 A002893
4 4 28 256 2716 31504 A002895
5 5 45 545 7885 127905
6 6 66 996 18306 384156

Tab. 1: Wn(s) at even integers.

n s = 1 s = 3 s = 5 s = 7 s = 9
2 1.27324 3.39531 10.86498 37.25135 132.44925
3 1.57460 6.45168 36.70519 241.54389 1714.61960
4 1.79909 10.12068 82.65146 822.27337 9169.61964
5 2.00816 14.28958 152.31577 2037.14185 31392.80994
6 2.19386 18.91327 248.75895 4186.18720 82718.49864

Tab. 2: Wn(s) at odd integers.

In Section 4 some analytic and numerical results forn = 1, 2, 3 are given and we lift the recursion for
fn(k) to Wn(s) by the use of Carlson’s theorem. The recursions forn = 2, 3, 4 are given explicitly as an
example. These recursions then give further information onthe poles of the analytic continuations ofWn

(graphs ofWn for n = 3, 4, 5, 6 and their analytic continuations are shown in Figure 2). From here we
conjecture the recursion

W2n(s)
?[1]
=
∑

j>0

(

s/2

j

)2

W2n−1(s − 2j),

based on analytic continuations, and the explicit form, related to (2),

W4(k)
?[2]
= Re

∑

j>0

(

s/2

j

)2

3F2

( 1
2 ,−k

2 + j,−k
2 + j

1, 1

∣

∣

∣

∣

4

)

for k a positive integer. High precision numerical evaluations for n = 3 andn = 4 are given.
In the final section we explore the underlying probability model more closely, starting with another

answer to Pearson, this time by Kluyver (Klu1906). Finally,considering conditional densities, we are
able to give an alternative form forW3(s) which eventually leads to a proof of (2).

2 A Series Evaluation of Wn(s)

Theorem 2.1 For real s > 0,

Wn(s) = ns
∑

m>0

(−1)m

(

s/2

m

) m
∑

k=0

(−1)k

(

m

k

)

{

n−2k
∑

a1+···+an=k

(

k

a1, . . . , an

)2
}

. (3)

Proof:
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Fig. 2: VariousWn and their analytic continuations.

We first exploit the binomial theorem to show that for integern > 1 and reals > 0,

Wn(s) = ns
∑

m>0

(−1)m

(

s/2

m

)

n−2m

∫

[0,1]n



4
∑

16i<j6n

sin2(π(xj − xi))





m

dx. (4)

Next we evaluate the trigonometric integral in (4). To this end, we show that it is the constant term of

(n2 − (x1 + · · · + xn)(1/x1 + · · · + 1/xn))m.

The details appear in (BNSW09). Alternatively, one may startwith the observation thatWn(s) is the
constant term of

((x1 + · · · + xn)(1/x1 + · · · + 1/xn))
s/2 (5)

which follows directly from the integral definition. 2

From Theorem 2.1 and the fact that the binomial transform is an involution we additionally learn that
the even moments are integer sequences as detailed by the following corollary.

Corollary 2.2 For nonnegative integersk,

Wn(2k) =
∑

a1+···+an=k

(

k
a1, . . . , an

)2

. (6)

An outline of the genesis of these evaluations is also given in (BNSW09).
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3 Further Combinatorial Features
In light of Corollary 2.2, we consider the combinatorial sums fn(k) := Wn(2k) of multinomial coef-
ficients squared. These numbers also appear in (RS09) in the following way: fn(k) counts the number
of abelian squaresof length2k over an alphabet withn letters (that is stringsxx′ of length2k from an
alphabet withn letters such thatx′ is a permutation ofx). It is not hard to see that, (Bar64),

fn1+n2
(k) =

k
∑

j=0

(

k

j

)2

fn1
(j) fn2

(k − j), (7)

for two non-overlapping alphabets withn1 andn2 letters. In particular, we may use (7) to obtainf1(k) =
1, f2(k) =

(

2k
k

)

, as well as

f3(k) =

k
∑

j=0

(

k

j

)2(
2j

j

)

= 3F2

( 1
2 ,−k,−k

1, 1

∣

∣

∣

∣

4

)

=

(

2k

k

)

3F2

(−k,−k,−k

1,−k + 1
2

∣

∣

∣

∣

1

4

)

, (8)

f4(k) =
k
∑

j=0

(

k

j

)2(
2j

j

)(

2(k − j)

k − j

)

=

(

2k

k

)

4F3

(

1
2 ,−k,−k,−k

1, 1,−k + 1
2

∣

∣

∣

∣

1

)

. (9)

Here and belowpFq denotes the hypergeometric function.
The following result is established in (Bar64) with the recursions forn 6 6 given explicitly.

Theorem 3.1 For fixed n > 2, the sequencefn(k) satisfies a recurrence of orderλ := ⌈n/2⌉ with
polynomial coefficients of degreen − 1:

cn,0(k)fn(k) + · · · + cn,λ(k)fn(k + λ) = 0.

Remark 3.2 For fixedk, the mapn 7→ fn(k) is a polynomial of degreek. This follows from

fn(k) =
k
∑

j=0

(

n

j

)

∑

a1+···+aj=k
ai>0

(

k
a1, . . . , aj

)2

, (10)

because the right-hand side is a linear combination (with positive coefficients only depending onk) of
the polynomials

(

n
0

)

,
(

n
1

)

, . . . ,
(

n
k

)

of respective degrees0, 1, . . . , k. From (10) the coefficient of
(

n
k

)

is
seen to be(k!)2. We therefore obtain the first-order approximationWn(s) ≈n ns/2Γ(s/2 + 1) for n
approaching infinity, see also (Klu1906). In particular,Wn(1) ≈n

√
nπ/2. Similarly, the coefficient of

(

n
k−1

)

is k−1
4 (k!)2 which gives rise to the second-order approximation

(k!)2
(

n

k

)

+
k − 1

4
(k!)2

(

n

k − 1

)

= k!nk − k(k − 1)

4
k!nk−1 + O(nk−2).

of fn(k). We therefore obtain

Wn(s) ≈n ns/2−1

{(

n − 1

2

)

Γ
(s

2
+ 1
)

+ Γ
(s

2
+ 2
)

− 1

4
Γ
(s

2
+ 3
)

}

,
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which is exact fors = 0, 2, 4. In particular,Wn(1) ≈n
√

nπ/2 +
√

π/n/32. More general approxima-
tions are given in (Cra09). 3

Remark 3.3 It follows straight from (6) that, for primesp, fn(p) ≡ n modulop. Further, fork > 1,
fn(k) ≡ n modulo2. This may be derived inductively from the recurrence (7) since, assuming that
fn(k) ≡ n modulo2 for somen and allk > 1,

fn+1(k) =
k
∑

j=0

(

k

j

)2

fn(j) ≡ k +
k
∑

j=1

(

k

j

)

j ≡ k +
k
∑

j=1
j odd

(

k

j

)

= k + 2k−1 ≡ k (mod 2).

Hence for odd primesp,
fn(p) ≡ n (mod 2p). (11)

The congruence (11) also holds forp = 2 sincefn(2) = (2n − 1)n, compare (10). 3

Remark 3.4 The integersf3(k) (respectivelyf4(k)), the first of which are given in Table 1, also arise
in physics, see for instance (BBBG08), and are referred to ashexagonal(respectivelydiamond) lattice
integers. The following formulae (BBBG08, (186)–(188)) relate these sequences in non-obvious ways:





∑

k>0

f3(k)(−x)k





2

=
∑

k>0

f2(k)3
x3k

((1 + x)3(1 + 9x))k+ 1

2

=
∑

k>0

f2(k)f3(k)
(−x(1 + x)(1 + 9x))k

((1 − 3x)(1 + 3x))2k+1

=
∑

k>0

f4(k)
xk

((1 + x)(1 + 9x))k+1
.

It would be instructive to similarly engagef5(k). 3

4 Analytic and Numerical Results
We start with investigating the analyticity ofWn(s) for a givenn. In (BNSW09)[Proposition 1], we show
thatWn(s), as defined in (1), is analytic at least forRe s > 0. Furthermore, it is shown (based on the
results of Section 4.2) that (1) is indeed finite and analyticfor Re s > −2, for each integern > 2 (compare
the graphs of theWn shown in Figure 2).

4.1 n = 1, n = 2, and n = 3

The casen = 1 is trivial: it follows straight from the integral definition(1) thatW1(s) = 1.
In the casen = 2, direct integration of (18) withn = 2 yields

W2(s) = 2s+1

∫ 1/2

0

cos(πt)sdt =

(

s

s/2

)

, (12)
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which may also be obtained using (3).
Forn = 3, based on (8) we define

V3(s) := 3F2

( 1
2 ,− s

2 ,− s
2

1, 1

∣

∣

∣

∣

4

)

, (13)

so that by Corollary 2.2 and (8),W3(2k) = V3(2k) for nonnegative integersk. This led us to explore
V3(s) more generally numerically and so to conjecture the following which we prove in the penultimate
section:

Theorem 4.1 For nonnegative even integers and all odd integersk:

W3(k) = ReV3(k). (14)

From here, we derive the following equivalent expressions for W3(1):

W3(1) =
4
√

3

3

(

3F2

(− 1
2 ,− 1

2 ,− 1
2

1, 1

∣

∣

∣

∣

1

4

)

− 1

π

)

+

√
3

24
3F2

( 1
2 , 1

2 , 1
2

2, 2

∣

∣

∣

∣

1

4

)

= 2
√

3
K2 (k3)

π2
+

√
3

1

K2 (k3)

=
3

16

21/3

π4
Γ6

(

1

3

)

+
27

4

22/3

π4
Γ6

(

2

3

)

.

These rely on using Legendre’s identity and several Clausen-like product formulae, plus Legendre’s eval-
uation ofK(k3) wherek3 :=

√
3−1

2
√

2
is thethird singular valueas in (BB87). Similar expressions can be

given forW3 evaluated at odd integers.

4.2 Carlson’s Theorem
We may lift the recursive structure offn, defined in Section 3, toWn to a fair degree on appealing to
Carlson’s theorem (Tit39, 5.81):

Theorem 4.2 (Carlson) Letf be analytic in the right half-planeRe z > 0 and of exponential type (mean-
ing that|f(z)| 6 Mec|z| for someM andc), with the additional requirement that

|f(z)| 6 Med|z|

for somed < π on the imaginary axisRe z = 0. If f(k) = 0 for k = 0, 1, 2, . . . thenf(z) = 0 identically.

By verifying that Carlson’s theorem applies, we get:

Theorem 4.3 Given thatfn(k) satisfies a recurrence

cn,0(k)fn(k) + · · · + cn,λ(k)fn(k + λ) = 0

with polynomial coefficientscn,j(k) (see Theorem3.1) thenWn(s) satisfies the corresponding functional
equation

cn,0(s/2)Wn(s) + · · · + cn,λ(s/2)Wn(s + 2λ) = 0,

for Re s > 0.
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Example 4.4 Forn = 2, 3, 4 we find

(s + 2)W2(s + 2) − 4(s + 1)W2(s) = 0,

(s + 4)2W3(s + 4) − 2(5s2 + 30s + 46)W3(s + 2) + 9(s + 2)2W3(s) = 0,

(s + 4)3W4(s + 4) − 4(s + 3)(5s2 + 30s + 48)W4(s + 2) + 64(s + 2)3W4(s) = 0.

Note that for all complexs, the functionV3(s) defined in (13) also satisfies the recursion given above
for W3(s)—as is routine to prove symbolically. 3

We note that in each case the recursion lets us determine significant information about the nature and
position of any poles ofWn. Details appear in (BNSW09). In particular, forn > 3, the recursion
guaranteed by Theorem 4.3 provides an analytic continuation of Wn to all of the complex plane with
poles at certain negative integers. Here, we confine ourselves to show the continuations ofW3, W4, W5,
andW6 on the negative real axis in Figure 2. These illustrate the fact that, e.g.,W3 andW5 have simple
poles at−2,−4,−6, . . . whereasW4 has double poles at these integers. It is further shown in (BNSW09)
that, for instance,Res−2(W3) = 2√

3π
.

Below we use
?[1]
= and the like to indicate equivalent conjectural equalities. Our next somewhat auda-

cious conjecture is:

Conjecture 4.5 For positive integers andn one has

W2n(s)
?[1]
=
∑

j>0

(

s/2

j

)2

W2n−1(s − 2j). (15)

In (15) we use the recursion/continuation ofWn on the righthand side as given above forn = 2, 3, 4.
By (7) Conjecture 4.5 clearly holds fors an even positive integer. Further, it follows from (12) thatthe
conjecture holds forn = 1.

Recall that the real part ofV3(k) as defined in (13) givesW3(k) for nonnegative integersk. Define

V4(s) :=
∑

j>0

(

s/2

j

)2

V3(s − 2j) =
∑

j>0

(

s/2

j

)2

3F2

( 1
2 ,− s

2 + j,− s
2 + j

1, 1

∣

∣

∣

∣

4

)

. (16)

This combines with the much better substantiated special casen = 2 of Conjecture 4.5 to provide:

Conjecture 4.6 For all integersk,

W4(k)
?[2]
= Re V4(k). (17)

4.3 Numerical Evaluations
Note that the following one-dimensional reduction of the integral may be achieved by taking periodicity
into account.

Wn(s) =

∫

[0,1]n−1

∣

∣

∣

∣

∣

1 +

n−1
∑

k=1

e2πxki

∣

∣

∣

∣

∣

s

d(x1, . . . , xn−1). (18)
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n = 3 Using this reduction, David Bailey (running tanh-sinh integration on a 256-core LBNL system
for roughly 15 minutes) has confirmed that the first 175 digitsof W3(1) are given by

W3(1) ≈ 1.5745972375518936574946921830765196902216661807585191701936930983
018311805944543821310853133622419530649842236115540882056173012611
081031331499438143442975115786527521008424458.

This agreed with the evaluationW3(1) = ReV3(1) originally conjectured in (14). He has also confirmed
175 digits forW3(s) = ReV3(s) for s = 2, . . . , 7.

n = 4 Using Conjecture 4.6 we provide the approximation

W4(1) ≈ 1.7990924798428510335326028458461089100662820032916204566266417735
988542669321205752411619305734748280560170144445179836872885.

It is worthwhile observing that this level of approximationis made possible by the fact that, roughly, one
correct digit is added by each term of the sum.

5 More Probability
As noted such problems have a long lineage. For example, in response to the question posed by Pearson in
Nature, Kluyver (Klu1906) makes a lovely analysis of the cumulative distribution function of the distance
traveled by a “rambler” in the plane for various step lengths. In particular, for our uniform walk Kluyver
provides the Bessel representation

Pn(t) = t

∫ ∞

0

J1(xt)Jn
0 (x) dx. (19)

Thus,Wn(s) =
∫ n

0
ts pn(t) dt, wherepn = P ′

n. From here, David Broadhurst (Bro09) obtains

Wn(s) = 2s+1−k Γ(1 + s
2 )

Γ(k − s
2 )

∫ ∞

0

x2k−s−1

(

− 1

x

d

dx

)k

Jn
0 (x)dx (20)

for reals with 2k > s > max(−2,−n
2 ). (20) enables Broadhurst (Bro09) to verify Conjecture 4.5 for

n = 2, 3, 4, 5 and odds < 50 to a precision of 50 digits.

Remark 5.1 For n = 3, 4, symbolic integration inMathematicaof (20) leads to interesting analytic
continuations (Cra09) such as

W3(s) =
1

22s+1
tan

(πs

2

)

(

s
s−1
2

)2

3F2

(

1
2 , 1

2 , 1
2

s+1
2 , s+3

2

∣

∣

∣

∣

1

4

)

+

(

s
s
2

)

3F2

(

− s
2 ,− s

2 ,− s
2

1,− s−1
2

∣

∣

∣

∣

1

4

)

, (21)

and

W4(s) =
1

22s
tan

(πs

2

)

(

s
s−1
2

)3

4F3

(

1
2 , 1

2 , 1
2 , s

2 + 1
s+3
2 , s+3

2 , s+3
2

∣

∣

∣

∣

1

)

+

(

s
s
2

)

4F3

(

1
2 ,− s

2 ,− s
2 ,− s

2

1, 1,− s−1
2

∣

∣

∣

∣

1

)

. (22)

We note that fors = 2k = 0, 2, 4, . . . the first term in (21) (resp. (22)) is zero and the second is a
formula given in (8) (resp. (9)). Thence, one can in principle prove (21) and (22) by applying Carlson’s
theorem—after showing the singularities at1, 3, 5, . . . are removable. 3
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Herein, we will take a related probabilistic approach so as to be able to express our quantities of interest
in terms of special functions which allows us to explicitly resolveW3(2k + 1) for all odd values.

It is elementary to express the distancey of an(n + 1)-step walk conditioned on a given distancex of
ann-step walk. Since, by a simple application of the cosine rulewe find

y2 = x2 + 1 + 2x cos(θ), (23)

whereθ is the outside angle of the triangle with sidesx, 1, y. It follows, for details see (BNSW09), that
the conditional density for the distancey of an(n + 1)-step walk as an extension of ann-step walk with
distancex is

hx(y) =
2y

π
√

4x2 − (y2 − x2 − 1)2
(24)

which, of course, is independent ofn.
We therefore have the following trivial evaluation

Wn+1(s) = E(ys) = E (E (ys | x)) =

∫ n

0

(

∫ x+1

|x−1|
ys hx(y) dy

)

pn(x) dx, (25)

under the assumption that the probability densitypn for then-step walk is known. Clearly, for the1-step
walk we havep1(x) = δ1(x), a Dirac delta atx = 1. It then follows immediately that the probability
density for a2-step walk is given byp2(x) = 2

π
√

4−x2
for 0 6 x 6 1 and0 otherwise.

5.1 Applications to W3

The explicit form ofp2(x) leads to some alternative probabilistically inspired formulae forW3(s). The
inner integral in (25) is in fact expressible in terms of the hypergeometric function with details appearing
in (BNSW09). For instance, in the cases = 1 we find

∫ x+1

|x−1|
y hx(y) dy =

2(x + 1)

π
E

(

2
√

x

x + 1

)

, (26)

(for x > 0 andx 6= 1) whereE(k) = π
2 2F1(

1
2 ,− 1

2 ; 1; k2) denotes the complete elliptic integral of the
second kind with parameterk. This leads to the following expression for the3-step walk:

W3(1) =

∫ 2

0

4(x + 1)

π2
√

4 − x2
E

(

2
√

x

x + 1

)

dx. (27)

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1: It remains to prove the result for odd integers. Since, as noted, for all complexs,
the functionV3(s) defined in (13) also satisfies the recursion given forW3(s) in Example 4.4, it suffices
to show that the values given fors = 1 ands = −1 are correct. First, (BB87, Exercise 1c), p. 16) allows
us to write

(x + 1)E

(

2

√
x

x + 1

)

= Re
(

2E(x) −
(

1 − x2
)

K(x)
)
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for 0 < x < ∞ where we have used Jacobi’s imaginary transformations (BB87, Exercises 7a) & 8b), p.
73) to introduce the real part forx > 1. Thus, from (27),

W3(1) =
4

π2
Re

∫ π/2

0

(

2E(2 sin(t)) − (1 − 4 sin2(t))K(2 sin(t))
)

dt

=
4

π2
Re

∫ π/2

0

∫ π/2

0

2

√

1 − 4 sin2(t) sin2(r) dtdr

− 4

π2
Re

∫ π/2

0

∫ π/2

0

1 − 4 sin2(t)
√

1 − 4 sin2(t) sin2(r)
dtdr.

Joining up the two last integrals and parameterizing, we consider

Q(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t) − 2 a2 sin2(t) sin2(r)
√

1 − a2 sin2(t) sin2(r)
dtdr. (28)

We now use the binomial theorem to integrate (28) term-by-term for |a| < 1 and substitute

2

π

∫ π/2

0

sin2m(t) dt = (−1)m

(−1/2

m

)

throughout. Moreover,(−1)m
(−α

m

)

= (α)m/m! where the later denoted thePochhammersymbol. Eval-
uation of the consequent infinite sum produces:

Q(a) =
∑

k>0

(−1)k

(−1/2

k

)

(

a2k

(−1/2

k

)2

− a2k+2

(−1/2

k

)(−1/2

k + 1

)

− 2a2k+2

(−1/2

k + 1

)2
)

=
∑

k>0

(−1)ka2k

(−1/2

k

)3
1

(1 − 2k)2

= 3F2

(− 1
2 ,− 1

2 , 1
2

1, 1

∣

∣

∣

∣

a2

)

.

Analytic continuation toa = 2 yields the claimed result as per formula (13) fors = 1. The cases = −1
is similar, see (BNSW09). 2

6 Conclusion
The behaviour of these two-dimensional walks provides a fascinating blend of probabilistic, analytic,
algebraic and combinatorial challenges. Conjecture 4.6 remains mysterious to us as does does its less
compelling parent Conjecture 4.5.
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