FPSAC 2010, San Francisco, USA DMTCS proc.(subm.), by the authors, 1-12

Random Walk Integrals

Jonathan M. Borweihand Dirk Nuyen&and Armin Straub and James
Wart

LUniversity of Newcastle, Australia. Emajlonat han. bor wei n@ewcast | e. edu. au
2K.U.Leuven, Belgium. Emaitli r k. nuyens@s. kul euven. be

3Tulane University, New Orleans, USA. Emakt r aub@ ul ane. edu

4University of Newcastle, Australia. Emajlanes. wan@ewcast | e. edu. au

Abstract. We study the expected distance of a two-dimensional walk in the plane witstap# in random directions.

A series evaluation and recursions are obtained making it possible toittxftiomulate this distance for small num-
ber of steps. Formulae for all the moments &-step and &-step walk are given, and an expression is conjectured
for the 4-step walk. The paper makes use of the combinatorical features exhilyitthe even moments which, for
instance, lead to analytic continuations of the underlying integral.

Résune.

Resumen.

Keywords: some well classifying wordsnandatory!

1 Introduction and Preliminaries

This is an extended abstract of (BNSWO09) which contains tipegkon given here complemented with
much more details. In particular, we often refer to (BNSW@®Ytill proofs of statements that we present.
Throughout, we consider thedimensional integral

S

dx 1)

n

Wi(s) = /[0,1]" Z

k=1

eQW-Tki

which occurs in the theory of uniform random walk integralghie plane, where at each step a unit-step
is taken in a random direction, see Figure 1. As such, thgiatg1l) expresses theéh moment of the
expected distance to the origin aftersteps. Particularly interesting is the special case of dpeced
distancelV,, (1) aftern steps.

A lot is known about the one-dimensional random walk. Etg.ekxpected distance aftemunit-steps is
(n — 1)!1/(n — 2)!! whenn is even andi!!/(n — 1)!! whenn is odd (and asymptotically this distance is
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v/2n /7). For the two-dimensional walk no such explicit expressiaere known, although the term ran-
dom walk first appears in a (related) question by Karl Pears®ature in 1905 (Peal905) for explicitly
this two-dimensional walk under consideration. Pearsiggéred answers by Lord Rayleigh (Ray1905)
on the asymptotic behaviour of the probability fowery large and by Benett (referred to in (Peal905b))
for the casen = 2, after which he concluded that there still was a large irstefiar the unresolved case of
smalln which is dramatically different from the case of langeNote that the expected value for the root-
mean-square distance is well known to be j/st (in that case the implicit square root in (1) disappears
which greatly simplifies the problem).

(a) Severalt-step walks (b) A 500-step walk

Fig. 1: Random walks in the plane.

We picked up the special case= 1 of (1) from the whiteboard in the common room at UNSW where
it was written as a generalization of a discrete problem imyptographic context by Peter Donovan,
discussed in (Don09). However, the problem in itself app&anumerous applications, e.g., in problems
involving Brownian motion in physics. Numerical values 16f, evaluated at integers can be seen in
Tables 1 and 2. One immediately notices the apparent inseggrences for the even moments—which are
the moments of the squared expected distance (thus theesquodifors = 2 gives the root-mean-square
distance/n). By experimentation and some sketchy arguments we quétkijectured and believed that,
for k a nonnegative integer,

k k
2 2
11 4) . (2)

(In fact, (2) also holds for negative odd integers.) This fesidong a mystery, but it will be proven in the
final section of the paper.

In Section 2 we develop an infinite series expression¥ai(s) which holds for all reals > 0, see
Theorem 2.1. From this it then follows in Corollary 2.2 thia¢ teven moments di,,(s) are given by
integer sequences. The combinatorial feature$,0f) := W,,(2k), k a nonnegative integer, are studied
in Section 3. We show that there is a recurrence relationtlenumberg,, (k) and confirm that indeed,
an observation from Table 1, the last digit in the columnsfes 10 is alwaysn mod 10.

1
Ws(k) = Re 3F» (2’
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n|s=2|s=4|s=6|s=8 | s=10 (Slo09)

2 2 6 20 70 252 A000984

3 3 15 93 639 4653 A002893

4 4 28 256 | 2716| 31504 A002895

5 5 45 545 | 7885 | 127905

6 6 66 996 | 18306 | 384156

Tab. 1: W,(s) at even integers.

n| s=1 s=3 5=5 s=7 s=9
2| 1.27324 | 3.39531 10.86498 37.25135 132.44925
3| 1.57460 | 6.45168 | 36.70519 | 241.54389 1714.61960
4 | 1.79909 | 10.12068 | 82.65146 | 822.27337 | 9169.61964
5] 2.00816 | 14.28958 | 152.31577 | 2037.14185 | 31392.80994
6 | 2.19386 | 18.91327 | 248.75895 | 4186.18720 | 82718.49864

Tab. 2: W, (s) at odd integers.

In Section 4 some analytic and numerical resultsfet 1,2, 3 are given and we lift the recursion for
fn(k) to W, (s) by the use of Carlson’s theorem. The recursions:fer 2, 3, 4 are given explicitly as an
example. These recursions then give further informatiotherpoles of the analytic continuationsiof,

(graphs ofv,, for n = 3,4, 5,6 and their analytic continuations are shown in Figure 2).nfrrere we
conjecture the recursion

Wan(s) 2 > <S§2>2W2n—1(5 - 2j),

j>0
based on analytic continuations, and the explicit fornates to (2),
2 1 _k -k ;
?[2) 5/2 5y~ t+ i -5+
k) = E R{?%2 2 2 4
Walk) Rem(]’)“( 1,1 ‘)

for k a positive integer. High precision numerical evaluatiars#f = 3 andn = 4 are given.

In the final section we explore the underlying probabilitydebmore closely, starting with another
answer to Pearson, this time by Kluyver (Klu1906). Finatignsidering conditional densities, we are
able to give an alternative form f&¥;(s) which eventually leads to a proof of (2).

2 A Series Evaluation of W,,(s)

Theorem 2.1 Forreal s > 0,

o gor(E G

m=0 k=0

Proof:
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Fig. 2: VariousW,, and their analytic continuations.

We first exploit the binomial theorem to show that for integes 1 and reals > 0,

m

Wn(s):nSZ(_l)m<8/2>n2m/[0,1]n 43 sin(n(e; — ) | de @)

m —
m>=0 1<i<j<n
Next we evaluate the trigonometric integral in (4). To thislgwe show that it is the constant term of
(n® = (@1 4 @) (/a1 + oo+ wa))™

The details appear in (BNSWQ09). Alternatively, one may stath the observation thal,,(s) is the
constant term of
(@14 2n) (/1 + - 4 1/wa)) ™ 5)
which follows directly from the integral definition. O
From Theorem 2.1 and the fact that the binomial transforrmiseolution we additionally learn that
the even moments are integer sequences as detailed byltweirigl corollary.

Corollary 2.2 For nonnegative integers,

wen- 2 (. ) Q

a1+-+an=Fk

An outline of the genesis of these evaluations is also girdBNSWO09).
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3 Further Combinatorial Features

In light of Corollary 2.2, we consider the combinatorial sufy (k) := W,,(2k) of multinomial coef-
ficients squared. These numbers also appear in (RS09) imltbeihg way: f,, (k) counts the number
of abelian square®f length2k over an alphabet with letters (that is stringsz’ of length2k from an
alphabet withn letters such that’ is a permutation of). It is not hard to see that, (Bar64),

k

rens®) =3 (1) £ st ) ™)

=0

for two non-overlapping alphabets with andn., letters. In particular, we may use (7) to obtgirik) =
k

1, fo(k) = (°F), as well as
E\?/2j Lk —k 2k —k,—k,—k|1
2() (5) =m0 ) = ()m (0R) @
5N 125\ (2(k — 5) 2k Lk, —k,—k
rw = 2 0) () C) = C)m (i) ©

Here and below F;, denotes the hypergeometric function.
The following result is established in (Bar64) with the resians forn < 6 given explicitly.

fs (k)

Theorem 3.1 For fixedn > 2, the sequenc¢, (k) satisfies a recurrence of order := [n/2] with
polynomial coefficients of degree— 1:

Cn,O(k)fn(k) +- Cn,)\(k)fn(k + A) =0.

Remark 3.2 For fixedk, the mapn — f,, (k) is a polynomial of degreg. This follows from

k

ro= () 2 (bt ) 0o

j=0 J aj+-Faj;=
a; >0

because the right-hand side is a linear combination (wisitpe coefficients only depending @) of
the polynomials(y), (7). ..., (}) of respective degrees 1,..., k. From (10) the coefficient of}) is
seen to bgk!)2. We therefore obtain the first-order approximatiof, (s) ~, n*/?I'(s/2 + 1) for n

approaching infinity, see also (Klu1906). In particuléf, (1) ~,, /nx7/2. Similarly, the coefficient of
(™) is EL (k)% which gives rise to the second-order approximation

(k1)2 (Z) + %(W (k " 1) = kIn* — w kn*~1 + O(n*2).

of f,.(k). We therefore obtain

W) =2 { (=3 ) 0 (5 41) 41 (5+2) - r(5+9) |
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which is exact fors = 0, 2, 4. In particular,W,,(1) =~,, v/n7/2 4+ \/7/n/32. More general approxima-
tions are given in (Cra09). O

Remark 3.3 It follows straight from (6) that, for primes, f,.(p) = n modulop. Further, fork > 1,
fn(k) = m modulo2. This may be derived inductively from the recurrence (7ksjrassuming that
frn(k) = n modulo2 for somen and allk > 1,

k k

Fasa(k) = <§)2fn(j) =k+) (’;); =k+> <f) =k+2"'=k (mod2).

=0 j=1

7 odd
Hence for odd primes,
fn(p) =n  (mod2p). (11)
The congruence (11) also holds foe= 2 sincef,,(2) = (2n — 1)n, compare (10). &

Remark 3.4 The integersfs(k) (respectivelyfs(k)), the first of which are given in Table 1, also arise
in physics, see for instance (BBBGO08), and are referred teeaagonalrespectivelydiamond lattice
integers The following formulae (BBBGO08, (186)—(188)) relate theequences in non-obvious ways:

3k

3 )k _ (k)3 .
(Zfs(k)( ) ) > falk) (TS

k>0 k>0

—z(1 4 2)(1 + 9z))*
= Z f2(k) f3(k) (((1 _(3;)(1)3_ ?;))22;11

k>0
k
x
= fak —.
k; R s
It would be instructive to similarly engagg (k). &

4  Analytic and Numerical Results

We start with investigating the analyticity &F,, (s) for a givenn. In (BNSWQ09)[Proposition 1], we show
thatW,,(s), as defined in (1), is analytic at least lBe s > 0. Furthermore, it is shown (based on the
results of Section 4.2) that (1) is indeed finite and anafpti®e s > —2, for each integen > 2 (compare
the graphs of th&V,, shown in Figure 2).

41 n=1,n=2,andn =3

The caser = 1 is trivial: it follows straight from the integral definitiofl) thatWW; (s) = 1.
In the caser = 2, direct integration of (18) withh = 2 yields

Wa(s) = 25+ /O v cos(mt)*dt = (; 2), (12)
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which may also be obtained using (3).
Forn = 3, based on (8) we define

4) : (13)

so that by Corollary 2.2 and (8)V3(2k) = V5(2k) for nonnegative integers. This led us to explore
V3(s) more generally numerically and so to conjecture the folfmwivhich we prove in the penultimate
section:

Theorem 4.1 For nonnegative even integers and all odd integers

From here, we derive the following equivalent expressiamgif;(1):

44/3 T A | 1 V3 il
Wa(l — F 27 2 2|2 ) _ = XL F 27272 |2
3(l) 3 (3 2( 1,1 4) 7r)+ 24" 2( 2,2 4)
K? (ks) 1
= 2V3——; +\/§K2(k3)

3 21/3 1 27 22/3 2
= 2 rS(2) 4+ __18(2).
16 4 (3)+ 4 7t (3)
These rely on using Legendre’s identity and several Clalikemproduct formulae, plus Legendre’s eval-
uation of K (k3) whereks := V31 s thethird singular valueas in (BB87). Similar expressions can be

21/2
given for W3 evaluated at odd integers.

4.2 Carlson’s Theorem

We may lift the recursive structure gf,, defined in Section 3, tdV,, to a fair degree on appealing to
Carlson’s theorem (Tit39, 5.81):

Theorem 4.2 (Carlson) Let f be analytic in the right half-planBe z > 0 and of exponential type (mean-
ing that| f(z)| < Me“!*I for someM andc), with the additional requirement that

f(2)] < Me!
for somed < = on the imaginary axi®e z = 0. If f(k) =0fork =0,1,2,...thenf(z) = 0 identically.

By verifying that Carlson’s theorem applies, we get:

Theorem 4.3 Given thatf,, (k) satisfies a recurrence
no (k) fu(k) + -+ cua (k) fu(k +A) =0

with polynomial coefficients, ; (k) (see TheorerB.1) thenW,, (s) satisfies the corresponding functional
equation
Cn0(s/2)Wo(s) + -+ cnr(s/2)Wp(s+2X) =0,

for Res > 0.
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Example 4.4 Forn = 2, 3,4 we find

(s+2)Wa(s+2)—4(s+ 1)Wh(s) = 0,
(s +4)*Wa(s +4) — 2(5s* + 305 + 46)W3(s + 2) + 9(s + 2)*W3(s) = 0,
(5 +4)°Wiy(s +4) — 4(s + 3) (55 + 30s + 48) Wy (s + 2) + 64(s + 2)°Wy(s) =

Note that for all complex, the functionV;(s) defined in (13) also satisfies the recursion given above
for W3(s)—as is routine to prove symbolically. &

We note that in each case the recursion lets us determindicagr information about the nature and
position of any poles ofV,,. Details appear in (BNSWQ09). In particular, far > 3, the recursion
guaranteed by Theorem 4.3 provides an analytic continuatfd?,, to all of the complex plane with
poles at certain negative integers. Here, we confine ow@sétvshow the continuations Bfs, Wy, Wi,
andWs on the negative real axis in Figure 2. These illustrate thetfat, e.g.V3 andW5 have simple
poles at-2, —4, —6, ... wheread¥, has double poles at these integers. It is further shown irS\BR9)

that, for instanceRes_o(WW3) = %
Below we use@ and the like to indicate equivalent conjectural equalit®sir next somewhat auda-
cious conjecture is:

Conjecture 4.5 For positive integes andn one has

?2[1] s/2 2 )
Wan(s) = Z( ; > Wan—1(s — 2§). (15)

Jj=20

In (15) we use the recursion/continuationldf, on the righthand side as given above foe 2,3, 4.
By (7) Conjecture 4.5 clearly holds faran even positive integer. Further, it follows from (12) tha
conjecture holds fon = 1.

Recall that the real part 8f;(k) as defined in (13) giveB/;5(k) for nonnegative integers Define

2 2 s : s :
Vas) = 3 (3/.2> Vas—2j) =3 (s/?) Ay (5’ EARAERE ‘4) . e
330 >0 N L1

This combines with the much better substantiated specéahca- 2 of Conjecture 4.5 to provide:

Conjecture 4.6 For all integersk;,

Wi(k) 2 Re Vi (k). 17)

4.3 Numerical Evaluations
Note that the following one-dimensional reduction of theegral may be achieved by taking periodicity

into account.
Wi(s) = /
[071]n—1

n—1

1 + Z eQﬂ'wki
k=1

d(xl,...,xn_l). (18)
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n = 3 Using this reduction, David Bailey (running tanh-sinh gnation on a 256-core LBNL system
for roughly 15 minutes) has confirmed that the first 175 digit8/5(1) are given by

W5(1) =~ 1.574597237551893657494692183076519690221666180958581936930983
0183118059445438213108531336224195306498422361885@956173012611
081031331499438143442975115786527521008424458.

This agreed with the evaluatidi’; (1) = Re V5(1) originally conjectured in (14). He has also confirmed
175 digits forlWs(s) = Re V3(s) fors =2,..., 7.
n = 4 Using Conjecture 4.6 we provide the approximation
Wy(l) =~ 1.799092479842851033532602845846108910066282002029966266417735
9885426693212057524116193057347482805601701444836892885.

It is worthwhile observing that this level of approximatiemmade possible by the fact that, roughly, one
correct digit is added by each term of the sum.

5 More Probability

As noted such problems have a long lineage. For examplesfronse to the question posed by Pearson in
Nature Kluyver (Klu1906) makes a lovely analysis of the cumulatilistribution function of the distance
traveled by a “rambler” in the plane for various step lengthsparticular, for our uniform walk Kluyver
provides the Bessel representation

Po(t) =t / Ji(zt) T2 (@) da (19)
0
Thus, W, (s) = [, t* pn(t) dt, wherep,, = P;. From here, David Broadhurst (Bro09) obtains
LGP+ ™ e/ 1A\
__ ost+1—k 2 2k—s—1( _ = % n
Wy(s) =2 T2 Y /0 x ( . dx) Ji (z)dz (20)

for real s with 2k > s > max(—2,—%). (20) enables Broadhurst (Bro09) to verify Conjecture 415 f
n = 2,3,4,5 and odds < 50 to a precision of 50 digits.

Remark 5.1 Forn = 3,4, symbolic integration irMathematicaof (20) leads to interesting analytic
continuations (Cra09) such as

1 1 1 S S s
s S 5,555 |1 s —5,—5,—5 1
Ws(s) = 55; tan( ) <8_1> 3 F <S2’12;23 ) + (s)ng ( 22 2 ), (21)
221 2 2 ; ) ; 4 2 L= 4
and
3 1 1 1 s 1 s s s
S 77717174_1 S 9y 9y 99y 9
Wiy(s) = 55; tan (—) « 1 | 4F3 3+32 22 (L) 2 ). (22
2 2 2 2 072 )2 2 L1, - 2

We note that fors = 2k = 0,2,4,... the first term in (21) (resp. (22)) is zero and the second is a
formula given in (8) (resp. (9)). Thence, one can in prireiptove (21) and (22) by applying Carlson’s
theorem—after showing the singularitieslas, 5, . . . are removable. <
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Herein, we will take a related probabilistic approach smdsetable to express our quantities of interest
in terms of special functions which allows us to explicitsolvelVs(2k + 1) for all odd values.

It is elementary to express the distancef an (n + 1)-step walk conditioned on a given distancef
ann-step walk. Since, by a simple application of the cosine wedind

y? = 2% + 1 4 22 cos(h), (23)

whered is the outside angle of the triangle with sided, 3. It follows, for details see (BNSWO09), that
the conditional density for the distangef an(n + 1)-step walk as an extension of arstep walk with
distancer is

2y
ha(y) = Ty e —" (24)

which, of course, is independent of
We therefore have the following trivial evaluation

x+1

Woii(s) = E(@) = E(E (4 | 2)) = / ' ( /|

‘ y® ha(y) dy) pn(z) dz, (25)
rz—1

under the assumption that the probability dengjtyfor then-step walk is known. Clearly, for the-step
walk we havep, (z) = 4,(z), a Dirac delta atz = 1. It then follows immediately that the probability
density for a2-step walk is given by, (z) = ﬁ for 0 < = < 1 and0 otherwise.

5.1 Applications to W;

The explicit form ofpy(z) leads to some alternative probabilistically inspired fatae foris(s). The
inner integral in (25) is in fact expressible in terms of tlypérgeometric function with details appearing
in (BNSWO09). For instance, in the case- 1 we find

ol 2w +1) [ 2z
ho(y) dy = E , 26
L_ly (y)dy - (x+1> (26)
(for z > 0 andz # 1) whereE(k) = Z 5Fi (%, —1;1;k?) denotes the complete elliptic integral of the
second kind with parametér This leads to the following expression for thestep walk:
2 4z +1) 2\
Ws(1) = E dz. 27
3(1) 0 m2\/4 — 22 <l’+1> * @7)

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1: 1t remains to prove the result for odd integers. Since, asdhdor all complexs,
the functionVs(s) defined in (13) also satisfies the recursion giveniiéy(s) in Example 4.4, it suffices
to show that the values given fer= 1 ands = —1 are correct. First, (BB87, Exercise 1c), p. 16) allows
us to write

N2

(x + 1)E<2 x+1) =Re (2E(z) — (1 —2?) K(z))
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for 0 < z < oo where we have used Jacobi’s imaginary transformations {BBgercises 7a) & 8b), p.
73) to introduce the real part far > 1. Thus, from (27),

/2
Ws(1) = %Re/o (2E(2sin(t))—(1—4sin2(t))K(251n(t))) dt

™

4 w/2 pw/2
= —Re/ / 2\/1—4sin2(t)sin2(r)dtdr
Qo
/2 _
— Re / / \/ dsin’ (t) dtdr.
]_ _

4sin?(t) sin®(r)

[ V)

Joining up the two last integrals and parameterizing, wesiciem

4 /ﬂ/2 /”/2 1+ a?sin’(t) — 2a? sin2(t) sin?(r) dtdr (28)
T 0 \/1 — a2 sin?(t) sin?(r)

We now use the binomial theorem to integrate (28) term-byfler |a| < 1 and substitute

% /0 " sin?™(t) dt = (—1)™ <71n/2)

throughout. Moreover,—1)" (%) = (a),,/m! where the later denoted tfR@chhammesymbol. Eval-
uation of the consequent infinite sum produces:

o = S (@ () e (5F) () e ()

= Sy ()

k>0
az) |

1 11
- .F 207202
o2 (73
Analytic continuation ta: = 2 yields the claimed result as per formula (13) foe 1. The case = —1
is similar, see (BNSWO09). a

)

6 Conclusion

The behaviour of these two-dimensional walks provides aiffiasing blend of probabilistic, analytic,
algebraic and combinatorial challenges. Conjecture 41anmes mysterious to us as does does its less
compelling parent Conjecture 4.5.
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