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Preface IX

Preface

Programming In CAPL introduces the basic concepts of the Vector CAN Access Programming Language (CAPL),
the programming language foundation of Vector CANoe and CANalyzer — two of Vector's most popular
development tools. CAPL is a rich, robust tool used to extend the power of CANoe and CANalyzer beyond the
tool’s interfaces and to customize tool functionality to the user’s requirements.

About This Book

The target audience of this book is anyone needing to develop advanced, customized CAN networking tool
solutions using Vector CANalyzer and CANoe, including engineering students, faculty, practicing engineers, and
electronic technicians. This material is suitable for college programs that focus on electrical engineering, computer
engineering, computer science, distributed control systems and distributed embedded systems that use the CAN
protocol.

This book assumes that the programming experience level of the user will be individuals with little experience in
the C programming language, in addition to those with C coding experience.

Additionally, this text assumes that the reader has a functional understanding of the CAN protocol. Readers
needing to develop such an understanding are encouraged to peruse Appendix A: Introduction to CAN
Communications.

Organization

This book is organized into logically arranged sections that allow the reader to build an understanding of CAPL in a
clear and concise manner. There are six major parts to this book:

The first part (Chapters 2 through 7) introduces the reader to CAPL concepts and the CAPL working environment
The next part (Chapters 8 and 9) provides an overview of CAPL programming

The third part (Chapters 10 through 19) details CAPL functions, events and 1/O

The fourth part (Chapters 20 through 24) prepares the reader to develop projects where CAPL is used

The fifth part (Chapters 26 through 28) discusses Advanced CAPL Concepts such as DLL usage and the CANoe
COM interface

Lastly, the sixth section is comprised of a set of Appendices containing overviews for those engineers and
students that are new to either CAN, distributed embedded networking or both.
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Preface

Tell Us What You Think!

We believe that you, the reader, are the most important person of all, since it is you who will benefit from reading
this book. We value your input, and we would like to know what we're doing right, what we could do better, what
things you think are important that we haven't covered, and any other comments you might have.

You may fax, e-mail or write us directly to let us know what you did or didn't like about this book — as well as what
we should do to make our books better.

When you write, please include the title of this book, as well as your name and phone or fax number. We will
carefully review your comments and share them with the authors and editors of this book.

E-mail: CAPL_Books@Vector-CANtech.com
Address: 39500 Orchard Hill Place Novi, Ml USA 48375

Fax: 248-449-9704
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1 Introduction to CAPL

Based on the C programming language, CAPL, or CAN Access Programming Language, is the programming language
used exclusively within the PC-based tool environments of CANalyzer and CANoe. The original design intent behind
CAPL (which is pronounced “kapple”) was to meet the CAN-based distributed embedded system developer’s
requirements including:

e Maximum control of all test and measurement operations
Maximum control of system or module simulation — CANoe- or CANalyzer-specific
Maximum support for one or more communication channels
Maximum event and message recording and playback control
Ability to interconnect to other PC applications

The creation of CAPL and its programming environment became the implementation to meet these requirements.

Using CANalyzer or CANoe in combination with CAPL makes it possible to create custom tool applications with user-
defined behavior. Potential applications are limited only by imagination, available communication hardware limitations
(if applicable), and the speed of the PC.

1.1 Evaluation Capability

The CANalyzer or CANoe tool itself, without CAPL programs, is enough to execute simple measurement and analysis.
With CAPL programs involved, measurement and analysis is greatly extended for CAN communication. One area that
the tool cannot perform without CAPL is analysis that involves timing. CAPL can make analysis more efficient with the
help of timers.

CAPL can be used in an application to:

Analyze specific messages or specific data

Analyze data traffic

Create and modify the tool’s measurement environment

Design a custom module tester

Create a black box to simulate the rest of the network

Create a module simulator

Create a custom module manufacturing tester

Create a custom module diagnostic or service tool

Create programs to perform customized analysis of network logging (playback) files

Create complex logging filters

Create a comprehensive message or data content generation tester for module/network validation.
Program a functional gateway between two different networks

Evaluate the module network software strategy by generating CAN error frames in simulation to see if modules
are working properly

1.2 Simulation Capability

The situation often arises when developing a distributed application that a portion or part of the application is not
available for testing. The system environment can be emulated with the help of CAPL, for example, to simulate the
data traffic of all remaining network nodes. For this reason, CAPL can also be used to simulate:

Node or system behavior using readable English instructions and values rather than hexadecimal values
Event messages, periodic messages, or conditionally repetitive messages

Human events like button presses on the PC keyboard

Timed node or network events

Multiple time events, each with its own programmable behavior

Normal operation, diagnostic operation, or manufacturing operation

Changes in physical parameters or symbolic values (for example,, “ON”, “OFF”)

Module and network faults to evaluate a limited operation strategy

Simple or complex functions (sin, cos)
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1.3 Prerequisites for Using CAPL

To use CAPL effectively you need the following:

¢ A CANalyzer or CANoe tool — the programmable version is required
An understanding of the CAPL Browser — where you write your CAPL program
A database tool — CANdb++ — to create your shared network data variables
CAPL programming knowledge — available in this book
A small amount of CAN communication knowledge

For those students and engineers who do not have access to a real CANalyzer or CANoe, consider using the demo
version of the tools (available from the Download Center at http://www.vector-cantech.com). Even without real
communication hardware, considerable experience can be gained using the demo version.

In addition, because CAPL is based on C, the user must be familiar with the C or C++ language. Users need not be
familiar with programming orientation, mechanics, and its libraries, but on the syntax, operators, expressions and
statements. Some common statements in C can also be found in CAPL. For example, the C function printf() is known
as the write() function in both CANalyzer and CANoe to output data to the Write window. Both functions use exactly
the same C/C++ formatting characters in the argument with the percent sign (%d for integers, %s for a string, and so
on.).

1.4 Learning Steps

CAPL represents the programmable portion of CANoe and CANalyzer. Although there are significant differences
between the two tools, both share a large set of features. For learning purposes, however, it is easier to learn
CANalyzer first, as CANoe is built on the foundation of CANalyzer.

While both tools are valuable in the development of any distributed product or distributed embedded system
architecture, CANoe possesses more powerful features than CANalyzer. In general, system and distributed product
developers typically use CANoe.

Once you understand the structure of both CANoe and CANalyzer, it is relatively easy to understand where you can
insert CAPL program blocks to implement the wide variety of available programmable functions. In general, a
developer has the choice of using CAPL programs for simulation or for measurement analysis operations. As shown in
Figure 1 below, once you understand the basic tool operation, where to insert program blocks, and how to use a
database, mastering the CAPL programming language is the last step to becoming a power user of CANoe or
CANalyzer.

in the beginning ...

v

Learn basic operation of
CANoe or CANalyzer

v

Learn how to add
program blocks

v

Leamn how to create and use
a message database

v

Learn how to create a
CAPL program

v

ready for action

B03031204

Figure 1 — General Steps to Learn CAPL
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Because CAN communication systems use a large number of CAN messages with an even larger number of network
data variables (or signals, as many prefer to call them), a database that can be used to manage this large volume of
information is extremely valuable, not only for observing the communication information on the bus but also because
the same information can be used inside the programming environment of CANalyzer and CANoe. Learning how to
use the user-configurable database will simplify your development effort.

1.5 CAPL - Event-Driven Software

CAPL is an event-based procedural language that includes a large number of special-purpose functions to help the
distributed embedded system developer. As explained in Figure 2, CAPL software is essentially event-driven.

g timer expires
key press .
¢ message received
CAPL events T T T
Execute event procedure Execute event procedure Execute event procedure
CAPL program activity for specific timer for user-pressed key for received message

B03022508

Figure 2 — CAPL Software Execution is Event-Driven

CAPL software can be created to respond to the following:
e Time events (software timers)
e |/O events (keyboard, serial port, parallel port)
e CAN communication events (messages, errors)

1.6 CAPL Program Organization

A CAPL program is organized into sections called event procedures. The CAPL Browser is used to parse a program
into event procedures for display, modification and compilation. Because CAPL is an event-driven language, CAPL will
only executes one event procedure at a time. If there are no events, you can say that the CAPL program is “idle”.

Extensive information regarding event procedures can be found in CAPL Events and Event Procedures — Chapter 10.

1.7 Using the CAPL Browser for Program Development

CAPL software is developed inside a complete development environment called the CAPL Browser, which is provided
as an integral component of the programmable version of CANalyzer or CANoe. The CAPL Browser essentially
combines a text editor and a compiler with an easy-to-use graphical user interface.

Because the overall structure of the CAPL Browser is based on the concept of events and is specifically organized
around different event classes, the software development process is much simpler than the traditional organization of
C programs.

The CAPL Browser also directly interconnects to databases, created by the CANdb++ Editor, to simplify the insertion
of network data variable names. Common message databases can be shared by CAPL programmers to raise the
consistency level across a development project at the system level.

To learn more about the CAPL Browser, see The CAPL Browser — Chapter 7.

1.8 Program Development Uses the Database Tool —- CANdb++

The typical development of CAPL application software most likely uses CANdb++, the CAN database editor, to create
and define the system’s network message set or database. CANdb++, an integral component of all versions of
CANalyzer or CANoe, is a simple database editor and generator. The easy-to-use graphical user interface makes
CANdb++ easy to learn; most of its basic capabilities can be easily implemented without a manual. For more
information on databases, see Using CANdb++ to Create a Database — Chapter 22.
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With CANdb++, you can perform all of the following tasks:

Define network nodes

Define messages and its properties

Define and position data items or signals within a CAN message
Define the physical units of a signal, if appropriate

Define symbolic values for a signal, if appropriate

Define common variables (known as attributes), if appropriate

Once a network message set is available, it can be shared by all development activities. This means that CAPL
programmers, CAN module software engineers, CAN module hardware design engineers, test engineers, and
technicians can all use the same database file when interconnecting tools to the bus.

Having a database containing all of your system’s network data variables simplifies the process of CAPL development.
This language tool, as well as symbolic access to the different variables defined in the database, allows software to be
developed quicker and with a higher degree of consistency. The CAPL Browser interface also allows you to select
user-defined variables directly from the database during CAPL implementation to avoid typing mistakes, and in some
cases, just to see what variables have been defined.

1.9 CAPL Programming Knowledge

The CAPL programming language is based on C. Those familiar with C will need minimal learning time to begin using
CAPL effectively. The syntax, most standard functions, and some mathematical functions of ANSI C have all been
incorporated into CAPL, which extends the C foundation with extra network-specific functions and data types.

The CAPL Browser only compiles one file at a time, so no linking is necessary. Since the development process
requires no header files, library functions, etc., CAPL programs are generally simpler to develop than C programs,
which require third-party editors, compilers, and debuggers. Syntax and semantic errors are found at compile time,
with run-time errors announced in a special window called the Write window inside the CANalyzer and CANoe
environment.

110 CAN Communication Knowledge

When developing a CAN-based module or a portion of a distributed embedded system that uses the CAN protocol, it is
helpful to have some basic understanding of the CAN communication system. Based on your level of involvement,
there may be no need to learn the details of the CAN protocol. However, basic knowledge about CAN communication
is quite valuable.

Available resource material may include information from the web, application notes, perhaps a book on the CAN
protocol, a copy of the Bosch CAN Protocol 2.0B specification, or a nearby expert willing to be your encyclopedia.

A chapter at the end of this book also gives you some reference on the Appendix A: Introduction to CAN
Communications — Chapter 26.

111 THE WARNING - Welcome to the Jungle

Welcome to the world of distributed systems. A button you press at your location might influence the system’s behavior
elsewhere — perhaps your button press has turned on a light at a remote location. This doesn’t seem to be a problem,
but what if the light was actually a powerful search beacon and, unfortunately, someone was standing next to it? Did
you unintentionally just cause an accident?

When using, designing, testing or servicing a product or system that is distributed, you must be aware that you are
potentially a member of the overall system. Your actions can influence the behavior of a network-based distributed
embedded system.

Depending on the application, the consequences of improper actions could cause serious operational malfunction,
damage to equipment, and physical injury to yourself and others. Imagine working in an engineering development lab
that is designing and evaluating distributed air bag systems — you could be one button press from a serious accident.
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Only those persons who understand the warnings contained in this book and agree to the conditions of use may
operate this product.

WARNING: A potentially hazardous operating condition is present when the following two
conditions are concurrently true:
o The system or product is physically interconnected to the real world
o The functions and operations of the real distributed embedded system are controllable
or influenced by the use of a network-based communication system.

WARNING: A potentially hazardous operating condition may result from the activity or non-
activity of some distributed embedded system functions and operations, which may result in
serious physical harm or death or cause damage to equipment, devices, or the surrounding
environment.

Note: By using distributed embedded system technology or using Vector tools, the operator may

potentially:
@ Cause a change in the operation of the system, module, device, circuit, or output
Turn on or activate a module, device, circuit, output, or function
Turn off or deactivate a module, device, circuit, output, or function
Inhibit, turn off, or deactivate normal operation
Modify the behavior of a distributed product
Activate an unintended operation
Place the system, module, device, circuit, or output into an unintended mode

112 Responsibility

Only those persons who understand the surrounding circumstances and accept the responsibility should be allowed
access to the tools and technology. When participating in the development, testing, or service of any distributed
system, you must understand that as a network member your involvement may impact the safety of the system.

YOU ARE RESPONSIBLE — AND ASSUME ALL RISKS AND LIABILITY FROM THE OPERATION OF THESE
PRODUCTS.

Programming With CAPL



6 CANalyzer and CANoe

2 CANalyzer and CANoe

The CANalyzer and CANoe tools were developed to meet the essential needs of the CAN-based module or system
developer by combining a comprehensive set of measurement and simulation capabilities.

Both CANalyzer and CANoe can interface to multiple CAN networks (or other common small area network protocols),
and provide accurate time-stamped measurements for all communication transfers, including both acknowledged
messages and communication errors. Recording and playback operations are standard. Users can record the
messages from one system and e-mail them to another engineer for playback and analysis.

Both tools basically operate like a multi-channel oscilloscope, a multi-channel logic analyzer, and a custom
alphanumeric display unit - all using an integrated database.

In addition, both tools are capable of creating any message generation pattern, much like a programmable function
generator, with complete control of all network data variables (or signals).

As shown in Figure 3, both CANoe and CANalyzer share a major portion of the same network analysis interface.

CANalyzer & CANoe
Major Network Analysis
Interfaces

CAN Bus - Input —»+—>» CAN Bus - Output

Log File - Playback —»r—» Log File - Recording
User - Input —»r—>» Oscilloscope View - Network Data Variables

—» Alphanumeric View - Network Data Variables
—» Network View - Message Trace Window
—» Bus Utilization - Statistics
—» Bus Error View - Statistics
—» Tool System View - Write Window

Graphic Panel View - Input —»—» Graphic Panel View - Output
[CANoe ONLY] [CANoe ONLY]

B03022507

Figure 3 — CANalyzer & CANoe Major Network Analysis Interfaces

Because one tool is usually a better choice over the other for most applications, you need to understand the key
differences between CANalyzer and CANoe before starting a project.

2.1 One Key Difference — Level of Node Control

One key difference between CANalyzer and CANoe is in the level of node control. Essentially, a single CANalyzer tool
can act as a single network member, but CANoe has no limit as to the number of modules with which it may substitute.

As shown in Figure 4, CANalyzer supports the control of a single node (a single tester, or a single module simulation),
while CANoe supports the control of a collection of multiple nodes (any number of module simulations or any number
of testers).
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CANalyzer CANoe
Single Node - Control Multiple Node - Control
1 1 2 3 4 N
S . N U W— W—

B03022506

Figure 4 - Level of Node Control Distinguishes Between CANalyzer and CANoe

In CANoe, each node may be enabled to evaluate a simulation, or each node may be disabled to allow connection of a
real module to the “remaining network simulation”. This can be done in real time for any number of nodes and for one
or more communication networks.

As shown in Figure 5, the ability to interconnect a real module to CANoe that represents “all the other remaining
network members” provides a significant testing advantage in distributed product architecture.

CANOE

ECU
Module Under Test

[
@ 3 i E & 5 iB

kCAN Network Connection

N
CAN Hardware
Transceivers
CANcardXL 2 5 1
L B03031210

Figure 5 — Using CANoe to Simulate the Rest of the System

The limitations when using CANoe depend on both the speed of the available PC and the amount of CAN hardware
that can be placed on a single PC. While laptops are typically limited to 4 CAN network connections (2 PCMCIA cards
with 2 CAN channels each), desktop configurations with up to 32 CAN channels have been created for special
applications.

2.2 Graphic Panels — The Other Major Difference

The second and quite distinctive difference from CANalyzer is that CANoe supports “graphic panels” for both inputs
and outputs. This allows the user to construct “higher-level application” behavior to simulate actual inputs and outputs.
For example, let's assume that your new project requires you to build a tester. Traditionally, you would typically choose
between two alternatives:

e Build a custom electronic module - design all the hardware and software yourself
e Build a semi-customized PC-based system - choose some PC-compatible hardware and design the software
yourself

However, another choice is now available - you could construct the entire tester in CANoe and write the entire
application in CAPL.

CANoe allows you to construct tester panel interfaces to give inputs and outputs. You can add the necessary CAPL
software to interconnect your switch presses to the corresponding CAN transmit messages that you wish the tester to
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send. It is also easy to connect incoming CAN receive messages to your front panel graphic output devices. In
addition, moving meters, blinking lights, and numerical display graphics are easy to create (see Figure 6).

Activate Input 1 Output 1 Indicator O Parameter C
Activate Input 2 Output 2 Indicator O Parameter D

0

I ]

ﬁ On Switch 40 50

ﬁ Normal Mode 20\3\({ WUy ,6,0/ 70
ﬁ Diagnostics 10 \\ /’ 80
ﬁ Activate Subsystem A : : 90
JH

Ju

Variable Input B

B03022509

Figure 6 - Example of CANoe graphics used for both Front Panel Input and Output
Bit-mapped graphics and digital photos, as shown in Figure 7, of actual product front panels can be easily animated for

use.

A

BASS TREB

vector

6

RANDOM

B03031220
Figure 7 — Example of User-Designated Bitmapped Graphics
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3 A Brief Introduction to CANalyzer

This section focuses on quickly learning the basics of CANalyzer, its tool architecture, and several of its key
operational features.

To get some initial experience, we will use a configuration demo that comes with the tool.

Not too many details are presented — those things are better left for your later encounters. We just want to get up the
curve a short distance at this time.
3.1 Value of the Downloadable Demo

Those who might initially experience CANalyzer by obtaining the downloadable demo version from the Internet
(Available at http://www.vector-cantech.com/download) will find this brief overview helpful.

The Internet downloadable demo is a usable, working copy of the programmable version of CANalyzer. While the
demo does not require hardware association and no connectivity to the real CAN bus, you can use it to perform the
following operations:

Learn the basic operation of CANalyzer

Create your own application

Create your own message set and define specific message data content
Reuse all your work, configurations, and program blocks in a real project

3.2 First-Time Considerations

While you learn CANalyzer, please remember the following important guidelines:
e Do not save
e Use “cancel’
¢ Avoid changing the CANalyzer configuration

You should look everywhere, play with as many things you feel comfortable with, but DO NOT SAVE ANY CHANGES
until you gain some more experience. Because CANalyzer uses a collection of related files, you may wish to keep
these as relatively clean copies for later use.

If you have a full version of CANalyzer, running a configuration demo may require hardware connections. Connect
your hardware as shown in Figure 8.

CANalyzer

Loopback
rrrr Cable

aaaaaaa

o919

CAN Hardware Transceivers

CANcardXL
| PCMCIA

B04050302

Figure 8 — CANalyzer Hardware Connections (CANcardXL Setup)
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10 A Brief Introduction to CANalyzer

3.3 How to Start and Stop CANalyzer

Find and launch the CANalyzer application. There will be several CANalyzer configuration demo choices on the
Windows’ Start Menu. Start with the one called Motbus, a very useful demo program of a Motor Bus (a simple
automotive application) and shows most of the tool’s capabilities.

Once CANalyzer has filled the front screen of your computer, examine the upper toolbar to locate a pair of grouped
buttons — the “lightning bolt” and the “stop sign” (see Figure 9). Then:

¢ Click on the “lightning bolt” to start CANalyzer

e Click on the “stop sign” to stop CANalyzer

E Yector CANalyzer /pro _ o ] 4

File Yiew Start Mode Configure Window Help ‘

DEEE |80 [=)m|?|||x nfasz|

JRT=TET] & statistics 0 JRT=TEA] craphic o
Gear S [meg/s] Al rusgss Al [~ a | A7 | & >R«
EngSpeed[rpm]  5994.000000 = 2n.o 20.0

CarSpeed[knsh]  202.500000 0.0 10.0 1

Engine Funning 0 200 400 600 ID=|| o o 1

4 + " Error Fra.mej

EngTenp[degC] 36,000

WheelSpe=dFLI 1 nin] 21 g11 [l e Ipcant jcana
EEr— P1213] .= ot DRI=TET

Source IHessage ;I I CANA -

Buszload [%] 0.00

* GysSten Start of measurement 01l:10:20 Peakload [%] 00
® Gystem CAN 1 Bus with &3333 BRI, J Std. Data [f:a"s] 4;5 b
* Bystenm CAN 2 Bus with 83333 BPS. Std. Data [tatal] 523

* CAPL Start! w | |Ext Data [fris] 0 —-—
| , o[

1| Ext. Diata [total]
4

[ LA E R Al A Systern® A CAPL* I I d |- _-7

ﬁ' Measurement Setup ) o =]

=] .
i [chn [0 | Mame |oir | pLc|Dats N T . e

7.050180 = 12c  EngSpeedContr Tz 1 01 S —-
0.000250 1 3fc GearBoxInfo T= 1 05
0.o000000 WriteTolog: 33 333K —-7
0.130260 1 64 EngineData T= 4 24 =a 2b
0.050090 1 %  ABSdata T= 3 95 01 00 _.—
0.100340 1 [=t:] Whesllnfo T= g 15 29 a= _—
0.100220 i c? VheelInfolEEE T= 8 9= cf 58 e —

gL

TR PII\Desktopl £

[motbus,cfg] [OMLINE [SvM [HEX

Figure 9 — The CANalyzer Motbus Interface

3.4 The Architecture of CANalyzer

The first time the “lightning bolt” is pressed to start CANalyzer, all sorts of activity begins. This gives the appearance
that this tool is somewhat complicated and perhaps a bit overwhelming. But do not worry; CANalyzer is easy to use if
you do two things first:

e Learn the tool architecture

e Learn to right-click the mouse button — it does a lot.

Figure 10 shows the basic tool architecture of CANalyzer. The diagram is essentially the same as CANalyzer's
Measurement Setup window.
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CANALYZER TOOL ARCHITECTURE

ispl o
—a—  Statistics display message timing

- display CAN Controller information
——m— Bus Statistics

receive messages

ispl h
] e - - Trace display when messages & data occurs
] -
Data display message data numerically and symbolically
d
send messages Send display message data graphically

—a—  Graphics

record & playback messages

. Logging
—)D logfile

Figure 10 — Basic Tool Architecture of CANalyzer

B03031030

Figure 10 (shown above) illustrates the default structure of the tool. It is completely under your control to change the
configuration. In fact, you will soon be naming each configuration with a different file name so you can reuse different
configurations based on your needs.

As shown in Figure 11, the organization of CANalyzer provides a comprehensive network analysis interface.

Major Network Analysis Interfaces

Inputs Outputs
CAN Bus - Input —»; —>» CAN Bus - Output
Log File - Playback — —» Log File - Recording
User - Input —> —» Oscilloscope View - Network Data Variables

—» Alphanumeric View - Network Data Variables
—>» Network View - Message Trace Window
—>» Bus Utilization - Statistics

—>» Bus Error View - Bus Statistics

—» Tool System View - Write Window

B03031803

Figure 11 — CANalyzer’s Network Analysis Interfaces

Not only can messages be received and transmitted on one or more buses, but recording and playback features are
also provided. Recorded files at one location can be emailed for playback at a different location.

An unlimited amount of viewable network information is available, including the following forms:
e Oscillographic

e Numerical
¢ Alphanumeric or symbolic
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12 A Brief Introduction to CANalyzer

3.5 Measurement Setup Window

As shown in Figure 12, the Measurement Setup window shows the structural process and information flow of the
CANalyzer configuration. This diagram is adjustable, and the layout is saved into the CANalyzer configuration. You
can create, modify, read, and save any CANalyzer configuration. Configurations are saved as .cfg files.

From a general point of view, the Measurement Setup window shows several blocks with interconnecting lines. Each

block represents a major tool activity. Most of these activities also have an associated and separate viewable window.
Double left click on the block to see the corresponding window or simply go to the vView menu to select.

ﬁ Measurement Setup ;lglil

—l Statistics

—— Bus Statistics

—l Trace

% % PC Board
g —— Data

Send

.

—— Graphics

> j
—— Logging 11} — CAMYYIN

Figure 12 — CANalyzer’s Measurement Setup Window

From a communication point of view, the PC Board represents the CAN hardware that handles the reception process,
and the Send Block represents the transmission process. All remaining blocks - Statistics, Bus Statistics, Trace, Data,
Graphics and Logging - are network analysis processes.

3.5.1 Trace Window

The Trace window shows the data content of the messages detected on the bus and other information about them.
Each message is time-stamped, and the identifier, message type, data length, and any associated data bytes are
shown. Several CANalyzer toolbar buttons are associated with this window.

Experiment with the toolbar buttons to see the effects. You may notice that identifiers can be shown either as decimal
or hex or symbolic. Notice that this use of the CAN message identifier names, rather than using numbers, can be
accomplished by using an associated database file. This Motbus demo uses a pre-defined database file that is
specific for this configuration. We will soon learn more about databases in another chapter.

3.5.2 Statistics Window

The Statistics window shows the statistical information for individual messages. The window displays the average
time between message transmissions during a measurement. It is shown using a line histogram indicated with the
message rate on the Y axis and the message identifier on the X axis. If the Statistics block is configured, a statistical
report can be generated at the end of the measurement.
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3.5.3 Bus Statistics Window

The Bus Statistics window shows the statistical information for the entire network, including the total composite
message rate, total number of messages, and the average and maximum bus utilization. In addition, the state of the
CAN controller is shown as either active, passive, or bus off.

3.5.4 Data Window

The Data window shows the current content of message data and is configurable. The user selects which data items
are to be shown, their respective positions in the window, and how the data content will be represented.

The Motbus configuration shows data in physical units and in bar graph form, but several other formats are also
available. The integrated database is used to create and name data items within messages, much like the way CAN
message identifiers are named, and it also allows further definition of physical units and symbolic values.

3.5.5 Graphics Window

The Graphics window is similar to the Data window. They both display message data, but instead of displaying
numeric data, the Graphics window actually plot those numeric message data into a graph. This window is also
configurable and has a wide assortment of associated toolbar controls for graph evaluation. Multiple signals can be
graphed with independent time axis, signal position, signal unit, and signal color.

3.5.6 Write Window

The Write window is a text output window and is used to indicate major CANalyzer operational modes, such as
measurement start/end times and detected hardware warning conditions. This window also allows a CAPL program to
output text information during program execution. The CAPL write() function is used to output text to this window.
Clearing the window and copying its contents to the clipboard are also possible. By using the right mouse button, the
window can be further defined and configured. There may be some dependencies, based on whether CANalyzer is
running or stopped.

3.6 Duplicating Analysis Blocks

Several of these analysis blocks can be duplicated.

For example, if you would like to use two separate Graphics windows, point to the Graphics block, hold the right
mouse button, and select Insert graphic window. Now you have created two Graphics windows. You can name
each block differently. Removing an inserted block is also possible by again using the appropriate right mouse
selection.

3.7 Controlling Data Flow

Looking at the Measurement Setup window, data flows from the left (PC Board) to the right (analysis blocks). This is
illustrated by the arrows on the line paths. Data flow connections to the various analysis blocks may be toggled
between being connected or disconnected by double clicking on the small black squares located on the line paths, also
known as hotspots.

% Note: Modifying the Measurement Setup window is not allowed if the CANalyzer measurement is
running.

3.8 Function Blocks

The Measurement Setup window not only displays the direction of data flow, but it also allows users to insert a variety
of function blocks so as to provide more analysis and simulation options to the user. For example, suppose that you
only want the Trace block to monitor certain messages. Instead of disconnecting the entire Trace block, a function
block can be inserted into the Measurement Setup window by right-clicking on the hotspots along the line paths of the
data flow plan.

Because data flow follows a certain path in the Measurement Setup window, placing a function block in a specific
location can have varying impact. In the example shown in Figure 13 (below), a filter block is placed directly to the left
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of the Trace block. As illustrated in the left image, filtering only affects the Trace block. If the same filter block is
removed and placed at the location in the image on the right, filtering will affect all the analysis blocks.

—I0ix] —loix]
— Statistics —l Statistics
Bus Statistics — Bus Statistics
Trace —— Trace
—— Data — Data
Send P Send .
—— Graphics — Graphics
Kl | Wz | | M

Figure 13 — Block Placement Effects

Function blocks are divided into two groups, one group for data analysis and the other for message simulation. Both
groups are equally important to CANalyzer to make the tool powerful to use and user-friendly.

3.8.1 Filtering Blocks

There are many levels of filtering possible along the data flow plan of the Measurement Setup window. The highest
level is filtering on specific CAN channels. A CAN channel is normally connected to a single network node or the entire
network. When blocking a CAN channel using a Channel Filter, as shown in Figure 14, there are two types of
information that is ignored. The first type are the messages from that CAN channel. The second type is the statistical
data reported by the micro-controller inside the Vector interface card (e.g., CANcardXL, CANboardXL, and
CANCcaseXL). This statistical information includes busload percentage, message frames per second on that channel,

error frames, CAN controller state, etc.

&

=lolx|
B
CAN kBaud
1 500 n.p.
2 500 n.p.
% PC Board |-lH_, 7
Send
4 | L ;

Figure 14 — Channel Filter

Note: All messages received on a blocked channel using the Channel Filter will still be acknowledged
by that channel’'s CAN controller in the Vector interface card.
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If the channel filtering approach is too broad, and filtering has to be done at the message level, you have need of the
Filter block. The Filter block is used to filter messages for transmission and reception, depending on where the block is
inserted. But, before you start inserting messages into the block, you need to separate the messages into two groups:
messages to be blocked and messages to be passed. The Filtertype option is selected via radio buttons at the bottom
left of the Filter configuration dialog (double click on the block to open). With a Pass Filter (PF), as illustrated in Figure
13, the user can specify the list of messages to transmit or receive, while the Stop Filter (SF) stops the message list
from transmitting or receiving. Both blocks are used to reduce data traffic volume as well as unwanted messages.

In addition to entering a message identifier to filter or select a defined message from a database, the Filter block has
also provided many conditions for filtering a message. You can filter a message based on its state:

e Transmit

¢ Receive

e Transmit Request

If that is not enough, you can filter upon the CAN channel the message belong and the type of message:
e Error frame
o Data frame
e Remote frame

All of the above message characteristics can be defined, and you can use more than one Filter block if needed.

The last level of filtering is available to the user that finds message filtering based on message characteristics too
generic. Often, a user must base filtration on signal values or data byte values from the data field of a message frame.
The concept is not that signals are being filtered; signals are used as keys to filter messages. For example, you have a
Trace window monitoring heavy bus traffic, and you are unable to observe a particular signal value because of the
complexity of message traffic. This scenario is very common, and the best solution is to use a Trigger block (T) . The
Trigger block allows filtering based on signal values. The best aspect of using the Trigger block is you do not have to
manually pause or stop the Trace window from updating once the desire condition has occurred.

The Trigger block has a built-in timer that allows messages to be displayed in the Trace window within a time interval.
Messages received outside the specified time interval will not be shown. The same idea is also used for logging bus
traffic into a file. You need to know when to start logging, and when to stop logging based a message or signal
condition.

3.8.2 Message Blocks

CANalyzer contains four function blocks that are capable of transmitting messages:
Generator block

Interactive Generator block

Replay block

CAPL Program block

Each of the above blocks is specifically suited to a particular method for message transmission. For example, the
Generator block is ideal for simple transmission activities. Complex transmission activities, requiring signal changes or
complex transmission strategies, are better served by the use of a CAPL program.

3.8.2.1 Generator Block

The oldest method for message transmission in CANalyzer is to use the Generator block (G). The Generator block
(Figure 15) allows you to define messages to be transmitted, or select the messages from a database. You can also
choose the CAN channel on which to transmit each message, and set the data byte values that each message carries.

In order for the Generator block to transmit messages, triggers must be defined. Transmission trigger methods may
involve a keystroke, a periodic rate, and/or upon receiving a specific message.
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3.8.2.2 Interactive Generator Block

Figure 15 — Generator Block Setup

There are two limitations to the Generator block that limit its effectiveness in complex tasks. The block is misleading for
some people because it requires multiple windows for setting up the transmit message list. The second problem is the
block settings have to be set before the CANalyzer measurement starts. No changes can be made if the measurement

is running.

Fortunately, CANalyzer has another transmission block that eliminates both practical limitations: the Interactive
Generator block (IG). The IG block combines the configuration windows of the Generator block into one window;
therefore, everything can be setup in one spot. In addition, changes can be made with the IG block while the

CANalyzer measurement is running.

Note: You must be very careful when using the IG block. Any mistakes, such as an accidental keystroke or mouse-
click, may impact the physical CAN bus that CANalyzer is connected to.
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Figure 16 — Interactive Generator Block Setup
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3.8.2.3 Replay Block

The third function block that is capable of transmitting message onto the CAN bus is the Replay block (R) . The Replay

block offers the ability to replay onto the CAN bus or analysis windows a sequence of messages that have been

recorded by the Logging block. There are many settings in the Replay block for message transmission, but among the

most useful is to allow a CAPL program to have full control of the block activities. Inside a CAPL program, you can

start, stop, pause, and resume a Replay block from replaying.

Replay configuration i

General | Chaninel Mappingl CAH Dptinnsl

— General

Replay name:

FeplayBlock 1

Source file;

C:hProgram FileshCatalyzern 0. 444%0en Edit...

HOTE: With thiz ReplayBlock pou can only send CAN meszages and
E nwvironment Y ariables.

— Dutput modes
% standard

" step

" animated with I ms

™ Repetitive output zending mode

— Start timing conditions

% immediately

£ wwith the First event time

£ after timeout of I ms

— Start optionz

v start replay on measurement start

- Feys
[ Start/Stop key: I
[ Pause/Resume key: I

X

k. Cancel | Help

3.8.2.4 CAPL Program Block

Figure 17 — Replay Block Setup

If a CAPL program has the ability to control a Replay block, it certainly can transmit messages, receive messages, and

filter messages at all levels. In CANalyzer there is a function block called a CAPL Node or Program block (P) that is
used to associate a CAPL program to simulate node behavior or perform complex data evaluation. As mentioned

before, a CAPL program is developed, edited, compiled, and saved using the CAPL Browser.

3.9 Using CAPL Program Blocks in CANalyzer

Within CANalyzer, CAPL program insertion can be placed into two major application areas — transmission and analysis

- as shown in Figure 18.
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Figure 18 — CAPL Program Location Areas in CANalyzer

A CAPL program is used whenever an application requires any programmable process. It is the specific application
that influences where a particular P block is inserted.

3.9.1 CANalyzer Program Blocks for Transmission

Insertion of a CAPL program block, or P block, into the CANalyzer's Transmit Branch, as shown in Figure 19, can
provide the following capabilities:

e Simulation of a network module

e Programmable message generation

e Operation as a network or module tester

——m—{ Statistics

——m— Bus Statistics
:E PC Board —- —i - Trace
g N
—— Data
P
+ —m—  Graphics
Send

— Logging —> D logfile

B03031007

TRANSMIT BRANCH

Figure 19 — Inserting a CAPL Program into CANalyzer’s Transmit Branch
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3.9.2 Program Blocks for Analysis

Depending upon the analysis or measurement requirements, CAPL program blocks may be inserted into the Analysis
Branch. CAPL program blocks can be placed either in front of the entire Analysis Branch (so as to affect all analysis
blocks, as shown in Figure 20), or in front of any specific analysis block.

% Note: Message transmissions done in the Analysis Branch will not go onto the physical CAN bus.

ANALYSIS BRANCH

—m—  Statistics

——m— Bus Statistics

—— Trace

]

PC Board
]

—— Data

Send —a— Graphics

_—m— Logging —> D logfile

B03031008

Figure 20 — Inserting the CAPL Program into CANalyzer for all Analysis Blocks

In another example, if a developer is interested in making specific numerical computations before logging information
into a file, the appropriate location for the CAPL program block is immediately in front of the logging activity, as shown
in Figure 21.

ANALYSIS BRANCH

—a————  Statistics

—m——— Bus Statistics

— Trace

(]
PC Board
]

— Data

—a———— Graphics

—.—E—.— Logging —> D logfile
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Send

Figure 21 — Inserting a CAPL Program into a Specific Analysis Branch
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3.10 CANalyzer — CAPL Programming Environment

Timers — CANalyzer - CAPL
Keyboard - Input —, Programming Environment

Receive Message - Input —p| —» Transmit Message - Output

Error Frame - Input — —» Error Frame - Output

Tool - Start, Stop, Initialize - Input —| Single Node - Control
Serial Port - Input —)» —» Serial Port - Output
File - Input —>» @ —» File - Output

Parallel Port - Input —» o o —» Parallel Port - Output

Other Application - Input —| —» Other Application - Output

B03022504

Figure 22 — CANalyzer — CAPL Programming Environment
The CAPL programming environment, shown in Figure 22, provides a wide range of inputs and outputs.
Remember that one big difference between CANalyzer and CANoe is the number of modules that can be controlled.

While a single CANalyzer tool can act as a single network member, CANoe has no limit on the number of modules on
the network.
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4 A Brief Introduction to CANoe

This chapter focuses on quickly learning the basics of CANoe, its tool architecture, how it can be used to create a
system-level model, and several key operational features. Few details are presented in this chapter, but will be
introduced in later chapters. For the purpose of this chapter we will only introduce a few concepts

To get some initial experience, we will use a demo application that comes with the tool.

Because a portion of the network analysis interface is common between CANalyzer and CANoe, some material in this
chapter is partially repeated from the last chapter.
4.1 Value of the Downloadable Demo

Those who may initially experience CANoe by obtaining the downloadable demo version from the Internet (available at
http://www.vector-cantech.com/download) will find this brief overview helpful.

The downloadable demo is a usable, working copy of the programmable version of CANoe. While the demo does not
run on a real CAN bus or work with real CAN hardware, it can provide experience for you to perform the following
tasks:

e To learn the basic operation of CANoe

e To create your own multiple-node application

o To create your own message set and to define specific message data content

e To reuse your work, configurations, and program blocks in a real project

4.2 First-Time Considerations

While you begin to learn CANoe using the demo, please remember the following guidelines:
e Do not save
e Use “cancel’
¢ Avoid changing the CANoe configuration

You should look everywhere, try out as many functions and features as you feel comfortable with, but DO NOT SAVE
ANY CHANGES until you gain some more experience. CANoe uses a collection of related files; therefore, you may
wish to keep these as relatively clean copies for later use.

If you have a full version of CANoe, running a demo may require hardware connections. Connect your hardware as
illustrated in Figure 18.

CANOE

.......

[
12 02 4 05 6 7 8 9

CAN Hardware

CANCcardXL

Figure 23 — CANoe Hardware Connections
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4.3 Learning from the Demo

Now we are ready to launch the CANoe application. The program you are about to launch is a demonstration of a
simple application and shows many of the tool’s capabilities. Follow these easy steps to begin:

1. Locate in the Window’s Start Menu

2. Start the demo entitled CANoe Easy.

CANoe begins by filling the front screen of your computer with a large collection of windows. All of the windows should
look familiar, because they are the same as CANalyzer windows, with the exception of two windows: the Simulation
Setup and the Measurement Setup windows. Since CANoe supports multiple node simulation, therefore, the
Measurement Setup window in CANalyzer has been split into two separate windows in CANoe to explain the CAN
network system approach. The Measurement Setup window in CANoe is used for analysis only, and the Simulation
Setup window covers the Transmit Branch of CANalyzer. With the new Simulation Setup window in CANoe, the
network topology has been changed to allow every simulated node to have direct influence on the simulated CAN bus.
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Figure 24 — Demo Configuration - CANoe Easy

As you look at the CANoe Easy demo, you can see three nodes defined in the Simulation Setup window: Motor,
LightSwitch, and MotorControlandBulb. Each node can represent a module or an ECU function. A user-defined
graphical interface is made for each node’s function. These interfaces are called panels, which usually represent the
inputs and outputs of an individual node. In the demo, if you want to turn on the motor, you can click on the Motor
Switch on the Control panel and then set the motor speed. The usefulness of the panels is for you to click on an I/O
element and have CANoe perform a specific task, such as sending a message onto the bus which is done by
environment variable associations. Each I/O element on the panel is associated with an environment variable defined
in a database. When you click or type in a new value on the I/O object, the corresponding environment variable event
procedure executes in the CAPL program. You will learn more about panels and environment variables in subsequent
chapters.
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To run CANoe, look at the upper toolbar and find a pair of grouped buttons — the “lightning bolt” (in yellow) and the “stop
sign” (deactivated at the moment). Follow the steps below:

1. Click on the “lightning bolt” to start CANoe.

2. Click on the “stop sign” to stop CANoe.

When you start CANoe, you will see two messages sent in the Trace window: MotorState and LightState. A message
in the Write window tells you to press ‘1’ or ‘0’ any time on the keyboard to switch between more or less information to
show in the window. These key presses are only effective if CANoe is running, and if they are programmed in one of the
three CAPL programs (network nodes). If you are looking for a specific window, click on Vi ew from the main menu to
navigate to the desired window.

4.4 Tool Architecture of CANoe

Figure 25 shows the basic tool architecture of CANoe. The right portion of the diagram is similar to the architectural
model for CANalyzer (Measurement Setup window). Just as in CANalyzer, the CANoe configuration is also adjustable
and completely under your control to be modified. In addition to analysis, CANoe also provides a separate window for
simulation activities. You also have full control over the simulation window (Simulation Setup window).

CANOE TOOL ARCHITECTURE

SIMULATION ANALYSIS

— a1 Statiscs | 91SP1ay message timing

ECU Bus Statistics display CAN Controller information
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= ata and symbolically
ECU ECU
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Module 1 Module 1 —a— Graphics display message data graphically
record & playback messages

. Logging
—> D logfile
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Figure 25 — Basic Tool Architecture of CANoe

The organization of CANoe includes a comprehensive network analysis interface, as shown in Figure 26.

CANoe - Major Network Analysis Interfaces

Inputs Outputs
CAN Bus - Input —, —» CAN Bus - Output
Log File - Playback —)» —» Log File - Recording
User - Input —| —» Oscilloscope View - Network Data Variables

—» Alphanumeric View - Network Data Variables
—» Network View - Message Trace Window
—» Bus Utilization - Statistics

—» Bus Error View - Bus Statistics

—» Tool System View - Write Window

Graphic Panel View - Input —»| —» Graphic Panel View - Output
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Figure 26 — CANoe’s Tool Interfaces
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Just as CANalyzer, an unlimited amount of viewable network information is available in CANoe, including in the
following forms:

e Oscillographic
e Numerical
¢ Alphanumeric or symbolic

4.5 Using CAPL Program Blocks in CANoe

For CANoe, CAPL program placement can target two specific application areas: one for simulation and the other for
analysis.

451 CANoe Program Blocks for Simulation

Any number of nodes may be simulated in a CANoe environment. Each simulated node has its own corresponding
CAPL program. Dividing a system into individual nodes may provide the additional advantage of reusability for
subsequent system developments.

In addition, CANoe supports multiple CAN network system simulations. If we are using CANoe on a vehicle that
requires four different CAN networks with multiple nodes in each network, for example, CANoe is capable of simulating
all four CAN networks at the same time. If node simulations are not required, CANoe can be used as a gateway for
sharing data from different networks and can perform cross-network calculations such as verifying data throughput and
latency.

As shown in Figure 27, CANoe's Simulation Setup window shows each user-defined Transmit Branch to form the
Simulation Branch.

TRANSMIT BRANCH

ECU
Master Clock

Bus
CAN1

ECU ECU
Slave Clock 1 Slave Clock 2
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Figure 27 — Inserting a CAPL Program into the CANoe Simulation
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4.5.2 CANoe Program Blocks for Analysis

Because CANoe’s use of CAPL program blocks is essentially identical to the use of CAPL blocks in CANalyzer, they
may be inserted into the Analysis Branch of CANoe. As with CANalyzer, they can be placed either in front of the entire
Analysis Branch, as shown in Figure 28, or in front of any specific measurement activity if that activity is affected.
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Figure 28 — Inserting a CAPL Program into CANoe’s Analysis Branch

4.6 CANoe — CAPL Programming Environment
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Figure 29 — CANoe — CAPL Programming Environment

The CAPL programming environment, as shown in Figure 29, provides a wide range of inputs and outputs. CANoe has
no limit on the number of nodes that can be simulated or the number of interconnected networks. It is only limited by
the PC hardware interface.
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5 Using Databases with CAPL

What is a database? It is a look-up table that allows decoding of the bus-oriented raw data into symbolic
interpretations. In other words, the database is much like a blueprint that categorizes bus data in symbolic terms. The
CANdb++ Editor allows you to define and modify such a database so as to symbolically represent your CAN bus.

Within the CAPL programming environment, the developer has the ability to access user-defined information in a
database. Databases may be used in both CANalyzer and CANoe for network measurements or custom applications.

Either database editor, CANdb or CANdb++, can be used to create a suitable network or application-specific database.
To learn more about the database editor, see Using CANdb++ to Create a Database — Chapter 22.

5.1 Why Use a Database with CAPL?

The use of one or more databases to write CAPL programs is highly recommended. Having a database gives you the
following advantages:
e Quicker CAPL program development
Ability to share the database among all personnel involved in all project phases
High level of data consistency — everyone uses the same names for variables and messages
Elimination of case sensitivity, spelling, and memory issues
Easier interpretation of bus data

Distribution and reusability is also a major advantage when a database is used, since many specifications are
contained in one easily to manage database. Many companies that use the database platform made for CANalyzer
and CANoe use system design groups to develop their database files. These database files are then made available
corporate-wide, greatly increasing the compatibility and functionality of their CAN systems. Database files (*.dbc) can
also be output as a document or sent by email, and are, therefore, easily distributed globally if desired.

Once associated with a database, the CAPL program can access the information defined within the database. This
eliminates the burden of defining messages in the CAPL program itself.

% Note: The advantage of using a database is so great that not to use this feature renders a major
portion of using CAPL useless.

5.1.1 Additional Uses of the Database

The database also makes it possible to have input and output functionality in the graphical interfaces called panels.
Panels are user-configurable interfaces that allow the user to make inputs and display outputs. See Using the Panel
Editor to Create Panels- Chapter 23 for more information.

In addition to CANalyzer and CANoe, other Vector tools such as CANape, CANscope, and CANstress use a database
as a reference to bus data interrelationships. These three tools may not come with a CANdb++ Editor, but they allow
database association to simplify their functions.

5.2 Database Association with CAPL

To associate (assign) a database, use the following procedure:
1. Pull down the File menu and select Associate Database from the CAPL Browser.
2. Press the Add button and select the file containing the database.
3. Open the file and then press the OK button to return to the CAPL Browser. The database must be selected
every time the CAPL Browser opens the CAPL program.

Note: These steps ONLY apply when the CAPL Browser is opened as a standalone program and not
through CANalyzer or CANoe.
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If the CAPL Browser is opened through CANalyzer or CANoe and a database(s) has already been assigned to the
configuration before it is opened, the CAPL Browser is already associated with the database(s). Depending upon the
CAPL Browser version, the CAPL Browser does not need to be reopened after a database(s) is modified and saved.
The CAPL Browser will reflect the new changes made in the database(s).

5.3 Database Objects Accessible by CAPL

An object in a database is used to symbolically represent a type of data, or data values within a network. The behavior
of some object types, such as attributes and environment variables, are not dependent upon other object types. Others
object types have interrelationships with each other. Once a database is associated to the CAPL Browser, all objects
accessible and their interrelationships can be exploited.

The database basically follows the architecture shown below in — Database Organization Figure 30.

CANdb Database

| Attributes | | Network | | Value Tables |

Nods |

| Signal | | Signal | | Signal | | Signal | | Signal | | Signal | | Signal | | Signal |

Environment Variables

(CANoe Only)
M04051903)
Figure 30 — Database Organization
Database Objects
Object Type Description

Networks A CAN bus network that contains multiple ECUs to exchange data
ECUs Distributed processing units within a network (for example, Traction

Control, ABS, Adaptive Cruise Control)
Nodes Network interfaces of an ECU used to transmit and receive data from

the CAN bus
Messages Containers of information that are transmitted on the CAN bus
Signals Independent data regions in the data field of a message

Environment Variables | Input and output variables of network nodes, such as switch position,
sensor signals and actuator signals

Table 1 — Objects in a Database
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5.3.1 Attributes

An attribute is a distinct characteristic of an object (network, node, message, signal, environment variable, and so on)
in the database. Most of the time, attributes are used to represent a relationship between each object of the same
type. For example, you can define a message attribute to store the message periodic rate for transmission. By defining
this attribute for messages, every message in that database can be configurable to have an initial cycle time value
(Figure 58) by association with a particular attribute. Using a database with attributes makes CAPL tasks simpler
because, from CAPL’s perspective, an attribute is seen as a global variable.

Beside database objects, attributes may also be used as system parameters. The Vector CAN tools chain has
programs that use the database and its attributes as a base to generate embedded software or CAPL code. Code
generation is not possible without these attribute settings. Also, some CANoe features can only be enabled through
the use of attributes. For example, attributes are used to support and enable the different types of protocols in CANoe
such as J1939, NMEA2000, a specific OEM, and so on.

5.3.2 Value Tables

Value tables are used to define symbolic values. When data is received from the bus, it can be graphed or displayed in
hexadecimal, decimal, or engineering units. Not all data makes sense if it is graphed or displayed in engineering units;
some data actually makes more sense if it is displayed symbolically. For example, a data item CANalyzer received
references the gear position in a vehicle with an automatic transmission. The data item can be viewed as 0, 1, 2, and
3, or can be displayed as Neutral, Drive, Reverse, and Park. If you wish to view the data item symbolically, you must
define a value table for the numeric data.

5.3.3 Network Nodes

A network nodeconsists of one CAN Controller and a transceiver in an ECU. Occasionally, an ECU may contain more
than one node. A node may have a number to identify itself and is responsible for a set of functions of that ECU. For
example, a gateway module is an ECU used to exchange data between two different networks. To exchange data, two
protocol controllers are used. In this case, there are two nodes in this ECU, each responsible for transmitting and
receiving data on a network.

5.3.4 Messages

A messageis a container holding a block of data transmitted onto the bus. This block of data is shown numerically in
CANoe in either hexadecimal or decimal. To display the message name and its data field, in engineering units or
symbolically, the message has to be defined in the database.

5.3.5 Signals

Signals are the actual data objects to be exchanged between nodes, and are encoded in the data field of CAN
messages. Signals typically occupy most of a CAN message’s data bytes, if not all, and they must not overlap. In the
database, signals can have parameters for conversion of raw data to physical units (also known as an engineering
unit).

5.3.6 Environment Variables

Environment variables are data objects global to the CANoe environment, and are used to link the functions of a
CANoe panel to CAPL programs.

Programming With CAPL



Using Panels with CAPL (CANoe only) 29

6 Using Panels with CAPL (CANoe only)

As mentioned before, one key difference between CANalyzer and CANoe is that CANoe can simulate an unlimited
number of nodes in one or more CAN networks. The other key difference is that CANoe supports user-defined
graphical interfaces called panels. In most applications, a panel is made for each node for clarity. Each panel contains
visible controls that will react to both external events (for example, activation of a switch) and internal events (for
example, message reception from the CAN bus). Integrating the panels into CANoe is optional.

The Panel Editor is used to create graphic panels (see Figure 31 for an example of CANoe panels). Besides an 1/0
interface using buttons and switches, the Panel Editor also uses bitmaps for display and for controls to show different
graphical values. After the panels are created, they must be associated to CANoe to be used.
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Figure 31 — CANoe Panels

Communication between panels and CAPL involves environment variables. All dynamic control elements within a
panel should be associated with an environment variable while the panel is being created. When the user clicks or
adjusts the value of a control, the associated environment variable’s value will change as an environment variable
event procedure is executed in CAPL. These variables should already be defined in the database, along with
messages and signals. If they are defined in the database, CAPL will have access to them. On the other hand, the
value of the environment variables can also be changed by CAPL. These changes will also affect the displayed
controls on the panel. For more information on using panels, see Chapter 23 entitled Using the Panel Editor to Create
Panels.

Developers should always keep in mind that panels are not used to exchange data between simulated network nodes.
Environment variables are not capable of exchanging data between a simulated node and a real module. The only way
to exchange data in a CAN network is by using a CAN message.

Because environment variables are global and may be used in every network node in a CANoe configuration, some
people take advantage of this idea and use them to exchange data. The practice of using environment variables for
data exchange is a mistake, the results lurking unknown until one or more real modules are connected to CANoe to
communicate with the simulated network nodes.
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7 The CAPL Browser

In contrast to traditional C program development, which uses a text editor and compiler, CAPL programs are
developed using the CAPL Browser. The CAPL Browser is the fundamental programming environment used to
develop all CAPL programs.

The CAPL Browser provides an easy-to-use “edit-thru-compilation” development process and is used to organize,
create, edit, and modify event procedures. The CAPL Browser is more than a text editor because it not only supports
source code development - it also organizes CAPL software into a tree-like structure of events, and it has an internal
compiler.

In this programmer’s environment, you can develop new programs, import and export source files, associate a
database, and compile CAPL software. The Browser is designed to quickly edit CAPL programs, and the integrated
compiler also makes it easy to trace errors after compilation.

Figure 32 shows a general example of the CAPL Browser API.
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Figure 32 — Generalized Example of the CAPL Browser User Interface

71 Starting the CAPL Browser

While the CAPL Browser can be started in several ways, the developer normally first adds program blocks to the
appropriate window in CANoe or CANalyzer and then double-clicks on the blocks to access the corresponding CAPL
program. In CANoe, clicking on the pencil icon on a network node within the Simulation Setup window will also
activate the CAPL Browser.

Although the CAPL Browser can be started as a stand-alone application, it is recommended that the program be used
from inside the CANoe or CANalyzer application to ensure that it properly recognizes the associated database,
hardware parameters, and CAPL-related DLLs. An example of incorrect compiling would be if the browser cannot find
the variables in the program that are defined in the database.
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7.2 Browser Organization

The CAPL Browser uses an event-driven control architecture with the corresponding CAPL program that is organized
into event procedures. The CAPL Browser's main window is organized as shown in Figure 33. This arrangement
shows and supports the creation and modification of event procedures.

CAPL Browser
File Edit View Compiler Message Options Window Help
... TOOLBAR.. ..
EVENTS
GLOBAL VARIABLES

EVENT PROCEDURE

COMPILER
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Figure 33 — General Organization of the CAPL Browser Windows

The upper left window, the Events window, lists both the different types of CAPL events and the names of the
procedures associated with each event category in a tree view.

The upper right window, the Global Variables window, is used to declare all necessary global variables for the CAPL
program.

The lower right window, called the Event Procedure window, displays the source code entered for the selected
procedure highlighted in the Events window.

The bottom window, the Compiler window, shows compiler activities and results.

The windows have another layout that may be more suitable to some users. Global variables can be represented
either in an individual window or in the window displaying the procedure text. If the Event Procedure window is used
to display the global variables, then the global variables will not be shown if an event procedure is currently displayed.
This feature is in the Editor Options dialog, reached with the Options — Editor command. All CAPL programs
must be closed before it can be activated.
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7.3 Using the Right Mouse Button

The right mouse button provides context-dependent functionality in most CAPL Browser windows. Learning how and
when to use the popup (shortcut) menus, accessed with the right mouse button, will allow the user to use the browser
most effectively. When in doubt, try clicking the right mouse button in a CAPL Browser window to see the context-
sensitive options. Most commands are accessible in all versions by using the right mouse button in the appropriate
editing window at the cursor location.

7.4 The Events Window

The Events window lists all event procedure categories in a tree-type structure, which may be expanded by clicking on
it to view all currently defined event procedures.

The two types of events listed in the Events window are the following:
e System-specific events
e User-defined events

System-specific event categories include the following:
e System
e CAN Controller
e ErrorFrame

System-specific events only allow access to a set of pre-defined CAPL event procedures. Duplicates of these events
are not allowed.

User-defined event categories include the following:
e CAN Message

Timer

Keyboard

Environment

Function

The developer can create an unlimited number of user-defined events. For example, you can define more than one
timer to transmit a different message periodically.

7.41 Creating an Event Procedure

To create a new event procedure, highlight the desired event category in the Events window, then right-click and
select New to create a new event.

For system-specific event categories, the New option extends to a submenu to select the available event procedures.

Selecting an event will show its source code in the Event Procedure window.

7.5 The Global Variables Window

Located in the upper right corner of the CAPL Browser, the Global Variables window, as shown in Figure 33, is where
global variables are entered for the current CAPL program. You can only declare and initialize global variables in this
window. Function invoking, event triggering, and processes execution are not allowed to implement in this window.

% Note: Timer variables can only be declared in this window with either the msTimer or Timer data type.

The advantage of having global variables in an independent window is that they are always visible when editing event
procedures. This makes it easier to edit, add or remove a variable without losing your place in the code.
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7.6 The Event Procedure Window

Seen earlier in Figure 33, the Event Procedure window in the lower right corner of the CAPL Browser is where code is
created for an event procedure.

Right clicking on a specific event in the Events window and selecting New from the popup menu creates a new event
procedure. This sets up an empty procedure in the Event Procedure window. For example:

on errorFrame

{
}

This event procedure declaration is fully complete and does not need to be modified, but will need to enter the code
between the braces. However, some event procedure headers require modification. Below is an example of the
generic skeletal code for an on message event procedure:

on message <newMessage>

{
}

The user needs to fill in the identifier by replacing the text <newMessage> with the name of the actual message or the
message’s numeric identifier. If the database has already been associated with the message defined, right-click to a
popup menu and select CANdb Message to open another window where the message list is displayed for you to
choose the message(s) you want. This approach eliminates typing mistakes, and symbolic displays occasionally are
more meaningful than numeric displays. All user-defined variables in a CAPL program or from a database are case-
sensitive.

7.7 Colorized CAPL Syntax

CAPL programming syntax is shown in different colors in the Event Procedure and Global Variables window.
Although the use of color is configurable, the default color scheme is listed in Table 2. To modify the color setting, go
to the Options menu and then select Ed1i tor.

CAPL Code Type Color
CAPL function blue
Comment green
Intrinsic function dark blue
Keyword blue
Number black
Operator black
String purple
Text black
Text Selection white on black background

Table 2 — CAPL Syntax Color Defaults

7.8 Compiling Code

There are at least three ways to compile a CAPL program:
e Press the ‘F9’ key while in the CAPL Browser
e Choose Compile or Compile Al1 from the Compiler menu or shortcuts
e Click on the compile shortcut icon on CANalyzer or CANoe’s main menu

Choosing Compile AT1 compiles all of the CAPL programs that are currently open in the CAPL Browser one at a
time.
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Compiling a CAPL program with the *.CAN extension (text-formatted file) creates a binary source file with the
extension *.CBF (CAPL Binary Format) located in the same directory as the *.CAN file (if the *.CAN file exists).

Note: Even though the software does not need the *.CAN file to run, it is good practice to always have
% a *.CAN file version of the program because the CAPL Browser cannot read compiled *.CBF files. The
*.CAN file will be needed if changes are required in the future.
If you try to compile the code of a new program you just implemented in the CAPL Browser, a prompt may appear to
ask you to save the changes. This only saves the *.CBF file and not the *.CAN file. To save the program as a *.CAN
file, go to the File menu and select Save.

7.9 Fixing Compilation Errors

If an error is found when compiling, the Compiler window will display the first compilation error it encountered. Double-
clicking on the compilation error line will take the mouse cursor to either the Event Procedure or Global Variables
window on the line or close to the line where the error was detected.

After correcting the error, compile the code again to see if there are any other errors. If there is another error, this
process repeats until the CAPL program is error-free.

710 Debugging Run-Time Errors

A number of CAPL run-time errors are monitored. Some of these run-time errors are as follows:
e Division by zero
e Exceeding the upper or lower limits of the array
o Exceeding the upper or lower limits of the offset in the data range of messages
e Stack overflow when CAPL subroutines are called

If a run-time error is detected, the intrinsic (built-in) function runError() is called. This stops the measurement and
outputs information to the Write window with the name of the CAPL program, the type of error and an error number.

The output in the Write window might look like the following:

Start of measurement 04:02:33 pm

Bus with 500000 BPS.

PRG (CAPL): < MYPROG > generated an error at CAPL pos: 1.
Locate with CAPL browser option: Find runError - err number -> 1.
Unknown error

measurement stopped

End of measurement 04:03:56 pm

The error number helps to find the place in the CAPL source code that generated the error.

The line that begins with Locate... reports the error number (in this example, the error number, is 1). Using the
Compiler menu, selectthe Find runtime error command and enter the error number. The CAPL Browser will
then show you where this run-time error occurred.

The user can also manually invoke the CAPL function runError() in the code to generate meaningful outputs. When
using the runError() function in your CAPL programs or when an internal run-time error is generated, a message is
displayed in the Write window with an error number. Different errors generate different messages.
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7.11 Using Other Text Editors

While development of CAPL source programs is possible outside the CAPL Browser environment, the CAPL Browser
allows errors to be more efficiently traced back to their source. The essential file format of CAPL source programs is in
text (*.CAN), but CAPL programs may be modified using other text editing programs (such as Notepad and WordPad).
This capability remains possible as long as you do not change the inherent CAPL-dependent structure of the file during
editing.

Using the CAPL Browser has other advantages. If an associated database is required, the Browser can display the
messages, signals, and environment variables’ names. It is also possible to select the names and insert them directly
into the CAPL program. These names are case sensitive in CAPL, therefore, it is a good idea to insert them by
selecting rather than by manually entering them.

In addition, compiling for error checking can be done with the CAPL Browser itself. Outside of the CAPL Browser, you
must rely on CANalyzer or CANoe to compile for you and use another text-editing program to correct any errors.

7.12 CAPL Source File Format

If there is no CAPL Browser available, a text editor can be used to write the CAPL program. CANalyzer or CANoe can
subsequently compile it. Be advised, however, that this process is not recommended because the file formatting is
quite unique, and it is easy to unintentionally render it unusable.

When a CAPL source file is displayed in a text editor outside the CAPL Browser environment, each section requires
both a CAPL-specific beginning and an ending line that appears as a C source code comment. These special lines
always begin with the same character sequence, include a CAPL-specific name, and end with the same character
sequence as shown below:

Beginning character sequence: I*@@xxx: */
Ending character sequence: rF@@end */

The syntax above is typical for system-specific events. For user-defined events, the xxx is replaced at the beginning of
a code section by the name of that section. The first beginning character sequence in a program should signify the
start of the Variables section with I*@@var: */. Each successive time will indicate the beginning of a CAPL-specific
event type or function (from the Event Procedures window or the tree view). The name of the specific event
procedure follows the colon, for example,, *@@timer:tempTimer */, *@@caplFunc:StoreValues()*/.

These lines appear if a text editor is used to open a *.CAN file; however, if a *.CAN file is created in another text editor
other than the CAPL Browser, these lines must be included. Otherwise the CAPL Browser cannot open the file in
browse mode to compile it. The same is true if trying to compile in CANalyzer or CANoe.

In the following CAPL source file, an example of three sections has been defined. The first group establishes a section
for the global variables, the second code group is for a timer called T1, and the third is for the procedure related to the
system start event.

Example: Global Variables

re@var: */
variables {
msTimer T1;

}
Ir@@end  */
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Example: Timer

re@@timer:T1: */
on timer T1 {
message 100 M100 = {dic = 4, word(0) = Oxaaaa, word(2)= 0x5555};

setTimer(T1,50);
M100.byte(0) = M100.byte(0) + 1;
output(M100);

}

IF@@end *

Example: System Start

IF@@startStart: Start */
on start {
setTimer(T1,50);

}
IF@@end  */

There is no special spacing requirement between the different CAPL-specific sections, and any number of blank lines
may be used between procedures. Programmers who develop CAPL source programs outside the normal CAPL
Browser may further use comment fields to enhance readability and potentially improve the documentation quality of
CAPL programs.
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8 CAPL Syntax and Semantics

This chapter presents an overview of the basic elements used to construct simple CAPL statements. Most of the
material presented is similar to what is found in books that present C programming fundamentals.

Those individuals with experience in using the C programming language should be able to skim through this chapter
and use the material only as a reference in the future.

8.1 Major CAPL Differences from C

There are several important differences between CAPL and the C programming language. As you read through these
different variations, you'll notice that CAPL is somewhat more simplified - some of the burden of using the C
programming language has been removed. Table 3 lists some of the major concepts found in the C programming
language that are not supported by CAPL.

C concepts not supported in CAPL Difference Functional Alternative Available

main() not supported in CAPL | not required
header files not supported in CAPL | not required
preprocessor not supported in CAPL | not required

macro definition

not supported in CAPL

not required

file inclusion

not supported in CAPL

not required

conditional compilation

not supported in CAPL

not required

computer platform dependencies

not supported in CAPL

not required

pointers not supported in CAPL | not required
local variables are dynamic local variables are static | yes'

void not required in CAPL yes?

structure not supported in CAPL | not required
union not supported in CAPL | not required
enumeration not supported in CAPL | not required
define not supported in CAPL | not required
typedef not supported in CAPL | not required
sizeof not supported in CAPL | not required
automatic not supported in CAPL | not required
external not supported in CAPL | not required
register not supported in CAPL | not required
standard C function library partial® yes®

string constants not supported in CAPL yes5

Table 3 — Major CAPL Programming Differences from C

Notes -

1. All locally defined variables (in each event procedure) are static; in C, the word static is used before a variable declaration. The workaround in
CAPL is to not initialize a variable and define it together (for example, int value; value = 1;).

2. Void is only used in CAPL for the function return type. The use of void is optional for functions that return no value.

3. Some standard C functions are being used in CAPL. These functions are typically mathematical functions or string functions (for example, abs(),
strncpy()) that are already predefined internally to CAPL.

4. CAPL doesn’t have the complete ANSI C standard library, but it does have CAPL-specific libraries called CAPL DLLs.

5. The string data type is not supported in CAPL; however, you may use a character array (for example, char value[6] = “Hello”;).

Programming With CAPL



38 CAPL Syntax and Semantics

Because CAPL is completely event-driven, the main() function is not supported in CAPL. As there are no header files
to be linked, no preprocessor is required because.

C programmers will also be pleased to notice other simplifications:
¢ In CAPL you do not have to declare a function prototype before you can use it.
e CAPL does not use classes or structures — templates that define the characteristics and behaviors of an
object.
e Functions such as scanf() are not supported because CAPL has no input stream. However, CAPL does have
events defined for pressing a key or keys. Inputs can also be made using environment variables through user-
configurable interfaces called panels. We will discuss these topics in other chapters.

8.2 CAPL Equivalents to C Functions

There are a few function equivalents that are helpful for a C programmer to know. Below is a concise list of the similar
functions, but for more details on how the CAPL functions are used, see the CAPL Function Reference Manual.

C Function CAPL Function Notes
sizeof elCount sizeof has no exact equivalent
sprintf snprintf Similar string formatting parameters used
printf write Similar string formatting parameters used

Table 4 — Function Similarities between C and CAPL

8.3 Notation

To understand the examples in this manual, it is important to be familiar with the following notations:

Notation Meaning

When used in source code, an ellipsis means that any code is valid in this
place. It is used to indicate that code unrelated to the specific example is in
this location, but has been removed for readability purposes.

An “x” following a message ID number indicates an extended identifier. This

message 101x msg; forces the use of a 29-bit identifier instead of the standard 11-bit identifier.

A “Ox” preceding a number indicates that the number is hexadecimal (base
Msg.data = 0x35; 16). Hexadecimal numbers can be used in place of decimal numbers
anywhere in CAPL.

Names of functions not in the context of source code are followed by
write(); stop() parentheses to indicate that they are functions; therefore, functions may
require parameters.

Table 5 — CAPL Notation

8.4 Comments

Comments make it easier for people to understand the program. One nice feature of C comments is that they can be
placed anywhere, even on the same line as the statement they explain. A longer comment can be placed on its own
line or even spread over more than one line. Everything between the opening /* and the closing */ is ignored by the
compiler. Below are four comment examples in CAPL:

1. [* This is a comment.*/

2. [* This comment is spread
over two lines.*/

Programming With CAPL



CAPL Syntax and Semantics 39

3. ¢
You can do this, too.
*/

/* But not this.
4. || CAPL also accepts the C++ comment.

As you can see, the fourth example is used in the C++ programming language. The comment is on one line only, and it
has no closing character string.
8.5 Naming Conventions

The names of variables, functions, and arrays may consist of letters and digits, in any order, except that the first
character must not be a number.

Listed below are examples of acceptable object names:
sum
number_of_units
J5x7
_sysflag

The following are not acceptable:

int /I because it is a reserved keyword

sum$value // the $ is not a recognized character

3Times /I because a variable name cannot begin with a number
number of units /I because spaces are not allowed

8.6 CAPL is Case Sensitive

When writing in CAPL, it is important to remember that lower case and upper case letters are distinct for user-defined
variables (all keywords and CAPL library functions are not). For example, a CAPL program will treat each of the
following similar variable names as three unique and different variables:

input_1
Input_1
INPUT_1

Because variables are case sensitive, you should have a consistent way of naming variables. It is recommended that
you adopt one of the three styles shown in the example above and then continue using that particular style throughout
your CAPL programs.

If it is expected that CAPL programs will be shared among a group of software programmers, it is also highly
recommended that an internal CAPL coding standard be established.

8.7 CAPL Keywords

Keywords cannot be used to name a variable or function. CAPL uses reserved keywords from the C programming
language. Some common C keywords are, however, not supported in CAPL.

Below is a list of reserved keywords, both supported and non-supported by CAPL.
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Supported: Not supported:
break auto

case const

char enum

continue extern

default goto

do register

double short

else signed

float sizeof

for static

if struct

int typedef

long union

return unsigned

switch volatile

while

8.8 Data Types

The basic data types supported by CAPL are integer, character, and floating point, as listed in Table 6. Message,

timer, and msTimer are considered data types because they define a variable that symbolizes the kind of data they
can store and operate. Unsigned variables can only have non-negative values, whereas signed variables can either be
positive or negative.

Data Type Description Size Unsigned/Signed
char character 8 bit unsigned
byte byte 8 bit unsigned
int integer 16 bit signed
word word 16 bit unsigned
long long integer 32 bit signed
dword double word 32 bit unsigned
float single precision floating point 64 bit' signed
double single precision floating point 64 bit signed
message a communication message -- --
timer a timer with second resolution -- -
msTimer a timer with millisecond resolution -- --

Table 6 — CAPL Data Types

% Note: Float signals defined in the database are 32 bits
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8.9 Declarations

To allow variables to be read or changed in any part of a CAPL program, use global variable declarations in the Global
Variables window of the CAPL Browser. The simple integer data types are dword, long, word, int, byte, and char.
The data types float and double are synonyms and designate 64-bit floating-point numbers conforming to the IEEE
standard. They are both compatible with each other and can be used in the same way as they are used in the C
programming language. Arithmetic is performed with 32-bit resolution for integers and 80-bit resolution for floating
point numbers. If local variables are used in event procedures, ensure they are defined first before any other code.
Variables initialization is optional during their declarations.

Below is a list of some examples of declarations:

char letter_a = “a”;
int number_days_in_year = 365;

message wake-up xxx; /I see Chapter 11 on using messages for more detail
timer one_second,; I/l see Chapter 14 on using timers for more detail
intj, k=2; /I'j = 0 implicitly

double x = 33.7;

char p;

In addition to variable declarations, a CAPL program must also have declarations for each message and timer used by
the program. Timers have to be globally declared. Messages can be declared globally or locally. See Chapter 14
(Using Timers) and Chapter 11(Using Messages) for more detail.

8.9.1 Local Variables are Static

One important difference in CAPL when compared to C is that local variables are always declared statically. This
means that they are initialized only once — the first time the event procedure or user-defined function is executed.
When variables enter the procedure, they assume the value they had at the end of the previous execution of the

procedure.

Let’s look at the following example:
void myFunc()

byte value = 10; /I static; called once
write(“value = %d”, value);

value = 35;

}

The first time myFunc is called, it will print value = 10 as expected. However, the second time it is called, and every
time after that, it will print value = 35 as long as the measurement is running. (It may be helpful to consider thatina C
program, byte value = 10; would be written static byte value = 10;). Because of this, the preferred way to initialize
non-static variables is to use a separate assignment statement after the variables have been declared. In the following
example, the variables are reset to their initial values at the beginning of every function iteration:

void myFunc()

byte value; /I variable declarations
intx,y;

value = 10; /I variable initializations
x=0;

y=5;

/I Main code of the function
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To avoid confusion, it might sometimes be necessary to declare all variables as global in the Global Variables window
of the CAPL Browser.

8.9.2 Initialization

In contrast to standard C, the compiler initializes all numeric variables to 0 and all string-type variables to null. All
message-type variables in CAPL are usually initialized to the transmit request state with its data field defaulted to 0.
The state represents the direction of transmission before the message is transmitted. Timer-type variables, on the
other hand, are not automatically initialized and do not need to be initialized.

8.10 Type Casting

CAPL supports type casting. There are times when you will want to convert the value of a variable of one data type to
another data type for purposes of evaluating an expression. There are two ways to do this in CAPL, both of which are
the same as in C. As an example, let us declare the following variable:

int sum;

sum=1.6 +1.7;
sum = (int) 1.6 + (int) 1.7;

The first assignment statement uses automatic conversion, that is, 1.6 and 1.7 are added to yield 3.3. This number is
then truncated to the integer 3 to correspond to an int variable.

In the second statement, 1.6 is cast into an integer (1 in this example) before addition is applied to get value 1+1 or 2.

8.11 Arrays

Another type of variable used in CAPL is an array, a collection of data items that all have the same name. Individual
data items within an array must all be of the same type. The array name is always followed by square brackets that
contain either the array size for a declaration statement or an index value to specify the data location within the array.

Each of the individual elements in an array is accessed by an integer index. When numbering the elements of an
array, the first element is always the number 0 (zero), not 1.

CAPL supports the following types of arrays:
e Integer arrays
e Character arrays
e One-dimensional arrays
e Multi-dimensional arrays

We could define a character array that contains the 26 letters of the alphabet. Because character strings must include
one additional character, the null character (\0), to indicate the end of the string, the size of this array is 27 and the
index sequence is 0 through 26.

This “alphabet” character array can be declared as follows:

char alphabet[27] = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

We can now selectively distinguish between each individual data element by using an index value. For example, to
request the first element of the alphabet (the letter ‘A’) we would use alphabet[0].

To declare an integer array with four integer values in it, use the following:
int sample_data[4] = { 100, 300, 500, 600 };

The element sample_data [0] will then contain the integer value 100, sample_data [1] the value 300, sample_data
[2] the value 500, and sample_data [3] will contain 600.
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Not all elements have to initialize to a value. For example, the below declaration will do the same thing, but will set the
remaining six elements to zero:

int sample_data [10] = {100, 300, 500, 600 };

CAPL allows arrays of any dimension to be defined. For example, we could define the common matrix or two-
dimensional array. It is analogous to what is used in math, such as the below 4 x 5 matrix:

10 5 -3 17 82
9 0 0 8 -7
32 20 1 0 14
0 0 8 7 6

If we label the above matrix M, Mij would refer to the element in the ith row and jth column. In CAPL, as in C, we
would define and initialize a two-dimensional array M as shown in the example below:

int M[4][5] = {
{10, 5, -3,17, 82},
{9 0! 8! -7 }’
{32,20,1,0,14},
{0,0,8,7,6}
}5

Note that except the last row, commas are required after each brace that closes off a row. The individual elements of
this array can be easily accessed using the row and column number.

To determine the number of elements in an array, use the elCount() function as shown in the below example:

inti, j;
for (j = 0; j < elCount(array); j++)
for (i = 0; i <= elCount(arrayl[j]); i++)

8.12 Constants

To initialize a variable means to assign an initial or beginning value to it. In CAPL, this can be done in the same line as
the variable declaration. When values are assigned during a declaration, they are considered constants. CAPL
supports the following four types of constants:

e Integer constants

¢ Floating point constants

e Character constants

e String constants

8.12.1 Integer Constants

CAPL supports integer constants in two different numbering systems -- decimal (base 10) and hexadecimal (base 16).
References to integer constants appear in code as shown below:

int value = 20;
int value2 = 0x14;

Decimal integer constants consist of any combination of digits between 0 and 9, with the added rule that the first digit
must be a nonzero number.

The following decimal integer constants are considered valid:

0

1

55
2047
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The following are considered invalid:

21 /I because the period is an illegal character
21 /I because spaces cannot be used between numbers
21 /l because a comma cannot be used between numbers

A hexadecimal integer constant must begin with either 0x or 0X - that is, the value must always start with the number
zero followed by a lowercase or upper case letter X’. After this comes any combination of digits between 0 and 9
including the upper or lower case letters A, B, C, D, E, or F.

The following hexadecimal integer constants are considered valid:
0x0
0x1
OxFF
Oxaa55

The following are invalid hexadecimal integers:

0x2.1 // because the period is an illegal character

OxE A // because spaces cannot be used between hexadecimal digits
0x2,B /I because a comma cannot be used between hexadecimal digits
A1 /I because it does not begin with 0x

8.12.2 Floating Point Constants

In CAPL, a floating point constant is a base-10 decimal number. A floating point constant must contain a decimal point
or an exponent or both, as seen in the example below:

float value = 0.23;
float value2 = 23E-2;

An exponent must be indicated with either a lower case or upper case letter ‘E’. The value of the exponent must be an
integer.

Below are some examples of valid floating point constants:

21
2.1e0
3.1415
0.00034
22e+3
1E-6

The following are not valid:

4 /I because no decimal point or exponent is indicated
1,024 /I because commas are not allowed

2E3.4 // because the exponent is not an integer

1E 6 /I because a space is not allowed in an exponent

8.12.3 Character Constants
A character constant is a single character surrounded by apostrophes, as seen in the examples below:

Below are some examples of character constants:
char value = ‘B’;

char value2 = ‘8’;
char value3 = ‘?’;
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CAPL supports the use of the ASCII character set. The three character assignments above can be replaced by
hexadecimal respectively:

char value = 0x42;
char value2 = 0x38;
char value3 = 0x3F;

It is often necessary to establish the value of characters that are not printable. These can be expressed as an escape
sequence. An escape sequence begins with a back slash (\) and is followed by one or more special characters.

At /I is the character constant for the tab

Of particular interest is the escape sequence \0, which represents the ASCII null character that is used to indicate the
end of a string. The null character is never to be overlooked when you are using string functions like strnepy() and
strncat(). The two functions are used to copy two strings into one and to concatenate two strings into one respectively.
It is also important to note that the ASCII null character is not equal to the character constant ‘0’ (zero).

8.12.4 String Constants

A string constant consists of a series of one or more consecutive characters enclosed by double quotation marks (*).
Below are three examples of string constants:

char value[30] = “Here’s a string in C and CAPL”;
char value2[19] = “spaces are allowed”;
char value3[31] = “with a tab escape sequence \t”;

Strings are stored in an array of data elements of type char. The last element contains the null character \0, which is
used to indicate the end of the string.

% Note: Make sure you remember the string size is always length + 1.

In CAPL, enum data types are treated in a manner similar to strings because values are initialized with symbolic
names to represent integer constants. Even though the CAPL language does not support the enum data type, the
database editor allows the enum type to be defined for all attribute objects. When CAPL needs to reference an enum-
type attribute, use the strncpy() function. Below is an example of how to get the value of an enum-type message
attribute that is defined for the receiver node’s symbolic name:

char buffer[10];
strncpy(buffer, msg_name.node_name, elcount(buffer)-1);

8.12.5 Symbolic Constants

A symbolic constant can be used as a substitute name. In the C language, this is usually accomplished with a define
statement as in the example below:

#define TRUE 1
#define FALSE 0

The above is NOT used in CAPL.

CAPL does have a few symbolic constants. For example, the Pl constant might be useful in some situations. It
contains the mathematical value of pi (11) to the maximum precision of 16 decimal places.

While some constants are only used in specific cases, such as message selectors, built-in constants will be explained
in their specific sections. Constants used with specific CAPL functions may be found in the CAPL Browser’s Online
Help or in the CAPL Function Reference Manual.
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8.13 Operators

As with C, CAPL offers a wealth of operations to process information. You can do arithmetic, logic functions, bitwise
operations, compare values, modify variables, combine relationships logically, and much more. The symbols used to
do this are called operators. The data items that operators act upon are called operands.

While some operators act upon only one operand, other operators required two operands. Most operators allow the
individual operands to be expressions. A few operators permit only single variables as operands.

CAPL operators include:
Arithmetic Operators
Assignment Operators
Relational Operators
Boolean Operators
Bitwise Operators
Miscellaneous Operators

8.13.1 Arithmetic Operators
Table 7 shows the various arithmetic operators supported in CAPL. Like C, CAPL does not support an exponential

operator.
Symbol | Operation Usage Example
+ Add arithmetic_expression_1 + arithmetic_expression_2 X=y+2
Sum of arithmetic_expression_1 and Set x equal to the value of y plus 2
arithmetic_expression_2
- Subtract arithmetic_expression_1 - arithmetic_expression_2 X=y-2
Difference of arithmetic_expression_1 and Set x equal to the value of y minus
arithmetic_expression_2 2
- Negation - arithmetic_expression_1 X=-X
Minus arithmetic_expression_1 Set x equal to the value of minus x
* Multiply arithmetic_expression_1 * arithmetic_expression_2 X=y*2
Product of arithmetic_expression_1 and Set x equal to the value of y times
arithmetic_expression_2 2
/ Divide arithmetic_expression_1 / arithmetic_expression_2 x=yl2
Quotient of arithmetic_expression_1 and Set x equal to the value of y divided
arithmetic_expression_2 by 2
% Modulo integer_expression_1 + integer_expression_2 seconds = minutes % 60
Remainder of integer_expression_1 divided by Set seconds equal to the remainder
integer_expression_2 of the minutes divided by 60
++ Postfix integer_variable_1++ y = X++
Increment | Increases integer_variable_1 by 1 Set x to y before x + 1
Value is used before increment is applied
++ Prefix ++integer_variable_1 y = ++X
Increment Increases integer_variable_1 by 1 Setxtoy after x + 1
Value is used after increment is applied
-- Postfix integer_variable_1-- y = X--
Decrement | Decreases integer_variable_1 by 1 Set x to y before x - 1
Value is used before decrement is applied
Prefix --integer_variable_1 y = --X
-- Decreases integer_variable_1 by 1 Setx toy after x - 1
Decrement

Value is used after decrement is applied

Table 7 — Arithmetic Operators
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The following are examples of arithmetic operator usage:

int x,y,z;

y=8;

z=4;

xX=y+z /I Addition. Result = 12
X=Yy-2z; /[ Subtraction. Result = 4
xX=y*z; /I Multiplication. Result = 32
x=ylz /I Division. Result = 2
xX=z%Yy; /I Modulo. Result =4

X = y++; /I Increment. Result =9

X = Z--; /I Decrement. Result = 3

8.13.2 Assignment Operators

Table 8 lists the various assignment operators supported in CAPL. The equal sign (=) does not mean “equals”. This
operator is used to assign a value to a variable, with or without an operation to be performed first.

Symbol Operation Usage Example
= Assignment variable = expression x=16
Assign the value of the expression to the variable Sets x to 16
+= Addition and arithmetic_variable += arithmetic_expression X +=4
assignment Increment of arithmetic_variable by arithmetic_expression Increments x by 4
-= Subtraction arithmetic_variable -= arithmetic_expression X-=2
and Decrement of arithmetic_variable by arithmetic_expression Decrements x by 2
assignment
*= Multiplication arithmetic_variable *= arithmetic_expression X*=8
and Multiply arithmetic_variable by arithmetic_expression Multiplies x by 8
assignment
/= Division and arithmetic_variable /= arithmetic_expression x /=32
assignment Divide arithmetic_variable by arithmetic_expression Divides x by 32
%= Remainder arithmetic_variable %= arithmetic_expression X %=10
(Modulo) and Set arithmetic_variable to arithmetic_variable modulo
assignment arithmetic_expression
<<= Left shift arithmetic_variable <<= arithmetic_expression x <<=1
assignment Shift arithmetic_variable left by arithmetic_expression bits Shifts x 1 bit position left
>>= Right shift arithmetic_variable >>= arithmetic_expression X>>=2
assignment Shift arithmetic_variable right by arithmetic_expression bits Shifts x 2 bit positions
right
&= AND arithmetic_variable &= arithmetic_expression x &= OxO0F
assignment AND arithmetic_variable with arithmetic_expression ANDs x to isolate least
significant 4 bits
= OR arithmetic_variable |= arithmetic_expression X |= 0x01
assignment OR arithmetic_variable with arithmetic_expression ORs x to set the lowest
bit to 1
A= XOR arithmetic_variable *= arithmetic_expression x A= 0x01
assignment XOR arithmetic_variable with arithmetic_expression XORs x to toggle the
lowest bit

Table 8 — Assignment Operators
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The following are examples of assignment operator usage:

inty, z;
y=38;
z=4;
/I each statement below is independent from the others
y +=z; /I Addition. Result: y =12
y = z; // Subtraction. Result: y = 4
y *=z; // Multiplication. Result: y = 32
yI=z; // Division. Result: y = 2
y %= z; /I Modulo. Result: y =0
y <<=1; /I Left-shift. Result: y = 16
y &= z; /I AND. Result: y = 0 (binary arithmetic)
y|=2z; /I OR. Result: y = 12 (binary arithmetic)
y A=z /Il XOR. Result: y = 12 (binary arithmetic)

8.13.3 Boolean Operators
As shown in Table 9, CAPL supports the same Boolean operators found in the C programming language.

Symbol Operation Usage Example

! Logical NOT | larithmetic_expression if(!x)
TRUE if integer_expression_1 is equal to Checks to see if x is equal to
integer_expression_2; otherwise FALSE FALSE'

Il Logical OR expression_1 || expression_2 if(x <0 || x>59)
TRUE if expression_1 is TRUE or expression_2 is TRUE TRUE' if x is outside of range

0to 59

&& Logical AND | expression_1 && expression_2 if(x >0 && x<13)
TRUE if expression_1 is TRUE and expression_2 is TRUE' if x is inside the range
TRUE 11012

Table 9 — Boolean Operators

Note: The Boolean value TRUE is represented by the integer 1 (one) and FALSE is represented by the
integer 0 (zero).

The following are examples of Boolean operator usage:

byte y, z;

y = 0x00;

z = 0x01;

if (y) /I test result is TRUE

if (1z) /I test result is FALSE
if(y==0&&z==1) /I test result is TRUE
if(y==1]|z==1) /I test result is TRUE

In the last example above, the code that follows the statement is executed aslongasy=1orz=1.
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8.13.4 Relational Operators
Table 10 lists the various relational operators supported in CAPL.

Symbol | Operation Usage Example
== Test for integer_expression_1 == integer_expression_2 if(x == 0)
equal TRUE if integer_expression_1 is equal to Checks to see if x is equal
integer_expression_2; otherwise FALSE to zero
1= Test for not | integer_expression_1 = integer_expression_2 if(x 1= 0)
equal TRUE if integer_expression_1 is not equal to Checks to see if x is non-
integer_expression_2; otherwise FALSE zero
> Test for arithmetic_expression_1 > arithmetic_expression_2 if(x > 59)
greater TRUE if arithmetic_expression_1 is greater than Checks to see if x is
than arithmetic_expression_2; otherwise FALSE greater than 59
>= Test for arithmetic_expression_1 >= arithmetic_expression_2 if(x >= 60)
greater TRUE if arithmetic_expression_1 is greater than or equal to Checks to see if x is
than or arithmetic_expression_2; otherwise FALSE greater than or equal to
equal to 60
< Test for arithmetic_expression_1 < arithmetic_expression_2 if(x < 256)
less than TRUE if arithmetic_expression_1 is less than Checks to see if x is less
arithmetic_expression_2; otherwise FALSE than 256
<= Test for arithmetic_expression_1 <= arithmetic_expression_2 if(x <= 59)
less than or | TRUE if arithmetic_expression_1 is less than or equal to Checks to see if x is less
equal to arithmetic_expression_2; otherwise FALSE than or equal to 59

Table 10 — Relational Operators

The following are examples of relational operator usage:

inty,z;
y=38;
z=4;

if (y == 2)
if (y 1= 2)
if (y <= 2z)
if (y >=z)

/I test result is FALSE
/l test result is TRUE
/I test result is FALSE
/Il test result is TRUE
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8.13.5 Bitwise Operators
As shown in Table 11, CAPL supports similar bitwise operators found in the C programming language.

Symbol Operation Usage Example
~ One's ~integer_expression X =~y
complement | compute the one's complement of integer_expression Sets x equal to the one's
complement of y
& Bitwise AND | integer_expression_1 & integer_expression_2 x=y&z
Bitwise AND integer_expression_1 with Sets x equal to the logical
integer_expression_2 AND of y with z
Bitwise OR integer_expression_1 | integer_expression_2 X=yl|z
Bitwise OR integer_expression_1 with integer_expression_2 | Sets x equal to the logical
OR of y with z
A Bitwise XOR | integer_expression_1 * integer_expression_2 x=yhtz
Bitwise XOR integer_expression_1 with Sets x equal to the logical
integer_expression_2 XOR of y with z
<< Left shift integer_expression_1 << integer_expression_2 X <<2
Shift left integer_expression_1 by integer_expression_2 bit Shifts x to the left by 2 bit
positions and fill with zeros on the right positions
>> Right shift integer_expression_1 >> integer_expression_2 X >> 1
Shift right integer_expression_1 by integer_expression_2 bit | Shifts x to the right by 1 bit
positions and fill with zeros on the left position
Table 11 — Bitwise Operators
The following are examples of bitwise operator usage:
byte x, y, z;
y = 0x0AA; /l'y=1010 1010
z = 0x05A; /lz=0101 1010
x=y &z; /I AND result = 0000 1010
x=y|z /I OR result = 1111 1010
x=yhz /I XOR result = 1111 0000
x=y<<1; /I shift left result = 0101 0100
x=y>>1; // shift right result = 0101 0101
X = ~y; /I 1’s complement result = 0101 0101
8.13.6 Miscellaneous Operators
CAPL supports several miscellaneous operators as listed in Table 12.
Symbol | Operation Usage Example
1 Array named_array[integer_expression] X =y[z]
The integer_expression element of the named_array Sets x to the value of the z-th
element of the y array
Member structure_variable.structure_member X = message.signal
Member structure_member of structure_variable Sets x to a signal value of a
message’
?: Conditional | arithmetic_expression ? expression_1 : expression_2 x=(y<=0)?-y:y
evaluation If arithmetic_expression is TRUE, then evaluate Sets x to absolute value of y
expression_1; otherwise evaluate expression_2. The
value is expression_1 or expression_2.

Table 12 — Miscellaneous Operators
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Note: CAPL supports the concept of the structure, but does not allow them to be declared. The C structure member reference (dot) operator is used
to react to events.

The following are examples of miscellaneous operator usage:

byte x, y, z;

z=3;

y=5;

x=(y<z)?z:y; /I conditional result x =5

X = messagename.signalname /I x is assigned a signal value
/I see chapter on Using Messages for more detail

8.13.7 Unsupported Operators

Symbol Operation NOT ALLOWED IN CAPL Example

& Address &variable X =&y
Address of variable

# Preprocessing | #keyword #define ...
Preprocessing directives

* Address *pointer_expression X ="y
Address of variable

-> Member structure_pointer_expression -> X=y->z
structure_member

Member structure_member of structure pointed
to by structure_pointer_expression

Table 13 — Unsupported Operators in CAPL

8.14 Control Statements

As in C, CAPL is implemented using building blocks called statements. A CAPL program is essentially a composition
of statements that form instructions, which are the executed by the computer. Typically, statements are ended by a
semicolon (;). Compound statements are statements grouped together; therefore, they are enclosed by braces.

CAPL supports the same traditional control and conditional branching statements used in the C programming
language. Statements may be on one or more lines. A statement is not finished until the semicolon is reached, or the
closing brace is reached.

Control statements allow conditions to be tested during program execution. Depending on the outcome of the test,
several possible program actions can be executed.

The relational operators can be used for logical testing.

Several types of control statements are available including:
e Selective branching
e Looping
¢ Unconditional branching

8.14.1 Branching Statements

Sometimes more than one action can be performed, depending on what the condition is. If it's cold in your house, you
turn on the furnace. If it's not, you don’t. The same logic applies to selective branching statements.

In the following example, assume that a car’s automatic speed (cruise) control is set when the speed of a car exceeds
70 MPH. The following code is an example of if statement usage in CAPL:
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float MPH = 70.0;
float speed,;
float cruising_speed;

if (speed >= MPH) cruising_speed = speed;
The if statement is called a branching statement because the program may process one of two paths with the
statement. If the expression in the parentheses (in this case, speed >= MPH) evaluates to be true, the following
statement or whatever is within the braces is executed. Otherwise, it is skipped. The above example is a simple if

statement; therefore, braces are not required. For readability, it may be helpful to use braces as shown below:

if (speed >= MPH)
{

}

cruising_speed = speed,;

8.14.2 If Statement

The if statement is used to evaluate an expression and then take actions if and only if the outcome of the evaluation is
true.

Generalized format :
if (expression) statement;

The expression must be placed in parentheses. In this form, the statement will be executed only if the expression is
evaluated as being true or has a nonzero value. If the expression is evaluated as false or has a value of zero, then the
statement will be ignored. See the example below:

/I this is a function that advances clock minutes
increment_clock_minutes|()

int clock_minutes;

clock_minutes = clock_minutes + 1;
if (clock_minutes >= 60) Il if true

{
clock_minutes = 0;
/I increment hour variable

}

8.14.3 If-Else Statement

The if-else statement is used to evaluate an expression and then takes one of two possible actions, depending on
whether the outcome of the evaluation is true or false.

Generalized format:

if (expression) statement_1
else statement_2

If the expression is evaluated to be true or has a nonzero value, then statement_1 will be executed; otherwise,
statement_2 will be executed.

Because the else portion of the statement is optional, ambiguity exists when the else is omitted from a nested if
sequence. See the example below:
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/I this is a function that advances clock minutes
increment_clock_minutes()

{
int clock_minutes;
if (clock_minutes >= 60) Il if true
{
clock_minutes = 0;
}
else /I if false
{
clock_minutes = clock_minutes + 1;
}
}

8.14.4 Switch Statement

The if-else statement makes it easy to compare two alternatives. If several alternatives are possible, you can use a
nested if-else statement. Sometimes, however, it is more convenient to use the switch statement. The switch
statement provides multiple control branching with a selection process that tests a value of an expression against a list
of integer or character constants. This is useful when more than two alternatives are possible, such as comparing a
constant value against several different incoming temperatures. The value of the expression is tested in consecutive
order against the values of the constants specified in the individual case statements. When a match is found, the
associated statement sequence specific to that case is executed until a break statement is encountered or until the
end of the switch statement is reached.

For each case choice, the first statement within the group must be preceded by one or more case labels, also known
as case prefixes. Each case must use a unique label or constant - two identical labels are not allowed.

Each case must be labeled by either an integer or a character constant or a constant expression. A constant
expression cannot involve variables or function calls.

@ Note: A case labeled as a character constant is internally converted to an integer.

Below is the general format of a switch statement:

switch (expression) {
case value1: statement1; statement2; ... break;
case value2: statement1; statement2; ... break;

default: statement1; statement2; ... break;

}

The default statement is executed if none of the cases match the value of the expression. If none of the cases match
the value of the expression and the default statement is not implemented, then no action will be taken by the switch
statement. Below is an example:

float value1, value2, result;
char operator;

switch ( operator)

case ‘+’: result = value1 + value2;
break;

case ‘-’: result = value1 - value2;
break;
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case “*’: result = value1 * value2;
break;

case I’: if ( value2 == 0) write (“Division by zero!”);

else result = value1 / value2;

break;

default: write (“Unknown operator.”);
break;

}
8.15 Loops

Another basic operation performed in C that is also allowed in CAPL is a loop. A loop is a way to repetitively execute a
set of statements. There are three constructs used in C to perform this: the for statement, the while statement and the
do—while statement.

8.15.1 While Statement

The while statement provides a looping mechanism during which a statement or group of statements is repetitively
executed until some condition has been satisfied.

The general form of the while statement contains both an expression and a statement. If the expression is true or
evaluates to any nonzero value, then the statement is executed until the expression becomes false. Once the
expression is evaluated as being false, then the loop terminates and the program resumes after the loop.

The generalized format for the while statement is as follows:
while (expression) {statement};

The expression is always evaluated before the statement is executed. Although this may eliminate performing a

separate conditional test before executing a loop, remember that if the expression is false the first time through, then
the statement is never executed.

The following example converts a decimal number into a binary array:

byte binaryArray[16]; /I global variable
binary ( int number) /I user-defined CAPL function
{

int index;

index = 0;

while ( number !=0)

{
binaryArray[index++] = number % 10;
number = number/ 10;
}
}
If the input is: 1234
the output will be: 11010010

Note: The statement int index = 0; will NOT work here because local variables in CAPL are static,
that is they are initialized only ONCE at the start and not each time that the function is called.

If you want to have the statement executed first before the expression is evaluated, then use the alternate do-while
statement.
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8.15.2 Do—-While Statement

The while loop and for loop are entry-condition loops. The test condition is checked before each iteration of the loop,
so it is possible that the statements in the loop will never execute. CAPL also recognizes a C language exit-condition
loop in which the condition is checked after each iteration of the loop, guaranteeing that statements in the loop will be
executed at least once. The do-while statement repetitively executes a statement or group of statements until a
condition has been satisfied.

The general form of the do-while statement contains both a statement and an expression. If the expression is true or
evaluates to any nonzero value, then the statement is executed until the expression becomes false. Once the
expression is evaluated as being false, then execution resumes after the loop.

The generalized format for the do-while statement is as follows:
do {statement}
while(expression);

The following is an example of do-while usage:

byte binaryArray[16]; /I global variable
binary ( int number) /I user-defined CAPL function
{

int index;

index = 0;

do

{

binaryArray[index++] = number % 10;
number = number/ 10;

}
while ( number !=0);
}
If the input is: 1234
the output will be: 11010010

Note: The statement int index = 0; will NOT work here, because local variables in CAPL are static,
i.e., they are initialized only ONCE at the start and not each time that the function is called.

8.15.3 For Statement

The for statement also provides a looping mechanism. This statement includes an expression used for loop
initialization, another expression that determines whether or not the loop is to continue, and a third expression that is
executed after each iteration.

The generalized format for the for statement is as follows:
for (expression_1; expression_2; expression_3)
{statement}

The parentheses enclose the three expressions separated by two semicolons. The first expression initializes any user
parameters. It is done just once, when the loop first starts. The second expression is the test condition; it is evaluated
before each potential execution of a loop. When the expression is false, the loop is terminated. The third expression,
the change or update, is evaluated and executed at the end of each loop.

If expression_2 is omitted, it assumes the default value of permanently true. This results in an infinite loop. It is a
potential problem for CAPL to have infinite loops because CAPL programs are intended to intercommunicate with real-
time ECUs on the CAN network.
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%} Note: The for statement is equivalent to the following code:
expression 1;

while (expression 2)

{

statement;
expression 3;

}

The below example converts a decimal number into a binary array:
byte binaryArray[16]; /I global variable
binary ( int number) /I user-defined CAPL function
¢ int index;
index = 0;

for (; number !=0; )

{
binaryArray[index++] = number % 10;
number = number / 10;
}
}
If the input is: 1234
the output will be: 11010010

Note: The statement int index = 0; will NOT work here, because local variables in CAPL are static,
i.e., they are initialized only ONCE at the start and not each time that the function is called.

8.15.4 Unconditional Branching

8.15.4.1 Break Statement

At times we may want to use an infinite loop, that is, a loop that theoretically will be executed forever. Such a loop can
be used as long as there is some other way to terminate it, such as throwing a switch in the testing lab or powering
down the micro. It can be terminated in the code by using a break statement. The break statement is simply the word
‘break’ followed by the semicolon. Executing a break statement from within an enclosed switch, do-while, while, or
for statement causes immediate termination to the loop.

The following is an example of break statement usage:
intx,y, z;
while (x!=0)

doThis (x);

if(x==0)
break;

doThat (x);

}
doSomethingElse (y, z);

If x is equal to zero, program execution will skip the function doThat(x), leave the while loop, and execute the function
doSomethingElse(y,z).
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8.15.4.2 Continue Statement

A continue statement causes the program flow to go to the top of the enclosed while, do-while, or for loop, causing it
to execute again. At the point that the continue statement is executed, any statements in the loop that appear after the
continue statement are automatically skipped. This is the opposite of the break statement.

In the follwoing example, the code in the loop above the continue statement will only be repeated if the variable X’ has
the value ‘4’

intx,y, z;
while (x!=0)

doThis (x);

if((x==4)
continue;

doThat (x);

}
doSomethingElse (y, z);

8.15.5 Return Statement

A loop can also be exited by using a return statement with no argument. Most of the time, the return statement is
used in a user-defined function to return a value or value of an expression to an event procedure, as seen in the
example below:

long Power(int x, int y)

{
int i;
long result;
result=1;
for (i=1;i<=y;it+)

result *= x;

return result;

}

The Power() function above returns a value x raised to the y power.

User-defined functions can return a value of any basic data type (for example, int, float, long, double, char, byte, or
word).

@ Note: All event procedures do not return a value.

8.16 The “this” Keyword

Because CAPL provides event-driven program design, the this keyword is used to reference the object that triggered
the event. The this keyword is used to reference data from the object or the object value itself, such as a message or
an environment variable (CANoe only) within the corresponding event procedure.

The only event procedures that can use the this keyword are on message, on envVar, on key, on errorframe (only
to get the CAN channel number), and the four CAN Controller events: on busOff, on errorPassive, on errorActive,
and on warningLimit. The only time the this keyword is used in CAN Controller events is to access the transmitted
and received error counts.
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Although the this keyword may be conceptually difficult to understand, its use is straightforward. Think of it as a
pointer to an object. For example, set up an event procedure to execute when a CAN message is received with ID 555
in decimal. The this pointer is then used to access the message’s selectors or data bytes. (For more information, see
Chapter 11 — Using Messages).

on message 555

{
byte val;
val = 0;

/* checks to see if the message was received on CAN channel 1*/

if (this.CAN == 1)

{

/I sets “val” to the value of the first data byte in the CAN message
val = this.byte(0);

}

}

The this pointer can be similarly used for environment variables in CANoe. The event shown below is triggered when
the value of the environment variable LEDSwitch changes. To read the new value, use the this keyword with the
getValue() function, then store it into a variable, in this case val.

on envVar LEDSwitch /* Triggered when LED Switch changes */
{

int val;

val = getValue(this);
}

Note: Changes made to whatever the this keyword replaced remain local within the current event
procedure. The element value of the this pointer cannot be modified, but can be passed as a function
parameter. The this keyword is reset after the event procedure terminates.
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9 CAPL Functions

In addition to the traditional functions inherited from the C programming language, CAPL has additional functions that
provide a variety of special-purpose operations useful in the CANalyzer or CANoe programming environment.

When the word "function" comes up in CAPL, it can be confusing because CAPL has broken functions into three
categories. CAPL’s internal library provides the first category of functions. This category of functions is built into the
CAPL Browser, and each pre-defined function will be discussed later. The second category is user-defined functions.
The third category is DLL functions, which require the user to implement a dynamic linked library. This topic will be
further explained in the Chapter 24 — Introduction To CAPL DLLs.

9.1 User-defined Functions

The classical definition of a function is a section of program code that can accept 0 or more parameters (arguments)
and which may return a value to the calling code upon completion. User-defined functions can return a value of any
simple data type.

Do not confuse these user-defined functions with the pre-defined functions, even though their purpose is the same: a
preprogrammed calculation that is carried out upon request.

In CAPL, a user-defined function is similar to a function defined in the C programming language. A function call is
possible in any CAPL event procedure. These functions can contain any legal CAPL code, and are globally accessible.
Putting frequently used code in a function makes programs more efficient and organized.

There is no need to use a declaration statement or function prototype for a user-defined function in CAPL. User-
defined functions are created by highlighting Function in the Events window of the CAPL Browser and right-clicking
to New. When a return type is not specified, the return type void is assumed. Once the function is implemented, you
can call it in any event procedure. But be careful in naming the function. The function name must be unique compared
to the pre-defined functions that come with CAPL (for example, you cannot define a function called write() regardless
of the number of parameters).

9.2 Function Overloading is Allowed

CAPL has the ability to overload functions similar to the way C++ does. This means that multiple functions can have

the same name but different parameter lists. The function that is called depends on the parameters that are passed;

therefore, appropriate type coercions are performed automatically when compiled. Below is an example for printing:
void printme (double num)

write(“Floating point %f”, num);

}

void printme (int num, char units[])

write(“%d %s”, num, units);

}

The results of calling the functions are shown below:
printme(5.7); will print “Floating point 5.700000”
printme(3, “Feet”); will print “3 Feet”
printme(2.5, “angstroms”); will print “2 angstroms”
The last case is the most interesting. The first parameter to that function is expected to be an integer, but the compiler

applies implicit type coercion to the floating point value 2.5, truncating the fractional part to an integer (2) before the
argument is passed to the function.
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9.3 Function Naming Conventions

CAPL uses a consistent and easy-to-read naming convention for its built-in functions. You may apply the following
simple rules to your user-defined functions. These simple rules are:

e All standard C functions are in lower case (for example, sin(), cos(), strlen(), strncat())

¢ Non-C one-word function names are in lower case (for example, trigger(), outport(), inport())

e For non-C function names with more than one word, capitalize the first letter of all words except the first (for
example, swaplint(), timeDiff(), putValueToControl())

Although CAPL function names are not case sensitive, it is recommended that this convention be maintained in CAPL
programs for ease in editing and readability.

9.4 CAPL Function Categories

Internally pre-defined CAPL functions are organized by categories. CAPL programs do not require function libraries or
linking header files to use and compile these functions. Functions are added to every version of CANoe and
CANalyzer, and some are obsolete because of changes in newer versions. Therefore, almost all the functions should
be compatible with the latest version of CANoe, but older versions may not support all the functions. The CAPL
function categories include the following:

Mathematical functions

User interface functions

Time and timer functions

Message handling functions

Database functions

Byte swapping functions

File input and output functions

Logging support functions

String handling functions

Measurement control functions

Statistics functions

CAN and port functions

Replay block functions

Environment variable and panel functions (for CANoe only)
Language support and debugging functions

For detailed explanations and usage examples of each CAPL function, refer to the CAPL Function Reference Manual.

9.4.1 Mathematical Functions

Mathematical functions are used for complex calculations. This is a group of functions that also exist in the C
language. One example of when this group of functions is used is when implementing a gateway, and the data being
exchanged requires unit conversion.

Math Functions

Function Purpose
abs Calculates an absolute value
cos Calculates a cosine
exp Calculates an exponent
random Calculates a random value
sin Calculates a sine
sqrt Calculates a square root

Table 14 — Mathematical Functions

Programming With CAPL



CAPL Functions 61

Below is an example of how mathematical functions are used:

double x;
x = cos(Pl); Il returns —1, Pl is a built-in constant

double tangent(double x) // user-defined function tangent()

{
}

9.4.2 User Interface Functions

CAPL does not have many functions for the system interface. The most commonly used function is the write()
function. Most of the time, this function is used for debugging by outputting text and values to the Write window of
CANalyzer or CANoe. In order to categorize the information output from each node, the Write window can be adjusted
to accommodate more panes, typically one for each node, by using the writeClear(), writeCreate(), writeDestroy(),
writeEx(), and writeLineEx() functions. The color of text and background of the pane are set by the writeTextColor()
and writeTextBkgColor() functions respectively.

return sin(x) / cos(x);

User Interactions Functions

Function Purpose
beep Makes the system beep (obsolete)
keypressed Queries the currently pressed key
msgBeep Makes a predefined Windows system sound
sysExit Exits CANalyzer or CANoe
sysMinimize Minimizes/restores CANalyzer or CANoe window
write Outputs text to the Write window
writeClear Clears a Write window
writeCreate Creates a Write window
writeDestroy Destroys a Write window
writeEx Outputs text to a Write window without new line
writeLineEx Outputs text to a Write window with new line
writeTextBkgColor Sets the background color of a specific pane in the Write window
writeTextColor Sets the text color of a specific pane in the Write window

Table 15 — User Interface Functions

Below is an example of sending a message when a key is pressed using the write() and keypressed() functions:

variables
{
msTimer mytimer; /I timer
message 100 msg; /I CAN message
}
on key F1
setTimer(mytimer, 100); /I start 100 ms timer
write(“F1 pressed”); /[ output to Write window
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on timer mytimer
if (keypressed()) /I true if any key is pressed
{

setTimer(mytimer, 100); /I restart timer
output(msg); // send message while key is pressed

else write(“F1 released”);

}

9.4.3 Time Functions
To learn more about timers, refer to Chapter14 — Using Timers.

When it comes to CAPL programming, you can define as many timers as you like. You only need to know how to
declare two simple functions: cancelTimer() and setTimer(). One function cancels a specific timer if it is running, and
the other set/reset a timer if it is not running or it has just expired. In most cases, timers are used to send periodic
messages.

The timers you declare in CAPL can be in seconds (Timer) resolution or milliseconds (msTimer) resolution. After
these timers have been set by the setTimer() function within an event procedure, the corresponding on timer event
procedure is executed when the timer expires. If this is a periodic event, you can reset the timer with the setTimer()
function at the end of the timer event procedure to make it recursive.

The setTimer() function takes two parameters: the name of the timer, and the length of time the timer will run before
expiring. The parameter for the length of time will be expressed in different units, depending on what kind of timer is
declared. The cancelTimer() function can be called to cancel a timer before it expires to prevent the timer event from
triggering. Calling the cancelTimer() function has no affect if the timer is not set or has already expired.

The following example starts and resets a timer for 5 seconds:

variables
Timer t1;
}
on start
setTimer(t1, 5); // Initializes a 5-second cyclic timer
}
on timer t1
{
setTimer(t1, 5); /I Resets timer for another 5 seconds
}

In CAPL, programmers also need to know how the system clock operates. When a measurement starts, the system
clock initializes. It works independently of the Window’s timers, and it is incremented in 10 microsecond units (for
example, time stamp = 12345 = 123.45 ms). To get the current system time, the timeNow() function is used. Every
message, sent or received, will also have a system time stamp set by the CAN controller. This time stamp becomes
important when you are performing network tests (node responsiveness, for example). To calculate the time difference
between two messages, the timeDiff() function is used, or using the TIME selector (refer to Chapter 11 — Using
Messages).

If you need to reference the Window’s clock, the getLocalTime() and getLocalTimeString() functions are available.
For those projects where controlling processing time variation is important, CAPL provides two functions: setDrift()

and setJitter(). The CAPL setDrift() function sets a constant deviation between —100% and +100% for all timers used
in a network node. The setJitter() function, however, sets the fluctuation interval between —100% and +100%. Setting

Programming With CAPL



CAPL Functions

63

either function will reset the other. To set both the drift and the jitter, use the setJitter() function only. For example, to
set a jitter of +5% and a drift of 12%, the minimum jitter is 7% and the maximum jitter is 17%. To recall the drift or jitter
values, use the getDrift(), getJitterMax(), and getJitterMin() functions.

&

Note: If you are working on a network node in CANoe, you do not have to program these two
parameters in CAPL. Right click on the network node in the Simulation Setup window and select

Configuration to go to the Extended pane.

Time Functions

Function

Purpose

cancelTimer

Stops an active timer

getLocalTime

Gets windows time information

getLocalTimeString Gets windows time information in a string
setMsgTime Assigns time to message (obsolete)
timeDiff Calculates time difference between two messages
timeNow Gets the current system time
setTimer Sets a timer

CANoe Simulation Branch Only
getDrift Gets the deviation value set by setDrift()
getJitterMax Gets the maximum deviation value set by setJitter()
getJitterMin Gets the minimum deviation value set by setJitter()
setDrift Sets the constant timer deviation
setditter Sets the timer deviation interval

Table 16 — Time and Timer Functions

9.4.4 Message Handling Functions

Message identifiers indicated are used by nodes to ascertain the origin, characteristics, and data contents of a
message. When a message is received from the CAN bus, the user may use the isExtld() and isStdid() functions to

check to see if the message has an 11-bit or 29-bit identifier. If a message has an 11-bit identifier but a 29-bit identifier
is desired, use the mkExtld() function to convert it. Regardless of the type of message, the valOfld() function can be

used to retrieve the message identifier, or by using the ID selector explained in Chapter 11 — Using Messages.

Whenever a message needs to be sent from a node, the output() function (as seen in Table 16) is used.

Message Handling Functions

Function Purpose
isExtld Checks for extended identifier
isStdld Checks for standard identifier
mKkExtld Creates extended identifier
output Ouputs message, pg (specific to J1939), or error frame onto the bus
valOfld Gets the value of a message identifier

Table 17 — CAN Message Handling Functions
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Below is an example of how to get the message ID:

on message * // the * symbol is a wildcard for all messages
{

long id;

id = valOfld(this); /I works with extended ID as well
}

9.4.5 Database Functions

Database Functions

Function Purpose
getFirstCANdbName Gets the name of the first assigned database
getMessageAttrint Gets the value of a message attribute of type int only
getMessageName Gets the corresponding message name from the database
based on an identifier
getNextCANdbName Gets the database name by specifying its assigned position

Table 18 — Database Functions

CANalyzer and CANoe have access to some database entities other than just messages, signals, and environment
variables. The database names, as listed in Table 17, can be accessed by CAPL, and a message name specified in
the database can be retrieved if its identifier is given. The getMessageName() function can also check for the
inclusion of a received message in the specified database.

The getMessageAttrint() performs the useful function of returning the value of an attribute of type integer from the
database for a message. The function accesses the specified database and retrieves the attribute value, even if the
value has been modified while a CANalyzer or CANoe measurement is running. If the value has been modified before
a CANalyzer or CANoe measurement starts, then the recommended procedure to retrieve the value of such an
attribute is by using the syntax <messagename>.<attributename>.

The example below checks whether an incoming CAN message is defined in the database.

on message * /I the * symbol is a wildcard for all messages

{
char buffer[64];

dword contextCAN = 0x00010000;
if (getMessageName(this.ID, contextCAN | this.CAN, buffer, elcount(buffer)))
write("Message: %s", buffer);

else write(“Message ID = %d is not defined.”, this.id);

}

9.4.6 Byte Ordering Functions

Knowing the importance of using a database, these four functions are rarely used. Most of the time, these functions
are used to convert data bytes from Intel format (Little-Endian) to Motorola format (Big-Endian) or vice versa to get the
correct signal value. If a database is used, the format parameter has already been set up and CANalyzer or CANoe
will automatically perform the format changes based on the database.
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Byte Swapping Functions
Function Purpose
swapDword Re-orders bytes of a double word(32-bit data type)
swaplint Re-orders bytes of an integer (16-bit data type)
swaplLong Re-orders bytes of a long integer (32-bit data type)
swapWord Re-orders bytes of a word (16-bit data type)

Table 19 — Byte Ordering Functions

9.4.7 Logging Functions

Logging Functions

Function Purpose
setLogFileName Sets the name of the log file
setPostTrigger Sets the posttrigger time for logging
setPreTrigger Sets the pretrigger time for logging
startLogging Triggers a Logging block to start logging
stopLogging Triggers a Logging block to stop logging
trigger Starts all Logging blocks to a log
writeTolLog Writes a formatted string to the log file with time stamp
writeToLogEXx Writes a formatted string to the log file without time stamp

Table 20 — Logging Functions

CAPL also supports log file triggering and writing to a log file. The functions used for these tasks are shown above in
Table 19. All of the logging-related functions can be used in the Analysis Branch of both CANalyzer and CANoe, but
only the last five functions can be used in the Simulation Branch.

black square to the left of the Logging block to remove the break). Also, ensure that the configuration of
triggering in the logging block is set to CAPL (to verify, right-click on the Logging block and select
Configuration).

% Note: To use these functions, logging must be enabled in the Analysis Branch (double left-click on the

The startLogging() and stopLogging() functions bypass all logging triggering conditions, and they are used to start
and stop logging. You also have choices to specify the Logging blocks to trigger and to set up either the pre-trigger
time or post-trigger time passed in each function to overwrite the settings.

Below are two examples of how these functions are used:

on message 100 // this example triggers all the Logging blocks

{
writeToLog(“Logging starts”);
/I this example sets the pre-trigger time before logging to 25 milliseconds:
setPreTrigger(25);
trigger(); /I start logging
}
on key *
{
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/I starts the Logging block "Logging 1" with pre-trigger time of 2000 milliseconds.
startLogging( "Logging 1", 2000);

9.4.8 String Handling Functions

Strings are not often used in CAPL. These functions are mostly used to format a string to be output to the Write
window and when CAPL is performing file I/O. Table 20 lists the string handling functions.

String Handling Functions

Function Purpose
atol Converts a string to a long integer
Itoa Converts a number to a string
snprintf Creates a formatted string
strlen Gets the length of a string
strncat Concatenates two strings
strncmp Compares two strings
strncpy Copies a string

Table 21 — String Handling Functions

In the example below, atol() converts a string to a long number so that digits in the string can be used as characters
for numeric calculations. The number base is decimal.

long z1;
long z2;

z1 = atol(“200”);
z2 = atol(“0xFF”);

/I Result: z1 = 200, z2 = 255

9.4.9 Measurement Control Functions
Measurement control functions are used to control the flow of a measurement.

Measurement Control Functions

Function Purpose
canOffline Disconnects node from bus (CANoe’s Simulation Setup window only)
canOnline Reconnects node to the bus (CANoe’s Simulation Setup window only)
getBusContext Returns current bus context (CANoe’s Simulation Setup window only)
getBusNameContext Returns a specific bus context (CANoe’s Simulation Setup window only)
getStartdelay Gets delay time value of current node (CANoe’s Simulation Setup window only)
halt Halts the simulation (only possible in the Simulated Mode of CANoe)
inspect Updates the variables in the Inspect pane of the Write window (CANoe only)
setBusContext Sets new context of current bus (CANoe’s Simulation Setup window only)
setStartdelay Sets delay time value of present node (CANoe’s Simulation Setup window only)
stop Stops the measurement

Table 22 — Measurement Control Functions
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In this category, the function used most frequently is probably the stop() function. Calling the stop() function anywhere
and at any time during CAPL execution will stop the CANalyzer or CANoe measurement.

If a network node in CANoe needs to temporarily stop executing, the canOffline() and canOnline() functions are used.
CanOffline() stops the node from transmitting messages onto the CAN bus. In this passive state, all the events will still
trigger if the condition is right. All changes made during this passive state become effective once the network node
becomes online again by calling the function canOnline().

A network node can also be set up to have a delay period right after a measurement starts. This can be set up in the
configuration of that network node in the Simulation Setup window. This can also be done in CAPL by calling the
setStartDelay() function (only works in the preStart event). The delay time can be returned by the getStartDelay()
function.

Both the halt() and inspect() functions are used to debug a CAPL program in a simulated mode (CANoe only). The
halt() function halts the simulation immediately when called and updates the Call Stack pane of the Write window
automatically. To resume the simulation, the user can press the ‘F9’ key or click on the “lightning bolt” icon on the
taskbar of CANoe. Whenever the variables need to be updated in the Inspect pane, the inspect() function can be
called in any event procedure/function of a CAPL program.

The following example is a timer event procedure used to update the Inspect pane of the Write window every 100ms.
This is one strategy to update the window that does not update automatically.

on timer updateTimer

inspect();
setTimer(updateTimer, 100);
}

The remaining measurement control functions are used in modeling gateway nodes. By definition, a gateway is a piece
of software or hardware that enables communication between two network buses that are the same or different to
some extend. The difference in the network buses may just be the bus rate, or to something more unique, a different
communication protocol. For CANoe, these communication protocols are implemented using DLLs call node layer
DLLs. To have one CAPL program (CANoe only) to model gateway behavior between two different communication
protocols is easy because there are two different node layer DLLs. But, to model gateway behavior that uses the same
communication protocol, we have to introduce what is called a bus context because the same node layer DLL is used.

A distinction must be made between the instances of the node layer, both for calls to CAPL functions that are
implemented in the node layer DLL and for implementing callback functions. To facilitate this distinction, a bus context
is placed in the CAPL program by the runtime environment while a callback is being executed by the node layer DLL.
This context unambiguously identifies the node layer that is making the call. In a similar manner, the call of a CAPL
function that is implemented in a node layer is forwarded on to the appropriate node layer, depending on the current
bus context

dword oldValue, newContextValue;

/I previous context value is stored in oldValue
oldValue = setBusContext(newContextValue);

9.4.10 Statistics Functions

Statistics Functions
Function Purpose
isStatisticAcquisitionRunning Checks to see if acquisition range is running
startStatisticAcquisition Sets new acquisition range
stopStatisticAcquisition Stops acquisition range

Table 23 — Statistics Functions
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To use the statistics functions in CAPL, the CAPL program must be placed right before the Statistics block in the
Measurement Setup window. These functions, as shown in Table 22, are only in effect if the configuration of the
Statistics block is set to active for statistics report and histogram evaluations. In the CAPL program, these functions
are called to start and stop the data acquisition.

The following example begins generating a statistical report when an error frame is received.
on errorframe

{
}

9.4.11 CAN Protocol Functions

Vector has many hardware interface cards and cables (known as CANcabs) to connect the software to the physical
CAN bus. Often, a particular card and cable will be more suitable for the characteristics of a particular CAN bus. If the
wrong hardware is used, there could be no CAN communication. Software like CANalyzer and CANoe recognize these
hardware interface cards and cables, and allow the user to adjust the baud rate settings, sampling point percentage,
and other important protocol control settings.

startStatisticAcquisition();

CAN Protocol Functions

Function Purpose
canSetChannelAcc Sets channel acceptance
canSetChannelMode Activates/deactivates TX and TXRQ display of a channel
canSetChannelOutput Activates/deactivates acknowledgement bit
getCardType Determines the type of CAN platform being used
getChipType Determines the type of CAN controller being used
resetCAN Resets all CAN Controllers
resetCANEX Resets a specific CAN Controller
setBtr Sets the baud rate for a particular channel in the Bit Timing Register (BTR)
setCanCabsMode Sets a mode for a CANcab
setOcr Sets the Output Control Register

Table 24 — CAN Protocol Functions

In some cases, the hardware settings may require a change while the software measurement is running. CAPL has
built-in functions to determine the type of hardware being used and to configure the hardware settings. The type of
hardware interface cards accessed by CANalyzer or CANoe (CANcardXL, CAN-AC2-PCI, and so on) is returned by
the getCardType() function and the CAN controllers (Philips PCA82C200, INTEL 82526, and so on) identified by the
getChipType() function. To change the acceptance filter on the card (to accept only certain messages), you would call
the canSetChannelAcc() function. Blocking messages only makes sense if you do not want the application to process
those messages. The blocked messages will still be acknowledged by the controller. To disable acknowledgement and
make a CAN channel like a spy on the bus, use the canSetChannelOutput() function.

For applications implemented to test a node or multiple nodes on a CAN bus, numerous error frames may be
encountered. Eventually, the CAN controller on the interface card could go into the Bus Off condition if an excess
number of error frames are encountered (see Chapter 15 to learn more about this condition). To reset the CAN
Controller due to error frames, you can use either the resetCAN() or resetCANEX() function. CAN interface cards,
such as the AC2-PCI, may first require invoking the setBtr() and setOcr() functions before the controller is reset. The
setBtr() function sets a new baud rate on a CAN channel.
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Some Vector CANcabs enclosing a specific CAN transceiver support network sleep / wakeup capability and transitions
from high-speed mode to low-speed mode, or vice versa. For example, if a module requires so-called ‘high-voltage
wakeup’ to enable communication, the CANcab has to be set to a high-voltage mode before transmitting a message.
The function that makes these mode transition possible is the setCanCabsMode() function.

9.4.12 Port Functions

CAPL has only four built-in parallel port functions for communication: inport(), outport(), inportLPT(), and
outportLPT(). The latter two are new and have better connecting mechanisms. All four functions require special setup
for NT users (NT 4.0 and Windows 2000). Refer to the ReadMe.txt file in the ...EXEC32\GploDrv directory of
CANalyzer or CANoe for help. Table 23 below lists the CAN and Port functions.

Port Functions
Function Purpose
inport Reads a byte from a port
inportLPT Reads a byte from a parallel port
outport Sends a byte to a port
outportLPT Writes a byte to a parallel port

Table 25 — Port Functions

Below is an example of a port function:

val = inport(0x3f8); /l reads a byte from Port 0x3f8

The following example sets the CAN Controller’'s Output Control Register (OCR). The values do not take effect until the
next time the function resetCan() is called.

I/l set OCR Register, CANcardX or XL does not require this function call

setOcr(0, 0x02);
resetCan(); /I reset CAN Controllers

9.4.13 Replay Block Functions

Replay Block Functions
Function Purpose
ReplayResume Resumes replaying log file after it was suspended
ReplayStart Starts replaying log file from the beginning
ReplayState Returns the state the Replay block is in
ReplayStop Stops replaying log file
ReplaySuspend Suspends replaying log file

Table 26 — Replay Block Functions

CAPL has access to the Replay blocks in both the Simulation Setup and Measurement Setup window. By calling the
functions above, the user can start, stop, resume, or suspend a log file from replaying and check a Replay block’s
state. This can only be done if the Replay block is configured to trigger by CAPL. The Replay Block functions are listed
above in Table 24.
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The following example illustrates how a Replay block named “ibus_data” is used to replay when the ‘s’ key is pressed.

on key 's’

{
char replayName[32] = "ibus_data";
replayStart(replayName);

}

9.4.14 Environment Variable and Panel Functions (CANoe only)

The user-defined panels associated with CANoe used primarily to communicate with the CAPL program using
environment variables. These environment variables are accessed by three functions: getValue(), getValueSize(),
and putValue(). The putValueToControl() function is used to assign a value to the multi display control element on a
panel without using an environment variable. The type of values to be displayed in the multi-display control element
include integer, float, text, and the message’s data bytes. The type of messages supported includes CAN, LIN, VAN,
BEAN, and J1939 PGNs.

If a particular object or element in a panel needs to be enabled or disabled, use the enableControl() function. This
function has access to panel help elements, panel recorder elements, panel control buttons, and other elements with
association to either an environment variable or signal. The elements’ color can be set using the
setControlBackColor(), setControlForeColor(), and makeRGB() functions.

If all environment variables need to be initialized before the start of a measurement in CANoe, use the
callAllOnEnvVar() function. Calling this function in a CAPL program triggers all the environment variable events in
that CAPL program to execute. The CANoe Environment Variables and Panels functions are listed below in table 25.

CANoe Environment Variables and Panels Functions
Function Purpose

callAllOnEnvVar Calls all environment variable procedures
enableControl Enables or disable an element on a panel
getValue Reads the value of an environment variable
getValueSize Gets the size of an environment variable in bytes
makeRGB Sets primary color values
putValue Assigns a value to an environment variable
putValueToControl Assigns values to multi display control in panels
setControlBackColor Sets the background color of a panel element
setControlForeColor Sets the foreground color of a panel element
setControlProperty Sets a property of an ActiveX control

Table 27 — Environment Variable Functions

Below are some examples of how to get environment variable values:

int val;
float fval;
char buff[25];

/I Assign the value of the environment variable “Switch” to val
val = getValue(Switch);

/I Assign the value of the environment variable “Temp” to fval
fval = getValue(Temp);
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/I Read the value of environment variable “NodeName”
/I val in this case is the number of bytes returned
val = getValue(NodeName, buff);

9.4.15 Miscellaneous Functions

This group of functions is essential to give additional support for your CAPL program, but are probably the least—often
used. The fileName() function is used to display which node is active during a simulation in the Write window. This is
helpful if you are simulating many network nodes. The runError() function outputs an error string to the Write window
and stops the measurement. These errors are intentionally induced by the user in a CAPL program, and they are
configurable. The last two functions are used to set and output string messages to the Write window based on
priorities ranging between 0 and 15. For example, if a node is set to a write priority of 5, only those WriteDbgLevel()
functions with a priority of 5 or lower can output their string message to the Write window.

Table 26 lists the Miscellaneous functions.

Miscellaneous Support
Function Purpose
elCount Counts the number of elements in an array
FileName Outputs the program’s file name in the Write window
RunError Triggers a run-time error
SetWriteDbgLevel Sets write priority for present node
WriteDbgLevel Outputs a message to the Write window with specific priority

Table 28 — Miscellaneous Functions

CAPL does not allow traditional C pointers or memory allocation functions such as malloc() and free(). Array
dimensions must be specified in the array declaration. However, it is possible to pass arrays of arbitrary size as
function parameters using the elCount() function. The elCount() function returns the number of elements in a
dimension of an array. For multidimensional arrays, elCount() can be used separately on each dimension.

The example below shows how to implement a sum() function that returns the sum of every element in a two-
dimensional array of arbitrary size:
variables

int mat1[2][2] = {{1,2}, {3,4}};
int mat2[3][3] = {{1,2,3}, {4,5,6}, {7,8,9}};

}
void sum(int matrix[][])
{
inti, j;
int answer;
answer = 0;
for (i = 0; i < elCount(matrix); i++)
{
for (j = 0; j < elCount(matrix[i]); j++)
{
answer += matrix[i][j];
}
}
write(“The sum is %d”, answer);
}
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The example below sets the priority level for the writeDbgLevel() function and outputs a message to the Write
window with the specified priority.

inti=10;
intj=12;
setWriteDbgLevel(7); /I sets the write priority for this node

writeDbgL evel(4, "This is shown: h = %lIxh", j);
/I display in the Write window: This is shown: h = ch

writeDbgLevel(9, "This is not shown: d = %Id", i); /I no output

9.5 CAPL Function Compatibilities

Not all CAPL functions are available in all P Blocks or Network Nodes.

Based on the speed of currently available PCs, some CAPL functions are too slow to be used in CANalyzer’'s Transmit
Branch or CANoe’s Simulation Branch for some real-time activities. The getLocalTime() function used to get the
Window’s clock is an example of a ‘slow’ function. It is advisable to have the getLocalTime() function available only in
the Analysis Branch for tracking data evaluations and logging.

Because the CAPL Browser cannot tell where the P Block is placed in the setup window of CANalyzer or CANoe, it will
not always detect whether some of the functions in the program are allowed in that branch (for example, seqFile...()
functions). If such file I/O functions are used, compile the CAPL program using the compile option in CANalyzer or
CANoe’s main menu. This action provides the compiler with the location of the P Block, allowing it to recognize
restricted function calls.

CANALYZER CANOE
ANALYSIS BRANCH ANALYSIS BRANCH
TRANSMIT BRANCH
—m—| Statistics —m—  Statistics
ECU
—m—| Bus Statistics Module 1 —m— Bus Statistics
—— Trace —— Trace
E PC Board —-—
—a— Data —— Data
—m— Graphics ECU ECU —=— Graphics
Module 2 Module 3
Send

—m— Logging . Logging

TRANSMIT BRANCH SIMULATION BRANCH

B03031201

Figure 34 — CAPL Functions Depend on Placement

Finally, a CAPL function may not work in your CAPL program because the function was not introduced until a newer
version of CANalyzer or CANoe. These functions are either available through version upgrade or service packs.

To see if a function has these two limitations, refer to the CAPL Function Reference Manual.
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10 CAPL Events and Event Procedures

A CAPL program is organized around event procedures. Each event procedure is associated with a single event.
Whenever a predefined CAPL event occurs, the corresponding event procedure will execute.

I’]EAPL Browser - [Demo.can]

E File Edit Compiler Options Window Help

=10l x|
=8 x|

DEE 2R al=]ng w|s @

i Variables

-7 Systen

#-=3 CAN Controller
Emﬁﬁ CAN Me=s=zages

i ErrorFrame
b, Environment
e fy Function

cABSdata

[(0=CZ9)

on mnes=zage ABSdata

KiN

write("ABSdata message iz receiwved” )

Compiling. ..
Options:

| Compiled  |MOTBLIS

Events and their corresponding event procedures are grouped into functional classifications to simplify program

Figure 35 — A CAPL Event Procedure

organization. These same functional classifications also establish the upper level structure of the CAPL Browser and

its graphical user interface.

CAPL event procedures are functionally classified as follows:

Message events
Timer events
Keyboard events
Error frame events
CAN controller events
System (tool) events

Environment variable events (CANoe only)

Each of these functional classifications can be selected from the tree view at the left in the CAPL Browser (see Figure

35).

Table 29 shows a list of recognizable CAPL events and the corresponding procedures that will be executed.

CAPL Event Description Procedure Executed
Timer The named timer expires (timeout) on timer name'
Keyboard The named key is pressed on key name®

CAN Message

The named message is received

on message name3

Error Frame

An Error Frame is detected

on errorFrame*

Bus Off detected

CAN Controller - Bus Off is detected

on busOff°
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Error Active detected CAN Controller - Error Active is detected on errorActive®

Error Passive detected CAN Controller - Error Passive is detected on errorPassive®
Warning Limit detected CAN Controller - Warning Limit is detected on warningLimit5
Initialization System - initialized on preStart®

Start System - start on start®

Stop System - stop on stopMeasurement6
Function Invocation of the user’s procedure user-defined function’
Environment Variable Change in environment variable (CANoe only) on envVar name®

Table 29 — CAPL Events and Corresponding Event Procedures

Notes:

. Each timer has a unique name

. Each key has a unique name.

. Each message has a unique name or identifier.

. This is a detected invalid CAN transfer.

. This is a CAN Controller internal state.

. This is a system tool (CANalyzer or CANoe)-internal state.

. Any number of user-defined functions is allowed.

. Any number of user-defined CANoe-based environment variables is allowed.

ONO U WN -

10.1 Creating an Event Procedure

There is no need to use a declaration statement for any type of event. Adding code to the corresponding event
procedure is all that is necessary. Simply right-click on the event and select New to initialize a new event procedure
(see Figure 36).
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Ready | [MOTEUS [z

Figure 36 — Creating a New Event Procedure

10.2 Event Procedure Requirements

Whenever a new event procedure is defined, additional CAPL code is usually implemented to carry out a task. Having
an event defined is of no use if the event procedure is not implemented, as the event will trigger with no process to
execute.

Some event procedures require a specific parameter to define the event. For example, a keyboard input event triggers
whenever a key is pressed — the desired key has to be specifically defined for the event procedure. If a keyboard input
event has not been defined for that key, nothing will happen when that key is pressed.
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10.3 Some Event Procedures Use the Keyword “this”

The keyword this is only used on a number of CAPL event procedures. The keyword this acts like a pointer, and
essentially points at data related to the current event where the keyword is used. Table 30 shows the CAPL event
procedures which use the keyword this and how they are used. Refer to their corresponding chapters for more details.

CAPL Event Event Procedure Value of "this"
Timer on timer name not used
Keyboard on key name the key pressed
CAN Message on message name the message received
Error Frame on errorFrame CAN channel
Bus Off detected on busOff error counts
Error Active detected on errorActive error counts
Error Passive detected on errorPassive error counts
Warning Limit detected on warningLimit error counts
Initialization on preStart not used
Start on start not used
Stop on stopMeasurement not used
Environment Variable on envVar name the value of the environment variable

Table 30 — Event Procedures That Use the Keyword “this”

Because the this keyword can be used in many events, what it references will be different in every event, including the
same type of event (such as two on key events). This is simply because once an event is done executing, the this
keyword is initialized to null. If another event has used the this keyword, it will have a new reference.

You do not have to reference and release every time you use the keyword. It automatically references the event that
the keyword is used in, and release once the event is done.

%} Note: Any changes you make to what the this keyword references are only valid within that event
procedure. In other words, you can only use what it has referenced, but you can't assign a new value to
it.

10.4 The * symbol

Sometimes the same task applies to more than one message received from the bus or to different keystrokes on the
keyboard. When this condition occurs, the first answer most people think of is to define a common subroutine so the
message events or keyboard events can call that subroutine to perform the task. In CAPL, there is another solution.
The * symbol is a wildcard that can be used to replace the key parameter for both the on key and on message event
procedures. If the same action is performed for two or more keys, this symbol is used because it represents all key
presses. All incoming messages with similar tasks may use this symbol as well.

Below is an example using the * symbol.
on key * //for all keys

/I print the key that was pressed
write(“The key you have pressed is %c”, this);
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10.5 Event Priority

Events do not have any priority whatsoever in terms of execution. They execute whenever the condition is right and do
not stop in the middle of execution. In other words, events cannot be nested. Only one type of event can be processed
at a time. If a function needs to be called within an event procedure, that function will execute first before the event
procedure continues. If an event is executing and it is urgent to stop in the middle of execution, the stop() function is
used. Calling the stop() function will terminate the measurement in either CANalyzer or CANoe. If CANoe is running in
a simulated mode (not interfacing with the physical bus), the halt() function may be used to halt all processes. To
continue, press the ‘F9’ key on the keyboard or click on the “lightning bolt”.

Note: The halt() function will only execute in simulation mode. It will not execute while you have live
access to a physical CAN bus.

Because the * symbol can be used as a wildcard in both Keyboard and Message event procedures, there is a level of
priority for which event to execute. Not all keys or incoming messages usually execute the same task. If all keys except
one execute the same task, then two on key event procedures have to be defined. Below is an example:

on key * /I for all keys other than ‘a’

/I print the key that was pressed
write(“The key you have pressed is %c”, this);

}

on key ‘a’ /I for the lowercase ‘a’ key only
/I print the ‘a’ key
write(“The ‘a’ key is pressed”);

}

Pressing the ‘a’ key will only execute the on key ‘a’ event procedure because that event procedure is more specific to
the Keyboard event. Every other key will execute the first event procedure.

Priority is no exception for incoming messages. Below is an example:

on message * /I for all messages
// print
write(“The message received is %c”, this.id);

}

on message CAN1.* /I for all messages received on CAN channel 1
/[ print
write(“The message received on CAN channel 1 is %c”, this.id);

}

on message 0x100 /I for messages with ID equal to 100 in hex only
// print
write(“The message with ID 0x100 is received.”);

}

on message CAN2.0x100 // for messages with ID equal to 0x100 from CAN channel 2

{
/[ print
write(“The message with ID 0x100 is received from CAN channel 2.”);
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When it comes to priority, message event definitions are more involved than Keyboard events. With the addition of
CAN channel-specific Message events, there are two rules CAPL follows to determine which event procedure to
execute:

¢ A specified CAN channel has precedence over the absence of a CAN channel.
e A specified message ID number has precedence over a * symbol wildcard.

Following the two rules in our examples above, if message 0x100 is received on CAN channel 1 it would print, “The
message with ID 0x100 is received”. If that message is received on CAN channel 2, it would print, “The message
with ID 0x100 is received from CAN channel 2”.
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11 Using Messages

Within the CAPL programming language, a message is a block of data transmitted over the CAN bus in one or more
data frames. CAPL functions with three of the four different CAN frame types (listed below):

e Data
e Error
¢ Remote

Overload frames are not supported by the CAPL programming language.

Note: For more details about CAN frame types see Section 26.8.

frame, a transport protocol is usually implemented to handle this multi-packet message.This text
concentrates on single-framed messages only.

% Note: In the case where the block of data (sometimes referred to a packet) is larger than one CAN data

111 Messages in CAPL

Because it is used in almost all node simulations, the message object is never to be overlooked when programming in
CAPL. This object, which is essentially a structure (as in C and C++), allows users to work with a CAN message at a
higher, more abstract level if it has already been defined in a database. Instead of assigning the data field of a
message bit-by-bit, the data field can be split and set in terms of signals, the part of the message that is used to store
data. Several combinations are possible to fill the 64 bits of data. For example, a CAN message could carry four 8-bit
signals and a 32-bit signal, sixteen 1-bit signals and three sixteen-bit signals, and so on.

When handling messages in CAPL, be sure that you know which messages are used to send data and which
messages are received to extract data. Any valid CAN transfer unit is a received message. Message events are ONLY
used for message reception, since sending a message can take place within any event. Any messages that require
transmission must be first declared with the message data type.

All messages have a unique numeric identifier. The message identifier is entered as a number (integer) in decimal or
hexadecimal notation to identify the message. To make a message global to all the events and functions, declare it in
the Variables section of the program.

11.1.1 Declaring Messages in CAPL with a Database

Messages in CAPL are objects; therefore, they must be declared (similar to variables) before they can be used.
Declaring a message is simple, defining one takes a little bit of effort. Defining a message is commonly done in a
database using a database editor like CANdb++. The database editor also allows message associations to be defined
(for example, message to signals, message to attributes, and message to network nodes). If the database-defined
message is to be used in a CAPL program, you do not have to define it again. Simply declare it with the following
syntax:

Syntax: message <message identifier or name> <variable name>

It is easy to declare messages with the help of a database. As mentioned in the database sections of this book,
messages are given a symbolic identifier when defined. This symbolic identifier can be used anywhere in a CAPL
program where a numeric identifier is used, especially when declaring a message. When declaring a message already
defined in the database, CAPL automatically knows structural information like the numeric identifier, data length code
(DLC), and signal list.

Programming With CAPL



Using Messages 79

Below are examples for declaring a message called EngineTemp already defined in the database:

message EngineTemp eTemp;
/I or use its numeric identifier
message 0x100 eTemp;

I/l two instances of the same message
message EngineTemp eTemp1, eTemp2;

Note: The message identifier is case sensitive. Rather than typing it in, right-click on the location and
select CANdb message. . . to get the message identifier.

11.1.2 Declaring Messages in CAPL Without a Database

If the messages are not defined in the database, you usually have to spend more time programming. For example,
CANalyzer and CANoe, by default, receive a message in the Intel (little-endian) format. If the data bytes in a message
use the Motorola (big-endian) format, you have to swap the bytes using CAPL. But that’s not all - message properties
and associations have to be defined in the CAPL program. Without the defined message in a database, you can only
declare the message with a numeric identifier. Below is an example:

message 0x100 eTemp;

Unlike the example in the previous section, this message has no data bytes because it is not defined nor declared with
a DLC, and there is no signal list because it is not defined in a database. To assign a DLC to the message, you can do
it one of two ways: when declaring the message or by assignment using the DLC selector.

/ when declaring the message:
message 0x100 eTemp ={DLC =8 };

/I after declaring the message:

eTemp.DLC = 8;
If you are trying to define an extended message with a 29-bit identifier, an “x” is appended to the suffix of the numeric
identifier as seen below:

[/l declaring a 29-bit identifier message:
message 0x100x eTemp = { DLC =8 };

If you are unsure about what the identifier is, replace the identifier with an “*”. You will have to establish the identifier
later with the ID selector before sending the message.

message * eTemp = { DLC = 8};

/I in another part of the program, establish the identifier:
eTemp.ID = 0x100;

11.1.3 Message Selectors

The message object not only contains information about its signals, but also about some properties and components
called selectors. These selectors are accessible in both transmitted and received messages. For most applications,
they do not need to be explicitly set, but they can be helpful in some cases. For example, the TIME selector can be
used in arbitration testings. To change the transmit channel from 1 (default) to 2, the CAN selector is used. To find out
whether the message is a transmitted or received message, the DIR selector is used. See Table 29 below for CAPL
Message Selectors
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CAPL Message Selectors

Selector Description Valid Values
ID Message identifier Any valid CAN message ID
CAN Transmit Channel number 1 or 2 (depends on number of CAN controller)
DLC Data Length Code 0 to 8 data bytes
RX (Receive)
DIR Direction of transmission TX (Transmit)

TXREQUEST (Transmit Request)
0 (not an RTR)

RTR R te T ission R t
emote Transmission Reques 1 (RTR)
TYPE Combination of DIR and RTR See below
Time stamp of the message in units of .
TIME 10ms (read-only) Long integer
SIMULATED Sent by a simulated node 0 (r(?al node)
(read-only) 1 (simulated node)

Table 31 — CAPL Message Selectors

Both the DIR and TYPE selectors provide predefined constants that can be used to make CAPL programs more
readable. More importantly, these constants are not case-sensitive. The TYPE selector is provided as an efficient way
to evaluate other selectors as one unit.

TYPE = (RTR << 8) | DIR

The constants accessed with the TYPE selector are listed below.

Valid Values for the TYPE Message Selector
Constant Meaning Logical Derivation
RXREMOTE Remote message was received ((DIR == RX) && RTR)
TXREMOTE Remote message was transmitted ((DIR == TX) && RTR)
TXREQUESTREMOTE | [ransmission request was set for ((DIR == TXREQUEST) && RTR)
remote message
RXDATA Data message was received ((DIR == RX) && IRTR)
TXDATA Data message was transmitted ((DIR == TX) && !RTR)
TXREQUESTDATA H:;‘S'S’a’g'zs'on requestwas setfor data | (R == TXREQUEST) && IRTR)

Table 32 - Valid Message Selector Values

To set or retrieve the value of a selector, type the name of the message variable follow by a period and then the
selector. Below are some examples.

messagename.CAN = 2; /I set the transmit channel for this message to 2
value = messagename.TIME; // retrieve the time stamp of a message’s last transmission or reception
messagename.ID = 100; /I set the message identifier to 100 in decimal
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11.2 Accessing Data

CAPL provides two ways to access the data field in a message. Using signals defined in the database to access data
in a message is as simple as assigning a value to a variable. However, not everyone has a database defined. If you do
not have a database, the following method can be used for message access.

CAPL provides four keywords to access data: BYTE (8 bits), WORD (16 bits), LONG (32 bits), and DWORD (32 bits).
LONG and DWORD can be used reciprocally. The keywords are used after a message variable followed by a period.
In addition, a parameter is used for each keyword to specify the byte location, just like specifying an index for an array.
For WORD, LONG, and DWORD, the parameter specifies the position of the first byte, therefore the parameter cannot
exceed 7 for BYTE, 6 for WORD, and 4 for LONG and DWORD since a maximum of 8 bytes is allowed in a message.

access. In other words, the first byte is the least significant byte whereas the last byte is the most
significant byte (little-endian). If the data is in Motorola format (big-endian), then the bytes have to be
swapped.

%: Note: Both CANalyzer and CANoe see data in Intel format, so CAPL uses the Intel format for data

Shown in the illustration below is a message received from the bus with the data in Intel format:

CAN Message
ide [SOF Identifier Control DATA CRC |ACK
. ~ _—
r == I

Byte 0 |Byte_1|Byte 2 |Byte_3 | Byte_4 | Byte_5 | Byte_6 | Byte_7

content (in hex): 6E 01 FF 51 7A B5 Cc9 23

bit ordering: [7]6] 5[ 4] 3] 2] 1] 0] B03110601
Figure 37 — Message with Data in Intel Format

Assignments Results (in hex)
Messagename.BYTE(O) Ox6E
Messagename.BYTE(5) 0xB5
Messagename.WORD(0) 0x16E
Messagename.WORD(3) 0x7A51
Messagename.LONG(0) 0x51FF016E
Messagename.LONG(2) 0xB57A51FF
Messagename.LONG(4) 0x23C9B57A
Messagename.LONG(6) Invalid

Table 33 — Assignment Results with Data in Intel Format

In reality, using the four keywords is not very productive, since data can only be accessed in terms of bytes. If the
value you want is not perfectly stored within a byte or bytes, you would have to use operators. Using the message
example in Figure 37, let’s say the value you want is Ox1F at Bytes 2 and 3. Below is an example of how you would
obtain it:

int myvalue; /I declare an integer
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myvalue = messagename.WORD(2); [ initialize the integer to 0x51FF
myvalue >>=4; /I shift 0x51FF to the right 4 bits to get 0x51F
myvalue &= 0xFF; /I clears all unnecessary bits to get Ox1F

11.2.1 Using Signals (Only Available with a Database)

Each CAN message carries 0 to 8 data bytes, defined by the user and always a whole number of bytes. Signals
partition these data bytes into sections from 1 to 32 bits each. A CAN message may carry several signals, each with its
own significance. Several combinations are possible to fill all possible 64 bits (8 bytes) of data. For example, a CAN
message could carry four 8-bit signals and a 32-bit signal, sixteen 1-bit signals and three sixteen-bit signals, and so
on.

Because signals are already defined in the database, you do not have to worry about swapping the value from Intel to
Motorola format or vice versa. Byte ordering is also predefined in the database as bit locations where the signal is
located are set. In the previous section, the value 0x1F is obtained after three lines of code. If an 8-bit signal is defined
in the database for the same message to start at bit location 20, you can obtain the 0x1F value with just one line of
code. See the code below for an example:

int myvalue; /I declare an integer
myvalue = messagename.signalname; //'myvalue'is assigned Ox1F

11.2.2 Physical Values and the “phys” Attribute

A signal is like a fixed-size variable that holds numeric data. Once a database is finalized according to specification,
and a node or a system is built using that database, the size of a signal is rarely required to change. However, signal
value representation may have to change to make it easier for the user to understand it. The signal data transferred
across the bus consists of raw values. Raw values may not mean anything from your standpoint. What you are
interested in is their physical values.

Physical (also referred to as ‘engineering’) values are derived from the raw values, generally by using a linear
equation. For example, a node that outputs a message with an unsigned 16-bit signal denoting the engine speed
(RPM) could actually hold a value between 0 and 65,535. To make it more meaningful, you probably have to convert it
into a physical value in RPM. In the simplest case, divide the raw value by 10 to get a range between 0 and 6,553 — a
meaningful range for RPM.

Let us take a look at an opposite scenario. You have another unsigned 16-bit signal (maximum value of 65,535). This
time, the physical value requires a range between 0 and 100,000. One way to correct this problem is to use more than
16 bits to specify a larger range, but that would waste bits and make message size larger. Shown below is a better
approach, which is more feasible if you can afford to lose precision.

Set up a conversion formula in the database by specifying an Offset and Factor for the signal — see Section 22.7. The
physical value is then calculated as follows:

Physical Value = (Raw Value * Factor) + Offset

For the signal example above, entering a Factor of 2.0 and an Offset of 0 would give the desired range of numbers
between 0 and 100,000.

To access the physical value (or to have CAPL automatically convert the number from the appropriate raw value),
simply add .phys to the signal name in CAPL. Assume EngSpeed in the next example is an unsigned 16-bit signal
using a Factor of 2.0 and an Offset of 0.

message EngData EDMsg; // declares EDMsg as type EngData
EDMsg.EngSpeed = 50000; /I sets raw value, the same value on the bus
EDMsg.EngSpeed.phys = 50000; /I sets physical value

Note that if a conversion formula is defined for EngSpeed, the two assignment statements do not have the same
affect. Using the .phys attribute above sets the raw value to 25000.

Note: Always use the .phys attribute whenever a formula is defined; not doing so can cause errors that
are difficult to track down.
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11.2.3 Round-Off Error in Symbolic Signal Access

It is important to remember that signal values are always saved as discrete numbers. A discrete number is a whole
number, with no significant digits after the decimal point. If a non-discrete physical value is assigned to a signal, the
closest discrete raw value is saved (after applying the conversion formula). Then when the signal’s value is read, it
may not match the previously set value.

To demonstrate the round-off error, consider the example in the previous section. The conversion formula had a Factor
of 2.0 and an Offset of 0. If the code has the following assignment the conversion formula is used to calculate a raw
value of 2000.5.:

EDMsg.EngSpeed.phys = 4001;

Because only discrete (or whole number) values are legal, and EngSpeed is an unsigned 16-bit signal, 2000 is saved
instead of 2000.5. To get the value of EDMsg.EngSpeed.phys after the line executed above, the conversion formula
now returns the value 4000 and not 4001!

11.3 Message Transmission

Messages are mostly declared in the Global Variables section of the CAPL Browser, so they are globally accessible
throughout the program. The main reason for declaring a message in CAPL is to send it out onto the bus. CAPL
supports sending messages triggered by an event, such as pressing a keyboard key, receiving another message,
receiving an error frame, or the expiration of a timer. To send a message is very simple. Just call the output() function
in any event procedure or user-defined function.

Before transmission, it is necessary to set all the message properties and signals to ensure a successful transmission.
You can set the signals of a message in one event procedure and the send the message in another event procedure.
When the message is ready to send, the signals will contain the latest values; therefore, setting one signal value will
have no affect on the other signals within that message.

message 0x100 msg1 = {dlc = 8}; /I declare message to send

msg1.byte(0) = 0x12; /I set the data field

msg1.long(1) = 0x90785634;

msg1.CarSpeed = 100; /l assume CarSpeed occupies the last three bytes
msg1.CAN = 2;

output(msg1); /I send the message

11.4 Message Reception

In CAPL, a message reception process occurs only when a message is received from the CAN bus and an event
procedure is defined for that message. If a particular message is received from the CAN bus and the CAPL program
does not have an event for it, the CAPL program will ignore that message. It should be noted that this property causes
CAPL programs to behave much like a CANalyzer/CANoe Stop filter.

Once a message is received, the corresponding message event procedure will execute. The on message event
procedure must have a parameter to specify the message or messages. Simply replace the <newMessage> string
with a numeric or symbolic identifier. If you want to use a symbolic identifier from the database, right-click on the spot
and select CANdb Message... to select the symbolic name from the message list. The message name will
automatically be inserted into the location. Be advised that double-clicking the message name from the message list
more than once will insert it more than once.

One important concept to remember when defining a message event procedure is event priorities (especially when the
* symbol is used to replace the identifier) — see Section 10.5, Event Priority.
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Table 34 below shows examples of various receive message events that can be declared:

Message(s) Message Event Procedure Name Occurs When
100 on message 100 the message ID 100 (decimal) is received
0x100 on message 0x100 the message ID 100 (hexadecimal) is received
40r8 on message 4,8 either message ID 4 or 8 (decimal) is received
0x200-0x2FF on message 0x200-0x2FF any message ID 200 thru 2FF (hexadecimal) is received
Engine on message Engine message named Engine defined in database is received
any message on message * any message is received
ﬁzyorziﬁsage on message CAN1.* any message is received on CAN channel 1

Table 34 — Examples of Supported Receive Message Events

Message events are defined to pick up useful data from the bus. The desired data is usually stored in the data field of
a message. As with populating a message for transmission, you must use the same methods to retrieve the data out of
the message, either by using signals or by using a slightly more complicated approach that uses the BYTE, WORD,
LONG, and DWORD keywords. Other selectors (DLC, CAN, RTR, and so on) may also be used to select messages
by key attributes. Regardless of the information you seek, it is important to know about the this keyword.

The this keyword is used in every message event to access the received message’s properties (through selectors)
and signals. Think of it as a pointer to the message members of that event. The this keyword allows you to retrieve
any valid information from the message, and it only allows read-only access. Assigning to what the this keyword points
to is prohibited.

Below is a valid example using the this keyword:
on message ABSdata

if (this.DIR == RX)

{
write(“Message ID = %d is received from channel %d”, this.ID, this.CAN);
write(“The signal value of car speed is %d”, this.CarSpeed);

}
Below is an INCORRECT way to use the this keyword:

on message CAN1.ABSdata

this.CAN = 2; //trying to set the transmit channel to 2
output(this);
}

The invalid example is frequently found in CAPL programs for gateway simulation, network nodes that connects two or
more buses together to share/exchange information. The intention was to send the ABSdata message received from
CAN Channel 1 onto CAN Channel 2. The ABSdata message will indeed go back onto the bus, but onto CAN Channel
1 and not 2. It goes back to CAN Channel 1 because it is the default transmit channel.

Because local changes to the this keyword are not allowed within its event, there is only one way to send the same
information onto CAN Channel 2: copy the ABSdata message onto another message and then transmit it. In this case,
no value is assigned to whatever the this keyword points to.
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Below is the workaround for the invalid example above:

on message CAN1.ABSdata

{
message * gatewayMsg;
gatewayMsg = this;
gatewayMsg.CAN = 2;
output(gatewayMsg);

}

or

on message CAN1.ABSdata

{
message CAN2.* gatewayMsg;
gatewayMsg = this;
output(gatewayMsg);

}

Below is an example of using a message in the CAPL Browser:

i1 x|
= File Edit Compiler Options ‘Window  Help 2] x|
DM ER o =8 WS

¥ Variables variables 2]
: {

-5 Systen
=3 CAN Controller
Emﬁﬂ CAN Messages

& Timer

| Kevboard
i ErrorFramne
#-& Environment
#-f« Function

=R N1 1D Responsel

ne=z=age LEDREequestHMeszszage LEDEequestH=g:
ne==zage LEDResponseMesszage LEDREesponseM=g:
n=Timer tmrREuntest;

bvte LEDRequest[5]:

bvte LEDRespon==[5]:

char 1i:

int successcnt

int =s=tartFlag:

dword glbHandle=0:

char buffer[od]:

}
BE

on message LEDREesponseMes=szage

1f(1:0 &b 1<6)

1
if (thi=s. byte{l)=={LEDEe=pon=e[1-1]))
: successcnt+=1;
write( "success counter:Xi",successcnt)
; ¥

}
g | VI

Ready

| |testnz CAMoe

Figure 38 — Receiving a Message in the CAPL Browser
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11.5 Error Frames

CAN protocol controllers are capable of detecting message errors and will alert the network to the presence of an error
by transmission of an Error Flag within the message frame. CAN messages found to contain errors are referred to as
Error Framesand are discarded by all bus receivers. While occurrences of Error Frames on a functioning CAN bus
communication system should be at or near zero, encountering such problems is quite common during the early
development stage of a CAN-based module or distributed embedded system.

Common causes of error frames include the following:

Incorrect bus termination for high-speed CAN networks (hardware)

Poor grounding (electrical)

Improper interface circuitry (hardware)

Incorrect CAN bit timing parameters (software)

Generated on purpose by the program calling:
output(errorFrame);

It is important to understand that there is no information about what caused the error or which node may have signaled
the error contained within with the Error Frame. This is essentially a CAN protocol detail that is beyond the scope of
this text.

11.5.1 Error Frame Event

Error Frames are detected by the tool's CAN hardware, and can be processed through the use of the on errorFrame
event. The on errorFrame event is similar to the on message event, except that it occurs whenever an error frame is
received on the bus. This event is normally used to keep statistics on the number and timing of error frames. For
example, the following Error Frame event procedure could be used to analyze bus errors (frequency, activities during
the time frame of the event, and so on.) in a CAPL node:

on errorFrame
if (this.can == 1 && (timeNow() — pretime) < 100000)

write(“Error frames received less than one second apart on channel 1.”);

}

Note: The system time returned by the timeNow() function and using the TIME selector are in units of 10
microseconds.

Figure 33 illustrates how this would look in the CAPL Browser:

S=1ES
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(=3 CAN Controlle: nessage LEDResponsst ge LEDResponsehzg;
B CaN Messages msTimer tmrRuntest;
imer byte LEDRequest[5]:

‘# Kevboard byte LEDResponse[5]:
char i
EE& ErrorFrane int successcnt:
o errorFramns int startFlag,
-/~ Enwvironment dword glbHandle=0;
B fe Function char buffer(64]:

long pretine;

o1 o

on errorFrame d
if {(this.can == 1 && (timeNow() - pretims=) < 100000}
write{"Error frames received lessz than one second apsrt on channesl 1.");
1
>
| I N »
Ready [ [estiz [Camne [Lna, Cal7a FI .z

Figure 39 — On Error Frame Function in the CAPL Browser
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12 Using Keyboard Events

Keyboard inputs are an excellent way to make things happen with CAPL. CAPL provides an extensive set of keyboard
service through keyboard events.

A keyboard event occurs whenever a key is pressed. A corresponding keyboard event procedure can be assigned to
the key pressed. All letters, both upper case and lowercase, and number keys are available. For function or extended
keyboard keys (for example, ‘F1’, ‘PageDown’, ‘End’, and so on) use symbolic identifiers.

If uncertain about which key to use, the “*” symbol can also be used to represent all keystrokes.

12.1 Keyboard Events and Procedures

There is no need to use a declaration statement for a keyboard event. Creating the corresponding keyboard event
procedure is all that is necessary.

The on key event procedure requires a parameter to identify by name that the key has been pressed. Virtually all
standard key presses common to other PC-based programs (Visual Basic, for example) are available in CAPL. Table
35 shows examples of supported key presses:

Keystroke Event Procedure Occurs When
a on key 'a’ the lower case "a" key is pressed
A on key 'A' the uppercase (capital) "A" key is pressed
A on key 0x41 the uppercase (capital) "A" key is pressed
2 on key '2' the number "2" is pressed
$ on key '$' the special character "$" is pressed
End on key End the End key is pressed
Shift + F1 on key shiftF1 simultaneous Shift + F1 keys are pressed
Control + PageDown | on key ctrlPageDown | simultaneous Control + Page Down keys are pressed
any key on key * any key is pressed

Table 35 — Examples of Supported Key Presses

Key presses are case sensitive, therefore CAPL treats the lower-case letter differently from the upper-case letter. If an
upper-case key is used and Caps Lock is disabled, you have to press both the ‘Shift' key and the upper-case key. The
‘Shift’ key does not have to be included as a parameter. However, if an extended key and ‘Shift’ is required, then it has
to be included as a parameter, as shown in the table above (for example, ‘Shift'+'F1’). Multiple key events require no
spaces when defining as a parameter.

ASCII hexadecimal code can also be used to replace the symbolic identifier (for example, 0x20 for the spacebar, 0x41
for ‘A’, and so on). Extended keys do not require single quotation marks, as shown in the table above.

12.2 Using the Keyword “this” with the Wildcard Symbol “*”

The wildcard symbol might be useful if you want to either place all key stroke-handling routines into a single event
procedure, or to have several different keystrokes execute the same instructions. The this keyword is used to
represent and determine the actual key that was pressed.
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For example:
on key * /l respond to all keys
switch (this) [/ “this” holds the value of the key pressed
{
case ‘a’:
case ‘b’:
write(“a or b was pressed.”);
break;
default:
write(“You have pressed the %c key.”, this);
break;
}
}

Note: When more than one event statement matches the event, only the most specific event
procedure is executed. For example, if an on key * event procedure is declared as well as an on key
‘a’ event procedure, only the on key ‘a’ event procedure is executed when the ‘a’ key is pressed.
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13  Using System Events

A CAPL program also has events defined that may be used to control the flow of execution. Unlike the main() function
used in the C/C++ language that outlines how the C/C++ program executes, system events in CAPL control the

program “lifecycle” — the operational state.

13.1 Types of System Events

For CAPL, the detectable CANalyzer or CANoe system events used within the program environment include the

following:
e [Initialization
e Start
e Stop
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F-=Z CAN Controller int StartFlag:;

""" . CAN tessages dword glbHandle=0;

B Timsr char buffer[512];
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----- # ErrorFramne con=t int Debugginglff=0:

conzt int Debuggingln=1:
const int Fail=10;
const int Success=20;
int Status=0;
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Figure 40 — System Events in CAPL

13.2 What Happens When a System Event Occurs?

CAPL provides event procedures to execute actions before, at the start of, and after CANalyzer or CANoe
measurements. Their names correspond to when they are used, and they only execute once in each measurement.

Table 36 shows these system event procedures.

Tool Event Occurs When Procedure Executed
Initialization | The tool's Start Button is pressed on preStart

Start The tool’s Start Button is pressed on start’

Stop The tool’s Stop Button is pressed or if the CAPL function stop() is invoked. | on stopMeasurement

Table 36 — System Events

Note:
1. The on start event procedure executes after the on preStart event procedure.
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When a measurement is started in CANalyzer or CANoe, the on preStart event procedure will be executed first (if one
exists). This procedure is typically used to read data from files, initialize variables, or to print characters in the Write
window. Other actions, such as outputting a message onto the bus, are not available in the on preStart event
procedure. Most of the time, actions or processes that cannot be executed in the on preStart event procedure can be
placed into the on start event procedure.

Once the on preStart event procedure has finished executing, the on start event procedure immediately follows (if
one exists). The on start event procedure can be used to set timers, output messages onto the CAN network, or
initialize environment variables in CANoe. When the on start event procedure finishes executing the measurement is
then started, and other defined event procedures are enabled.

When the measurement stops in CANalyzer or CANoe, the on stopMeasurement event procedure(if one exists) is the
last to execute. Applications of this procedure might include:

e printing statistics in the Write window

¢ sending final messages onto the CAN communication network

e writing to a log file

After the on stopMeasurement event procedure has finished executing, the measurement is terminated.

Note: It may be necessary to execute or call all environment variable event procedures at the
beginning of the measurement. This action is sometimes necessary to initialize variables, to set timers
related to environment variables, and to send out messages onto the bus containing values of
environment variables. CAPL provides the callAllOnEnvVar() function to execute all your event
procedures involving environment variables. This function calls every environment variable event
procedure that you have defined. CallAllOnEnvVar() function is normally called within the on start
event procedure.
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14 Using Timers

Because CAPL is designed to provide an event-driven environment, timers provide an easy way to trigger periodic
events. CAPL allows for an infinite number of user-defined timers to be set.

A timer is a programmable relative clock. After starting the clock with your pre-set amount of time, the timer runs until it
expires. the corresponding timer event procedure will be executed when the alarm expires. As a result, using timers is
a three-step process:

1. Declare a timer variable

2. Pre-set the timer in an event procedure (except the preStart event) or a user-defined function

3. Define an on timer event procedure for that timer

Based on typical timing requirements, two types of timers are available:
¢ Millisecond timer - pre-set to a number in milliseconds
e Seconds timer - pre-set to a number in seconds

14.1 Declaring a Timer

To use a timer, declare the timer by name in the Global Variables window of the CAPL Browser. A timer cannot be
declared within an event procedure. If the unit of interest is in seconds, the timer is defined as Timer. If the unit of
interest is in milliseconds, the timer is defined as msTimer.

As an example, let's say we need to use 2 timers - one with a duration of a tenth of a second and the other for one
minute. We could define these timers by using the following CAPL code:

msTimer tenth_second_clock;
Timer one_minute_clock;

14.2 Starting a Timer

To start a timer, you must invoke the CAPL function setTimer().

To continue using our example with our tenth of a second clock and our one-minute clock, we can start both of these
timers by using the setTimer() function.

setTimer(tenth_second_clock, 100); /I set timer to 100 milliseconds
setTimer(one_minute_clock, 60); /I set timer to 1 minute

14.3 Expiration of a Timer

When a timer or clock expires, the corresponding event procedure will be executed.

To illustrate a delayed message transmission process, message 100 will be sent to the bus 20 milliseconds after the
‘a’ key is pressed as illustrated below:

variables

{
msTimer myTimer; /I creates a millisecond timer
message 100 msg; /I creates message 100

}

on key ‘a’ /[l when the ‘@’ key is pressed
setTimer(myTimer,20); /I set myTimer to 20 ms

}

on timer myTimer /l when myTimer expires (after 20 ms)
output(msg); /I output the message
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14.4 Resetting a Timer

All defined timers are resettable. Resetting can be done in any event procedure. Simply call the setTimer() function
again, passing the timer variable and using the same or different time duration.

If you are trying to reset a timer, and that timer has not yet expired, you will get a run-time warning in the Write window
of CANalyzer/CANoe and your attempt to reset that timer will be ignored. To reset a timer that is still running, call the
cancelTimer() function first and then the setTimer() function.

14.5 Periodic Clock

When implementing a CAPL program to emulate node behaviors, you may have to implement a periodic timer. The
most common way to create and use a periodic timer is shown in the following steps:

Declare the timer in the Variables window of the CAPL Browser
Set the timer in the on start event procedure

Define an event procedure for the timer to perform a given task
Reset the timer at the beginning or end of the task.

rprON=

In the following example, a periodic message is sent using a timer.

variables
{
message 0x555 msg1 = {dic = 1};
mstimer timer1; /I define timer1
}
on start
setTimer(timer1, 100); /I initialize timer to run for 100 msec
}
on timer timer1
msg1.byte(0) = msg1.byte(0) + 1; /I increment the data
output(msg1); /[ output message
setTimer(timer1, 100); /I reset the timer

}
14.6 Stopping a Timer Before It Expires

As mentioned before, a timer can be stopped by using the cancelTimer() function.
For example, if we wanted to stop the one-minute clock at some precise instant, we would write:
cancelTimer(one_minute_clock); /I stops the 1 minute clock

This function call is ignored if the one-minute clock is either not set or has already been expired.

14.7 Common Timer Mistake

The cancelTimer() function can indeed cancel a timer and avoid the errors that occur when trying to reset a timer that
has not expired; however this function may also introduce a common mistake. In the example below, in addition to
setting up a timer to send the periodic message every 100 milliseconds, an on key event is implemented to also send
the message whenever the ‘a’ key is pressed.
variables
{
message 0x555 msg1 = {dlc = 1};
mstimer timer1; /I define timer1

}

on start
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setTimer(timer1,100); /I initialize timer to run for 100 msec

}

on timer timer1
msg1.byte(0) = msg1.byte(0) + 1; /I increment the data
output(msg1); /[ output message
setTimer(timer1,100); /I reset timer

}

on key ‘a’

{
cancelTimer(timer1); /I cancel timer
setTimer(timer1,100); /l reset timer

}

In this example, the user added an on key event to set a timer so as to output the message. The user knows that
when the on key event is called, a timer error will occur because the timer cannot be set again while it is running. The
user called the cancelTimer() function first, and then set the timer. This action, however, introduced another mistake.
If the user presses the ‘a’ key faster than 100 milliseconds, the message will never be sent because the timer is
cancelled every time before it expires. To send a message every 100 milliseconds and on the ‘a’ key, outputting the
message within the on key event will correct the problem, as seen in the example below:

on key ‘a’

output(msg1);
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15 Using CAN Protocol Controller Events

A CAN protocol controller is the hardware device used to transmit and receive CAN messages. The typical CAN bus
interface used with CANalyzer or CANoe contains one or more CAN controllers, so as to permit interconnection to
CAN networks. While it is beyond the scope of this text to describe how a CAN controller operates, the reader must be
aware that CAPL supports controller-level events. These events generally cause error frames, and error frames affect
the state of a CAN controller. Error frames and the state of the CAN controller have tremendous impact on CAN
communication; therefore, CAPL has system events defined, each representing the state of the CAN controller.

The detectable CAN controller events used within the CAPL program environment include the three primary CAN
protocol error states and the optional CAN controller interrupt called "warning limit ". Each CAN channel accessible in
CAPL corresponds to a CAN controller in one of the possible four states.

15.1 CAN Controller States

The CAN protocol controllers error states detected (from all active CAN protocol controllers) in CAPL as events are
o Error Active
e Warning Limit
e Error Passive
e Bus Off

Each state is determined by the accumulated count values within the CAN controller’s Transmit Error Counter and
Receive Error Counter. These error states occur under the following conditions:

Error Active When the CAN controller is initialized, and whenever the transmit and receive error counts are less
than or equal to 95

Warning Limit  Whenever the transmit or receive error count equals or exceeds 96

Error Passive Whenever the transmit or receive error count equals or exceeds 128

Bus Off Whenever the transmit error count is greater than or equal to 256

Figure 41 shows these different error states and the counter values that cause a transition from one state to another.
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Figure 41 — CAN Controller Error States

To get a summary of how the counter increases or decreases, see Section 26.8.4. — CAN Error Counting
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15.2 CAN Controller Events

As shown in Table 37 below, whenever the CAN Controller’s error state changes from one state to a new state, this
transition will cause the corresponding event procedure to be executed.

CAN Controller Event Occurs When Procedure Executed
Bus Off detected CAN Controller error state changes to Bus Off state on busOff
Error Active detected CAN Controller error state changes to Error Active state on errorActive

Error Passive detected CAN Controller error state changes to Error Passive state | on errorPassive

Warning Limit detected | CAN Controller error state changes to Warning Limit on warningLimit

Table 37 — CAN Controller Events and the Corresponding Event Procedures

When a CAN Controller is powered and initialized, the internal CAN Controller error state always begins as Error
Active, with both the Transmit Error Counter and the Receive Error Counter set to zero. Only errors detected on the
CAN network will cause the error counters to increase.

If enough errors are detected, the CAN Controller error state will transition to the Error Passive state. If an Error
Passive event procedure has been established to do something when this condition occurs, that procedure will now be
executed. If CAN communication transfer conditions improve, either by successful transmissions or receptions in the
Error Passive state, causing the error counters to decrease, then the error state will transition back to the Error Active
state.

The Bus Off condition occurs when the CAN Controller's internal Transmit Error Counter is greater than or equal to a
count of 256. Because the error count that triggers Bus Off (256) only applies to a transmitter, a receiver cannot go
Bus Off, because the receive error counter can only reach 128, or the Passive state. During a CAN-based module’s
normal operation, Bus Off is considered to be a serious condition that needs to be reported.

The event that corresponds to the Warning Limit condition is not specifically associated with a CAN Controller error
state change, but is a detectable condition that is optionally included in some CAN Controllers. The Warning Limit
condition occurs when either the receive error count or transmit error count exceeds 96.

% Note: The CAN hardware used with CANalyzer and CANoe supports this optional and detectable
warning limit condition.

The this keyword is used in CAN Controller event procedures to access the CAN Controller’s error counters. Both the
Transmit Error Counter and the Receive Error Counter are accessible. To access the value of the Transmit Error
Counter, use the variable name this.errorCountTX. Use this.errorCountRX to access the value of the Receive Error
Counter.

For example, a warning could be placed in the Write window when the warning limit condition is reached. The
following CAPL program could accomplish this:

on warningLimit

{
write (“CAN Controller at Warning state”);
write (“ Tx errors = %d”, this.errorCountTX);
write (“ Rx errors = %d”, this.errorCountRX);
}
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16  Using Environment Variables

CANoe’s graphic panels are very useful, because they help the user visualize events by recreating the automotive
environment, such as the dashboard console, switches, lights, and so on. The behavior of network nodes with regard
to external input and output signals is described by special variables called environment variables, that can represent
such things as switch positions or engine speed. CAPL programs are used to regulate these variables. Environment
variables make connection possible between elements on the panel and the associated CAPL program.
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Figure 42 —Environment Variables In CANoe

The concept of environment variables is an important one to understand when using CAPL with CANoe. Environment
variables are used in CANoe to represent external values on the network, such as the position of a switch. The
environment variables are defined in an associated database with the CANdb++ or CANdb Database Editor, and can
be read and changed by a CAPL program. Because they are accessible to all events and functions in a CAPL
program, they are considered global variables. These global variables are also available to all CAPL programs in the
same CANoe configuration and not just one single CAPL program. In other words, they are global to the CANoe
environment.
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information between CAPL programs, because CAPL programs normally represent nodes on a CAN
network. In reality, environment variables do not exist on a physical CAN system. Therefore, use only

% 1 Note: It is considered a bad programming technique to use environment variables to exchange
CAN messages to exchange data between CAPL programs.

16.1  Environment Variable Types

Just as with variables you define in CAPL programs, environment variables have to be assigned a data type in the
database. The choice of data type includes INTEGER, FLOAT, STRING, and DATA. The INTEGER and FLOAT data
type are commonly used, but STRING and DATA are not, because the data field within a message contains numeric
data. The STRING data type is used to store ASCII characters. DATA on the other hand, is used to store values in
term of bytes. In addition, the DATA data type has a length attribute specifying the size of the data field.

16.2 Environment Variable Initialization

By default, CANoe initializes all environment variables to their default value assigned in the database whenever the
measurement starts. This feature is not so useful if a measurement has to stop and then restart again to continue with
a test exactly where it left off before. For example, in the first measurement you send the necessary messages to start
a car and put it in a driving position by utilizing the states (values) of an environment variable. Then you have to restart
your CANoe measurement for another test with the car already running; however, because the state of the
environment variable has to reset to its default value, your second test will always fail. Fortunately, in CANoe there is
an option to disable reinitializing all the environment variables every time the measurement starts by going to
Configure — oOptions.

Sometimes it is necessary to initialize all environment variables at the beginning of the measurement before their
values change during the measurement, even if these initial values are different than the default values in the
database. CAPL provides the callAllOnEnvVar() function to execute all environment variable event procedures. This
function calls every environment variable event procedure that you have defined in a CAPL program. You would
normally call callAIlOnEnvVar() in the program’s on start event procedure to initialize your environment variables.
Related actions may include the following:

¢ Initializing variables

e Setting timers to activate in response to changes in environment variables

¢ Sending out messages onto the CAN bus containing the starting values of your environment variables.

16.3 Declaring an Environment Variable Event

Environment variables can only be defined in a database, so they cannot be declared in the CAPL language. They are,
therefore, declared using the CANdb++ Database Editor as illustrated in the steps below:

1. Select Environment from the Events window in the CAPL Browser (tree view at the left), right-click and
select New. This creates a new environment variable event procedure name in the left window and an outlined
procedure in the right window where the event procedure code is entered.

2. Replace the string <newEnvVar> in the right window with the name of the environment variable by right-
clicking on the highlighted string, choose Environment variable from CANdb.. and select the
environment variable from the list. If the selection is deactivated, it means the database is not associated to
CANoe when opening the CAPL Browser.

Below is an environment variable event procedure to lock all the doors after the ignition is on by sending a message:
on envvar envlgnitionSwitch

if (getValue(this) == 1)

/I set signals here to lock all doors
else

/I set signals here to unlock all doors
output(doorStateMessage);
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16.4 Event Execution

When the value of an environment variable changes, the corresponding environment variable event procedure is
executed. The value can only be changed by two methods. The most common method is through a panel. The
input/output user-defined elements on a graphical panel are associated with environment variables (or with signals if
for display only). Whenever the user changes the value or state of these elements, it will change the value of the
associated environment variable automatically, thereby triggering the corresponding environment variable event. The
second way to change the value of an environment variable is by calling the putvalue() function.

16.5 The putValue() and getValue() Functions

Unlike other variable assignments, assigning an environment variable requires calling a function. The putValue()
function is used to set or initialize an environment variable. This function takes two or three parameters, depending on
the data type of the environment variable.

Data Type Syntax Format
Integer void putValue( envVarName, int value);
Float void putValue( envVarName, float value);
String void putValue( envVarName, char value] ]);
Data void putValue( envVarName, byte valuel ]);
Data’ void putValue( envVarName, byte value] ], long size);

Table 38 — putValue() Function Syntax

Notes:
1. Instead of assigning the entire array of bytes into the environment variable, this format specifies the number of bytes to assign.

Unless the environment variable’s value is different, calling the putValue() function will not reset the environment
variable. The corresponding environment variable event procedure will not execute.

Calling the getValue() function will return the environment variable value. It has five formats like the putvalue()
function.

Data Type Syntax Format
Integer int getValue( envVarName);
Float float getValue( envVarName);
String long getValue( envVarName, char value] ]);
Data long getValue( envVarName, byte value[ ]);
Data’ long getValue( envVarName, byte valuel ], long size);

Table 39 — getValue() Function Syntax

Notes:
1. Instead of accessing the entire array of bytes from the environment variable, this format specifies the starting byte location to access.

The formats return the active value of the environment variable for integers and floats. If an array is required as in the
STRING and DATA data type, the function returns the number of bytes copied.

16.6 The “this” Keyword

The this keyword is used in conjunction with the getValue() function to access the value of the environment variable.

Note: Be careful! Do not use the this keyword with the putValue() function in an environment variable
event procedure, because that may cause the event to execute in an infinite loop.
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Below is an example of using the this keyword with the getValue() function:

on envVar FlowRate

{

int val;

val = getValue(this);

write(“The flow rate is %d”, val);

}

/I read value of FlowRate into val

/I display it

Below is an illustration of an on envVar function created in the CAPL Browser:
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Figure 43 — An Environment Variable Function in the CAPL Browser
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17  Using File Input/Output Functions

The file input and output functions allow read and write access to data files, making it easy to record data results. For
performance reasons, these functions do not support complex searching processes. Alternative methods that make
complex searching possible include implementing a COM interface or a CAPL DLL.

In one application area, it might be valuable to record a set of events in your distributed system, time stamp the events,
and then use these time values to determine the performance of your system. Having such performance parameters
available over time may provide some engineering benefits.

In another application area, it might be beneficial to use an input file that contains a script of system input events to
play back into your distributed system. Predefined CAPL File I/O functions may help to accomplish this.

17.1  File Input/Output Functions

CAPL supports file 1/0 with several functions split into categories. The new releases of CANalyzer and CANoe have
made many file /O functions obsolete, and a new set of functions has been added to CAPL to replace those functions.
The new functions substantially improve searching mechanisms.

Functions starting with fileWrite... and fileRead... have changed to filePut... and fileGet... respectively. Functions
starting with seqFile... have changed to writeProFile... and getProFile.... Only two file I/O functions for logged files
have not changed: writeToLog() and writeToLogEX().

Categories Example Functions | Read/Write Limitations Status

fileWritelnt();
fileReadInt()

fileGetString();
filePutString()

getProFileArray();
writeProFileFloat()

Read and write | Special file set-up is required. | Obsolete

File 1/0 functions
Read and write | None Supported

ProFile functions Read and write | Special file set-up is required. | Supported

CAN.INI set-up is required.

Sequential file seqFileRewind(); Program node must be

functions seqFileGetLine() | oaa oMY placed in the Simulation Obsolete
branch.

Write to log file | writeToLog() Write only Logging has to be enabled to | g\ 10y

take effect.

Table 40 — Categories of File Input/Output Functions

Note: Obsolete functions can still be used in CAPL programming; however, they are not recommended
for long-term use in the future, because no support will be given as new software releases are issued.

17.1.1 Set-Up for File Input/Output Functions

File 1/0 functions such as fileWritelnt() or fileReadString() are obsolete because of their search mechanism. A file
path is used as one of the parameters every time a function is called. This results in overheads. A new group of
functions starting with fileGet... and filePut... (including fileWriteBinaryBlock()) has been implemented to replace
this group of 1/O functions. This new group of functions has two advantages. First, there is no need to set up the
CAN.INI file, so CANalyzer or CANoe does not have to reload. Second, this group has two new functions, one called
openFileRead() and the other openFileWrite(), to return a file handle to eliminate the overheads mentioned earlier.
Once the handle is opened for data access, it can be closed any time during measurement using the fileClose()
function.
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File I/0 Functions

Function

Purpose

fileReadArray

Read an array of data from a file (obsolete)

fileReadFloat

Read a floating point number from a file (obsolete)

fileReadInt

Read an integer from a file (obsolete)

fileReadString

Read a string from a file (obsolete)

fileWriteFloat

Write a floating point number to a file (obsolete)

fileWritelnt

Write an integer to a file (obsolete)

fileWriteString

Write a string to a file (obsolete)

fileClose

Close a specific file

fileGetBinaryBlock

Read a character from a file in binary format

fileGetString

Read a string from a file

fileGetStringSZ

Read a string from a file w/o new line character

filePutString

Write a string to a file

fileRewind

Reset pointer to beginning of file

fileWriteBinaryBlock

Write a character to a file in binary format

openFileRead

Open a file for read access

openFileWrite

Open a file for write access

setFilePath

Set the directory path for file to read and/or write access

setWritePath

Set write path for function openFileWrite and ProFile
functions

Table 41 — File 1/0 Functions

17.1.2 Set-Up for Sequential File Access Functions

CAPL offers functions for sequential read-only file access such as seqFileGetLine() and seqFileGetBlock() as listed
in Table 40.These functions require data in the data file to be structured like the one shown below in Figure 44 (the
same format used by initialization files or *.INI files). These functions are only available for use in nodes located in
CANalyzer’s Transmit Branch and CANoe’s Simulation Setup window.

Sequential File Access Functions

Function Purpose
seqFileClose Closes a file opened by seqFileLoad()(obsolete)
seqgFileGetBlock Reads a block of characters from a file (obsolete)
seqgFileGetLine Reads a line from a file (obsolete)
segFileGetLineSZ Reads a line from a file (null-terminated) (obsolete)
seqgFileLoad Opens a file for reading (obsolete)
seqgFileRewind Resets a file to read from the beginning (obsolete)

Table 42 — Sequential File Access Functions
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Figure 44 — File Format Example

Before calling these functions in the CAPL code, the CAN.INI file must be edited to specify the path where the data file
is located. The CAN.INI file is located in the CANalyzer or CANoe system directory (e. g. c:\program
files\CANoe\EXEC32). Open the file with a text editor, and find a section that looks like the following:

[CAPL]

SegFilePath = “C:\usr\imax\capldata”
; working folder for files that are to be read from
; CAPL with seqgFileLoad

When the seqFileLoad() function is called to open a file, the path specified in the quotation marks above is searched
for the file. If the file cannot be found in that directory, the system directory (for example,, EXEC or EXEC32) is
searched for the file. If CANalyzer or CANoe is running while the changes are made to the CAN.INI file, the program
has to be reloaded for the changes to take effect.

ProFile I/O Functions

Function Purpose
getProFileArray Reads an array section from a file
getProFilelnt Reads an integer section from a file
getProFileFloat Reads a float section from a file
getProFileString Reads a string section from a file
writeProFilelnt Writes an integer value to a section of a file
writeProFileFloat Writes a float value to a section of a file
writeProFileString Writes a string to a section of a file

Table 43 — ProFile I/0 Functions

With the new group of ProFile functions,functions, as listed in Table 41, the file path is set with either the
setWritePath() or the setFilePath() function in CAPL. This group of functions still requires data in a structural data
formatted file. A file name is required as one of the parameters to use the getProFile... functions to read data. This file
has to be located in the same directory as the associated database(s) or saved configuration, or as pointed to by the
setFilePath() function. A file name is also used with writeProFile... functions to write data into a file; however, the
destination path can be set by the setWritePath() function. If the setWritePath() function is never called, the saved
configuration directory is used. More importantly, this group can do both read and write access to a file, whereas the
seqFile... functions can only read.
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18  Using the Serial and Parellel Port

Two functions are defined in CAPL for the parallel port: one function to transmit a byte (outportLPT()) and the other to
receive a byte (inportLPT()). Although the parallel port expansion is useful, it is only supported on certain
PCs.Because of difficulties with using the parallel port across NT-based operating systems (for example Windows
2000), it is recommended that the parallel port not be used. To use these functions requires a generic parallel port
driver found at the path ...EXEC32/GploDrv. Follow the instructions in the readme.txt file, and remember to change
the BIOS setting in the PC for the parallel port to use ECP.

18.1 Installation of RS232VC DLL

There are no pre-defined functions for the serial port in CAPL. You must associate a DLL to CANalyzer or CANoe to
give CAPL serial port functionalities. Before CAPL can gain access to the serial port, the DLL file rs232vc.dll must be
saved in the CANoe/CANalyzer EXEC32 directory (the file is downloadable at www.vector-CANtech.com). EXEC32 is
the default directory for all CAPL DLLs.

There are two ways to associate the DLL. To inform the CAPL compiler of the existence of new CAPL functions for the
serial port and to allow it to compile the CAPL programs correctly, the following must be entered in the CAN.ini file
located in the EXEC32 directory. Scan the file for the SIMULATION entry, and then under it, make the DLL association
as follows:

[SIMULATION]
CAPLDLL=rs232vc.dll

This method is really tricky. Be careful not make a mistake in the initialization file. The file is used to initialize and load
the CANalyzer or CANoe tool with predefined settings. To avoid any mistakes, below is another method that is safer:
1. Go to the Configure menu of CANoe/CANalyzer (Version 5.0 or newer)
2. SelectOptions.
3. Add the rs232vc.dll to the list under CAPL-DLL. Once it has been added, you can activate or deactivate the
DLL whenever necessary as long as the tool’s measurement is not running. If the CAPL Browser is opened,
close it and reopen it again to utilize the functions in the associated DLL.

@ Note: The mentioned above DLL is not recommended for NT and Windows 95 users.

18.2 RS232 CAPL Functions

18.2.1 RS232SetCommState

This function initializes the serial port. Currently, only one COM port can be opened at a time. The registers of the
interface chip are accessed directly: therefore, the function must not be executed while data is still being transmitted.

All RS232 functions access the port specified by this function. The current implementation only provides for the
operation of one serial port (Table 42).

RS232SetCommState
Rs232SetCommState (long COMport, long baudrate, long length, long stopbits, long parity);
COMport 1 or 2 (COM1 or COM2 where device is located)
baudrate Baud rate of the device (for example, 4800, 9600, 115200)
length 7 or 8 (size of device control block in bytes)
stopbits 0=1;1=15;2=2
parity 0=no; 1 =even; 2 =odd

Table 44 — Parameters of the RS232SetComm State Function
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The function referenced above calls the Windows API function SetCommState() to set parameters. The specified
parameters are passed to this API function.

18.2.2 RS232ByteCallback

If an event occurs at the serial port, CANoe/CANalyzer calls the CAPL function RS232ByteCallback(). Although this
function does not return a time stamp of when the event actually occurred, the time the event occurred can be queried
with the CAPL function timeNow(). The function does return the COM port in which the data is received, but it is
always the COM port set by the RS232SetCommState() function, because only one port can be opened at a time. The
RS232ByteCallback function parameters are listed below in Table 43.

Rs232ByteCallback
Rs232ByteCallback (long COMport, long data, long dir);

COMport Port where data is received or transmitted
data Data received
dir 0 = event due to transmit operation

1 = event due to receive operation
2 = event due to error at the serial port

Table 45 — RS232ByteCallback Function Parameters

18.2.3 RS232WriteByte
The function RS232WriteByte(), as listed in Table 44, transmits data from CAPL programs via the serial port.

Up to and including the current version, the COMport entry is ignored and all transmit requests are rerouted to the
COM port defined in RS§232SetCommState().

Rs232WriteByte
Rs232WriteByte (long COMport, long data);
COMport Port in which data is to be transmitted
data A byte of data to transmit

Table 46 — RS232WriteByte Function Parameters

18.2.4 RS232WriteBlock

The function RS232WriteBlock(), as listed in Table 45, transmits an entire data block from CAPL programs via the
serial port. Up to and including the current version the COMport entry is ignored and all transmit requests are rerouted
to the COM port defined in R§232SetCommState().

Rs232WriteBlock
Rs232WriteBlock (long COMport, unsigned char dataBlock[], long
size);
COMport Port in which data is to be transmitted
dataBlock An array of data to transmit
size Number of data bytes to transmit from data array

Table 47 — RS232WriteBlock Function Parameters
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18.2.5 RS232EscapeCommFunc

The function RS232EscapeCommFunc(), as listed in Table 46, is used to set the DTR (Data Terminal Ready) and
RTS (Request To Send) status lines from CAPL. This function calls the Windows API function EscapeCommFunction()

to set the status lines.

Rs232EscapeCommFunc

Rs232EscapeCommFunc (long modemControl);

modemControl 0 = clears both DTR and RTS
1 =sets DTR

2 =sets RTS

3 = sets both DTR and RTS

Table 48 — The RS232EscapeCommFunc Function

18.2.6 RS232CloseHandle
The RS232CloseHandle(), as listed in Table 47, function explicitly closes the serial port from within CAPL programs.

Rs232CloseHandle
Rs232CloseHandle (long COMport);

COMport Serial port to disconnect from communication

Table 49 — The RS232CloseHandle Function
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19  Constructing CAPL Programs

CAPL has been designed to make functions and events efficient and easy to use. CAPL programs generally consist of
many small events and reusable functions to emulate node behaviors and to analyze bus traffic. A CAPL program is
only found in one source file that requires no previously compiled functions from library files for compilation. After the
ASCII CAPL program is first compiled, a binary file with extension CBF (CAPL Binary File) is created. Both CANalyzer
and CANoe only need this binary file to execute the program’s behavior. Because this approach varies from system to
system, we will not go into where the program should be assigned in CANoe and CANalyzer.

19.1 CAPL Program Organization

In contrast to a traditional C program, CAPL programs have three distinct parts:

Global Variable Declarations
In this section of the CAPL Browser (upper right), global variables are declared and initialized so they can be
used throughout the CAPL program. It is also essential to declare messages and timers in this section.

Event Procedures

Event procedures are blocks of code executed when an event occurs. CAPL has many types of event
procedures. Most of the program code will be in event procedures, because most actions are performed after
an event occurs, such as when a message is received on the CAN bus. Event procedures cannot return a
value; therefore, you must declare a global variable instead.

User-Defined Functions

In addition to CAPL’s built-in functions, users can implement their own functions/procedures without function
prototypes. These functions are globally accessible and can contain any legal permissible CAPL code. Putting
frequently used code in a procedure makes programs more efficient. User-defined functions can return a value
of any simple data type.

19.1.1 Creating Network Nodes

As mentioned before, a CAPL program can be implemented using any text editor as long as you know the syntax and
layout. By using the CAPL Browser, you are provided a user-friendly interface to program. The CAPL Browser is also a
compiler that allows you to trace the source of errors. Other text editors, such as Notepad, lack this ability; therefore,
after the program is implemented, you must use CANoe or CANalyzer to compile it. Compiling it with CANoe or
CANalyzer is harder to trace where the error is located, and it is time-consuming because you have to go back and
forth between the tool and the text editor.

As a result, the best approach to implement a CAPL program is to use the CAPL Browser. The CAPL Browser is a
standalone program that came with CANoe and CANalyzer. You need to use the easiest method to create a new
network node because this network node has to be referenced by CANoe and the database (assuming it is already
associated to CANoe). Use the following procedure to create a new network node:

1. Go to the Simulation Setup window of CANoe and right-click on the red and black parallel lines to select
insert network node.

2. Associate this node a CAPL program in order to simulate node behavior. In CANalyzer, you must go to the
Measurement Setup window to insert a network node called a P block.

3. After the network node is inserted, either double-click on it or click on the pencil icon to associate or create a
new CAPL program. The Open Dialog will open, allowing you to either select an existing CAPL program or you
can type in a name and create a new CAPL program. If you select an existing CAPL program, that program
will get associated to the network node you defined and the CAPL Browser will open that CAPL program
allowing you to modify it. If you create a new CAPL program, then the CAPL Browser will open the empty
program, allowing you to implement and automatically associate it to the network node once you save it.

Opening the CAPL Browser through a network node has two advantages: First, the program you implement using the
CAPL Browser is automatically associated to the network node. If you open the CAPL Browser as a standalone
program, you have to associate what you have implemented into the corresponding network node by right-clicking on
the network node and selecting Configuration. Second, the CAPL Browser is already referenced to the database
you assign to that network (the network where you insert the network node). The database already has the messages
and signals defined so you can reference and use them.
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Figure 45 — Creating New Network Nodes

19.1.2 P Block Placement and Message Pass-Through

CAPL program blocks (P blocks or Network Nodes) are not inherently transparent to CAN network events.
This means that a message or error frame in the Analysis Branch of CANalyzer or CANoe will not pass
through a P Block unless the P Block is specifically programmed to pass the message or error frame on to
the next activity.

To make a P Block that will allow messages and error frames to pass though, implement the following CAPL
code:

on message *

{
- /I insert additional code here if desired
output(this);

}

on errorFrame

{
A /I insert additional code here if desired
output(errorFrame);

}

This is the only method used to allow messages to bypass the CAPL program, but there are two programming
segment to keep in mind. If there is another message event procedure in addition to the on message * event
procedure that is more specific, then the on message * event procedure will not execute (See Chapter 10 on CAPL
event procedures for the * symbol and event priorities).

The second warning has to do with where this CAPL program is being associated in CANalyzer and CANoe. The event
procedures defined above may cause an infinite loop for incoming messages or error frames if the CAPL program is
located on the Simulation or Transmission Branch. An example: if you defined a network node on the Simulation
Setup window of CANoe, and you have the above message event procedure defined, every message this network
node receives will be transmitted onto the bus again. In this situation, other nodes on the same network will get the
same message twice, first sent by the original message owner and then by the network node with this message event
defined.
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20 CAPL Program Examples

This chapter gives several examples of functionality commonly implemented by CAPL users. The examples are very
straightforward if you keep in mind that everything in CAPL is triggered by an event. Each defined event has an event
procedure and only one event procedure can be executed at a time.

Each example gives you good practice in CAPL programming. The tasks may not be node related, but they will
certainly help you later to implement CAPL programs.

% Note: If you are not familiar with how to use the CAPL Browser, please read Section 7 — The CAPL
Browser.

@ If you need to look up a function, use either the CAPL Browser’s online help system or the CAPL
Function Reference Manual.

201 The Write() Function

When it comes to CAPL programming, mistakes tend to be hard to locate. You may not have a compilation error, but
you see the wrong result returned by a function or see the wrong signal value sent to the CAN bus. These mistakes
are almost unavoidable because no program is perfect the first time it is written. Because CAPL does not support
debugging features like Visual C++ (due to performance reasons), the best way to debug in CANoe is to simulate the
CAPL program and invoke the write() function whenever necessary.

Unimaginable things may occur if the wrong information is sent to a real node. You can simulate a
CAPL program using the simulated mode or have your CAN cables connected in a loopback, as shown
in Figure 8.

% Note: Do not test the CAPL program with a real node unless you are very confident of the results.

To better understand how this function is used, see the following example that illustrates that the write() function
supports many value types. It displays the key that was pressed in hexadecimal, decimal, and character, and can be
used in any event procedure.

on key *

write(“Key pressed: hex = %X, dec = %d, char = %c”, this, this, this);

20.2 Sending a Periodic Message

The most important task a network node should be capable of is to send messages. In addition, it needs to know when
to send, how often to send, and what data to send.

When information needs to be transferred on a repetitive basis, a periodic message is used. The message is resent
every time a timer expires, as shown in Figure 46.
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Figure 46 — Periodic Message Transmission

We can see that sending a periodic message requires the use of a timer. The timer is started when the measurement
starts, and the associated message is output to the bus. The timer eventually expires, which triggers the event for
which we have been waiting. The timer event procedure immediately resets the timer and outputs the periodic
message. The timer will run cyclically, and this repetitive process will continue until the measurement is stopped or the
cancelTimer() function is called for that timer.

The timer must be defined by name in the Global Variables area (the upper right window of the CAPL Browser), as
shown below, to get this timer running, the timer will be set in the on start event procedure, which executes whenever
a measurement starts.

variables
{
message 0x555 msg1 = {dic = 1};
msTimer timer1; /I define timer1 in milliseconds
}
on start
setTimer(timer1, 100); /I initialize timer to 100 ms
}

In the Variables section, the message msg1 is defined with a hex ID of 555 and has a data payload size of one byte.
The millisecond timer is then defined as timer1. The on start event procedure is used to set the timer; therefore, the
setTimer() function is called passing the timer variable and its duration, in this case 100 milliseconds.

When this timer expires (or times out), the corresponding on timer event procedure for timer1 will be executed. The
timer will first be reset to 100 milliseconds to make it recursive. Then the first data byte of the CAN message will then
be incremented before it is sent onto the bus with the output() function (see the example below).

on timer timer1

{
setTimer(timer1,100); /I reset the timer
msg1.byte(0) = msg1.byte(0) + 1; /I increment the data
output(msg1); /I output the message
}
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20.3 Sending a Conditionally Periodic Message

It is very common for a simulated node to send messages periodically. But periodic messages do not usually get sent
when the measurement starts in CANalyzer or CANoe. In reality, a node usually listens for a common network key to
begin sending periodic messages. In a vehicle, for example, the CAN bus is not fully awake until the key is in the
ignition.

A conditionally periodic message is only sent in response to the occurrence or end of an event, as it is not certain
when the event will take place. For example, the conditionally periodic message may be sent when a car door opens
and stop when it is closed. Another case might be to send a conditionally periodic message when the cruise control is
turned on and stop when it is deactivated.

Sending a conditionally periodic message also requires the use of a timer, but this timer does not need to run
cyclically.

In our next example, the CAPL program will generate a CAN message that is transmitted periodically when active at a
frequency of 10 Hz. This activates and deactivates the timer when the ‘a’ key on the PC keyboard is pressed (Figure
47). The first press of the ‘a’ key will start the periodic message and the second press of the ‘a’ key will stop the
periodic message. Each subsequent press of the ‘a’ key will toggle back and forth between these two states.

To send a conditionally periodic message

- event - keyboard entry "a"

...... - event - timeout of timer

........................ event - timeout of timer

------------------- event - timeout of timer

-------------- event - keyboard entry "a"; cancel timer

event

start timer | output message reset timer | output message reset timer | output message

activity

B04050305

Figure 47 — Conditionally Periodic Message Transmission

Now, we will go a step further and use a database. In the database, a message is defined (see the example below),
associated with a car speed signal, and sent by the ABS (anti-lock braking system). When the condition is right, the
ABS module will continuously send out the message for the ICM (instrument cluster module) to display on the
speedometer.

variables

{

message ABSmessage msgA;
mstimer timerA;

int condition = 0; /I initialize condition = false
}
on key ‘a’
{

condition =! condition; / toggle condition

if (condition == 1) /I if condition is true
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{
cancelTimer(timerA); /I cancel the timer
setTimer(timerA,100); /I then start timer
}
}
on timer timerA
{
if (condition == 1) /I if condition is still true
{
setTimer(timerA,100); /I then continue timer
}
msgA.carspeed = msgA.carspeed + 1; /I increment the car speed
output(msgA); /[ output a message
}

To properly begin the process, we have defined an integer variable called condition in the Global Variables area and
initialized its value to 0, which represents the false condition. Once the user presses the ‘a’ key, the on key ‘a’ event
procedure will execute. This procedure toggles condition to 1 and checks to make sure the condition is active or true.
If the condition is true, then set the timer to start.

When timerA expires, the corresponding event procedure, on timer timerA, will execute. If the condition remains true,
the timer will reset before the data is modified and the CAN message is sent.

Notice that when the condition has been toggled back to false by pressing the ‘a’ key, the car speed signal is
incremented one last time and sent.

204 Reading Data in a Received Message

The message chapter in this text explains two ways to access data. Data can either be accessed by using symbolic
signal names defined in an associated database, or by referencing in terms of BYTE, WORD or LONG. Shown below
is an example of how to read data from a message using symbolic names:

on message EngineData

{
write(“engine speed = %d”, this.EngSpeed.phys);
write(“engine temperature = %d.”, this.EngTemp.phys);

}

Note the phys modifier is used in the above code segment to ensure that the conversion formulas defined in the
database are used to get the physical (engineering) values of speed and temperature.

If no signals are defined for a message in a database, the second way is to access the raw data bytes in the received
message. This is the quickest way to access message data without a database defined or to copy blocks of data from
one message to another. If the EngineTemp message was defined without any signals assigned in the database, then
the only way to access the message data is illustrated by the following:

on message EngineTemp

{

float temp;

/I assume temp is within the first four bytes

temp = this.long(0);

write(“The temperature is %g degrees.”, temp);
}

Because there is no signal defined for the first four bytes of data, there is no conversion formula, so the same value is
returned with or without the phys modifier.
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Note: If the number needs to be scaled or otherwise adjusted, the only solution is to implement the
codes for the conversion formula.

To prove that a database greatly reduces time and effort, let’s look at another example where a signal layout in the
message is not as perfect. If the signal value is desired from the data bytes of a message that only occupies 12 bits,
neither 8 nor 16 bits, it would be difficult to get the value. If 6 bits come from the first byte of the message and the
remaining 6 bits come from the second byte, the following is what the code would look like to retrieve the 12-bit value:

on message ExampleMessage

{
int value;
value = this.word(0); /I loads in the first two bytes
value >>= 2; /I right shifts out two bits
value & 0xOFFF; /I clears all unnecessary bits
write(“Value = %d”, value);
}
Figure 48 illustrates what the actual bits would look like in this case:
Bits occupy by Value
N\
/
[5T4]3]2]1]o]x[x[x[x[11]10]9 8] 7]6 |
AN /7 '\ /
NV V
LSB Byte (0) Byte (1) MSB
/
\Y4
Word (0) B02061101

Figure 48 — Actual Bus Representation of Message Read in by CAPL

% Note: CAPL reads data from received messages in Intel format unless the signal in the database is
configured to use Motorola.

20.5 Responding to a Message After a Delay

Messages are not only sent just to provide data, but they can request data. If a message is sent to a receiver
requesting data, the receiver may respond immediately or with a delay. If it is an immediate response, you just invoke
the output() function in the on message event. To set up a delay, you need a timer. For example, a message might
be sent after a driver door closes saying that the door is now closed. A few seconds later, the dome light would react to
this message by turning off. To respond after a delay, use both a timer event procedure and a message event
procedure. Below are the steps to program a timer event procedure and a message event procedure:

1. Declare a timer and delay variable in the Global Variables section:

variables
{

timer delayTimer; /I seconds-based timer

long delayTimerPeriod = 5; /I initialize delay of 5 seconds
}
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2. Create the on message event procedure that sets the timer if the doors are closed:

on message doorState

if (this.Closed == 1) // door is closed
setTimer(delayTimer, delayTimerPeriod);

else /[ door is opened

{

/I do this if door is opened

}

3. Create an on timer event procedure that will actually turn off the light five seconds later:

on timer delayTimer

{
message DomeLight dIMsg;
dIMsg.Status = 0; /I turns off dome light
output(diMsg);

}

20.6 Sending an Error Frame

While occurrences of error frames on a functioning CAN bus communication system should be at or near zero,
encountering such problems is quite common during the early development of a CAN-based module or distributed
embedded system.

A CAPL program can also generate error frames of its own. Typically, the user needs to send an error frame to the
CAN bus to test its integrity and to test the nodes’ responsiveness. The output() function is used to send an error
frame in the same way as sending a message. Simply place the following line of code in the event procedure wherever
it is needed.

output(errorFrame);

The error frame event procedure is called when an error frame occurs on the bus. Use the following procedure to
analyze bus errors (frequency, activities during the time frame of the event, and so on) in a CAPL node in the
Evaluation Branch.

on errorFrame

write(“Error frame detected on channel %d.”, this.CAN);

20.7 Using Panels

In the panel example illustrated in Figure 49, assume there are two simulated nodes defined and two panels already
associated to CANoe. The transmitter node has a switch on the panel assigned to an environment variable,
evLEDSwitch. This switch is the triggering device used to turn on and off a LED assigned to an environment variable,
evLED, on the receiver node. Typically, users create one panel per node and one set of environment variables per
node to eliminate confusion.
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Figure 49 — Example Panels

For the transmitter node, you would have one CAPL program to handle the user input by clicking on the switch on the
Transmitter panel. The switch is assigned to evLEDSwitch, therefore, the program should have an event procedure
defined to handle the value change. When the value of evLEDSwitch changes, it will set a signal in a message and
then transmit that message to the CAN bus.

Below is the code for the Transmitter node:

variables

{
}

message LEDmsg msgA; /l LEDmsg is defined in the database

on envVar evLEDSwitch

msgA.LED = getvalue(this); // LED is a signal in the LEDmsg message
output(msgA);

When the Receiver node on the CAN bus receives the LEDmsg message, it will turn the LED on its panel either on or
off based on the signal in that message.

on message LEDmsg

putValue(evLED, this.LED);

20.8 Bus Off Condition

There are many reasons why an error frame could be present on the bus. CAN controllers always detect an error
frame, but often cannot specify what caused it. The best approach to determine the cause of error frames is to use an
oscilloscope (or CANscope from Vector). At the application level, what causes error frames is really unimportant. What
is important is to know how many error frames have been received and what state the CAN controller is in. The CAN
controller can go from the Error Active state to Error Warning to Error Passive, and finally Bus Off. In the Bus Off state,
the CAN controller does not communicate. This condition is true to all Vector interface peripherals because they all use
the Phillips SJA1000 CAN controller. To make the CAN controller active again, it must be reset.

Typically, the CAN controller must be reset by the local microcontroller. However, some CAN controllers handle the
bus off condition a little bit differently. A CAN controller may be reset externally or permitted to reset after certain
conditions are met.

For CANoe, the user has full control. In most situations, the user restarts the CANoe measurement to reset the CAN
Controllers. If you do not want the measurement to be restarted, implement the bus off event procedure to have the
CAN controller(s) reset itself, as seen in the code below:
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on busOff

/I set the baud rate for channel 1
/I reset channel 1

setBtr (1, 0x01, 0x14);
resetCanEx (1);

The setBtr() function allows you to set or reset the baud rate for a channel. This function is optional before you reset
the CAN controller. If the baud rate has to be changed, this function must be called before the resetCanEx() function.
If you want to reset all the CAN controllers at once instead of one at a time, use the resetCan() function.

% Note: Resetting a CAN channel requires the CAN controller to be disconnected. Because of this
disconnection, data in both the transmit and receive queues are lost.

20.9 Using a CAPL Program to Control Logging

CAPL provides built-in functions to fully control logging in CANalyzer and CANoe. When CAPL is selected as the
Trigger Condition in the Trigger Configuration window of a Logging block in the Measurement Setup window, CAPL
programs can be used to trigger and stop logging data to a log file (Figure 50).

Trigger Configuration il
Mode Ituggletrigger LI
[ Use combined toggle mode
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Trigger condition | Trigger condition |
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Ostop Define... | [ user defined Diefine... |
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Posttrigger time:  ——— |1DDD ms Redied : ke
Available in physical: 216300 kB
[ Infinite post-trigger time Total: 1166928 kB
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Figure 50 — The CANalyzer/CANoe Trigger Configuration Dialog

It is beyond the scope of this text to cover how to use logging in CANalyzer and CANoe, but there are several
concepts that need to be understood to use CAPL to control logging.
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Because logging an entire simulation can produce large log files full of mostly irrelevant data, CAPL allows you log
portions of a simulation. When the conditions to begin logging are met, call the startLogging() function in the CAPL
code. If the function call shows no result, make sure the Logging block is not deactivated in the Measurement Setup
window (the line leading to that Logging block is not broken).

By using CAPL to control logging, all the time settings in the configuration of the Logging block can be offset by the
settings that were set with a CAPL program. The pretrigger time is the period of time during which bus activity is
recorded before logging is triggered. The posttrigger time is the period of time during which bus activity is recorded
after logging is stopped.

In the following example, pressing key ‘1’ starts logging with a 1000 ms pre-trigger time, and key ‘2’ is used to stop
logging with a 2000 ms post-trigger time.

on key ‘1’

{
/[To enable all Logging blocks and bypass all
/[triggering conditions:
startLogging();

/ITo enable a specific Logging block and bypass all
/ltriggering conditions:
startLogging(“loggingblockname”);

/[To enable a specific Logging block with a specific
IIpre-trigger time and bypass all triggering conditions:
startLogging(“loggingblockname”, 1000);

}

on key ‘2’

{
/[To disable all Logging blocks and bypass all
/ltriggering conditions:

stopLogging();

/[To disable a specific Logging block and bypass all
/ltriggering conditions:
stopLogging(“loggingblockname”);

/[To disable a specific Logging block with a specific
/Ipost-trigger time and bypass all triggering
/[conditions:
stopLogging(“loggingblockname”, 2000);

}

20.10 Data Files and CAPL

Occasionally there is a need to save measurement values over a period of time to a file or to retrieve data from a file
and transmit it to the CAN bus. File 1/0 functions are provided in CAPL for this purpose; however, file I/O processes
are not very fast because file accesses are conceived for ease of use and reliability.

% Note: The data files explained in this section are not log files generated by the Logging block.

Basically, there are two sets of file I/O functions currently supported. The first set can read and write using an array of
binary characters or strings. Because CAPL does not support pointers, it is a bit difficult to parse through the data file.
The other set can read and write as well, and can use arrays, integers, floats, or strings. This set of functions navigates
through the data file very well and to the right position quickly, but the data file must follow a structural layout. The file
format used is the same as the INI files format used by Microsoft Windows applications.
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% Note: Sometimes users prefer to write a CAPL Dynamic Linked Library (DLL) for better navigation in
the data file. See Chapter 24 — Introduction To CAPL DLLs for more information.

20.10.1 Set 1: File I/O Functions

This set of functions requires no format limitation on the data file. The data file can be accessed in either binary or
ASCII mode. The mode and functions used are determined by the openFileRead() and openFileWrite() functions.
The directory these two functions use to scan for the data file in either in the same directory as the database or in the
configuration file. If the data file is in another location, the setFilePath() function is called first to set the directory path.

Most commonly used is the ASCII mode, rather than binary files because ASCII (or text) files are bigger in size, and
the mode of operation to retrieve data into CAPL is easier. Users typically prefer alphanumeric values to binary
because they are easier to read and debug. By using fileGetString() or fileGetStringSZ(), the function returns the
maximum number of characters possible until the end-of-line character is reached in the data file. The data returned by
the functions is stored in an unsigned array buffer, while the maximum number of characters to be read is determined
by the size parameter. To write to a data file, use the filePutString() function. This function has the same syntax as
the other two functions, but the buffer is written into a file associated by a file handle. Because CAPL does not support
pointers, each call to the function will move to the next line in the data file. To jump back to the beginning of the data
file, call the fileRewind() function.

Opening a file in binary mode to read or write is rarely done. To use this mode, the user must know the structure of the
binary file to retrieve the desired data. The two functions associated with the binary mode are fileGetBinaryBlock()
and fileWriteBinaryBlock(). Both functions use an array buffer to read or write a binary block limited to the size
parameter.

The following example opens a data file in ASCIl mode to read the car speed signal and uses the time stamp in the file
to transmit a message onto the CAN bus (Figure 51). When EOF (end-of-file) is reached, the program creates a new
file to inform the user that all the signal values have been sent (Figure 52).

Time Stamp CarSpeed
6570 17
11610 23
16600 29

LANNANINANANANNANANN
AVAVAVAVAVAVAVAVAVAVAVAVAVES
3129590 17

MO03052303

Figure 51 - Data file (random.asc)

End of File Reached at Time = 3122900 (10 microseconds)

M03052302

Figure 52 - Confirmation file (EOFFile.txt)

variables

{
long cyclicPeriod=0;
long prePeriod=0;
dword readHandle = 0;
byte endOfFileFlag=0;
char signalBuffer[24];
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msTimer cyclicTimer;
message ABSdata msg1;

}

on start

/ initialize handle to data file opened in ASCIl mode
readHandle = openFileRead ("random.asc", 0);

/I the next line of code is also used to skip the first row of data in the data file and to make sure the handle is
valid
if (readHandle != 0 && fileGetString(timeBuffer, elcount(timeBuffer), readHandle) != 0)
/I set transmission to trigger after 100 ms
settimer(cyclicTimer, 100);

else
write("Data file cannot be opened for read access.");
}
on timer cyclicTimer
{
getData();
if (endOfFileFlag != 1)
{
output(msg1);
settimer(cyclicTimer, cyclicPeriod);
}
else
endoffileconfirm();
}

on stopMeasurement

/Il close handle to data file opened in ASCII mode
fileClose(readHandle);

}
getData ()
{
int i;
i=0;

lIstore data into timeBuffer
if (readHandle != 0 && fileGetString(timeBuffer, elcount(timeBuffer), readHandle) !=0)
{
/I convert period from 10 microseconds unit to milliseconds unit
cyclicPeriod = (atol(timeBuffer) - prePeriod) / 100;
prePeriod = atol(timeBuffer);
while (timeBuffer[i] = 0x9) {i=i + 1;}; /I skip the time stamp
i=i+1;
signalBuffer[0] = timeBuffer[i];
signalBuffer[1] = timeBuffer[i+1];
signalBuffer[2] = timeBuffer[i+2];
msg1.CarSpeed = atol(signalBuffer);

}

else

{
/I set end of file flag if end of file is reached
write("End of data file reached, timer cancelled.”);
endOfFileFlag = 1;

}
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}

endoffileconfirm ()

{

dword handle;
char buffer[64];
setFilePath("C:\\Projects\\Data Files\\Result ", 1);

/I file will be created automatically if one does not exist. If the file exists, everything will be overwritten
handle = openFileWrite("EOFFile.txt", 0);
snprintf(buffer, elcount(buffer), "End of File Reached at Time = %d (10 microseconds)\n", timenow());

if (handle!=0)
filePutString(buffer, elcount(buffer), handle);
fileClose(handle);

20.10.2 Set 2: ProFile Functions

The ProFile functions are another set of functions a user can use to access a data file; however, the data file must be
formatted like the INI files used by Microsoft Windows applications. Below is a data file example:

[Message1]

ID = 0x123
DLC=6
Signal1 = 0x23
Signal2 = 35
Signal3 = 0.125

[Control]

Type = System

Nodes =5

NodelDs = 0x32,56,0x12,53,0x11,33

The section is denoted within the square brackets. Variables under each section are independent entries that can be
assigned with integers (in hex or decimal), floats, strings, and arrays. Below is an example of how CAPL retrieves the
above information:

on key 'i’

{

message dummyMsg msg1;
char charArray[8];

int rxValue;

int flag;

setFilePath("C:\\data file directory", 1);

msg1.1D = getProfileInt("Message1","ID", -1, "datafile2.txt");
msg1.DLC = getProfilelnt("Message1", "DLC", -1, "datafile2.txt");

/I assume database exists for the following signals

msg1.intSignal1 = getProfileInt("Message1", "Signal1”, -1, "datafile2.txt");
msg1.intSignal2 = getProfileInt("Message1"”, "Signal2", -1, "datafile2.txt");
msg1.floatSignal = getProfilefloat("Message1”, "Signal3", -1, "datefile2.txt");

rxValue = getProfileString("Control”, "Type", "Error”, charArray, elcount(charArray), "datafile2.txt");
write("charArray = %s", charArray);
/l output should be charArray = System
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rxValue = getProfileInt("Control”, "Nodes", -1, "datafile2.txt");
write("rxValue = %d", rxValue);
/I result should be rxValue =5

flag = getProFileArray("Control”, "NodelDs", charArray, 6, "datafile2.txt");
write("Array: %d, %c, %Xx, %s", charArray[0], charArray[0], charArray[0], charArray);
/I result should be Array: 50, 2, 32, 28R5A

/IThe output file, sections, and entries will be created if they

//don't exist. Be careful - entries will be overwritten.
writeProfilelnt("Output”, "Message ID", msg1.ID, "data2.txt");
writeProfileString("Output”, "charArray”, charArray, "data2.txt");

output(msg1);
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21 Basic Steps in Creating Your First CANoe Application

In this step-by-step tutorial, we will develop a simple application to teach the basics of the CANoe development
process.

211 CANoe Development - Five Step Process

There is no correct approach in constructing a CANoe application. The process depends on what needs to be done
and how to get it done with the least amount of time and effort. For example, auto suppliers usually do not have to
create a database to start a CANoe application because their customers usually have a database that has been
adapted for CANoe applications. In this case, the foundation already exists. CANoe can start its measurement with
that database and see data on the CAN bus in symbolic terms instead of numeric values.

%} Note: CANoe must be associated with at least one database to start its measurement (it can be an
empty database).

Some projects can cause more headaches then others. Assume that the supplier is not given a database, but does
have the ECU (electronic control unit) module and its specification documents. The ECU is already in its testing phase,
and the supplier does not have a database to help build the tests in subsequent phases. To simplify the effort put into
implementing the test processes, the supplier must first consult the specification document to construct a database.

CANoe application development projects can typically be divided into two categories: projects were the entire control
system was modeled with CANoe at the onset and those that were not. CANoe users involved in projects in the first
category realize that CANoe can be used to model the entire system development process. They can design and
distribute the overall functionality of a system among different network nodes, and refine the design to the level of
specification in the CANoe tool. These CANoe users have the ability to simulate network behavior, observe the bus
load, and determine the necessary performance of the hardware being developed. Once the physical system is built
and ready to test, the existing CANoe application may be used or readjusted to perform the necessary tests, leading to
significant time and cost savings.

CANoe users involved in projects in the second category do not use CANoe to create their system model first. They do
not have a CANoe model to use to perform the necessary tests; therefore, they must model the system before they
can test it with CANoe. This process is time-consuming and generally leads to defects.

Regardless of which category your project falls into, you must build a CANoe application from scratch, so you will have
to follow the five main steps shown below. These steps focus on the software end of the CANoe setup, assuming all
hardware requirements are met:

Create a new CANoe configuration
Create a database

Create panels

Set up analysis functions

Create network nodes (CAPL)

aorON =

Steps 2 and 3 will be discussed in detail in the following two chapters. Step 5 is a programming step that is discussed
in Chapter 19 — Constructing CAPL Programs.

The process remains the same regardless of which set of CAN hardware is used. In this case, the hardware we refer
to are CAN Controllers and CAN transceivers provided by Vector.
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21.1.1 Create a New Directory

Before you begin to create a new CANoe configuration, create a new directory for the application files (Figure 53). This
is not a main step in the process because it is a matter of an individual's organizational habit. A normal-sized CANoe
application may contain 20-30 files; however, large applications may exceed 100 files by the time everything is
finished. Having such organization also makes file sharing easy.

E] Project Folder

{7 cANdb Databases
—[:I Nodes
—[:I Log Files

Panels

Bitmaps

ﬁ CANoe_Configuration_File.cfg
B04050306

Figure 53 — Directory for CANoe Configuration

21.1.2 Creating a New CANoe Configuration

Creating your CANoe application is like opening up a business. First, you need a foundation to build your empty
building complex. Before it is operational, employees have to be hired, you need an infrastructure to communicate, a
business handbook to operate the business, equipment to get the job done, and some quality controls to keep it from
going bankrupt. A new CANoe configuration is just like this empty building complex. It cannot be operational unless all
of the following components are defined:

o Network nodes
CAN bus parameters
A database
Panels
Analysis functions for the CAN bus traffic.

To start CANoe, run the Windows-executable file CANoe32.exe from the ‘Start’ menu’s CANoe program group.
Because some background applications may limit the performance level of CANoe, consistency checks, such as
testing for an enabled screen saver, are made. These checks can be ignored by checking the “hide this message in
the future” option.

The most recently saved configuration is usually opened by CANoe every time it loads. Once loaded, you can make a
new configuration in one of two ways. Both methods use about the same amount of time, but one method is organized
using a wizard. The result of both is to have all the network nodes defined on the simulated network (CAN bus), the
database associated to that network, and the CAN channel associated to that network. The wizard allows you to create
the simulated networks with the Simulation Setup Assistant.

To start the wizard, go to the menu File and select New Configuration. The Template window that opens next
will have a checkbox at the bottom to enable the wizard. If you prefer not to use the wizard, you can manually define
the network(s), its nodes, its database(s), and CAN channel in the Simulation Setup window of CANoe (see Figure
54). Regardless of which method you choose, you still must define the bus parameters in this step.
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Figure 54 — Simulation Setup Window

21.1.3 Bus Parameters

Vector CANtech provides a variety of PC-based CAN interfaces: USB, PCI, and the most common PCMCIA. All CAN
interface hardware has two CAN Controllers, and so two CAN channels are capable of connecting to two different
networks. Every time a new CANoe configuration is made, each CAN channel has to be configured for CAN
communication.

Use the following steps to configure the CAN channel parameters in CANoe:

1.

Go to configure from the main menu and select Hardware Configuration. Expand the + sign for either
or both CAN 1 and CAN 2; they correspond to CAN channels 1 and 2 respectively. Under each channel, there
are three sections; Setup, Filter, and Options. The Setup section allows you to set the baud rate for that
CAN channel, values for its Bit Timing Registers (BTR) or sampling point percentage, and most importantly,
the Acknowledge 0On checkbox. This checkbox is used to configure CANoe to actively (checked) or
passively (unchecked) communicate with that CAN channel. To actively monitor the CAN bus means that the
CAN Controller participates like a real node on the network. The channel is capable of both transmitting and
receiving CAN messages. All the CAN messages that flow through this channel will be acknowledged before
any type of filtering.

The FiTter section allows you to set up a pair of mask and code for both standard (11-bit) and extended (29-
bit) CAN messages. By default, the acceptance filter on CAN Channel 1 is always set up to pass all
messages, while CAN Channel 2 always has its messages blocked except identifier 0x7FF. Because only one
pair of mask and code is available per channel, not all messages can be filtered. In this case, those
unexpected messages are filtered later in the Simulation Setup window. The mask and code settings take
place in the CAN Controller. Some people find this an advantage because the CANoe software has fewer
messages to analyze, which improves its performance.

The Options section has two checkboxes: Activate TxRqand Activate Bus Statistics. Activate
TXRq (transmit request) setting is for CAN messages. By default, this box is unchecked because most users
do not require this feature. This feature displays the TxRq messages with a time stamp in the Trace window of
CANoe. These are requests to send messages by CANoe that have not yet been transmitted onto the CAN
bus. If they have been transmitted on the CAN bus, they would be Tx messages. The Activate Bus
Statistics checkbox is to enable or disable the Bus Statistics window of CANoe. The window updates
cyclically in milliseconds with the time you specify in the box.

Programming With CAPL



124 Basic Steps in Creating Your First CANoe Application

% Note: More information about each setting is available by clicking on the Help button.

21.1.4 Set Up Analysis Functions

Setting up analysis functions is the fourth step in building a CANoe configuration. The configuration processes for the
database and the panels require separate programs to edit and will be discussed in the following two chapters.
Analysis functions are set up in the Measurement Setup window of CANoe (Figure 55).

=k
i Statistics
L Bus Statistics
Mk _Cons
ale, M.
Trace lhus
MM _Enggin
e, MM_...
—8—fPF|—=——  nmmotbus
M _Cons
ole, M.
Real Titne MM bus

MM _Engin
= —
. E e, MM _ .
el Trace Mothus

i Data
ErrorFram
e, 500 -
[FE
i F'FI i Trace TP
B Sraphics
[

1t Logging =17 | motsim

Figure 55 — CANoe Measurement Setup Window

The Measurement Setup window consists of a data flow diagram. Connection lines and branches are drawn between
the individual blocks to clarify the data flow. CAN messages flow from the Real block on the left to each individual
analysis block on the right. The data path consists of black “hotspots”, where you can add function blocks and data
sinks such as filters and user-defined analysis programs (CAPL). As a result, the data flow can be configured in many
ways to suit many different types of analysis tasks.

is displayed. More information about each analysis window is available on Chapter 3, A Brief

% Note: Every analysis block, except the Logging block, has a configurable window in which received data
Introduction to CANalyzer.
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The method by which you configure this Measurement Setup window depends on what you intend to do. New
function blocks, such as filters and generator blocks, can be inserted at each hotspot to carry an analysis function. If
you wish, you can activate or deactivate any function block or path (using the hotspots) in this window by first selecting
it and then pressing the space bar. Copying and pasting are also possible by using your right mouse button.

21.1.5 Working with the Analysis Windows

Every configuration has analysis blocks represented by a corresponding window in the Measurement Setup window.
Available windows include Statistics, Bus Statistics, Graphics, Data, and Trace. You can add more than one
window for each analysis block to suit your needs, except for Bus Statistics. For example, users usually add a second
Trace window for messages received from a second CAN bus, a second Data window for a different node on the CAN
bus, or a second Graphics window for graphing bus statistics data, instead of signals received from the CAN bus. To
insert a new analysis block in the Measurement Setup window, right-click on any of the analysis blocks and select the
one to insert. This popup menu is also used for deletion; however, at least one of each type of analysis block must
exist. A new window is created for every new analysis block; the opposite applies for deletion.

Note: You may add or delete the Logging block the same way; however, these analysis blocks do not
come with an online evaluation window.

Every analysis block has to be configured to perform bus analysis through either its window or its configuration menu,
such as the Logging block. For example, the Graphics block does not automatically graph the signals received from
the bus unless the user-defined signals are associated.

See Figure 56 below for and example of a configured CANoe Graphics Window.
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SRO0. |
CarSpeed [mpdh) 2000, )
[Gear 4000 - //
EngSpeed [rpm] 3200. -
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200,
0.

Dz 10z 20z 303 403

Figure 56 — Configured CANoe Graphics Window
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22 Using CANdb++ to Create a Database

Messages on a network can easily be organized and modified by a database. Distribution and reusability are two major
advantages, because specifications are contained in one easily manageable database. The system design group of
many companies uses the Vector database platform known as CANdb to develop database files. These database files
are then made available corporate-wide, which greatly increases the compatibility and functionality of their CAN
systems.

221 CANdb++ Database Development

The basic steps in learning how to create a database and associate it to CANoe are as follows:
1. Start the CANdb++ program from CANoe

2. Define attributes (optional)

3. Define value tables (optional)

4. Define nodes

5. Define messages

6. Define signals

7. Establish associations

8. Define environment variables

9. Save the database with a specific file name

10. Associate the database with CANoe

While you may see a considerable amount of detail inside the database program, stay focused on the basic steps. The
CANdb++ online help is a great source to get more information should you come to a standstill. See Using Databases
with CAPL — Chapter 5 for more information on each object types.

o The CANdb++ Editor shows all of the database objects grouped in the Overview window, where almost all
database operations are performed (as shown in Figure 57).
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Figure 57 — CANdb++ Editor - Overall View
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The following database objects are all categorized there:
e Network name
ECUs
Nodes
Messages
Signals
Environment variables (not directly related to the CAN bus network, but are global variables that enable users
to make inputs and outputs to the CAN bus through a CAPL program).

mouse to get the pop-up menu if you get stuck. For example, you have to right-click to add a new

% Note: Using the CANdb++ program is very simple if you keep one rule in mind: always right-click on the
object.

22.2 Starting the CANdb++ Program

While it is possible to start CANdb++ as an independent application program, it is sometimes easier to load it from
inside the CANoe or CANalyzer environment. Starting it from CANoe creates a link to that database, and saving the
database automatically updates the CANoe configuration. On the CANoe toolbar, click on the shortcut icon for
CANdb++ that looks like a small network with interconnected red boxes. If a database has already been associated
with the current CANoe configuration, that database will be opened. Otherwise, you have to create a new database.

Note: Using the CANdb++ program is very simple if you keep one rule in mind: always right-click on the
mouse to get the pop-up menu if you get stuck. For example, you have to right-click to add a new
object.

22.3 Defining Attributes

When creating a database, it is most efficient to first define the attributes before creating any database objects. Follow
the procedure below to create an attribute:

1. Open the attribute definition window by going to View and select Attribute Definitions.
2. Right-click to add a new attribute.
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Figure 58 — “Cycle Time” Attribute Definition

Programming With CAPL



128 Using CANdb++ to Create a Database

22.4 Defining Value Tables

Although value tables are defined in databases, they are rarely referenced in CAPL. Value tables, however, make
numeric data easy to read in CANalyzer and CANoe’s analysis windows.

To define a value table in CANdb++, go to the Value Table window via the menu command View — Value
Tables.

x
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Figure 59 — Automatic Transmission Values in a Value Table

22.5 Defining Nodes

To define a node, short acronyms are usually used to replace its name. For example, TCM is the acronym commonly
used for transmission control module. The acronym used depends on the user. In the above example, we could find
that another organization uses the acronym TCM to represent the temperature control module instead. To solve the
dilemma, a comment is usually added in the database to explain the acronym.

To define a node in CANdb++:
1. Right-click on the Overview window where it says Network Nodes
2. Select New.

22.6 Defining Messages

When defining a message, three parameters have to be known: its numeric identifier, identifier size (11-bit or 29-bit),
and its data length code. Other message properties are sometimes easily ignored but crucial to a database: message
transmission and reception node, message attributes, and signals. Signal associations are usually not done at this
stage because they have not been created yet.

To define a message in CANdb++:
1. Right-click on the Overview window where it says Messages
2. Select Add.

For a more complete understanding of message structure, see Chapter 26 — Appendix A: Introduction to CAN
Communications.
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Figure 60 — A Message in the Database

22.7 Defining Signals

A signal is from 1 bit up to 64 bits in size; therefore, a message may data ranging from containing no signals (DLC = 0)
or up to 64 signals (1 bit each for DLC = 8). Unfortunately, most applications only allow a maximum of 32 bits for a
signal.

When defining a signal, you must give it a symbolic name, define its size in number of bits, choose either Intel or
Motorola format, and its value type (data type). Optional properties include a factor and offset to convert the signal raw
value into an engineering value, its maximum and minimum value for display only, and a value table to display the
numeric signal value in symbolic form (Figure 61).

You may choose to click on the Messages tab to assign the signal to a message(s), or you may wait until all the
signals have been defined. To define a signal in CANdb++:

1. Right click on the Overview window where it says Signals

2. Select New.
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Figure 61 — Signal in the CANdb++ Database Editor
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After you have defined all the signals, there are many ways in which you can assign the signals to their message(s).
You can drag and drop in the Overview window, or edit either the message or the signal to assign. Any way you
choose to make this assignment, you must make sure the starting bit for each signal in a message is correct. To
confirm this, edit the message and go to its Layout tab to view its signal associations (Figure 62).
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Figure 62 — Layout of a Message in CANdb++

22.8 Establishing Object Associations

Defining every object in the database is only half the task. To realize the advantages of having a database for data
interpretation in CANoe and for CAPL programming, you must make all the object associations by associating the
value tables to the corresponding signals, signals to the corresponding messages, and messages to the corresponding
nodes, and so on. Making these associations requires absolute understanding of the system. Without these
associations, CAPL code will not generate correctly, and object relations will not be shown in CANalyzer/CANoe.

% Note: Generally, a member of the development team makes these associations.

22,9 Defining Environment Variables

When defining an environment variable, you must give it a name, identify its value type (data type), and specify the
kind of access it has. You may also assign a value table to it, and this value table may be the same one you assign to
a signal. Other optional properties include its default, minimum, and maximum value (see Figure 63). No object
associations are needed for environment variables.

To define an environment variable in CANdb++:
1. Right click on the Overview window where it says Environment variables
2. Select New.
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Figure 63 — Properties of an Environment Variable in CANdb++

22.10 Saving the Database

The database cannot be used in CANoe and the CAPL Browser until it is saved. If the CANoe measurement is running
and then the database from that configuration is saved again, the saved information will not take effect until the
measurement is restarted. You do not have to restart CANoe or reopen the CAPL Browser for the changes in the
database to become effective.

22.11 Associating a Database

Associating a database with CANoe is a fairly simple, yet crucial task. It is crucial because you must know to which
CAN channel the database belongs. A CANoe configuration may consist of more than one network, each connecting
to a CAN channel. Also, if a database already is associated on a particular network and you then add a second one,
you must ensure the message identifiers in both databases are unique. CANoe can be configured to perform a
consistency check when you associate a second database. If you ignored a warning from the consistency check and a
message having an ID described in more than one database is received from the CAN bus, the message defined in
the first database associated for that CAN channel is used.

In CANoe, a database can only be associated in the Simulation Setup window by right-clicking on where it says
Databases and select Add (see Figure 64).
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Figure 64 — Associating a Database in CANoe
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23 Using the Panel Editor to Create Panels

In automotive engineering, it is always helpful to be able to visualize your work. CANoe provides the unique
opportunity to work with simulated network nodes. The network node models in the Simulation Setup window you
created in CAPL are able to react to external events, such as activating a switch. CANoe also provides you with the
option of creating your own user-defined interfaces called panels and integrating them into the program.

Graphic panels are an important and useful feature of CANoe because they function as control panels where the user
can change the values of variables during a simulation or a measurement.

23.1 What are Panels?

A panel is a user-configurable graphical interface. Every control that can be placed on a panel on a panel is called an
element. These elements — buttons, switches, sliders, and so on — can be placed anywhere on the panel to create the
look and feel of automotive control panels (Figure 65).
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Figure 65 — Panels Created Using the Panel Editor

The Panel Editor is the environment used for creation and arrangement of elements for displaying and controlling
variables with values to be changed, and for assigning variables (either environment variables or signals) to all of
these control and display elements. You can also put text and static bitmaps on the panel.

You can interact and change the values of these variables during a measurement by manipulating the elements on the
panels. The network node models react to changes in the variable values and then execute the appropriate actions (for
example, sending out a message).

Not only can the user change the values of the variables; but CAPL programs can also be used to change the values
of the associated variables when certain events occur. This value change can then be visualized on the panel using
display elements.
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23.2 Advantages of Using Panels

Vector panels support ActiveX controls, which are component programs that can be reused by several application
programs in a computer. An implemented ActiveX control is a dynamic link library (DLL) module. ActiveX controls run
in so-called containers, which are application programs that use Microsoft's Component Object Model program
interfaces. This reusable component approach reduces application development time and improves the quality of the
program.

Another clear advantage of using panels is that they increase your ability to interpret input and output bus data, such
as on a dashboard. When a node receives a message, the node can display the data bounded by the message onto a
panel. If you need to set a control on the panel and want to send the data onto the bus using a message, you just need
to configure the corresponding network node (CAPL program).

You can also select which of the panels you create to open permanently, and which ones to open automatically at
startup. These settings can be made when you associate the panels to the CANoe configuration. CANoe also supports
multiple configurable desktop environments. This is a great advantage if you have several panels in the configuration
that overcrowd the Windows desktop.

You can define multiple desktops in CANoe to display the panels in groups instead of accessing each panel from the
Windows taskbar.

23.3 Requirements

To use the Panel Editor, you must have CANoe. Because the Panel Editor is a separate application, it can be run in
stand-alone mode; however, it is much easier to create panels in a Panel Editor opened through CANoe because the
variables to be associated with the elements are in the database(s) associated to CANoe.

23.3.1 Database Association

To use panels in CANoe, you must use a database. The database has all the variables defined for the elements on the
panel. Because the database has already been associated to CANoe, you will save time and effort when creating
panels because the Panel Editor recalls the variables defined in the database.

A database is only optional before panels are created. You can open the Panel Editor in stand-alone mode and create
a panel, but if there is no database, you will have to save the panel to be reconfigured at a later time. This is extra work
because it is a two-step process. Eventually you have to reload the unfinished panel and link the variables to the
controls.

23.3.2 Environment Variables

The variables that CANoe uses to describe external events are called environment variables. These are the same
variables that can be used to associate with panel elements. Environment variables can be used both as input and
output variables of network nodes, such as sensor signals and actuator signals. Environment variables can represent
switch positions, temperature, or engine speed. Character string variables can also be used to store text.

Environment variables are defined in the database by the following system parameters:
e Symbolic name of the environment variable
¢ Value type (data type) of the environment variable
Integer — Signed 32 Bit Integer
String — ASCII String
Float — 64 Bit Float
Data — Byte field of a specified length (the length is set in the "Length" attribute)

e Access rights that Electronic Control Units (ECUs) have when they access environment variables.

o Unrestricted: All ECUs have read and write access.
o Read: The assigned ECUs can read the environment variable. (The variable represents a
sensor.)
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o Write: The assigned ECUs can write to the environment variable. (The variable represents
an actuator.)
o Read/Write: The assigned ECUs can read from and write to environment variables.

e Unit (the physical quantity of the environment variable)

e Initial Value (only available for environment variables of value type "Integer" or "Float")
Initial value of the environment variables at the start of a simulation or measurement.

¢ Minimum and Maximum (only available for environment variables of value type "Integer" or "Float")
Minimum and Maximum of a valid physical value.

e Length of the data field in bytes (only available for environment variables of value type "Data")

You can interact and change the values of these environment variables during a measurement by manipulating the

controls on the panels. The network nodes will then react to the changes you made to the environment variable and
then execute the appropriate actions, such as sending out a message. The new value is retrieved by the getValue()
function in CAPL.

CAPL programs can also change the values of associated environment variables when certain events occur using the
putValue() function. The change will visually affect the corresponding element in the panel.

23.4 Creating a New Panel

There are three methods available to start the Panel Editor:
e The shortcut button on the CANoe toolbar,
e The menu command Panel — Configure panels..,
e Select a panel in the Configured Panels section of the Panel configuration dialog and then click the Edit
button. This will ensure that the databases of your CANoe configuration will be automatically associated to the
Panel Editor.

If you are trying to open an existing panel for modification, right-click on the title bar of the panel and select Edi t. If the
database does not contain the environment variable names associated with the panel's indicator and control elements,
or if there is an element not associated to a variable yet, you will receive a warning message (Figure 66). In this case
you should make sure you associated the correct database, start the Panel Editor directly from CANoe, or find and
associate the element(s) to a variable.

Panel Editor Warning il

1 Environment wariable in database not or with incorrect type found.
The {associated) controls remain deactivated in testmode.

Figure 66 — Panel Editor Warning Message

23.4.1 Properties of the Panel

To set the properties of your panel in the Panel Editor, click on the Window Sett1ing button on the toolbar or select
Options — Window Setting..

The first thing your panel needs is a title. This is not just to distinguish each panel from another, but helps the CANoe
operator by displaying the name of the open panels on the Windows taskbar at the bottom of the screen. CAPL
functions like putValueToControl() also need a panel title passed as a parameter to process.

This dialog is also where you specify the size of the panel, the fonts for each element, and the background color.
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23.4.2 Using Elements

Elements allow a variety of value formats to be assigned. In addition to hexadecimal, decimal, string, and bitmaps,
symbolic values from value tables of the CAN database (CANdb) can be selected and/or displayed on the panel. The
Panel Editor already has a set of pre-defined elements that are ready for you to use. Each element has a
corresponding button on the toolbar that you can click and place onto the panel.

23.4.2.1 Control Elements

Control elements are used to represent values from a sensor. They let you change the values assigned to environment
variables. Elements that are used exclusively for this purpose are:

e Push button
e Radio button
e Switch

23.4.2.2 Display Elements

Display elements are used to represent values from an actuator and allow let you display changes in the values
assigned to environment variables. Elements that are exclusively for display are:

o Meter
e  Multi-control

23.4.2.3 Static Elements
Static controls are elements to which no environment variables can be assigned. They include:

e Bitmap
e Frame
o Text (label)

23.4.2.4 Input/Output Controls

Many elements are not listed above because they can be used either to regulate input values resulting from your
programmed actions or because they display the resulting output values. These elements are:

Bitmap push button
Bitmap switch/indicator
Hex Editor
Input/Output Control
Slider

Value table box

%} Note: You can change the width and height of these controls when you position them by dragging
while you hold down the left mouse button.

23.5 Configuring Elements

Every new element must be configured for inputs or outputs — or both.

To configure a new element after dragging it onto the panel, right-click on it and select Configure this element
or just double left-click on it. This opens a dialog where you specify the value type or data type (integer, float, string),
as well as the font and background color (if possible).

23.5.1 Associating Elements

Before an element can be used for input / output, it must be associated with either an environment variable or a signal
defined in the database. To do this, select either Envvar (environment variable) or Signal from the drop-down list
(see Figure 67). A list of available environment variables or signals will immediately appear in a list directly above your
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selection, from which you select the environment variable / signal you want. If the environment variable / signal you are
looking for is not there, click the SeTect button to find it. The choice of environment variable or signal also depends on
the value type (integer, float, string), selected by the radio buttons in the Type area of the dialog (see Figure 67).
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Figure 67 — Associating a Variable to an Element

Environment variables can be used as both inputs and outputs, but signals can only display output values.

23.5.2 Alarms

An alarm state is a condition reached when a value of a panel element goes beyond its pre-defined maximum or
minimum range. Under such conditions, a visual representation of that panel element is displayed.

The Configuration Dialog for some elements, such as meters, asks you to configure Alarm States (Figure 68).
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Figure 68 — Setting an Alarm State Range
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Figure 69 — Enable Alarm Via the "Display” Checkbox

The Alarm States feature makes it possible for different panel elements to respond to a situation in which a value is
above or below a previously defined value range (Figure 69).

This in turn makes it possible to change the visual representation of the panel element that displays the value when a
specific limit is reached. The extent to which the panel element display changes can be adjusted to reflect the fact that
an upper or lower value range limit has been exceeded. For example, it is possible to respond to a situation in which a
value is above or below a previously defined value range for a meter element by changing the color of the meter.

Table 49 lists the panel elements that can display alarm states:

Element Properties that can change color depending on its value limit
Meter Meter color
Slider Background color
Font
Input/Output box Font color
Background color
ActiveX Controls Depend on the possible properties

Table 50 — Elements with Alarm States
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23.6 Using Bitmaps

Only bitmap (*.bmp) images may be used on panels. (Do NOT use JPEG, PCX, or any other graphic format.) Bitmaps,
reached by right-clicking on the new element and selecting Configure this element..., are assigned to
elements in the Configure dialog.

Static elements usually use a bitmap to display as a background. Most of the time, bitmaps are used to represent the
state or condition of a variable. These bitmaps are normally used for display purposes, but can be used as inputs by
clicking on the bitmap to change its state. Changing the display state, therefore, changes the value of the associated
environment variable.

The elements that support 1/0 and bitmaps fall into two categories:

e Two-state elements
For example, Bitmap pushbutton and bitmap switch/indicator with two states

e Multi-state elements
For example, Bitmap switch/indicator with more than two states

23.6.1 Creating a Dynamic Bitmap
You can create and edit bitmap files with any bitmap editor (for example, Paintbrush, Photoshop, or Visio).

A bitmap file for a two-state element always consists of 3 separate bitmap pictures, each with the same height and
width, arranged to be horizontally adjacent to one another (see Figure 70). The rectangle on the left shows the inactive
state. This state only appears when you edit the panel or when no environment variable has been assigned to the
element. Just to the right of this is the logical OFF state (state 0), which corresponds to the element value 0. The third
rectangle is the logical ON state (state 1), which corresponds to the selected or predefined switch value of the

environment variable (normally with a value of 1).

Figure 70 - A Two-State Switch Bitmap

A bitmap file with n-states consists of n + 1 rectangular partial bitmaps of the same height and width, arranged to be
horizontally adjacent. The inactive state is shown on the upper left bitmap. The n switch values are located in the n
partial bitmaps to its right.

The surrounding color of the bitmaps can be anything, and you can fill the areas around the bitmap to appear
transparent to the background, as shown in Figure 71, through an element property.
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Figure 71 - A Three-Stage Switch Bitmap

Some graphics drivers cannot process specially compressed bitmaps, which may result in undesirable

@ Note: When creating your own bitmaps, be sure to save them as uncompressed Windows bitmaps.
optical effects or even system crashes.

Only one file is allowed per element, so the bitmap states have to be saved under one file. It is advisable to save all
bitmap files belonging to a panel in a separate subdirectory. If you wish to forward a panel to another user, you must
also forward the bitmap files.
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23.7 Associating Panels to CANoe

After the elements on your panel have been configured and saved, they must be associated with the desired CANoe
configuration. To associate you panels:

1.

Select the menu item Panels — Configure Panels.

2. Click Add
3. Select your panel (it has the extension *.cnp.).

If the panel has already been added and you made some adjustment using the Panel Editor, you do not have to add
the updated panel to CANoe again. The associated panel will automatically update once you've saved it in the Panel
Editor. Shown below in Figure 72 is an example of panel association.
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Figure 72 - Associating Panels to CANoe
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24 Introduction To CAPL DLLs

CAPL is an event-based language, meaning its code is written to react to the occurrence of events, such as the press
of a switch. It allows you to simulate network and node behavior and to perform bus testing and analysis. Its syntax is
similar to C, but CAPL does not require any file associations to compile or run like C/C++. It does, however, have a set
of internally defined functions to do all the simple calculations and specific tasks. When these functions cannot help
you perform a complex calculation or task, the best solution is to implement the calculation or task in a CAPL DLL.

241 DLL - Dynamic Link Library

According to the Microsoft Corporation, a DLL is a library of routines loaded and linked into applications at run time.
This file is stored and run separately from the applications that use it. An application will map the DLL into its address
space when a process is starting. This file is often given a “.dIlI” extension, and is usually implemented in C or C++.

242 CAPLDLLs

CAPL programs can be created, modified, and maintained so they can interface with a wide variety of inputs, outputs,
and other functions and files. There are two ways to enhance the CAPL programming environment. The first way is to
use COM, a standard defined by the Microsoft Corporation for communication between different software components.

The second way is with DLLs. DLLs are primarily made to have inputs and outputs with other applications or files, for
example, an outside program that has generated a data file and cannot be brought into CANalyzer or CANoe to
distribute the data onto the bus. CAPL has two sets of file I/O functions to handle ASCII files with INI file format, but it
lacks file searching abilities. For file structures that require the use of pointers and complex algorithms, DLLs are
generally implemented to handle file I/O and data exchange using C/C++.

(memory management, hardware, and so on). However, because of the magnitude of any problems that
might arise, only experienced programmers should use this option. Vector does not provide any
support for creating DLLs.

% Note: When implementing a DLL for CAPL, all methods are available to access system resources

DLL mentioned in this chapter. Node layer DLLs are capable of simulating node behavior such as a
CAPL program. It can handle both message transmission and reception. Node layer DLL creation is
beyond the scope of this book. (Find more information on node layer DLL in Section 9.4.9)

% Note: CAPL also supports functions from a node layer DLL. These DLLs are different than the CAPL

24.3 Performance

Unless absolutely necessary, a DLL should not be considered to replace CAPL functions (this involves user-defined
DLLs only). A DLL may slow down CANalyzer/CANoe software performance. If the functions inside the DLL are called
in the Simulation or Transmission Branch (for example, the Simulation Setup window of CANoe and above the
Send Block of the Measurement Setup window in CANalyzer), then the code will run in a higher priority thread. This
could have a negative impact on the measurement.
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Figure 73 — The Simulation Branch of the CANalyzer Measurement Setup Window

below are some requirements for DLL function calls in the Simulation or Transmission Branch:

e File accesses and calls to the Windows API are forbidden.

o “Hidden” Windows API calls are also forbidden. The cores of many linked libraries are based on Windows
APlIs.

¢ Using dynamic memory management based directly or indirectly on GlobalAlloc[], (for example, new, new[],
delete, delete[], malloc, free, and so on), is not recommended. Instead, it is better to reserve memory statically
before the measurement starts.

o Because parameters are passed by 32-bit registers, Compilers must be operated on at least a “386”
processor.

To speed up function calls, the return value is usually stored first in the EAX register (if your processor has one) before
it is returned. The EAX register should be used as much as possible to receive and to load into memory, because it
works faster than other registers. Windows’ APIs also use the EAX register to return values to the caller. Below is an
example:

long CAPLEXPORT far CAPLPASCAL appMultiply(long x, long y)

{
longz=x*y;
MOVE_EAX(z); /I function defined in the header file
return z;

}

24.3.1 Using Microsoft Visual C++ to Implement a CAPL DLL

This chapter does not intend to teach the Visual C++ language or its components. It is recommended that the user
have some C++ background, and, of course, knowledge of CAPL. All the examples in this document use the tools
listed below:

e Microsoft Visual C++ 6.0 Professional Edition (SP5)
e CANalyzer or CANoe Professional Edition with CAPL programming (Latest version is preferred)
o CAPL Browser (Latest version is preferred)
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244 CAPL Export Table

Functions in a DLL are exported to CAPL using a function table called the CAPL_DLL_INFO_LIST, which can be
found in the file “capldll.cpp”. This table has three columns.

Column Description

Contains the name of the function to be exported. This function name is used in CAPL to call

1 the corresponding function defined in the DLL.

Contains the address of the function to be called in the DLL. These functions must be defined
in the source code and exported using the PASCAL calling convention.

3 Contains the descriptions of the called function parameters and return values.

Table 51 — CAPL_DLL_INFO_LIST Export Table

Table example:

CAPL_DLL_INFO CAPL_DLL_INFO_LIST[] =

{
#ifdef _MSC_VER {CDLL_VERSION_NAME,(CAPL_FARCALL)CDLL_VERSION, CAPL_DLL_CDECL,
Oxabcd, CDLL_EXPORT},
#else {CDLL_VERSION_NAME,(CAPL_FARCALL)CDLL_VERSION, CAPL_DLL_PASCAL, 0xabcd,
CDLL_EXPORT},

#endif

{"Dec2Hex", (CAPL_FARCALL)appDecToHex, 'V', 2, "LC", "\x0\x1"},
{"Hex2Dec", (CAPL_FARCALL)appHex2Dec, 'DY, 1, "C", "001"},
{"Bin2Dec", (CAPL_FARCALL)appBin2Dec, ‘DY 1, "C", "1},
{"Dec2Bin", (CAPL_FARCALL)appDec2Bin, 'V', 2, "LC", "\000\001"},
{"Str2Long", (CAPL_FARCALL)appStr2Long, 'L, 1, "C", 001"},
{"Str2int", (CAPL_FARCALL)appStr2int, 'L, 1,"C", 001"},
{"Str2Fit", (CAPL_FARCALL)appStr2Fit, 'F', 1, "C", "\001"},

{0,0}

B
The last parameter is used to end the table. It must be {0,0}.

You probably notice that the third column of the export table is subdivided into four more columns to define the function
parameters and return values. These subcolumns have the following meanings:

Sub-Column Description

1 Data type of return value

Number of function parameters

3 Function parameters’ data type

Depth of an array (only for functions with a parameter declared as an
array)

Table 52 — CAPL Export Table Sub-Columns

The first sub-column denotes the data type of the function’s return value, and it is explained in Table 52. It is important
to make sure that the same data type is defined in CAPL.
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Symbol Data Type
\Y, void
L long
D unsigned long

int (only in connection with array size !=0)

w unsigned int (only in connection with array size !=0)
B unsigned char (only in connection with array size 1=0)
C char (only in connection with array size !=0)

M message

T msTimer

F

float (means double in 8-byte 80387 format)

Table 53 — Function Parameter and Return Value Data Types

The third sub-column also uses the table above to denote the data type of the function parameters. If one or more
parameters is defined as an array, the fourth sub-column is required to specify the depth of the array. For example, if a
function has a 1-dimensional linear array parameter, the fourth sub-column is used to specify all the parameters. This
sub-column uses “escape sequences” — character combinations consisting of a backslash (\) followed by a letter or by
a combination of digits. If a backslash precedes an unknown character, such as numbers, the compiler will handle the
unknown character as the character itself. Below are some examples:

"x0\x1" = “\0\1” = “1000\001”

The first one is in hexadecimal notation, the second is undefined (the zero and one should be considered as the
character itself), and the third is in octal notation. These examples show that a couple of functions have two
parameters. The first one is not an array, but the second is a linear array.

24.5 Project Configuration

Before implementing a DLL, you can use the DLL demo project that came with CANalyzer or CANoe as a base to
create new applications, or you can create one from scratch with the header file CDLL.H. The demo project and
header file are located in the ...EXEC32/Capldll directory. To create one from scratch using Microsoft Visual C++,
create a new Win32 Dynamic Link Library project and include the header file.

24.51 Compiling the DLL

If the demo project is used as a base for making a DLL, do not forget to change the output directory under “Project
Settings”. Only the C DLL.h header file is needed, and any additional files depend on the project. The name of the DLL
can be anything, but it must be 8 characters or less. CANoe and CANalyzer will not accept a compiled DLL if the name
has more than 8 characters.

24.6 Linking the CAPL DLL

There are two ways to link a CAPL DLL, as mentioned in Chapter 18. Adjusting the initialization file is not
recommended, so use the association method in CANalyzer or CANoe by making the menu selection Configure —
options. If the DLL is associated correctly, there will be a notification in the Message window of the CAPL Browser
after compiling a CAPL program as shown in Figure 74.
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Figure 74 — A CAPL Program Utilizing the x2x DLL

24.6.1 CAN.ini File

If you do not have Version 5.0 or later of CANoe or CANalyzer (on the tool, go to Help — About), you must associate
the DLL through the CAN.ini file. This initialization file is a Microsoft Corporation standard, and it contains a majority of
the CANalyzer or CANoe settings. The new DLL has to be associated to one of the CAPLDLL entries in the
[SIMULATION] section. Up to 25 DLLs are allowed. Below is an example of how to associate a CAPL DLL called
x2x.dll.

[SIMULATION]
CAPLDLL = x2x.dll
;CAPLDLL2 =
;CAPLDLL3 =

The semicolon at the beginning must be removed for CANalyzer or CANoe to enable the new setting.

24.6.2 DLL Search Sequence

The following sequence is used to search for the CAPL DLL. The file is searched for in the following directories and
paths:

The EXEC32 directory

The active working directory

The Windows system directory
The Windows directory

The computer’s active search path

% Note: It is strongly recommended that the DLL be stored in the EXEC32 directory for performance
reasons.
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24.6.3 Demo DLL and Source Code
The following section explains how a demo DLL is used to convert numbers based on the following data types:

e Decimal

e Hexadecimal
e Float

e Binary

e String(array)

24.6.3.1 CAPL Code
To test the DLL, use the following CAPL code:

char hexarray[10];
long val = 255;

int intval;

float fltval,;

Dec2Hex(val, hexarray);
write("%d in decimal = %s in hex.", val, hexarray);

val = Hex2Dec("ff");
write("FF in hex = %d in decimal”, val);

val = Bin2Dec("11111111");
write("11111111 in binary = %d in decimal”, val);

Dec2Bin(val, hexarray);
write("%d in decimal = %s in binary.", val, hexarray);

val = Str2Long("98 miles per hour");
write("98 miles per hour = %d in decimal(long)”, val);
intval = Str2Int("98 miles per hour");
write("98 miles per hour = %d in decimal(int)", intval);

fltval = Str2FIt("98.34 miles per hour");
write("98.34 miles per hour = %g in IEEE(float)", fltval);

When the above code is executed, the Write Window in CANalyzer or CANoe will display the returned values as
shown in Figure 75.

(=]
Source | Mezsage AI

® Systen CAMN 1 Bus with 500000 EP3.
* SFysten CAN 2 Bus with 500000 EP3.

x CAPL 255 in decimal = FF in hex.

* CAPL FF in hex = 255 in decimal

® CAPL 11111111 in binary = 255 in decimal

® CAPL 255 in decimal = 11111111 in binary.

* CAPL 958 miles per hour = 98 in decimal (londg)

® CAPL 98 miles per hour = 98 in decimal (int)

* CAPL 95.34 miles per hour = 95.34 in IEEE(float)
-

Systen Ernd of measurement 04:30:36 pn

< | b

4 » o[ an A Systerm b capL f

Figure 75 — Return Values in Write Window
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24.6.4 C++Code
The following code is use to build the DLL that defines seven functions for data type conversion.

*

File Name: capldll.cpp

Example of a CAPL DLL implementation module.

AUTHOR IDENTITY

/
|
I
I
I
I
I
I

Author Initials

[
Andreas Klegraf Kf Vector Informatik GmbH
Marc Lobmeyer Lm Vector Informatik GmbH
Thomas Riegraf Ri Vector Informatik GmbH
Hans Quecke Qu Vector Informatik GmbH

REVISION HISTORY

Date Ver Author Description
6.10.2003 1.0 Jun Lin Creation
6.10.2003 1.0 Jun Lin Microsoft Visual C++ 6.0

I
|
| COPYRIGHT
I

Copyright (c) 1994 - 1998 by Vector Informatik GmbH. All rights reserved.
*/

#define USECDLL_FEATURE

#include "cdl\cdil.h"

#include <stdio.h>

#include <math.h> /ladded for POW()

void CAPLEXPORT far CAPLPASCAL appDecToHex(unsigned long decValue, char hexr[])

{
long hex[10];

long temp =0, i;

for (i=1;i<10; i++)

{
hex[i] = decValue % 16;
decValue = decValue / 16;
if (decValue == 0)

break;
}

for (intj = 0; j <=10; j++)
switch (hex[i])
{

case 0: hexr[j] ='0";
break;
case 1: hexr[j] ='1";
break;
case 2: hexr[j] = '2';
break;
case 3: hexr[j] ='3";
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break;
case 4: hexr[j] = '4’;
break;
case 5: hexr[j] ='5";
break;
case 6: hexr[j] = '6";
break;
case 7: hexr[j] ='7";
break;
case 8: hexr[j] ='8";
break;
case 9: hexr[j] ='9";
break;
case 10: hexr[j] ='A";
break;
case 11: hexr[j] = 'B";
break;
case 12: hexr[j] ='C’;
break;
case 13: hexr[j] ='D’;
break;
case 14: hexr[j] ='E";
break;
case 15: hexr[j] = 'F";
}
i=i-1;
if (i <=0)
break;

}
DWORD CAPLEXPORT far CAPLPASCAL appHex2Dec(char hexr[])

DWORD value = 0;
intflag=0,s=0,i,j;

for(i=0;i<=09;i++)

{
if (hexr[i] == NULL)
break;
}
for(j=i-1;j>=0;j-)
{
switch (hexr[j])
{
case '0" /I do nothing
break;
case '1": value = value + DWORD(1.0 * pow(16, s));
break;
case '2": value = value + DWORD(2.0 * pow(16, s));
break;
case '3": value = value + DWORD(3.0 * pow(16, s));
break;
case '4": value = value + DWORD(4.0 * pow(16, s));
break;
case '5": value = value + DWORD(5.0 * pow(16, s));
break;
case '6": value = value + DWORD(6.0 * pow(16, s));
break;
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case '7": value = value + DWORD(7.0 * pow(16, s));

break;
case '8": value = value + DWORD(8.0 * pow(16, s));
break;
case '9": value = value + DWORD(9.0 * pow(16, s));
break;
case 'A":
case 'a": value = value + DWORD(10.0 * pow(16, s));
break;
case 'B":
case 'b': value = value + DWORD(11.0 * pow(16, s));
break;
case 'C":
case 'c": value = value + DWORD(12.0 * pow(16, s));
break;
case 'D":
case 'd': value = value + DWORD(13.0 * pow(16, s));
break;
case 'E":
case 'e": value = value + DWORD(14.0 * pow(16, s));
break;
case 'F":
case 'f': value = value + DWORD(15.0 * pow(16, s));
break;
default: flag = 1;
}
s=s+1;
}
if (flag == 1)
return 0; /I return O for invalid character
else
return value;
}
DWORD CAPLEXPORT far CAPLPASCAL appBin2Dec(char hexr[])
{

DWORD value = 0;
intflag=0,i,j,s =0;

for (i=0; i < 32; i++)
if (hexr[i] == NULL)
break;
}
for(j=i-1;j>=0;j-)
if (hexr[j] =="1")

value = value + DWORD(pow(2,s));
else if (hexr[j]!="0")

value = 0;
break;

}

s=s+1;

}

return value;

}
void CAPLEXPORT far CAPLPASCAL appDec2Bin(long intValue, char hexr[])
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for (inti=0;i<32; i++)

{
hexrl[i] = (intValue % 2) + 48;
intValue = intValue / 2;
if (intValue == 0)
break;
}

}

long CAPLEXPORT far CAPLPASCAL appStr2Long(char hexr[])
{

long value;

value = atol(hexr);

return value;

}

long CAPLEXPORT far CAPLPASCAL appStr2int(char hexr[])
{

long value;
value = atoi(hexr);
return value;

}
double CAPLEXPORT far CAPLPASCAL appStr2Fit(char hexr[])

double value;
value = atof(hexr);
return value;

}

#ifdef _ BCPLUSPLUS__
#pragma warn -pin

#endif

CAPL_DLL_INFO CAPL_DLL_INFO_LIST[] =

{
#ifdef _MSC_VER {CDLL_VERSION_NAME, (CAPL_FARCALL)CDLL_VERSION, CAPL_DLL_CDECL,
Oxabcd, CDLL_EXPORT },
#else {CDLL_VERSION_NAME, (CAPL_FARCALL)CDLL_VERSION, CAPL_DLL_PASCAL, Oxabcd,
CDLL_EXPORT},
#endif
{"Dec2Hex", (CAPL_FARCALL)appDecToHex, 'V', 2, "LC", "\x0\x1"},
{"Hex2Dec", (CAPL_FARCALL)appHex2Dec, 'D', 1, "C", "001"},
{"Bin2Dec", (CAPL_FARCALL)appBin2Dec, ‘D', 1, "C", "\11"},
{"Dec2Bin", (CAPL_FARCALL)appDec2Bin, 'V', 2, "LC", "\000\001"},
{"Str2Long", (CAPL_FARCALL)appStr2Long, 'L, 1,"C", 001" },
{"Str2int", (CAPL_FARCALL)appStr2int, 'L, 1,"C", 001" },
{"Str2FIt", (CAPL_FARCALL)appStr2Fit, 'F', 1, "C", "™001" },
{0,0}

|5

#ifdef _ BCPLUSPLUS__
#pragma warn +pin
#endif

/I Return the table so the compiler knows which functions are available

#ifdef _MSC_VER
unsigned long CAPLEXPORT ___cdecl caplIDIIGetTable(void)
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return (unsigned long)CAPL_DLL_INFO_LIST;

}
#else
CAPL_DLL_INFO far * CAPLEXPORT pascal caplIDIIGetTable(void)
{

return CAPL_DLL_INFO_LIST;
}
#endif
#ifdef _ WIN32__
int WINAPI DIIEntryPoint(HINSTANCE, unsigned long reason, void*)
{

switch (reason)

{

case DLL_PROCESS_ATTACH:
return 1; /I Indicates that the DLL was initialized successfully
case DLL_PROCESS_DETACH:
return 1; /I Indicates that the DLL was detached successfully

}

return 1;
}
#else
int FAR PASCAL LibMain(HINSTANCE, WORD, WORD, LPSTR)
{

return 1; /I Indicates that the DLL was initialized successfully
}
int FAR PASCAL WEP (int)
{

return 1;
}
#endif

24.6.5 Troubleshooting CAPL DLL Errors in the CAPL Browser

Error: No NODE LAYER (for example, NWM) available; DUMMY DLL LOADED!!

Some CANoe configurations require additional expansions for the CAPL nodes (for example, Network Management).
These so-called node layers exist as run-time libraries (DLLs). This error occurs if CANoe does not find the necessary
DLL. Ensure that the DLL is located in the CANoe system directory ...CANoe\EXEC32.

Error: Invalid type in DLL <dliname.dll> <functionname>
This error is caught while compiling a CAPL program. The function defined in the CAPL Export Table is incorrect. Most
of the time the error is the result of the parameter settings in the CAPL Export Table.

Warning: Could not open <dliname.dlI>

In most cases, the user has incorrectly typed in the name of the DLL in the CAN.ini file. The name is case-sensitive,
the extension must be included, and it must be 8 characters or less. Other than that, ensure that the DLL is in the
EXEC32 directory of CANoe or CANalyzer.

24.6.6 CAPL DLL Questions and Answers

Below are two commonly asked questions and answers regarding the troubleshooting of DLL-related issues:

Q: After building the DLL, | don’t see it in the working directory or the project folder.

A: If you use the demo project, the output DLL is in the EXEC32 directory. The default name is capldll.dll. To specify a
different path, change the output directory under Project Properties.

Q: After compiling my CAPL program, why is there an error message that says “Error: ambiguity between dllname.dIl”?
A: A node layer DLL can be associated on a node-by-node basis in the database (*.dbc) file. This problem occurs if
you integrated the same DLL into CAPL through the CAN.ini file.
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25 Introduction to COM

The purpose of this chapter is to give a general introduction to the use of CANoe/CANalyzer as a COM server. The
basic technical aspects and possibilities of the COM server functionality will be presented. The COM interface is often
used to remotely command CANoe or CANalyzer to begin testing or share data through CAPL. Any tools that support
COM will do. For the purpose of training, Microsoft Visual Basic will be used for the examples in this chapter.

CANoe and CANalyzer are Vector’s simulation and analysis tools for the CAN bus. Both applications can also be used
for other bus systems such as LIN, MOST, and FlexRay. CANalyzer is the right tool to analyze, observe, and simulate
data traffic, while CANoe can be used to create a whole functional model of the network system. This model can be
used in the entire development process of the network from planning to final testing.

In some applications, CANalyzer or CANoe is not essential to emulate all the tasks. A second tool in this case may be
necessary. Tools such as LabView, Simulink, Matlab, and so on are often used together with CANalyzer or CANoe. To
permit data sharing among the tools, the Component Object Model is introduced in CANalyzer and CANoe.

Different programming and scripting languages can be used to access the COM server functionality of CANoe and
CANalyzer. All scripts used must be based on Microsoft's Windows Script software component. Scripting languages
such as VBScript or JScript, that are parts of Microsoft Windows 98, Windows NT, and Windows 2000 packages, can
be used as scripting languages. Such scripts can be used to create test reports in Microsoft Excel or Microsoft Word.
Programming languages such as Microsoft Visual Basic, Microsoft Visual C++, and Borland Delphi can be used to
create user-specific applications.

251 COM - Component Object Model

COM is a standard defined by Microsoft for communication between different software components. Different
programming languages can be used to create such components. These components can be built by different software
developers, independently from each other.

25.2 CANoe/CANalyzer as a COM server

CANoe and CANalyzer have a build-in COM interface beginning with version 3.0. The following goals can be achieved
by using this COM server functionality:

o Exchange of data between CANoe or CANalyzer and other external programs or applications suites. The
external programs must support the COM technology as well.

e Automation of test sequences with customer-specific control panels.

o Remote control of measurements using CANoe or CANalyzer. The remote control of CANoe or CANalyzer
over a network is also possible.

25.3 COM Server Registration

The COM Server is already registered when CANoe/CANalyzer is installed. If the installation directory has been
moved, a new registration is necessary. To do this, open the MS-DOS prompt and change to the installation directory
(EXEC32). Type the following command:

canw32 -regserver  // for CANalyzer
canoe32 -regserver // for CANoe

To delete the registration of the COM Servers type in the following:

canw32 —unregserver // for CANalyzer
canoe32 —unregserver // for CANoe

25.4 Using Microsoft Visual Basic to Access the COM server

All the examples and illustrations in this chapter reference the following tools:

e Microsoft Visual Basic 6.0 Professional Edition (SP5)
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e CANalyzer or CANoe Professional Edition with CAPL programming (Latest version is preferred)
o CAPL Browser (Latest version is preferred)
e Panel Editor (Latest version is preferred)

This chapter does not teach the Visual Basic language or its interface components. It is, however, recommended that
you have some Visual Basic background.

25.4.1 Project Configuration

Microsoft Visual Basic is a Rapid Application Development (RAD) tool that allows the application engineer to create
impressive applications for the Microsoft Windows platform with relatively little effort. In the description of the COM
server functionality, examples written for Microsoft Visual Basic will be used to demonstrate in detail how to program
for the CANoe/CANalyzer COM server.

The CANoe/CANalyzer COM server consists of several objects that are related to each other, using a certain object
hierarchy. Each COM server object is defined using three elements that give the application engineer access to the
COM server’s functionality. These elements include:

e Object Properties (for example, CANController.Baudrate)
e Object Methods (for example, Measurement.Start)
e Object Events (for example, Application.OnQuit)

Basic knowledge of the COM server object hierarchy will help the application engineer obtain a good overview of the
COM server functionality. A description of the COM server object hierarchy can be found in CANoe and CANalyzer’s
online help system.

To have access to the COM server from Microsoft Visual Basic, the Microsoft Visual Basic project has to be configured
to use the CANalyzer (or CANoe) type library. In Microsoft Visual Basic, this is accomplished using the project’s
references, as can be seen in Figure 76.

| Project References - Projectl ' x|
19 Add Form ,
Available References: oK
1 Add MDI Form
@ add Module Wisual Basic For Applications i! Cancel
i add Class Module Misual Basic runtime obijects and procedures
e M isual Basic ohjects and procedures
B Add User Confrol WIOLE Autornaton Browse,.,
8 Add Property Page %CANalyzer 5.0 Type Library |
¥k o R CaNoe 5.0 TypeLibrary . +|
o] Add User Doctitment [ 145 Helper COM Component 1.0 Type Library
Acd File. . Cl+D [J 145 RADIUS Protocol 1.0 Type Library Priarity
[ scrobat Help .
Remaove Form 1 [ acrobat Distiller + |
_______________________ [ active DS Type Library
#4 peferences. . Y [l active Setup Control Library
s T [ activeMovie control type library
Components...  Cirl+T DTctiveX DLL to perform Migration of MS Renusitnﬂl‘
4 3
Projectl Properties...
—Ahead AutoStart 1.1 Type Library
Location:  C:\Program Files\Cammaon FileshaheadiLibh\apreg.dil
Language: Standard

B04050304
Figure 76 — Referencing the CANalyzer Type Library
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25.5 Controlling a Measurement

Once a Microsoft Visual Basic project has been configured to use the CANalyzer (or CANoe) type library, the
application has access to the COM server. In almost every situation, the COM server is used to perform a
measurement using the application engineer's CANalyzer or CANoe configuration. A global variable is needed in
Visual Basic through which the COM server’s Application object can be accessed. This global variable should be
declared as:

Dim gCanApp As CANalyzer.Application

The next step is to initialize this global variable to let Microsoft Visual Basic know that this global variable will be used
to access the COM server's Application object. This can be accomplished using the following statement:

Set gCanApp = New Application

If CANalyzer has not yet been started, the previous line of code will load CANalyzer. As mentioned earlier, the COM
server is used primarily to perform a measurement with the application engineer's CANalyzer or CANoe configuration.
This requires the COM server load the application engineer’s configuration. The Open method of the COM server’s
Application object can be used for this with the following statement:

gCanApp.Open ("C:\Program Files\CANalyzer\Demo_CL\motbus.cfg")

If the configuration contains CAPL code, it is a good practice to re-compile the CAPL code before a new measurement
is started. This ensures that the most recent CAPL code will be used in the measurement. Invoking the compilation
process is also possible using the COM server. In this case, the Compile method of the CAPL object can be used.
The CAPL object is also part of the Application object (refer to the COM server object hierarchy). This means that the
already initialized gCanApp variable can be used to access the CAPL object. This can be accomplished using the
following statement:

gCanApp.CAPL.Compile

At this point everything is set up and ready for a new measurement. A new measurement can be started (and stopped)
using the Measurement object. Similar to the CAPL object, the Measurement object is also part of the Application
object. This means that the Measurement object can be accessed through the gCanApp variable. The methods Start
and Stop of the Measurement object can be used to start and stop a new measurement. For example:

gCanApp.Measurement.Start

The COM server also contains functionality to quit the CANalyzer application. This is done using the Quit method of
the Application object. The following code checks the Running property of the Measurement object to find out if a
measurement is running and if so, stops the measurement before quitting the CANalyzer:

If gCanApp.Measurement.Running Then
'stop the CANalyzer measurement
gCanApp.Measurement.Stop

End If

'quit the CANalyzer application
gCanApp.Quit

25.6 Accessing Communication Data

The communication data used by a CANalyzer configuration is stored in a CANdb database. A CANdb database file
has a .DBC file extension and is used as a common database for the entire Vector tool chain.

In Chapter 5 — Using Databases with CAPL, we learned that a CANdb database contains the communication matrix of
a network using messages and signals. Each CAN message can contain up to 8 data bytes and consists of one or
more signals.
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Figure 77 displays a screenshot of an example CANdb++ database, that has been opened using the CANdb++
Database Editor. The CAN message EngineData is selected in the left window. The right window shows the signals in
the selected message. The CAN message EngineData is defined in the CANdb database as a message with identifier
64 (hex) and the length of the message is 4 data bytes. Signals are located inside these 4 data bytes as can be seen
in the right window. Signal EngSpeed is defined as a signal with a length of 16 bits (2 bytes) and is located in byte 0
and byte 1 of the CAN message EngineData.

Vector CANdb++ Editor - CAPROGRA™1\CANALY ™~ 2\DEMO_CL\MOTBUS DBC - [Overall View] [H=]E3

! File Edit Yiew Options Window Help -8 x|
EH=2E 8 ¢ EEE &80
=<t EngineControl 2| signal | Message | stant. [ Len.. | Byte . | value Type
EIE THMessages B ldleRunning  EngineData 23 1 Intel Unsigned
=l E ricyin = Diata [0 i EngTemp EngineData 16 7 Intel Unsigned

EIE RXMéssages i EngSpeed EngineData 0 16 Intel Unsigned
Lgf] ABSdata [0xCE

& EngSpeedCor

~4F GearBoxinfo [0

B-EF T Signals

-2 R Signals _|;|
1] | AREL | *
hMessage: EngineData,  |1D: OxB4, DLC: 4
Feady | INUM | 4
FVoio41801

Figure 77 — CAN Messages and Signals in CANdb++

The main advantage of using a database is that the communication data can be accessed using its descriptive name.
This means that if the EngSpeed signal is to be accessed, the name EngSpeed can be used to read or write the
signal value. The application engineer does not have to worry about the location of this signal in the CAN message
because this is already defined in the CANdb database. If the same thing must be done without a CANdb database,
the application engineer must always memorize where signals are located in a CAN message, and the data bytes in
the CAN message should be read or written directly.

Because every CANoe and CANalyzer configuration will have an assigned CANdb database, the COM server provides
functionality to access communication data through the signals defined in the CANdb database. To access a Signal
object in Visual Basic, it must first be assigned to a variable. This variable can be declared as the following:

Dim gEngSpeedSignal As CANalyzer.Signal

The method GetSignal of object Bus can be used to assign the signal of a CAN message to the previously declared
variable gEngSpeedSignal. This signal should be defined in the CANdb database of the CANalyzer/CANoe
configuration being used. The Bus object is part of the Application object (refer to the COM server object hierarchy in
the online help). This means that the already initialized gCanApp variable can be used to access the Bus object as
shown below:

Set gEngSpeedSignal = gCanApp.Bus.GetSignal(1, "EngineData", "EngSpeed")

The method GetSignal accepts the following three parameters:
e The channel on which the signal is sent.
e The name of the message to which the signal belongs.
e The actual name of the signal.

After the signal has been assigned to the variable gEngSpeedSignal, the following variable can be used to access the
signal using the Value property of the Signal object:

IbIEngSpeedDisplayControl.Caption = gEngSpeedSignal.Value
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While using the COM server, it is not possible to directly change the value of a signal. We will have an example later to
explain how to assign a new value to the signal of a CAN message.

25.7 Accessing Environment Variables (CANoe only)

Environment variables, which are only available for CANoe, describe the behavior of network nodes with regard to
external inputs and outputs. These variables are similar to the signals of a CAN message. Both environment variables
and CAN message signals are used for the input and output of a node. The difference between the two is that CAN
message signals are used for inputs and outputs for the CAN network communication, whereas environment variables
are used for the inputs and outputs of a node’s external sources, such as switch positions, sensor signals, and
actuator signals. This section explains how to access environment variables using CANoe’s COM server functionality.

Environment variables are defined and stored in a CANdb database. Figure 78 displays a screenshot of an example
CANdb database, that has been opened using the CANdb++ Database Editor.

Yector CANdb++ Editor - C:ATraining\E xercise3A\CANdbALEDdb.dbc - [Overall Yiew]

'E! File Edit “iew Optionz ‘wWindow Help - | ﬂ
= BEM
-8 Environment variables ]| Mame | Type [ Minim.. | Maxi.. | Iniial .. | Length | Access o]
&2 Enw_Ledd Integer 0 2 0 0 Readw/rite
_ Env_Led |nteqer 1] 2 1] 1] Readwrite
i Erv_LedZ lnteger [0 1 0 0 {eadiwrite
Ew—teji |rteger 1] 1 1] 1] Readwrite
E::_L:dﬁ |rteger 1] 1 1] 1] Readwrite
. Env:Leu:IE Integer 0 1 0 0 Headwrite
) Erw Led? |nteger 1] 1 1] 1] Headwrfte
B3 Erv_SwitchD |nteger 1] 1 1] 1] Readwrite
EEE . maiiold h Intener n 1 n n Reafwrite
<] | 2 |4 | LH

16 Envvironment % ariablez]
Ready

Fyorasarot

Figure 78 — Environment Variables in CANdb++

Because environment variables represent the external inputs and outputs of a node, they can be used for interaction
with a panel or graphical user interface (GUI). In CANoe, it is possible to create your own GUI using the Panel Editor.
Each object on the panel (button, textbox, and so on) in the Panel Editor can be linked to an environment variable that
is defined in the CANdb database. This results in the user being able to change the value of environment variables
using the panel. Every time an environment variable is changed, an event is triggered. CAPL makes it possible to react
to these events to describe the behavior of a network node as to the external input/output that the environment
variable represents.

Figure 79 shows an example of how environment variables are used in combination with a panel. In this example,
switch number 0 on the control panel is linked to environment variable Env_Switch0. If the user activates the switch
by clicking on it, the value of environment variable Env_Switch0 changes from 0 to 1. This change triggers an event
for which a handler is written in CAPL code.
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Figure 79 — Using Environment Variables with a GUI

Fyo1053102

The COM server makes it possible to read and write the values of environment variables. This means that Microsoft
Visual Basic can be used to create a GUI and to implement the behavior of a node’s external inputs and outputs to
replace a CANoe panel. Using the COM server to access environment variables is the same as accessing CAN
message signals, except that the value of environment variables can also be both read and written, whereas the value
of CAN message signals can only be read.

To access an EnvironmentVariable object in Visual Basic, it must first be assigned to a variable. This variable can be
declared as the following:

Dim gSwitchOEnvVar As CANoe.EnvironmentVariable

The function GetVariable of object Environment can be used to assign the environment variable to the previously
declared variable gSwitchOEnvVar. This environment variable should be defined in the CANdb database of the
CANoe configuration being used. The Environment object is part of the Application object. This means that the
already initialized gCanApp variable can be used to access the Environment object as seen in the example below:

Set gSwitchOEnvVar = gCanApp.Environment.GetVariable("Env_Switch0")

The function GetVariable accepts one parameter — the name of the environment variable. This should be the exact
same name of the environment variable as it is defined in the CANdb database. After the environment variable has
been assigned to variable gSwitchOEnvVar, this variable can be used to access it using the Value property of the

EnvironmentVariable object as seen below:

gSwitchOEnvVar.Value =1

25.8 Reacting to CANoe/CANalyzer events

The COM server makes it possible to react to events triggered in CANalyzer/CANoe. An example of an event is the
OnStart event of the Measurement object. This event is triggered every time a new measurement is started in
CANalyzer/CANoe. Refer to the COM server object hierarchy in the CANalyzer/CANoe online help system to learn
what other events are implemented.
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This feature must be enabled for the COM server object to react to COM server object events in Visual Basic. In the
beginning of this chapter, the global variable for the Application object was declared as the following:

Dim gCanApp As CANalyzer.Application

To enable the events for this specific object, the Visual Basic keyword WithEvents must be used in the declaration of
the variable as shown below:

Dim WithEvents gCanApp As CANalyzer.Application

To react to one of the COM server objects events, a function in Visual Basic must be created and the name of this
function is predefined. This is necessary because the event occurs externally from Visual Basic. The name of the
function must be: <object variable name>_<event name>. For example, to react to the OnQuit event of the
Application object (using the declaration in this section), the function would be as follows:

Private Sub gCanApp_OnQuit()
'create application-specific OnQuit event handler here
End Sub

This Visual Basic function will be called every time CANalyzer shuts down. The procedure for reacting to an event is
the same for all COM server objects.

25.9 Calling CAPL Functions

CAPL allows the application engineer to create applications for CANalyzer/CANoe. These programs help speed up the
process of developing network nodes. CAPL can be used to simulate the behavior of CAN nodes, to analyze data
traffic, and to create a gateway so that data can be exchanged between different CAN buses.

CAPL can also be used to implement application-specific functions to perform a certain task. The COM server
functionality makes it possible to call these functions, which gives the application engineer total control over a
measurement through the COM server. This section explains how the COM server can be used to call CAPL functions
from a Microsoft Visual Basic application. CAPL programs are written using the CAPL browser, which is part of
CANalyzer/CANoe. Figure 80 is a screenshot of the CAPL browser that shows the location of the CAPL functions.
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Figure 80 — Location of Functions in the CAPL Browser
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A global variable is used to utilize the COM server’s functionality to call CAPL functions. This variable should be
declared to access the CAPLFunction object. Before the CAPL function can be called, it must be assigned to the
variable. A CAPL function is assigned to a variable using the GetFunction method of the CAPL object. The parameter
for the GetFunction method is the exact same name of the CAPL function.

of the Measurement object. This means that the variable used to access the Measurement object

Note: The assignment of a CAPL function to a variable can only be made in the Onlnit event handler
must be declared using the WithEvents keyword in Visual Basic.

Once the variable has been declared and initialized, it can be used to call the CAPL function to which it refers. To call
the CAPL function, the Call method of the CAPLFunction object is used as shown in the example below:

'CANalyzer objects

Dim WithEvents gCanApp As CANalyzer.Application

Dim WithEvents gCanMeasurement As CANalyzer.Measurement
Dim gWriteTextFunction As CANalyzer.CAPLFunction

'Initialization of CANalyzer objects
Set gCanApp = New Application
Set gCanMeasurement = gCanApp.Measurement

'Measurement OnlInit event handler
Private Sub gCanMeasurement_Onlnit()

'assign CAPL function

Set gWriteTextFunction = gCanApp.CAPL.GetFunction("WriteText")
End Sub

'Call WriteText() CAPL function
gWriteTextFunction.Call

It is also possible to pass input parameters to a CAPL function and read the return value of the CAPL function. The
number of input parameters is limited to 10, and it is not possible to pass an array as a CAPL function parameter. The
number of input parameters passed from Microsoft Visual Basic must always match the number of input parameters of
the CAPL function. It is practical to use input parameters of type Long in CAPL. In this case, it is possible to pass on
parameters from Microsoft Visual Basic that are from types Byte (1 byte), Integer (2 bytes), and Long (4 bytes),
without having to worry about the types matching up between Microsoft Visual Basic and CAPL, as seen in the
example below and illustrated in Figure 81:

'CANalyzer objects

Dim WithEvents gCanApp As CANalyzer.Application

Dim WithEvents gCanMeasurement As CANalyzer.Measurement
Dim gMultiplyFunction As CANalyzer.CAPLFunction

Dim gMultiplyResult As Integer

'Initialization of CANalyzer objects
Set gCanApp = New Application
Set gCanMeasurement = gCanApp.Measurement

'Measurement Onlnit event handler
Private Sub gCanMeasurement_OnlInit()

'assign CAPL function

Set gMultiplyFunction = gCanApp.CAPL.GetFunction("Multiply")
End Sub

'multiply two values and get the result in the CAPL function’s return value
gMultiplyResult = gMultiplyFunction.Call (4, 5)
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Figure 81 — CAPL User-Defined Function Multiply()

Note: It is important to remember that the return value of a CAPL function must always be of type

integer. When using the COM server in combination with CANalyzer, it is only possible to use return
values of CAPL functions if the P Block representing your CAPL program is configured in CANalyzer’s
Evaluation Branch. See Figure 82 below for an explanation of the different branches in CANalyzer’s

measurement setup (he Real-Time Branch and the Evaluation Branch are sometimes called Transmit

Branch and Analysis Branch, respectively).
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Figure 82 — CANalyzer's Measurement Branches

25.10 Transmitting CAN Messages

The COM server does not provide functionality to initiate the transmission of CAN messages. It is, however, still
possible to initiate the transmission of CAN messages using the COM server. The application engineer can implement

a function in his/her CAPL program that contains a call to the CAPL output() function.
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If CANalyzer or CANoe Version 3.2 or older is used, a few restrictions apply:

o |f a function implemented in CAPL contains a call to the output() function, it is not possible to call this CAPL
function using the COM server if the CAPL program is located in CANalyzer’s Transmit Branch. The obvious
solution would be to locate the CAPL program in CANalyzer’s Analysis Branch, but this doesn’t solve the
problem.

e When a CAN message is transmitted by a CAPL program that is located in CANalyzer’s Analysis Branch, the
CAN message will show up in CANalyzer’'s Trace window, but the CAN message does not actually go onto the
CAN bus. This means that a CAPL program used for transmitting CAN messages must be located in
CANalyzer’s Transmit Branch.

o |If the CAPL function called by the COM server can’t contain a call to the output() function, then the output()
function should be called at another point in the CAPL program. The CAPL function that is called by the COM
server should then set a request to transmit a CAN message instead of transmitting it directly using a call to
the output() function (for example, setting an environment variable or a timer). The CAPL program should also
contain a routine that checks to see if this request is set or not. Whenever the request is set, this routine can
make a call to the output() function to actually transmit the CAN message and finally reset the request.

The previously described way to transmit CAN messages using the COM server in CANalyzer is an indirect method
and contains more overhead for the CAPL program. For this reason, an example is added that explains one possible
way of transmitting CAN messages using the COM server and CANalyzer. The goal of this example is that the user
can click a button on the Microsoft Visual Basic application to transmit a CAN message in CANalyzer. To realize this,
the COM server is used to call the user-defined CAPL function SendMsg() whenever the button is clicked. All that this
CAPL function does is start the TxTimer_1ms 1-millisecond timer. The timer expiration event handler in CAPL takes
care of actually transmitting the CAN message. An extra feature of this example is that a value is passed on to the
CAPL function that is called by the COM server. In CAPL, this value is read and assigned to a signal of the message
that will be transmitted by the timer’s expiration event handler (see Figure 83).

25.11 COM Server Example in Microsoft Visual Basic

Figure 84 is a screenshot of an example application using the COM server in Microsoft Visual Basic. It uses the
“Motbus.cfg” CANalyzer demo configuration. You can also use the “Automot.cfg” CANoe demo configuration . The
changes you need to make are the global variable declarations and have the configuration load remotely. These demo
configurations are part of the CANalyzer/CANoe installation.
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Figure 83 — Transmitting CAN Messages with CANalyzer
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Figure 84 — Screenshot of Example Application

25.11.1 VB Source Code

The VB form interface in Figure 84 is left for you to build. All the example code used in this chapter is included in the

source code below.

' GLOBALS:

' objects:

Dim WithEvents gCanApp As CANalyzer.Application
Dim WithEvents gCanMeasurement As CANalyzer.Measurement

' signals:

Dim gEngSpeedSignal As CANalyzer.Signal
Dim gCarSpeedSignal As CANalyzer.Signal
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Dim gEngTempSignal As CANalyzer.Signal

Dim gEngStatusSignal As CANalyzer.Signal

' CAPL functions

Dim gSendGearFunction As CANalyzer.CAPLFunction
" CAN Channel 1

Dim gCANChannel1 As CANalyzer.CANController
"indicator flags

Dim gConnected As Boolean

Dim gMotBus As Boolean

"NAME: CanConnect
' DESCRIPTION: Initializes CANalyzer object variables and sets
' some indication flags used in the application
Private Sub CanConnect()
"init new CANalyzer application
Set gCanApp = New Application
" init measurement object
Set gCanMeasurement = gCanApp.Measurement
"init CAN channel variable of bustype CAN (=1) and CAN channel 1
Set gCANChannel1 = gCanApp.configuration.GeneralSetup.ControllerSetup(1, 1)
" indicate that the connection has been made
gConnected = True
' check to see if MotBus.cfg configuration is loaded
If (gCanApp.configuration.Name = "motbus") Then
gMotBus = True
Else
gMotBus = False
End If
End Sub

' NAME: UpdateMotBusSignals
' DESCRIPTION: Reads the signal values from the CAN messages
"and displays these values on the form
Private Sub UpdateMotBusSignals()
If (gMotBus = True) Then
prgEngineSpeed.Value = gEngSpeedSignal.Value
IbIEngineSpeedVal.Caption = gEngSpeedSignal.Value
prgVehicleSpeed.Value = gCarSpeedSignal.Value
IblIVehicleSpeedVal.Caption = gCarSpeedSignal.Value
IbIEngineTemperatureVal.Caption = gengTempSignal.Value
If (JEngStatusSignal.Value) Then
IbIEngineStatusVal.Caption = "Idle"
Else
IbIEngineStatusVal.Caption = "Running”
End If
End If
End Sub

Thkkkkkhkkhkkhkhkhkhkhkkhkkhkkhkkhhkhhkhkhkkhkhkhkhkhhhhkhkhkhkhkhkhhhhhkhkhkkhkhhhhhkhhkhkkhkhhhhhhkkkkhkhhhhx

' NAME: GetCANChannelParameters
' DESCRIPTION: Reads the CAN channel parameters using the COM
' server and displays them using labels.

* *% *kkkkkkkkhhhhhhkkkkkkkkkkkkkhk * * *kkkkkkkkk

Private Sub GetCANChannelParameters()
IbIBaudrateValue = gCANChannel1.Baudrate
IbIBtrOValue = gCANChannel1.BTR0O
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IbIBtr1Value = gCANChannel1.BTR1
IbISamplesValue = gCANChannel1.Samples
End Sub

Thkkkkkkhhkhkhhhkkhkhkhhhhhhkkhkhhhhhhhhkhkhkhhhhhhhkhkhhhhhhhhkhkhkhhhhkhhhkhhkhhhhhk

' NAME: ResetDisplayControls
' DESCRIPTION: Resets all the controls related to the MotBus
' signals

Private Sub ResetDisplayControls()
prgEngineSpeed.Value =0
IbIEngineSpeedVal.Caption = ""
prgVehicleSpeed.Value = 0
IblIVehicleSpeedVal.Caption = ""
IbIEngineTemperatureVal.Caption =
IbIEngineStatusVal.Caption = ""
IbIBaudrateValue = ""
IbiBtrOValue = ""

IbiBtr1Value = ""
IbISamplesValue = ""
End Sub

* * *% *kkkkkkkkhhhhhhkkkkkkkkkkkkkhd * * *kkkkkkkkk

' NAME: btnDbDialog_Click

' DESCRIPTION: Opens CANalyzer database dialog

Private Sub btnDbDialog_Click()
gCanApp.Ul.OpenDbDialog

End Sub

Thkkkkkhkkhkkhkhkhkhkhkkhkkhkkhkkhkhkhhkhhkkhkkhkhkhkhhhkhkhhkkhkkhkhhhhhhkhkkhkkhkhhhhhkhhhkkhkhkhhhhkhkkkkhkhhhhx

' NAME: btnOpenConfig_Click
' DESCRIPTION: Opens the configuration as specified in the
' text box and compiles the CAPL code. It also stops all running
‘ measurements
Private Sub btnOpenConfig_Click()
If (gConnected = False) Then
" make the connection
CanConnect

End If

If (gCanApp.Measurement.Running) Then
' stop the CANalyzer measurement
gCanApp.Measurement.Stop

End If

"load an existing CANalyzer configuration

gCanApp.Open (txtConfigLocation.Text)

' compile any CAPL code of the CANalyzer configuration

gCanApp.CAPL.Compile

' check to see if MotBus.cfg configuration is loaded

If (gCanApp.configuration.Name = "motbus") Then
gMotBus = True

Else
gMotBus = False

End If

' enable database dialog button

btnDbDialog.Enabled = True

End Sub

Thkkkkkhkhkhkhkhhhhkkkhhhhhhkhkhkhkhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhkhkhkhkhhhkhhhkhkhkhhhhk
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' NAME: btnStartMeasurement_Click
' DESCRIPTION: Starts the measurement if no measurements are
' running; otherwise it stops the measurement

Thkkkkkkhhkhkhhhhkkhkhkhhhhhhkkhhkhhhhhhhhkhkhhhhhhhkhkhhhhhhhhkhkhhkhhhkhhhhhkhhhhhk

Private Sub btnStartMeasurement_Click()

If (btnStartMeasurement.Caption = "Start Measurement") Then

If (gConnected = False) Then
" make the connection
CanConnect
End If
' start a CANalyzer measurement
gCanApp.Measurement.Start

Else
' stop a CANalyzer measurement
gCanApp.Measurement.Stop
End If
End Sub

Thkkkkkhkkhkkhkhkhkhkhkkkhkkhkkhhhhhkhkhkhkkhkhkhhhhhhkhkhkhkhhhhhkhkhkhkhkhhhhkhhkhkkhhhhhhhkkkhhhhix

' NAME: gCanMeasurement_OnStart (event handler)
' DESCRIPTION: Disables the open configuration button and
' changes the caption of the measurement button

* *% *kkkkkkkkhhhhhhkkkkkkkkkkkkkrk * * *kkkkkhkkk

Private Sub gCanMeasurement_OnStart()
' disable open configuration functionality
btnOpenConfig.Enabled = False
' change the caption of the button
btnStartMeasurement.Caption = "Stop Measurement"
" display CAN channel parameters
GetCANChannelParameters
" enable the timer
tmrSignals.Enabled = True

End Sub

* * *% *kkkkkkkkhhhhhhkkkkkkkkkkkkkhk * * *kkkkkkkkk

' NAME: gCanMeasurement_OnStop (event handler)
' DESCRIPTION: Enables the open configuration button and
' changes the caption of the measurement button
Private Sub gCanMeasurement_OnStop()
" disable the timer
tmrSignals.Enabled = False
' enable open configuration functionality
btnOpenConfig.Enabled = True
' change the caption of the button
btnStartMeasurement.Caption = "Start Measurement”
' update controls on the form
ResetDisplayControls
End Sub

Thkkhkkkhkhkhkhkhhhhkkkhkhhhhhkhkhkhhkhhhhhhhkhkhhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhhhkhhhhhd

"NAME: gCanApp_OnQuit (event handler)
' DESCRIPTION: Sets a flag to indicate that the connection
" with the COM server is no longer there

Private Sub gCanApp_OnQuit()
"indicate that MotBus.cfg is not loaded
gMotBus = False
' disable the timer
tmrSignals.Enabled = False
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" indicate that the connection is no longer there

gConnected = False

' reset signals

Set gEngSpeedSignal = Nothing

Set gCarSpeedSignal = Nothing

Set gEngTempSignal = Nothing

Set gEngStatusSignal = Nothing

' reset CANalyzer object globals

Set gCanApp = Nothing

Set gCanMeasurement = Nothing

Set gCANChannel1 = Nothing
End Sub

Thkkkkkkhkhkhkhkhhhkkhkhkhhhhhhkhkhhkhhhhhhhkhkhhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhhkhkhhhhhd

' NAME: gCanMeasurement_Onlnit (event handler)
' DESCRIPTION: Initializes the measurement signals of the
' MotBus.cfg configuration if this is loaded
Private Sub gCanMeasurement_OnlInit()
If (gMotBus = True) Then
' assign signals
Set gEngSpeedSignal = gCanApp.Bus.GetSignal(1, "EngineData", "EngSpeed")
Set gCarSpeedSignal = gCanApp.Bus.GetSignal(1, "ABSdata", "CarSpeed")
Set gEngTempSignal = gCanApp.Bus.GetSignal(1, "EngineData"”, "EngTemp")
Set gEngStatusSignal = gCanApp.Bus.GetSignal(1, "EngineData", "IdleRunning™)
End If
"assign CAPL function
Set gSendGearFunction = gCanApp.CAPL.GetFunction("sendGear")
' call CAPL function to set gear position to one
gSendGearFunction.Call (1)
End Sub

"NAME: tmrSignals_Timer (event handler)
' DESCRIPTION: On timer event that occurs every 100ms if a
" measurement is running. If the MotBus.cfg configuration is active,
' the signals on the form are updated
Private Sub tmrSignals_Timer()

If (gMotBus = True) Then

UpdateMotBusSignals
End If
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26 Appendix A: Introduction to CAN Communications

This guide is divided into three major related topics. The first topic discusses many of the key aspects and elements of
a distributed application. This “beginning at the systems level” overview helps to explain the need for a communication
system like CAN. The second maijor topic moves to an overview of the CAN protocol with a sufficient amount of detail
to help you master the “upper-level rules” of the protocol. The last topic discusses the common electrical wiring
interface used for CAN communications - the high-speed, 2-wire differential, and CAN Physical Layer.

Understanding these three topics in combination will quickly help you learn how to get your first CAN application up
and running quickly.

26.1 The Distributed Application

What are we trying to accomplish? The goal is not only to learn how to implement a communication system but to
construct an application that operates in a distributed environment. Before we learn details about the CAN protocol, let
us first begin at the system level. Learning about the system aspects of a distributed application will make the CAN
protocol much easier to understand.

In general, there are two common types of electronic system or product architectures - centralized and distributed.
Figure 85 shows a simple model of both architectures.
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> > —>| > —> —> —> —>
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Figure 85 - Centralized and Distributed Product Architectures

While many systems have originated using a centralized architecture, many new electronic systems are distributed.
The contemporary automobile is a good example of distributed product architectures. Initially consisting of one large
electronic control unit (ECU) to control all car functions, vehicle feature content has been physically partitioned across
a multitude of smaller electronic modules to reduce wiring cost and to help simplify the addition of options. Many other
industries have made the transition to a distributed architecture for similar business reasons.

The distributed product or distributed embedded system is the container for the distributed application. The typical
distributed application contains a large set of functions, and many of these functions are distributed. In the next
section, we will examine the elements of the distributed function.

26.2 Distributed Functions

At the system level, the application is essentially a collection of functions. If the architectural decision is to distribute
the system, many of the original functions may become distributed.

To understand the distributed function, let us first begin with the concept of a basic function, which can be easily
modeled as three elements - an input process, a control process, and an output process - as shown in Figure 86. A
basic function might be pressing a switch that activates a light.
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Figure 86 - The Basic Function

To distribute a function, one simply partitions the elements of a function across the membership of the distributed
embedded system. This partitioning process requires the creation of a partition boundary as shown in Figure 87.

Partition Boundary

\

N— | HH C [ O —pour

B00100421

Figure 87 — The Partition Boundary

If we choose to partition the function using a partition boundary between the input and the control processes, a
distributed function results (Figure 88). The act of distributing a function results in two new processes plus the need to
transfer information across some communication channel. In comparison, the original function included only three
elements. The distributed function increases the number of processes to five.
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Figure 88 - The Distributed Function

Distributed functions result from the splitting of a function across the distributed system. From our previous example,
we could let one module or node read the switch and have a different module or node turn on the light.

To assure proper operation, the distributed function requires a data or "signal" transfer between the modules. The
format and size of this data depends on each function. While the movement of information, such as a switch press,
requires only a single bit, an analog value like the position of a pot may require eight bits of data.

Programming With CAPL



168 Appendix A: Introduction to CAN Communications

26.2.1 A Common Example of a Distributed Function

One common automotive distributed function with which almost everyone has interacted is the "door unlocking"
function as shown in Figure 89.

KEY FOB - UNLOCK —II} [ ] @— DRIVER DOOR - LOCK ACTUATOR
DRIVER DOOR - UNLOCK —II} C @— PASSENGER DOOR - LOCK ACTUATOR
PASSENGER DOOR - UNLOCK —|I|— 11040517153

Figure 89 — Door Unlocking as a Distributed Function

In a typical 2-door vehicle, the unlocking function is accomplished using three inputs - one unlock switch on the driver's
door, a similar second switch on the passenger door, and a single unlock button on the key FOB. Two outputs are
used to activate the separate door unlock mechanisms. While the exact location of the control block is of little
importance, many automobile system designers place the control process close to the output process.

As a result of this system level partitioning, the actual distributed function is commonly placed into three modules,
similar to that shown in Figure 90. A communication bus is used to effectively glue the function together.
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Figure 90 — Door Unlocking Function Distributed over Three Modules

26.3 Partitioning Requires Addressing

As you partition the distributed application into constituent parts, a way to point at the various distributed function
elements becomes necessary.

For example, let us assume we were constructing a simple gaming system that could determine which of 32 individual
switches was pressed first. Instead of using 32 wires, we have decided to partition the function immediately after the
input process and to use a communication bus to reduce the wiring. The control process only needs to determine
which contestant or switch is the winner and move this information to the output process to display the winning
number.

To implement this system as a distributed application, we would need some way of indicating which of the 32 switches
was pressed. One way of implementing this using the CAN protocol is to assign 32 separate message identifiers. Each
input switch would be assigned a unique CAN identifier that specifically indicates which switch is being pressed.

If all input (switch reading) processes are identical, then the first input switch press to transfer its message wins. The
control process only needs to look for the first incoming message and to determine the corresponding switch number.
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Note - There are actually several ways of implementing this using CAN. You could use a set of
contiguous message identifiers or use a set of random identifiers with a message vs. switch number
lookup table or any set of identifiers with the switch number placed into the Data Field. However,
based on the CAN protocol rules, it is important to understand that you cannot use the same message
identifier for each individual (input switch) transmitter. Why? Two transmitters that simultaneously send
the same message identifier will cause either one or both transmitters to go to the "Bus Off" condition.

Addressing schemes used for distributed applications may be physical, functional, or combinations of both. While a
physical address is used to point directly at a specific physical module, the functional address points at a network
object, which is essentially a designated system function or action. The functional address is independent of physical
location.

For example, you could define “reset entire system” as a functional object and then create a single address to point at
this function. From a standpoint of the number of total messages, this is much more efficient than defining a collection
of “reset individual module” messages for each physical node. In the earlier example of the automotive door unlocking
function, it is simpler to design a single functional address that points at “unlock” rather than to use 2 addresses; one to
point at the driver door's unlocking mechanism and a second to point at the passenger door unlocking mechanism.

The development of a distributed embedded system’s address structure is a key design step that requires attention
and documentation. While some developers use a spreadsheet or database to construct the network addresses, many
use Vector's CANdb tool.

26.4 Distributed Functions Require a Transfer Dialog

For each distributed function, a design decision must be made as to how and when the data is transferred across the
partitioning boundary. The selected method and timing characteristics of the information transfer is called the transfer
dialog. The selection of a particular transfer dialog is heavily dependent upon the requirements of the intended
function.

While many variants are possible, the event, periodic, and conditionally periodic messages are three of the most
common types of transfer dialog, as shown in Figure 91.
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transfer information continously
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® Conditionally Repetitive
transfer information repetitively while condition is true
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Figure 91 - Common Transfer Dialog Methods

The event message is sent once when an event occurs. For example, a switch press may result in a single message
indicating this event. From a system perspective, the event message makes efficient use of the communications
system and consumes a very low amount of network bandwidth.
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The periodic message is continuously sent at a constant rate. The reoccurrence of the information can be used to
provide a continuous connection across the distributed function. When compared to the event message, the periodic
message requires a higher amount of network bandwidth.

The conditionally periodic message only transfers information continuously if a specific condition is true. For example,
a system designer may choose that when a switch is pressed, then and only then is a periodic message transferred,
then once the switch is released, the message transfer stops.

Other transfer dialogs are also possible. Imagine the press of a switch that activates an alarm system. Perhaps the
designer may choose to send multiple event messages rather than a single event message to increase the reliability of
the overall system.

Some designers choose to use another form of transfer dialog, "coupled messages". For example, if you are asked to
activate an alarm and you send back a message that indicates the alarm is activated, this information confirms that the
intended function has actually been achieved. While using coupled messages is another useful way of raising the
reliability of the system, in general, it doubles the amount of messaging.

Using a dialog chart, Figure 92 shows this basic method of using “coupled” conversation between nodes A and B.

dialog messages
NODE A NODE B
NODE A NODE B
Check for (|
Presense Are_You_There_Message >
""""" Yes_lam_Message
<« _lam_ g
Turn On
Device 1
Activate_Device_1_On_Message >
""""" Device 1 _Is_On_Message
4 — J
B01011991

Figure 92 — Example of Message Coupling

26.5 A Distributed Function May Require File Transfer Capability

In some systems, the ability to transfer a large collection of information between network members may be necessary.
It is common to use a transport protocol to accomplish such transfers.

Figure 93 shows a small file transfer with a simple 32-byte transfer that uses 4 data frames, each containing 8 data
bytes. The complete transfer is accomplished by using 4 different segments.
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A B A B
Transfer File Segment 1 >
Transfer 32-Byte File lo[1[2[3]a]5]6]7]
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24|25|26(27(28(29 (3031 - N—— Transfer File Segment3 |
[16[17[18]19[20{21]22|23]
Transfer File Segment 4
|24[25(26]27|28{29]30(31]|
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The process of transferring a file can also use a concept called indexing. Indexing requires that an additional

Figure 93 — Basic File Transfer

informational component be added to each message to indicate the sequence position of the transfer. Figure 94 shows
a 28-byte file transfer in which an index number has been attached to each transmitted segment.
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Figure 94 — Basic File Transfer with Indexing

26.6 The Distributed Application and the OSI Seven-Layer Model

As we have learned in the discussion surrounding the distributed application, several of the following key components
are required:

A communication method or set of methods to transfer data

These same key components are the foundation of the OSI seven-layer model.

A means to distinguish between different distributed function elements

A method or set of methods to accomplish the transfer dialog or conversation
A set of transferable network data variables
A potential need for file transfer
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Independent of the type of network, the Open Systems Interconnect or OSl is a useful standard network architecture
organized into a seven-layer reference model. Originated by the International Standards Organization or ISO, the
governing document, ISO 7498, provides a comprehensive set of requirements for the exchange of information. The
OSI 7-layer Reference Model has become a well-known standard, and as the standard has gained more recognition
and popularity. The term “stack” has become a common one-word substitute for the OSI seven-layer reference model.

While typically diagrammed as a collection of seven interconnected blocks, as shown in Figure 95, it is important to
understand that this structural set of requirements is implemented using software, hardware, and information
technology.

Vehicle Network Requirements Vehicle Network Implementation
1 1
[ SUPERVISE )
Application Layer RECEIVE
TRANSMIT
Presentation Layer
Software
Session Layer | |
oS/ Network =
7-layer Transport Layer Database |
Model ; ﬁ I
Network Objects CAN Protocol
Network Layer | Aarosses - . Controller
Messages
Data Link Layer i [ 5
- Datarorma TRANSCEIVER | Physical
Physical Layer I AN BUS Layer
L am LB J
B04021401

Figure 95 — The OSI Seven Layer Reference Model

26.6.1 Physical Layer

The Physical Layer consists of the network interconnection, the selected media (typically wire), connectors, the
transceiver chip, and any other media interface-associated components (some designs use additional protection
devices or common mode chokes). The Physical Layer provides a direct logical interface between the shared media or
bus and the protocol controller (Data Link Layer) to handle the conversion of data logic levels into media states during
transmission and the conversion of media states into data logic levels during reception. Additionally, the Physical Layer
provides a media access technique that is used to solve a fundamental network sharing problem, that is, how does the
system handles the event that more than one network member wants to use the media at exactly the same time.

26.6.2 Data Link Layer - Data Transfer Structure
The Data Link Layer establishes the requirements of the network’s data transfer structure. Typically implemented in
silicon in a protocol controller, the Data Link Layer establishes the serial bit encoding method and handles all data
transfer rules for proper transmission and reception. The Data Link Layer establishes rules that define the following:
¢ How to access the media (or bus) for transmitting
¢ How to recognize the media states during reception
¢ How to send information (from the bit level up to the message level)
e How to receive information (from the bit level up to the message level)
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26.6.3 Network Layer - Address Structure

The Network Layer establishes the requirements of the network’s address structure. Within any distributed system, we
need the ability to point at network objects that come in two general types - physical objects and functional objects. It is
the Network Layer that provides the ability to point at network objects.

26.6.4 Transport Layer - Message Transfer Structure

The Transport Layer establishes the message transfer structure and provides the ability to move larger amounts of
information across the network. Because of several similarities, it is common to confuse the Transport Layer with the
Data Link Layer. What is the real difference between the two? One way to understand is to use the following simple
analogy. If the Data Link Layer handles the transfer of “words”, and the Transport Layer handles the transfer of
“sentences or paragraphs”. When a distributed product architecture requires larger transfers beyond the Data Link
Layer capability, the Transport Layer is used to provide this capability. This means that the Transport Layer may be an
optional element of the architecture.

26.6.5 Session Layer - Conversation Structure

The Session Layer defines the network’s conversation structure. When to talk or initiate a dialog, how often one should
talk, and how one should respond are all conversational portions of a distributed embedded system. Typically, the
designer must develop a wide range of conversation that may include the following:
o Network initialization
Network synchronization activities (such as system reset, or perhaps sleep/wake-up)
Dialog during normal operation
Dialog during diagnostic operation
Dialog during manufacturing activities (for example, flash programming)

26.6.6 Presentation Layer - Data Structure

The Presentation Layer establishes the entire data structure for the entire distributed embedded system. Each network
data item, whether a bit, nibble, byte, multiple byte transfer, or file transfer, is a part of the data structure.

Commonly organized using a database, the Presentation Layer contains the following:
The name of each network data variable (sometimes called a signal)

To what message or messages the network data variable is assigned

The size of the data

The data content encoding or format

The message name

The home of the data (who the transmitter is)

26.6.7 Application Layer - Application-to-Network Interface Structure
The Application Layer defines the application-to-network interface and, when implemented, results in an API between
the network software and the application software. The general application-to-network interface supports the following:
e Transmission activities
e Reception activities
o Network supervision activities

While this outside edge of the OSI model represents the major software interconnection between the application and
the small area network, what actual services that may be provided by the Application Layer and how these services
are implemented is a decision made by the systems architect.

26.7 Distributed Applications Require Data Structures

Distributed functions require data structures. The data must be named, sized accordingly, and organized into a
message database. This system level data structure is equivalent to the OSI Presentation Layer.

The Presentation Layer establishes the entire data structure for the entire distributed embedded system. Each network
data item, whether a bit, nibble, byte, multiple byte transfer, or file transfer, is a portion of the data structure.
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Assigned by systems engineering activity and commonly organized using a database, the Presentation Layer contains
the following:
e The name of each network data variable (sometimes called a signal)
The message or messages to which the network data variable is assigned
The size of the data
The data content encoding or format
The message name
The home of the data (the transmitter)

It is common for many system architects to group the address structure (Network Layer), the data structure
(Presentation Layer), and portions of the conversation structure (Session Layer) into the same database. Several
automotive companies use Vector's CANdb++ tool to provide this organization.

26.8 Understanding the CAN Protocol

Now that we understand that the purpose of a small area network solution like CAN is to interconnect a collection of
distributed functions into a working distributed application, let us move on to the CAN protocol.

CAN, or Controller Area Network, is a significant leap forward when compared to the use of serial communication
methods based on the use of the UART or SPI. The CAN protocol is no ordinary substitute for the UART or SPI. This
robust silicon-based implementation provides sufficient power to manage a major portion of a complete communication
network solution. To build equivalent network functionality using the UART or SPI requires a significant amount of
communication software to provide the same features.

26.8.1 Key Attributes
As a protocol, CAN has several features that make it an attractive choice for the user.

26.8.1.1 CAN Adoption — a Worldwide Standard

Developed at Bosch during the mid '80s for automotive applications, CAN supports distributed product and distributed
embedded system architectures by providing a low-cost communication method to interconnect a network of electronic
nodes, stations, or modules. The CAN protocol has emerged to be a worldwide standard both in the automotive
industry and in several other industries including agriculture, heavy truck, bus, construction equipment, marine,
industrial automation, and medical.

The Bosch CAN 2.0B specification has become the de facto standard that all new CAN Controller chip designs follow.

26.8.1.2 CAN Cost — the Lowest Business Cost Solution

For the automotive industry, the CAN protocol has essentially replaced all earlier proprietary protocols (for example,
SAE J1850) which were individually developed at each car company. CAN has been adopted for many other industries
and individual companies that use distributed product architectures. The basic reason for this widespread
standardization is quite simple -- all things considered, CAN is currently a lower-cost solution than any other serial
communication method.

The key business reasons to use CAN include the following:

Low cost CAN hardware components - widely available

Low cost CAN tools - in comparison to making your own tools

Low cost CAN software components - in comparison to writing your own software

Low cost CAN ftraining - in comparison to making and maintaining your own training classes

26.8.1.3 CAN Transfer Rates - 1 Mbps and Beyond

Essentially, the transfer rate of the CAN protocol is not fixed to any one particular speed. Most of the common
worldwide high-speed applications that are CAN-based are using 500K BPS. With few exceptions, 500K is the industry
choice for automotive motion control area networks. At the other end of the automotive spectrum, low speed CAN bus
applications also exist. General Motor's Single Wire CAN solution provides 33.3K BPS operation and handles most of
the driver area functions including doors, windows, seats, mirrors, lighting, and other human-interface functions.
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Because of the expectation at the beginning that most implementations would interconnect modules using a wiring
harness, the Bosch CAN 2.0 specification inadvertently limits the transfer rate to 1 Mbps. In reality, the protocol speed
is limited only by the network propagation delay. For example, if confined to the area of a single circuit board, a
collection of interconnected high-speed microcomputers should be capable of CAN communication speeds well
beyond 1 Mbps.

26.8.1.4 CAN Transfer Size - Unlimited

With a UART or SPI based protocol, you are only capable of single byte transfers. If you wish to transfer a message
with multiple bytes, you must construct a software-based protocol that handles the process of message transmission,
message reception, and message error handling. If you use the CAN Protocol instead, the CAN Controller will handle
message transmission, message reception, and message error handling automatically. These message transfer
processes are completely implemented in silicon.

A single CAN message allows a data transfer up to eight bytes in length. This means that for each message you have
a choice of transferring 0, 1, 2, 3, 4, 5, 6, 7, or 8 bytes.

What if you must transfer more than eight bytes? What if you want to transfer files? Perhaps you might be interested in
flash programming your module using the CAN bus. This is no problem. Just use some additional software to
implement a special higher level protocol called a Transport Protocol, which essentially handles a file transfer.

26.8.1.5 CAN Data Consistency — Guaranteed for All Network Membership

Each and every transmitted CAN message includes a unique acknowledgment activity near the end of the message
transfer. The CAN Protocol rules require that the entire network membership must participate in this acknowledgment
process. Each and every CAN message receiver must signal either a positive or negative acknowledgment to the
message transmitter. A simplified model of this important acknowledgment process at the system level is shown in
Figure 96.
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Figure 96 — All CAN Nodes Participate in the Acknowledgment Process
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No software is required to handle this process because the acknowledgment process is entirely handled by the CAN
Controller.

While this acknowledgment process is somewhat difficult to understand, it is one of the most important foundations of
the CAN Protocol. The rule - that each and every CAN node (receiver) must agree (and confirm with an indication) that
each and every message transfer is correct - is a virtual guarantee that the entire network membership is using exactly
the same data. This rule is extremely valuable for real-time distributed control systems. This "guaranteed data
consistency" feature is perhaps one of the most significant technical reasons for the success of the CAN protocol.

The acknowledgment process solves the problem of what happens if there is noise on the communication wires that
corrupts the message transfer. Each node that detects a message transfer error will not agree that the message is
correct and, subsequently, will signal a negative acknowledgment. This negative acknowledgment is transmitted as an
"error flag" and is detectable by all network nodes - especially by those receiving nodes, that earlier may have
indicated a positive acknowledgment. The negative acknowledgment (or "no agreement") is detectable by every CAN
network member, and as a result all receiving nodes may not use the data. Additionally, the CAN Controller of the
original message transmitter that detects the negative acknowledgment will automatically reattempt sending the
message.

The CAN Protocol acknowledgment rule means:

For each data transfer, either all network members agree that the data is correct OR all network members agree that
the data is not correct. It will not happen that some receivers consider the data to be correct while others consider the
data to be incorrect.

Again, it is important to remember that these protocol rules are implemented in the CAN Controller silicon and no
software interaction is required.

26.8.1.6 CAN Error Handling - Guaranteed Message Delivery

The CAN Protocol rules require that each CAN Controller include detailed transmission and reception error detection
and handling processes. This automatic error handling includes the detection of bit errors and error frame detection or
indication and further increases the CAN message transfer reliability.

Implementation of a similar error handling mechanism for a UART based or SPI based protocol must be accomplished
in software.

In combination, the acknowledgment process, the CRC, and the error handling process - all accomplished in the CAN
Controller silicon - virtually guarantee each and every message transfer.

26.8.1.7 CAN Transfer Reliability — Close to Perfect

With each CAN message transfer using a 15-bit cyclic redundancy check (CRC), CAN is considered a highly reliable
protocol. Based on one academic study of transferring a periodic message at a continuous 100 millisecond rate, the
CAN protocol undetected error rate was reported at a level of one single bad message every 1000 years!

In some cases, an application or applications may require even higher levels of reliability. In these cases, using the
lessons learned from the military's early MIL STD 1553 protocol, the system designer can easily employ one of several
techniques to increase the transfer reliability.

26.8.1.8 CAN Message Collisions — Never Occur

Two fundamental rules inside the CAN protocol guarantee that competing transmitters will not collide into each other
during any message transfer. These rules are:

e The Physical Layer must support Dominant/Recessive Logic

e The interface must allow simultaneous comparison of the transmitted bit with the receive bit

Unlike Ethernet and other peer-to-peer UART-based protocols that must detect collisions and devote resources to
resolve collisions, the CAN Protocol guarantees no message collisions. This means that 100 percent of the network
bandwidth is available for message transfer.

We will learn more about dominant and recessive logic when we examine the CAN Physical Layer.
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26.8.2 Understanding the Basic Elements of the CAN Message

For the student, learning about all details of the CAN protocol is not necessary. The following discussion targets only
the key elements of the CAN protocol.

26.8.2.1 The Basic CAN Message Structure
The basic CAN message (also called the Data Frame) is shown in Figure 97.

ige | SOF | Identifier Control DATA CRC | ACK | End of Frame | Interframe Space

B03031310

Figure 97 — The Basic CAN Message Structure

@ Note: - Because most distributed application developers do not use the CAN Remote Frame, the
discussion of the basic CAN message structure will focus only on the Data Frame.

26.8.2.2 Idle

Each CAN message is preceded by a period of “idle” during which the bus is in the recessive state. The idle time
interval must be at least 11 bit times. The detection (or time measurement) of the time duration of idle is an important
component of CAN and essentially signifies a “ready for message” condition.

26.8.2.3 Start of Frame - SOF

Each CAN message begins with a Start of Frame indication. This is a single bit period during which the bus is in the
dominant state.

26.8.2.4 Identifier

Each CAN message includes an identifier. Depending on your point of view - system, software, or hardware - the
identifier essentially "names" the message or points at the data or acts as an address. The following two sizes of CAN
identifiers are available:

o the 11 bit identifier - allowing the ability to point at about 2,000 network objects

o the 29 bit identifier - allowing the ability to point at millions of network objects

While most distributed application designers typically use only one type of identifier, some CAN Controllers do allow
the ability to use both at the same time.

Figure 98 illustrates the basic organization of both the 11-bit and the 29-bit identifier.

11 Bit Identifier Field

:‘|b10|b9|b8|b7|b6|b5|b4|b3|b2|b1IbOI |

RTR - Remote Transmission Request [Dominant = Data Frame, Recessive = Remote Frame]

29 Bit Identifier Field

|b28|b27|b26|b25|b24|b23|b22|b21|b20|b19|b18| | |b17|b16|b15|b14|b13|b12|b11|b10| b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | |

SRR - Substitute RTR bit for 29 bit ID IDE - Identifier Extension [Dominant = 11 bit ID, Recessive = 29 bit ID] RTR

Because dominant (logic "0") wins over recessive (logic "1"), low-valued identifiers always have higher priority to access the bus.
The lowest identifier subsequently wins arbitration while the other senders will wait until idle before re-attempting transmission.
M04051712

Figure 98 — The Organization of the CAN Identifier
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26.8.2.5 Control

The Control Field contains the Data Length Code, usually called the DLC, which essentially tells the size of the data
that is being transferred. Although 4 bits are used to indicate the Data Length Code, only data sizes between zero and
eight are used. Figure 99 illustrates the organization of the Control Field. At the student level, the first 2 bits are
relatively unimportant.

idle | SOF | Identifier Control DATA CRC ACK | End of Frame | Interframe Space

(]
IDE/r1 1 1

L L LT L fosfeeforfeo] | [ [ T ] 1 1T 1T P 11T T ]]

MSB LSB
Data Length Code

Figure 99 — The Control Field

B01021204

26.8.2.6 Data

The Data Field contains up to 8 data bytes. Figure 100 illustrates the basic structure of the Data Field and includes the
bit ordering.

idle | SOF | Identifier Control DATA CRC | ACK | End of Frame | Interframe Space

B01051802

BYTEORDER | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8

BITORDER |[7]6]5[4]3]2]1]0]
Figure 100 — The CAN Message Data Field Structure

26.8.2.7 Cyclic Redundancy Check

Each CAN message includes a Cyclic Redundancy Check (CRC). to increase the reliability of message transfers. A
CRC is a type of checksum, a computed value near the end of a message frame which is based on the contents of a
block of data starting from the start of frame to the last byte of the data field. The CRC computed by the transmitter is
compared within each receiver to a locally calculated CRC. If the receiver's CRC matches the transmitted CRC, then
the likelihood of a transfer error is very low.

While CAN uses a 15-bit CRC that is considered to be more than adequate for most applications, some safety-critical
application developers increase the transfer reliability to an even higher level by embedding an additional CRC in the
message data field.

26.8.2.8 Acknowledgment

The acknowledgment portion of the CAN message is used by all network members to indicate whether the CAN
transfer is correct or incorrect. Entirely implemented in silicon, the acknowledgment process guarantees that all
network members will agree as a group that the transfer is correct. If any network member detects the transfer to be
incorrect, that network member will indicate this incorrect condition to the rest of the network.
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The acknowledgment process is a sequential two-step process, organized in time as follows:
o First, all network members that agree the transfer is correct will indicate this condition during the
acknowledgment bit by transmitting a dominant bit.
e Second, after this indication, any network members that disagree the transfer is correct will indicate this
condition by transmitting an Error Flag.

Without using CAN terminology, a simpler way to explain this sequence is to understand that “yes” voters will vote first
followed by the “no” voters. This means that anyone can veto the message. While this makes it sound as if a renegade
node could ruin the network, additional protocol rules using transmit and receive error counters easily solves this
problem.

26.8.2.9 End of Frame

The End of Frame is seven recessive bits, and serves as the following:
e A marker that indicates the end of the frame
o Atime period of idle time between messages
e Atime period to vote “no” for nodes that do not agree with the transfer

26.8.2.10 Intermission Space

The intermission space is 3 recessive bits, after which a subsequent CAN message may immediately begin, because
the 11-bit idle time is already satisfied.

26.8.3 The CAN Error Frame

The CAN Error Frame is used to indicate an error condition to the entire network membership. The CAN protocol rules
establish when to signal an error frame, and this entire process is completely handled in silicon. Again, no software
intervention is required or necessary. Use the upcoming CAN receive and transmit state machines to understand more
about how and when the Error Frame is used.

26.8.4 CAN Error Counting

The CAN protocol requires the use of error counters — one for reception and another for transmission — to determine
the error state of the CAN Controller. Implemented in silicon, these counters are used to establish the key states of
Error Active, Error Passive, and Bus Off.

Figure 101 shows the upper-level details and the major error counting rules. Use this diagram with the CAN receive
and transmit state machines to learn more details.

CAN Error Handling Error Counting Rules
Each CAN confroller implemenis a receive and . Initiahize emraor counter fo zero H Increase TEC by 8 when defecting
ransmit errar counter to determine how fo process 258 Transmit Error Count - TEC upon reset an eror during the transfer
aklected fransfer errors. Counting increases or ; ) ; n
decreases accarding fo profocol states and rules. ﬂ Decrease REC by 1 upon n Increase TEC by 8 when detecting
successful message receplion an Eror Flag while awaiting ACK
Receive Error Count - REC Decrease TEC by 1 upon If TEC < 128, then increase TEC
128 128 successful message fransmission by 8 if noresponse 5 defecited
Ir REC by 1 when detecting H If TEC = 256, then confinue fo
Error Error Emor Emor Bus n iorease R ] . .
Active Passive Active Passive off that anotier node does nof ACK re-atteirpt sending the message
8 o-7 i Increase REC by 8 when defectin L] /7 TEC = 256, then disconnect CAN
i g
ERROR State ERROR State an invalid ransfer coniroller fom ihe bus (Bus Off)
MO4021305

Figure 101 — CAN Error Counting

26.8.5 The CAN Receive State Machine

Figure 102 shows the silicon-based CAN receive state machine.
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Receive State Diagram
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Figure 102 — The Basic CAN Receive State Machine

26.8.6 The CAN Transmit State Machine

Figure 103 shows the basic structure of the CAN transmit state machine. With the exception that an application must
use software to initiate the transmission of a message, this transmit process is essentially all implemented in silicon.

reset CAN controller go
Bus
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Figure 103 — The Basic CAN Transmit State Machine
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26.8.7 CAN Implementation Ingredients — CAN Controller, Software, Physical Layer

As shown in Figure 104, to functionally implement a CAN node in a module essentially requires three key items: a
CAN Controller, CAN communications software, and a suitable Physical Layer.

Note: A CAN Controller with no connection to a Physical Layer will not function. The CAN protocol
rules require that some method be used to allow comparison of the transmitted bit with the receive bit.
Without being connected to a suitable CAN Physical Layer, the CAN Controller cannot compare its
transmitted bit with the receive bit.

SOFTWARE CAN CONTROLLER PHYSICAL LAYER
| supervise
| receive
transmit
\\wi CAN ™ CAN
- Device  Rrx Transceiver
| | B03020804

— = CAN BUS

Figure 104 — Key Implementation Components

26.8.7.1 CAN Controller

CAN Controllers are available as integrated silicon peripherals co-resident with the microcomputer or as separate,
external integrated circuits. A wide variety of CAN Controllers are available across the entire semiconductor industry.
Some devices include multiple CAN Controllers. The CAN Controller has two major interfaces - one, an interface that
interconnects to the selected Physical Layer and the other interface that interconnects to the network communication
software.

Two prominent types of CAN Controller architectures are common-
e A simple transfer buffer architecture - also sometimes referred to as "Basic CAN"
o A moderately complex Dual-Port RAM-type architecture - also sometimes referred to as "Full CAN"

All new CAN Controllers implement the CAN Protocol rules as defined by the CAN 2.0B specification. When
considering the available devices, notice that several semiconductor manufacturers also provided special features to
allow special CAN operations. For example, a "listen only" mode is available on some CAN Controllers.

26.8.7.2 CAN Communication Software

CAN communication software is needed to interconnect the application to the network-based communication system.
Receiving a message in the CAN Controller does not automatically result in any action. In the software domain, you
must extract the information from the message, examine this information, and then potentially take the appropriate
action. In addition, when an application needs to move information onto the network, the communication software is
used to load the appropriate message into the CAN Controller for transmission.

You must develop CAN communication software to handle these fundamental transmit and receive activities. Typical
CAN communication software components might also include the following:

Network initialization

Transmit message construction

Receive message parsing

Network supervision

Network relationship management

Network error management - like "bus off" handling
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26.8.8 CAN Physical Layer

The CAN Physical Layer includes the network interconnection, the physical wiring (or other media), the transceiver,
and perhaps a few other interface-associated components. The Physical Layer provides a direct logical interface to the
CAN Controller and is one of the concentration areas directly related to electronic hardware design.

Several CAN Physical Layers are available, including many industry-specific standards. The semiconductor industry
has created a selection of CAN transceivers to accommodate these different CAN Physical Layer standards. Keep in
mind that several CAN interfaces are tailored to the application-specific environment.

The following lists three common CAN transceivers used by the auto industry:
e The high-speed, 2-wire, differential transceiver
e The low-speed, 2-wire, fault-tolerant transceiver
e The low-speed, 1-wire transceiver

26.8.9 Physical Layer Choices

While the overwhelming choice of CAN Physical Layer across most industries is the high-speed, 2-wire, differential
transceiver, other possible CAN Physical Layer choices (of which some are already commercially available) include
the following:
o Fiber-optic
Infrared
Ultrasonic
Audio
RF or wireless
Magnetic
Power line carrier

26.8.10 Basic CAN Physical Layer Principles
26.8.10.1 Dominant/Recessive Logic

Commonly used to establish the state of a shared medium, dominant/recessive logic is a simple two-state form of logic
in which the logic state of the shared medium is established as either dominant or recessive, as shown in Figure 105.

Dominant/Recessive Logic - Rule 1

1. There are only two bus states: Dominant . Recessive

B01030901

Figure 105 — The Two States of Dominant and Recessive

For example, we could use an optical shared medium in which the dominant state could be indicated by light and the
recessive state could be indicated by dark.

Once we begin to combine the dominant and recessive states on the shared medium, the fundamental operation rules
of dominant/recessive logic are as follows:
o If any device places the shared medium into a dominant state, then the resulting shared medium state is
dominant
e If no device or network member places the shared medium into a dominant state, then the resulting shared
medium state will be recessive
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As shown in Figure 106, this combinational logic demonstrates that the dominant state always wins over the recessive
state.

Dominant/Recessive Logic - Rule 2

2. The dominant state always WINS over the recessive state
OR

2. When two transmitters output their respective states onto the bus,
the following resultant bus state logic must occur -

Transmitter #1 .

Transmitter #2

Resulting Bus State . .

B01030902
Figure 106 — Dominant/Recessive Logic

When dominant/recessive logic is used by the CAN protocol, the recessive state is also used to indicate the CAN
protocol’s idle condition, that is, when no CAN message is being transferred, as shown in Figure 107.

During the NON-MESSAGE or IDLE TIME
the bus uses only RECESSIVE

During the MESSAGE TIME
the bus uses both DOMINANT and RECESSIVE

dominant .
recessive |:|

IDLE MESSAGE |

B00112201

Figure 107 — The CAN Protocol Idle State Is Recessive

26.8.11 CAN Controller — Dominant/Recessive Logic Levels

Based on the CAN protocol rules and shown in Figure 108, all CAN Controllers use the same logic reference at the
Transmit (TX) and Receive (RX) pins. Logic level “zero” is the dominant state, and logic level “one” is the recessive
state.
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Microcontroller

CAN Protocol
Controller

TX RX

Logic "0" = DOMINANT
Logic "1" = RECESSIVE

B01011402 |

X RX

Transceiver

!

Transfer Medium

Figure 108 — Dominant/recessive Logic Levels Referenced to the CAN Controller

26.8.12 Common Dominant/Recessive Logic Implementations

When implementing dominant/recessive logic, the dominant state is commonly established by an activated electronic
device, while the recessive state is automatically established by the absence of any activated device.

Dominant/recessive logic is easy to implement. Figure 109 shows two simplified implementations; one, based on open
collector logic, and the other based on open emitter logic.

+V

NoDE *V NoDE YV

BUS

o o>
o o>

BUS

NODE NODE

= B04051704
Figure 109 — Implementing Dominant/Recessive Logic with Open Collector and Open Emitter Logic

Independent of the circuit realization, both open collector and open emitter logic provide the same logic requirements
for dominant/recessive logic as shown in Figure 110.
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Switch ON = DOMINANT .

Switch OFF = RECESSIVE

wors |
N
Resulting Bus State . . .

B00112212

Figure 110 — Logic Table for Either Open Collector-type or Open DEmitter-type Implementations

26.8.13 The Common High-Speed, Two-Wire Differential Transceiver
The basic model of the common high-speed, two-wire differential transceiver is shown in Figure 111.

5V 5V

! !

CAN_H

2.5V CAN L 2.5V

1 !

Figure 111 — Basic Model of the Industry-Standard Dual Wire Differential High-Speed Transceiver

B00112109

When differential transmission and reception is used, typically a pair of twisted wires, either shielded or unshielded
(dependent on EMC requirements) is employed. The individual wires are designated as CAN_L and CAN_H, and
these CAN signal wire names are matched with the dominant state. When the bus is in the dominant state, CAN_H is
HIGH and CAN_L is LOW.

Also notice that the recessive state is electrically placed at a mid-supply voltage level, as this minimizes the generation
of RF energy.

26.8.14 The Common CAN Transfer Medium - Wire

For most high-speed CAN communication systems, copper wire is used as the transfer medium because of its low cost
when compared to other alternatives.

26.8.14.1 The Common CAN Wiring Topology — the Linear Bus

Defined as the physical structure of the network that establishes how the shared media is interconnected, the wiring
topology selected for almost all high-speed CAN bus systems is the Linear Bus Topology (shown in Figure 112). While
other topologies including Tree, Star, and Loop are sometimes considered, their respective disadvantages, especially
their signal reflection characteristics, typically render them useless.
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Main Backbone

Termination X X XX gl e Termination
Resistance Resistance

based based based
Module Module Module

Module Module

B04051803
Figure 112 — Linear Bus Topology

With termination resistance at the physical ends of the bus, the Backbone is the main cable (or trunk) of the CAN bus
network. Additional CAN nodes are attached to the backbone cable using a Stub or drop cable.

The advantages of this topology include the capacity to handle long lengths, the ease of adding stubs, and the ability
to control signal reflection. Its primary disadvantage, however, is the need to insert bus termination to deal with
transmission line effects.

For high-speed applications, the wire length and stub length becomes critical at high bit rates. As one continues to
increase the wiring length, normal communications will eventually cease. At the CAN communication level, this
appears as a continuous source of CAN error frames.

The maximum bus length is a system-designated parameter that depends upon many factors including bit rate, the
stub length, the capacitance of the wire, and the internal capacitance of the nodes (transceiver and any utilized
protection components).

26.8.14.2 Maximum Bus Length

Because excessive wiring length will typically become a source of CAN indication errors, what length should be used?
For learning projects it is recommended to limit the backbone length to 100 feet and the stub length to 3 feet.

26.8.14.3 Bus Signal Reflections

A signal reflection occurs when an electrical signal, electromagnetic wave, or pulse propagates on a transmission line
and encounters a discontinuity on the transmission line, which results in a reflection. As the reflection splits into the
forward and backward directions, the signal reflection creates additional waves that mix with the original transmission
signal. Signal reflections are common to high-speed CAN bus networks. Even the tee-connection used to add a stub
will contribute a small amount of signal reflection.

26.8.14.4 Bus Termination — 120 Ohms at the Far Ends of the Bus

Used by most high-speed, differential communication networks, bus termination is the addition of electrical
components to reduce signal reflections. So-called end-point bus termination is an integral component of high-speed
CAN networks.

Bus termination on a high-speed network is commonly applied by using two simple resistors that must be placed at the
far ends (or end points) of the bus. The span of wire between the two termination nodes is typically referred to as the
‘backbone’.

Note: - While some bench-top experiments may seem to indicate that termination is not excessively
critical, such is not the case as the wire length increases.
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The resistor values are usually 120 ohms, because this is approximately the characteristic impedance of most twisted
pair cables used for communications. A more precise value for termination resistance can be used, the common 120
ohm value is more than adequate.

_Termination Resistors at the ends of the Main Backbone _
Each 120 Ohms 5% 1/4W

B00083102

Figure 113 — Location of Termination Resistance

26.8.14.5 Incorrect Termination Location

Be careful when creating a wiring setup that results in a new connection that results in re-establishing the “far ends of
the bus”. It is possible to take a working CAN network, that is properly terminated, add a new node or CAN tool and
effectively kill the CAN communication network. This happens because the new wiring path causes additional bus
signal reflections. As shown in Figure 114, if you connect the tool at one of the far ends of the bus, the added wire
length has just become a part of the main backbone. This means the termination resistance should move to the tool’s
interface.

Wrong Location for Termination Resistor ‘\

CAN_H

CAN_L

B00083103

A

Longest Bus Length

Y

Place Termination Here —/

Figure 114 — Upsetting the Termination Resistance Location

As shown in Figure 115, the solution is simple. Tool connections should be added into the middle section of the
backbone.
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ONLY place termination resistors

at the FAR ENDS of the main backbone
Each 120 Ohms 5% 1/4W
CAN_H

CAN_L

B00083104

Make this stub
length SHORT

CAN Tool
Connection

Figure 115 — Proper High-Speed CAN Tool Connections

26.9 First-Time CAN Steps

As you will learn in sections Error! Reference source not found. to 26.9.1.4, the first-time steps of developing a CAN
bus application are relatively simple.

26.9.1 Step One — Wiring First
Build the CAN wiring system first.

26.9.1.1 Type of Wire
You may use almost any type of wire as long as you can twist the CAN_H and CAN_L wires.

26.9.1.2 Twisting the Wire

Twist the high-speed CAN communication wires (CAN_H & CAN_L) to minimize radio frequency energy from entering
or exiting the communication bus. Only a small amount of wire twisting is necessary. 10 to 12 twists per foot is
adequate for most applications. Excessive twisting only increases capacitance, and this will tend to slow up the
communication signals and potentially result in error frames. Because twisting need not be precise, twisting by hand or
using a drill will work.

26.9.1.3 Don't Forget the Ground

High-speed CAN signal transmission actually requires three wires: 2 communication differential signal wires (CAN
High (CAN_H) and CAN Low (CAN_L)) plus a suitable ground connection between the different CAN modules.

While the ground connection is often pre-established, this may not be the case when you move to your actual
application. For many laboratory bench-top experiments that interconnect electronic modules using the same power
supply, all of the modules share the same power supply ground. As another example, in most automotive vehicle
applications, the ground connection is also pre-established because all modules use the same chassis ground.
However, when your CAN bus application uses a distributed power source in which each module has its own local
power source, then you must interconnect the grounds between these various modules using an additional ground
wire.

26.9.1.4 Include Termination Resistance

Remember to include two termination resistors, each 120 ohms, for the entire CAN bus. The placement of these two
termination resistors is quite critical, as previously noted. Place the resistors at a far ends of the bus, not in the middle.

26.9.2 Step Two — Add Modules Incrementally

After you design your distributed application using CANoe to model the functionality of all the nodes, then
incrementally add individual modules one at a time to the CANoe model to verify proper operation. It is much easier to
debug distributed application problems in this manner.
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26.9.3 Notes on Building Your Own CAN-Based Module
Try to use an off-the-shelf microcomputer development module that includes a high-speed CAN interface.

For the Physical Layer, use the common high-speed CAN transceiver. While this electronic component is widely
available as a surface mount device, a few "through hole" parts, such as the Philips 250 or 251, can be obtained. If you
have difficulty in obtaining these CAN transceivers, consider using a CAN-compatible interface using the ubiquitous
RS 485 transceiver. This component can be effectively used and is explained in Vector's application note entitled
“Using the RS 485 Transceiver as an Alternative CAN Interface”. The connection to the CAN Controller transmit pin
(usually labeled as TX) is another usable point to examine the CAN transmission. The TX pin operates with the
traditional 5-volt logic and makes the signal triggering somewhat easier when compared to the differential signals on
the CAN bus.
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ABS
ACK
ANSI
API
ASCII
BEAN
BTI
BTR
CAN
CAN_H
CAN_L
CANdb
CAPL
COM
CRC
DIR
DLC
DLL
ECU
EOF
GND
e}

ID

IDE
IFS
J1939

LED
LIN
LSB
MDI
MPH
MSB
MSG
NMEA
OCR
OEM
PG
PGN
PHYS
RGB
RS232
RTR
RX
SOF
SPI
SRR
TX
TXREQUEST (TxRq)
UART
VAN

Anti-lock Braking System

acknowledgement bit in a CAN message

American National Standards

Application Programmable Interface

American Standard Code for Information Interchange
Body Electronics Area Network

Bit Timing Interval

Bit Timing Register

Controller Area Network

CAN High signal wire

CAN Low signal wire

CAN database

CAN Access Programming Language

Component Object Model — a Microsoft Corporation standard
Cyclic Redundancy Check

Direction of transmission

Data Length Code

Dynamic Linked Library

Electronic Control Unit

1. End Of Frame 2. End Of File

ground wire

Input/Output

Message identifier

Identifier Extension bit in a CAN message
Inter-Frame Space

a SAE (Society of Automotive Engineers) network standard for applications in construction,
material handling, and forestry machines
Light-Emitting Diode

Local Interconnect Network

1. Least Significant Byte 2. Least Significant Bit
Multiple Document Interface

Miles Per Hour

1. Most Significant Byte 2. Most Significant Bit
Message

National Marine Electronics Association

Output Control Register

Original Equipment Manufacturer

Parameter Group — messages in J1939 networks
Parameter Group Number — message identifiers in J1939 networks
Physical unit

System used in computers for displaying color (red, green, blue)
A standard interface for serial data communication
Remote Transmission Request bit in a CAN message
Receive

1. Start Of Frame 2. Start Of File

Serial Peripheral Interface

Substitute Remote Request bit in a CAN message
Transmit

transmit Request

Universal Asynchronous Receiver/Transmitter
Vehicle Area Network
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* symbol

A wildcard symbol used to replace the parameter(s) in an on key or on message event
procedure to represent all keys or all message respectively. For example, all keystrokes on the
keyboard will execute this one and only on key event procedure:

on key *

{
}

P-blocks (program blocks in CANoe and CANalyzer), by default, stop the message traffic unless
an on message event procedure is defined to pass all the messages like this:
on message *

{

output(this);
}

Acceptance filter

Acceptance filtering implements a pair of mask and code which allow message objects
(hardware buffers) to receive messages with a range of IDs instead of all or no IDs. This gives
the application the flexibility to receive a wide assortment of specific messages from the bus.
Because of just one pair of mask and code, unwanted message IDs may still pass the hardware
filtering; therefore, these unwanted messages have to be filtered in the software application
(CANalyzer or CANoe).

The controller observes all messages on the CAN bus and stores any message that matches
the pair of mask and code. It is possible to accept just one ID, no IDs, or all IDs.

Acknowledge
(ACK)

CAN provides a global acknowledge field which tells the transmitter that at least one - although
not saying how many or which ones - of the network nodes received the message properly, or,
alternatively, that none were received. This field is simply one bit in the CAN message. Because
CAN is based on broadcast communication, all nodes must respond with an acknowledged
signal if they have not detected an error.

Active State

1. The state of a CAN controller after it is initialized, and whenever the transmit and receive
error counters are less than or equal to 95. The error counters are incremented accordingly
due to the type of error frames. If either error counters exceed 95, the CAN controller is in
the Warning Limit State, follow by the Passive State, and finally Bus Off State.

2. The electrical state of a bus wire that results when one or more nodes transmit the
"dominant" bus condition by "turning on" their physical layer transmit circuit. Alternate
names: Active, Dominant. Refer to the designated physical layer specification for signal
levels.

Analysis block

The Analysis Branch of the Measurement Setup window in both CANalyzer and CANoe
contains six analysis blocks by default, each responsible for its analysis functions. For example,
the Graphics block is an analysis block that is used to graph received signals. The analysis
blocks come with its own window except the Logging block that is only used for logging bus
traffic.

API

Application Programmable Interface.

The calling conventions (Interface) by which an application program gains access to system
resources and other services, often for the purpose of sending and receiving data. An APl is
defined at the source code level and provides a level of abstraction between the application and
the kernel (or other privileged utilities) to ensure the portability of the code.

Array

1. A program data structure that contains a fixed maximum number of elements of the same
data type which are referenced directly by means of an index, or subscript. The elements in
a multidimensional array are ordered on N dimensions (N >= 1). Each element is accessed
by N indices, each of which represents the element’s position within that dimension. Arrays
are used in Vector's CAPL as if they are used in C.

2. Another name for a matrix, which is an array of quantities or elements in a prescribed
form. A matrix is usually capable of being subject to a mathematical operation using an
operator or another matrix. A matrix of circuit elements can be capable of performing
functions such as code conversion. The matrix elements may be diodes, transistors,
magnetic cores, or other binary devices.
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ASCII

American Standard Code for Information Interchange.

A seven-bit code, intended as a U.S. standard (ANSI X3.4) for interchanging information among
communications devices. The code represents characters as binary numbers, used on most
microcomputers, computer terminals, and printers. In addition to printable characters, the ASCII
code includes control characters to indicate carriage return, backspace, and so on. The first 32
values are reserved for control codes, with the remaining 96 available for graphics (alphabetic,
numeric, and special characters). Several 8-bit variants exist; see ISO 646.

Attribute

A common characteristic of a database object (network, node, message, signal, environment
variable, and so on.) that is used to represent the relationship of that object type. An attribute is
defined by its name, data type, value range, and default value.

Baud rate

The total number of bits transmitted per unit of time.

Bit

A single digit in the binary (base-2) number system (binary digit). A single character in a binary
number.

These digits are represented electronically in the computer by pulses of electricity. These pulses
are generated by electric circuits, which are either on or off. Usually a circuit that is on
represents the binary number 1, while a circuit that is off represents the number 0. One bit is
thus a single pulse in a coded group of pulses. Combinations of enough of these 1s and Os can
represent any kind of data.

Bus

A set of conductor logic lines (wires, PCB tracks, parallel circuit or connectors in an integrated
circuit) that transfers data by electric impulses as logic signals from one connected component
or functional unit to any other.

Another word for data transfer medium or physical layer.

Bus Off State

A CAN controller state that occurs when the Transmit Error Counter (TEC) reaches a value of
256. This transition is usually caused by controller failure or extreme error bursts resulted in
error frames. The CAN controller within this state is disconnected from the bus by setting it in a
state of high resistance. During this condition, the CAN controller can be reset by the application
(usually after certain amount of idle time) or by a hardware reset. The reset will set the transmit
and receive error counter to zero and the CAN controller state to be Active (see Active State).
The hardware interface cards used by CANalyzer and CANoe can only be reset when the
measurement is restarted in the software. Another method is by calling either the resetCAN() or
resetCANEX() functions in CAPL.

Byte A group of 8 bits, representing any of 256 values. A byte may represent a single binary number,
8 bits of a longer binary number, two decimal digits, one decimal digit with plus or minus sign, or
a graphic character (for example, a letter, a number or any symbol).
A standard CAN message contains anywhere from 0 byte to a maximum of 8 bytes.

CAN The Controller Area Network (CAN) is a serial communications protocol that efficiently supports

distributed real-time control with a very high level of data integrity.

CAN controller

The chip or integrated silicon (with the microcontroller) that processes the CAN protocol. It
interconnects the microcontroller to the Physical Layer.

CAN_H The CAN_H bus wire of a differential connection is fixed to a mean voltage level during the
recessive state and is driven in a positive voltage direction during the dominant bit state.

CAN_L The CAN_L bus wire of a differential connection is fixed to a mean voltage level during the
recessive state and is driven in a negative voltage direction during the dominant bit state.

CANalyzer A powerful tool use to observe, analyze, and supplement data traffic on a distributed CAN
network.

CANdb 1. First generation database editor before CANdb++ use to build *.dbc files.
2. The formats of a *.dbc file. Sometime Vector’'s database (*.dbc) files are called CANdb files.

CANdb++ A database editor used to build or modify database (*.dbc) files.

CANoe A powerful tool that supports the entire development process of distributed CAN networks, from
planning to testing. It features model creation, simulation, functional testing and analysis.

CAPL CAN Access Programming Language.

A programming language based on C used in CANoe and CANalyzer for node emulation and
analysis.

CAPL Browser

An editor/compiler for CAPL programming
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CRC

Cyclic Redundancy Check.

A specialized 15-bit checksum (every message has this field) that provides the ability to
detect serial communication transfer errors and increase the reliability of data transfers.
The CRC computation uses a digital serial data single bit error detection algorithm. It is
derived from a cyclic redundancy code.

Data frame

A standard (11-bit ID) or extended (29-bit ID) message frame that carries 0 to 8 bytes of
data. An extended message may consist of more than one data frame because it has more
than 8 data bytes. A data frame cannot exceed 8 data bytes.

Data Length Code
(DLC)

A 4-bit field within the Control Field that defines the number of data bytes in a CAN data
frame.
The DLC bits can code data lengths from 0 to 8 bytes; other values are not permitted.

Database A look-up table that symbolizes the data traffic on a CAN network. In a database, you can
define the nodes, messages, signals, and their associations for a given CAN network.
ECU The acronym for Electronic Control Unit. It consists of the microcontroller and all of the

components comprising the functionality of a node.

Environment variable

Variables defined in a database that is capable of exchanging information between CAPL
programs, CAPL programs and user-defined panels, and CAPL programs and a third party
application utilizing CANoe’s COM interface.

Error frame

A frame responded to an error on the CAN bus with either six dominant bits or six recessive
bits.

Event

An action denoted by an object to code the response. Events are caused by a key pressed,
a change in the CAN controller state, a message, and so forth.

Event procedure

A block of CAPL code that is executed when an event occurs.
CAPL permits the definition of event procedures for several different kinds of events, such
as on message, on key, on errorframe, on timer, etc.

Gateway

A node used to interconnect the transfer of data between two physically separate networks
that use two different protocols. As differentiated from a bridge, a gateway acts as a
protocol-to-protocol converter.

Identifiers (ID)

A field in a message that contains network address information. The 11 or 29-bit identifier is
usually unique in a closed CAN network and is used to define a message and the data it
carries.

Message A block of data (formatted into a collection of signals) transmitted over the CAN bus in one

or more data frames. It is associated with a unique CAN identifier.

Network 1. A distributed system capable of supporting communications between two or more
nodes.

2. A method of interconnecting a collection of two or more distributed processing
subsystems, devices, computers, sensors, and actuators with the intended purpose of
sharing information.

Node 1. A key physical and functional element of a distributed embedded system, usually
located within a module that supports the physical interconnection to a shared media
and allows data communication according to a designated protocol.

2. An electronic subsystem or circuit used to interconnect a module to a network.

Panel A graphical interface built within the Panel Editor, used to provide user inputs to a CAPL

program and/or to display data received from the CAN bus.

Panel Editor An editor used to build panels.

Passive State

A CAN controller state that arises when the TEC (transmit error counter) or REC (receive
error counter) reaches or exceeds 128.

Protocol

A set of rules supporting the transfer of information between two entities, nodes, or OSI
layers concerning the format and content of messages to be exchanged. In general, a
protocol will govern the format of messages, the precedence among messages, generating
checking information and flow control, as well as actions to be taken in the event of errors.

Remote frame

A message frame transmitted on the CAN bus to request the transmission of a Data Frame
with the same identifier.

Signal Independent data spaces that occupy the data field of a data frame. The size of a signal
range from 1 bit to 32 bits.
This keyword A local variable used to reference the message within an on message event, the key within

an on key event, and the environment variable within an ‘on envvar’ event.
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Time stamp A time given by the CAN controller when a message changes state. The time stamp can
reference when the message is transmitted, received, or requested to transmit.
Transport protocol A set of rules to support information transfer by breaking long messages into a series of

shorter messages to accommodate network protocol requirements. If the receiver is not
capable of managing the entire transfer because of microcontroller resource limitations,
some form of “flow control” mechanism may be appropriate to control the overall transfer
process.

Value table Used to assign symbolic names to signal or environment variable values.
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* symbol, 75
ACK, 178
Analysis Branch, 19, 25
analysis functions
setup, 124
Application Layer, 173
array, 42
elcount(), 43
attribute
define, 28
attributes
define, 127
break statement, 56
bus length, 186
Bus Off, 95
bus parameters, 123
Bus Statistics window, 13
bus termination, 186
BYTE, 81
CAN, 79, 166
development steps, 188
features, 174

CAN communication software, 181

CAN communications, 166
CAN controller events, 94
CAN Controllers, 181
CAN protocol, 174
CANalyzer, 6
architecture, 10
download, 9
hardware connection, 9
introduction, 9
CANdb++, 26, 126
loading, 127
CANoe, 21
architecture, 23
bus parameters, 123
configuration, 122
development, 121
download, 21
hardware connection, 21
CAPL
C/C++ difereneces, 37
case sensitive, 39
comments, 38
data types, 40
keywords, 39
naming conventions, 39
CAPL Browser, 30
organization, 31
CAPL DLL, 140
compile, 143
demo, 145
export table, 142
limitations, 141
linking, 143

CAPL program
compile, 34
text file format, 35
CAPL programs
constructing, 106
organization, 106
text editors, 35
Channel Filter, 14
COM, 151
events, 156

message transmission, 159

registration, 151
VB demo, 160

VB project configuration, 152

COM interface, 151
COM object

environment variables, 155

function, 157
measurement, 153
signal, 153
compilation error, 34
Compiler window, 31
constants, 43
character, 44
floating point, 44
integer, 43
symbolic, 45
continue statement, 57
Control Field, 178
CRC, 178

Cyclic Redundancy Check, 178

Data Field, 178

Data Link Layer, 172

data types, 40

Data window, 13

database, 26, 126
associating, 131
association, 26
define attributes, 127

define environment variables. See

define messages, 128
define nodes, 128
define signals, 129
define value tables, 128
object associations, 130
saving, 131

DIR, 79

distributed application, 166
partition, 168

distributed functions, 166
data structures, 173
example, 168
file transfer, 170
transfer dialog, 169

DLL, 140

dominant, 182
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do-while statement, 55
DWORD, 81
elements, 135
alarms, 136
associating, 135
configuring, 135
control, 135
display, 135
I/0, 135
static, 135
engineering values, 82
environment variable
define, 28
environment variables, 96
declare, 97
define, 133
initialize, 97
type, 97
Error Active, 95
error counters, 179
Error Frame, 179
Error Frames, 86
Error Passive, 95
event procedure
creation, 74
requirements, 74

Event Procedure window, 31, 33

event procedures, 32, 73
events, 73
events priority, 76
Events window, 31, 32
example

CAPL control logging, 115
examples

bus off condition, 114

conditionally periodic message, 110

error frame, 113
file 110, 116
message response, 112
periodic messages, 108
received messages, 111
using panels, 113
write(), 108
file 1/0O functions, 100
Filter block, 15
filtering blocks, 14
for statement, 55
function
compatibilities, 72
function blocks, 13
functions, 59
byte swapping, 64
CAN and port, 68
categories, 60
database, 64
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language support, 71
logging, 65
mathematical, 60

measurement control, 66

message handling, 63

naming conventions, 60

overload, 59

Replay block, 69

statistics, 68

string handling, 66

time, 62

user interface, 61

user-defined, 59
Generator block, 15
getValue(), 98

Global Variables window, 31, 32

Graphics window, 13

hotspots, 13

identifier, 177

if statement, 52

if-else statement, 52
Interactive Generator block, 16
keyboard event, 87

LONG, 81

Measurement Setup window, 12

message
ACK Field, 178
control field, 178
CRC Field, 178
data access, 81
data field, 178
declaring, 78, 79
define, 28
definition, 78
identifier, 177
object, 78
receive, 83
selectors, 79
structure, 177
transmit, 83
Network Layer, 173
network node
create, 106
node
define, 28
on errorFrame event, 86
on key event procedure, 87
on message event, 83

on preStart event procedure, 90

on start event procedure, 90

on stopMeasurement event procedure, 90

on timer event procedure, 91

operators, 46
arithmetic, 46
assignment, 47
bitwise, 50
Boolean, 48
miscellaneous, 50
relational, 49
unsupported, 51

OSI model, 172

P Block
placement, 107
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definition, 132
Panel Editor, 132
panels, 29
advantages, 133
associating, 139
bitmaps, 138
requirements, 133
PC Board, 12
phys, 82
Physical Layer, 172
types, 182
physical values, 82
Prerequisites, 2
Presentation Layer, 173
ProFile functions, 102
putValue(), 98
raw values, 82
recessive, 182
Replay block, 17
return statement, 57
run-time errors, 34
selectors, 79
serial port, 103
Session Layer, 173
signal
define, 28, 82
signal reflection, 186
Simulation Branch, 24
SOF, 177
state machine

receiver, 179
transimitter, 180
Statistics window, 12
switch statement, 53

syntax
color, 33
system events, 89
this keyword, 57, 75, 84, 87, 98
TIME, 79
timer
declare, 91
reset, 92
stopping, 92
timers, 91
topology, 185
Trace window, 12
transceiver, 185
Transmit Branch, 18
Transport Layer, 173
Trigger block, 15
TYPE, 80
type casting, 42
value table
define, 28
variables
declarations, 41
static, 41
while statement, 54
WORD, 81
Write window, 13
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