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Training: maximize accuracy
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arg max f(x,0)

Standard two stage: predict then optimize
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Training: maximize accuracy

N TN/
L et el e

arg max f(x,0)

Standard two stage: predict then optimize

Challenge: misalignment between “accuracy”
and decision quality
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Training: maximize decision quality
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Pure end to end
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Training: maximize decision quality
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Pure end to end

Challenge: optimization is hard
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Training: maximize decision quality

arg max f.6) @ m

Decision-focused learning: differential optimization during training
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Training: maximize decision quality

arg max f.6) @ m

Decision-focused learning: differential optimization during training

Challenge: how to make optimization differentiable?
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Relax + differentiate

Forward pass: run a solver

> >

Backward pass: sensitivity analysis via KKT conditions
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Relax + differentiate

* Convex QPs [Amos and Kolter 2018, Donti et al 2018]
* Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
* MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]

* MIPs [Ferber, Wilder, Dilkina, Tambe 2019]
* Monday @ 11am, Room 612
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What’s wrong with relaxations?

* Some problems don’t have good ones
* Slow to solve continuous optimization problem
> Slower to backprop through — 0(n?)
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This work

* Alternative: include solver for a simpler proxy problem
* Learn a representation that maps hard problem to simple one
* Instantiate this idea for a class of graph optimization problems
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Graph learning + optimization

Learning (e.g. link prediction)
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Optimization

Partitioning  Facility location
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Problem classes

* Partition the nodes into K disjoint groups
* Community detection, maxcut, ...

* Select a subset of K nodes
* Facility location, influence maximization, vaccination, ...

* Methods of choice are often combinatorial/discrete
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Approach

* Observation: grouping nodes into communities is a good heuristic
* Partitioning: correspond to well-connected subgroups
* Facility location: put one facility in each community

* Observation: graph learning approaches already embed into R™
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Approach

1. Start with clustering algorithm (in R™)
* Can (approximately) differentiate very quickly

2. Train embeddings (representation) to solve the particular problem
* Automatically learning a good continuous relaxation!
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ClusterNet Approach
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Differentiable K-means

Uy = 25T q— Update cluster centers
Zj Tk

Forward

pass exp(—pB|lz; — pll) Softmax update to
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Backward

pass
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Differentiable K-means

* Option 1: differentiate through the fixed-point condition

ut = i+t
* Prohibitively slow, memory-intensive
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Backward

pass
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Differentiable K-means

* Option 1: differentiate through the fixed-point condition

ut = i+t
* Prohibitively slow, memory-intensive

* Option 2: unroll the entire series of updates
* Cost scales with # iterations
* Have to stick to differentiable operations
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Backward

pass
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Differentiable K-means

* Option 1: differentiate through the fixed-point condition

ut = i+t
* Prohibitively slow, memory-intensive

* Option 2: unroll the entire series of updates
* Cost scales with # iterations
* Have to stick to differentiable operations

* Option 3: get the solution, then unroll one update
* Do anything to solve the forward pass
* Linear time/memory, implemented in vanilla pytorch

Bryan Wilder (Harvard) 21



Differentiable K-means

Theorem [informal]: provided the clusters are sufficiently balanced and
well-separated, the Option 3 approximate gradients converge
exponentially quickly to the true ones.

ldea: show that this corresponds to approximating a particular term in
the analytical fixed-point gradients.
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ClusterNet Approach
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Locate 1 facility in
each community
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ClusterNet Approach

GCN node
embeddings

K-means
clustering
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ClusterNet Approach
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Update GCN
params
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ClusterNet Approach

GCN node

K-means

\mbeddings clustering
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Differentiate
through K-means
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Experiments

* Learning problem: link prediction
* Optimization: community detection and facility location problems
* Train GCNs as predictive component
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Example: community detection

Observe partial graph
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Predict unseen edges

Find communities
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Example: community detection

1 - d,d,
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k=1

Observe partial graph Predict unseen edges Find communities

» Useful in scientific discovery (social groups, functional modules in biological networks)

* In applications, two-stage approach is common
[Yan & Gegory ’12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al ‘16, Bahulker et al ’18...]
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Experiments

* Learning problem: link prediction
* Optimization: community detection and facility location problems
* Train GCNs as predictive component

* Comparison
* Two stage: GCN + expert-designed algorithm (2Stage)
* Pure end to end: Deep GCN to predict optimal solution (e2e)
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Results: single-graph link prediction

Community detection Facility location
(higher is better) (lower is better)
> Y 11
T 0.4 c
= @ 9
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B ClusterNet W 2stage W e2e B ClusterNet W 2stage W e2e

Representative example from cora, citeseer, protein interaction, facebook, adolescent health networks
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Results: generalization across graphs

Community detection Facility location
(higher is better) (lower is better)
z. S 9
5° g
B 0.2 T% /
= >
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B ClusterNet W 2stage W e2e B ClusterNet W 2stage W e2e

ClusterNet learns generalizable strategies for optimization!
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Takeaways

* Good decisions require integrating learning and optimization
* Pure end-to-end methods miss out on useful structure
* Even simple optimization primitives provide good inductive bias

NeurlPS’19 paper, see bryanwilder.github.io
Code available at https://github.com/bwilder0/clusternet
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