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Abstract

Segmentation and labeling of vertebrae and intervertebral discs (IVDs) in magnetic
resonance (MR) images plays a crucial part in automated disease diagnostics and the
collection of medical statistics. However, these tasks present significant challenges due
to the subtle differences among vertebrae and the substantial variations observed in
vertebrae across different patients, including the variability in the number of vertebrae
a patient has. These challenges are further compounded by the fact that, due to cost
and time intensity, most magnetic resonance imaging (MRI) scans only capture a small
field of view (FOV) of the spine.

This thesis presents a novel three-step pipeline for vertebra segmentation and label-
ing in small FOV MRI scans. The proposed pipeline consists of three main steps:
two-class segmentation, instance separation, and anatomical labeling of vertebrae and
IVDs. Multiple solutions are explored for each step, with the 2D slice-wise U-Net
emerging as the most effective method for both segmentation stages. In the context of
this study, subset accuracy is a measure of how precisely our pipeline can identify and
label all visible vertebrae in a small FOV MRI scan. Using the pipeline, we achieved a
subset accuracy of 85.5%, 92.6% and 94.4% for small FOV MRI scans with 5, 10 and
15 visible vertebra out of a possible 25. A Dice similarity coefficient of 0.799, 0.847 and
0.875 was achieved for the same FOV sizes. Furthermore, our pipeline enables the au-
tomatic generation of statistics related to lumbarization (the presence of an additional
vertebra, resulting in 26 total vertebrae) and sacralization (the absence of a vertebra,
resulting in 24 total vertebrae). Analyzing our dataset of 10,833 patients, we found
that 710 patients (6.6%) exhibited lumbarization and 393 patients (3.6%) exhibited
sacralization, findings that could have significant implications for understanding spinal
variations among the population.

3





Statement of Originality

I declare that this thesis is the product of my own original work and has not been sub-
mitted in similar form to any university institution for assessment purposes. All used
external sources have been indicated as such and have been cited in the bibliography.

Rostock, 9 November 2023

5





Acronyms

CNN convolutional neural network

CT computed tomography

DSC Dice similarity coefficient

FOV field of view

GNN graph neural network

GT ground truth

IoU intersection over union

IVD intervertebral disc

LSTV lumbosacral transitional vertebra

MLP multilayer perceptron

MR magnetic resonance

MRI magnetic resonance imaging

MSE mean square error

NN neural network

PCA principal component analysis
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1. Introduction

The human spine, a complex anatomical structure with a vital role in our daily lives,
has been a subject of intense study and research [1]. The ability to accurately seg-
ment and label the spine is crucial in various medical applications, including diagnosis,
treatment planning, and surgical guidance [2, 3, 4]. However, the intricate nature of
the spine, coupled with the variability in its shape and appearance, makes this task
challenging. This thesis aims to develop novel techniques for spine segmentation and la-
beling, leveraging advanced machine learning algorithms to overcome these challenges.
The goal is not only to enhance the accuracy of these processes but also to contribute
to improved patient outcomes in spinal care.

Section 1.1 provides the motivation for the thesis. In Section 1.2 the problem of anatom-
ical labeling is defined formally. In Section 1.3 the methodology will be briefly intro-
duced. Finally, in Section 1.4 an overview of the rest of the thesis is given.

1.1. Importance of Spine Segmentation in the

Medical Field

Spine segmentation is essential for automated analysis of the spine, for example in
fracture detection [2] or disease diagnostics such as scoliosis [3]. It has been shown
that the majority (87%) of asymptomatic fractures are under-reported by radiologists
[5], automatic segmentation combined with other techniques could greatly aid in the
detection of such fractures [6, 7]. Spine segmentation is also used for surgery, such
as computer-assisted screw trajectory planning for vertebrae [4] or for planning of a
vertebrectomy (surgical removal of vertebra) [8]. Furthermore, spine issues are very
common, for example, lower back pain has been found to be the most common condition
in terms of disability in the Global Burden of Disease 2010 Study [1], and sixth most
common in terms of overall burden out of 291 conditions. Another study reported that
61.3% (N=5009) of people in Germany have reported back and neck pain in the last 12
months [9]. Therefore, spinal issues are both common and can be aided with automatic
segmentation.

Magnetic resonance imaging (MRI) has emerged as a leading modality for imaging the
spine due to its superior soft tissue contrast and non-ionizing radiation [10, 11]. How-
ever, analyzing magnetic resonance (MR) images of the spine can be challenging due
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1.2. PROBLEM STATEMENT - ANATOMICAL LABELING

to factors such as partial volume effects, intensity inhomogeneity, and the presence of
pathology [12]. For instance, partial volume effects can lead to mixed signals in a single
voxel, making it difficult to assign it to a specific tissue type. Intensity inhomogeneity,
or variations in intensity within an image, can complicate the task of distinguishing
between different tissues. Furthermore, the presence of pathology can alter the ap-
pearance of tissues in unpredictable ways, adding another layer of complexity to the
analysis. Automated methods for spine segmentation and vertebra labeling have the
potential to greatly improve efficiency and consistency in these workflows [12]. In par-
ticular, methods that can handle small field of view (FOV) MR images - where only
part of the spine is visible - are of great interest. Small field of view (FOV) MRI scans
are the majority of scans due to the cost and time intensiveness of MRI scans [13].
This thesis aims to develop and evaluate multiple methods for anatomical labeling,
with a focus on leveraging advanced machine learning techniques such as convolutional
neural networks and deep learning algorithms, which have shown promise in handling
complex imaging data.

1.2. Problem Statement - Anatomical Labeling

This section formally defines the task of anatomical labeling in small field of view
(FOV) MRI scans. To achieve this MRI images are defined, including small FOV MRI
scans.

Let I ∈ Rw×d×h be a MRI image with width w ∈ N, depth d ∈ N and height h ∈ N.
Width is in the sagittal axis (side-to-side), depth is in the frontal axis (front-to-back)
and height is in the transverse axis (top-down). A typical complete MRI scan has a
shape of 20 × 400 × 1000. Anatomical labeling is a function which maps the image
I ∈ Rw×d×h to a set of anatomical labels 0 to 49:

L(Iw×d×h)→ {0, 1, 2, ..., 49}w×d×h (1.1)

The odd labels {1, 3, ..., 49} represent the vertebrae {C2,C3, ...,S1}, whereas the even
labels {2, 4, ..., 48} represent the intervertebral discs (IVDs) {C2-C3,C3-C4, ...,L6-S1},
and finally 0 represents background: neither vertebra nor IVD. A typical complete MRI
will have 45, 47 or 49 unique non-background labels, due to the difference in the number
of vertebrae and IVDs (see Section 2.1 for further details about spinal anatomy).

In the context of this thesis, we are particularly interested in small field of view (FOV)
MRI images of the spine. FOV for MRI images defines how much of a certain region of
the body is visible, in this case the spine. A small FOV, in the context of this thesis,
indicates that significant portions of the spine are not visible. Formally, a small FOV
MRI image I ′ is an image, whose correct anatomical labeling contains significantly less
unique labels than a complete MRI scan. In this thesis we will use three FOV sizes in
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1.3. PROPOSED METHODOLOGY

order to evaluate our methods: with 5, 10 and 15 visible vertebrae, or equivalently 10,
20 and 30 unique visible labels. This corresponds to roughly 20%, 40% and 60% of the
spine in terms of visible vertebrae, respectively.

In conclusion, the goal of anatomical labeling in small FOV MRI images is to assign a
label to each voxel of an MRI image, in which only a subset of the spine is visible.

1.3. Proposed Methodology

In this thesis various approaches are proposed in order to obtain a segmented MR
volume with the labeling for each vertebrae as well as IVD, given a small FOV MR
image. The main challenge is the incomplete nature of the target images, as the labeling
of the vertebra and IVDs is substantially more difficult in comparison to complete
images. This is because in complete images once the vertebrae have been correctly
segmented and separated it is trivial to assume that the uppermost vertebra is C2, all
following IVDs and vertebrae can be inferred.

Given the difficulty of this task, the dataset of 162 MRI scans, which was manually
annotated by experts [14], was not enough to create an adequate model to solve the
problem of labeling in small FOV MRI images. Therefore, the following methodology
was split into multiple parts in order to be able to artificially create ground truth data
of small FOV MRI images.

The segmentation and labeling process can be divided into three steps: (1) initial
semantic segmentation of the vertebrae and IVDs, (2) an instance separation step
which then separates each vertebra and IVD into distinct objects, (3) and a third step
which labels each instance with its correct anatomical label such as T2 or L4-L5. For
each of these steps multiple approaches have been considered, especially for step 3. In
the following we briefly describe the best approach for each step.

In the semantic segmentation step a U-Net was used in order to segment the MRI slice-
wise into 2 classes: vertebrae and IVDs. In the instance separation step the IVDs were
separated with the connected components algorithm, then the vertebrae were separated
by projecting a plane along each IVD using principal component analysis (PCA) and
using the planes as separators. For anatomical labeling again a U-Net was used, in this
case it was trained to segment 49 classes, depicting each individual vertebra and IVD.
This U-Net was trained on the larger dataset of 10,833 patients, the first two pipeline
steps were necessary to create ground truth data on this large dataset.
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1.4. THESIS STRUCTURE

1.4. Thesis Structure

This thesis is structured to provide a comprehensive exploration into the field of spine
segmentation, detailing both the theoretical background and practical approaches. Fol-
lowing this introductory section, the thesis is organized as follows:

Section 2 presents a detailed background necessary for understanding the broader con-
text of this work. It covers key concepts about anatomy, various metrics and losses
used in our methodology, and an overview of different neural network architectures
relevant to the research presented in this thesis.

Section 3 reviews the related work in the field. It offers a critical analysis of previous
methods in localization, segmentation, and anatomical labeling, thereby situating our
work within the current research landscape. There are many methods for anatomical
labeling, however, they differ in important aspects: either in the dataset type (com-
puted tomography (CT) instead of MRI), or use only a subset of MRIs, making a direct
comparison difficult.

Section 4 describes the data used in this thesis. This section details the data sourcing,
comparison to other similar dataset, and gives some examples of normal and erroneous
MRI scans. It showcases the large dataset of 10,833 patients, where for each the entire
spine is visible.

In Section 5 we delve into the vertebra segmentation and labeling pipeline. This ex-
tensive section explains our methodology, from the initial segmentation of vertebrae
and intervertebral discs to the final steps of anatomical labeling. It also evaluates
the combination of methods used and discusses the complete end-to-end multiclass
segmentation process.

Section 6 presents the results of our research. This section is dedicated to the analysis
of outcomes from the various steps in the segmentation and labeling pipeline, including
a discussion on special cases like sacralization and lumbarization.

Section 7 discusses the implications, strengths, and limitations of our study. It con-
textualizes our findings within the broader field, offering insights into their significance
and potential applications, along with suggestions for future research avenues.

Finally, Section 8 concludes the thesis. It summarizes the key findings, reflects on the
research contributions, and offers closing remarks.

References and any additional supporting materials are included at the end of the thesis
in the Bibliography and Appendices, respectively.
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2. Background

Section 2.1 provides anatomical background about the spine, vertebrae and IVDs.
It also explains why around 10% of the population has either one more or one less
vertebra, which puts one of the results of the thesis in context. In Section 2.2 the
connected components algorithm is described. It is an important algorithm in many
parts of the thesis including in the post-processing of the segmentation (Section 5.2.4),
instance separation via connected components (Section 5.3.1), and instance separation
by splitting along IVDs (Section 5.3.2). In Section 2.3 the metrics subset accuracy,
Dice similarity coefficient (DSC) and intersection over union (IoU) are discussed. All
three of these metrics are essential in understanding and comparing the results of this
thesis, as all results in Section 6 are provided using either of these metrics. Finally, in
Section 2.4.1 the basics of neural network (NN) are introduced. The most approaches
introduced in this thesis rely on some sort of neural network, understanding how these
work and their limitations is essential. Furthermore, neural network (NN) architectures
such as convolutional neural networks (CNNs) (Section 2.4.2), graph neural networks
(GNNs) (Section 2.4.3) and U-Nets are introduced. CNNs are foundational models for
segmentation, and are the core underlying functionality for U-Nets, which are the main
segmentation architecture used throughout this thesis for segmentation. GNNs are
essential to an alternative approach to anatomical labeling, presented in Section 5.4.3.

2.1. Anatomy

The human vertebral column is typically composed of 33 vertebrae. In adults, however,
nine of these vertebrae undergo fusion: the inferior four integrate to form the coccyx
(tailbone), while the five immediately superior to them coalesce into the sacrum. This
results in an effective count of 26 distinct vertebrae, with the topmost 24 being referred
to as pre-sacral or moving vertebrae. Three example spines can be seen in Figure 2.1.
In the following the distinction between the vertebrae will be briefly introduced. For
a more comprehensive in-depth look into the anatomy of the human spine we refer to
Functional Anatomy of the Spine by Oliver and Middleditch [15] and Spinal Anatomy
by Vital and Cawley [16].

These moving vertebrae can be systematically categorized:

• Cervical: C1 to C7
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2.1. ANATOMY
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Figure 2.1.: 3D Anatomical Labeling Examples. Three example spine segmenta-
tions created using the methods presented in this thesis. (a) shows a spine
where L5 has sacralized, whereas (c) shows a spine where S1 has lum-
barized. (b) shows a normal spine. The labels for the vertebrae are shown,
the labels for the IVDs can be inferred by the adjacent vertebrae. The
colors represent the different objects starting at the top counting down,
this makes a comparison between different images easier. The 3D objects
have been smoothed for visual clarity.

• Thoracic: T1 to T12
• Lumbar: L1 to L4/L5/L6

In this thesis, the sacrum will be denoted as a single vertebra, represented by S1.
Whereas the coccyx (tailbone) will not be further discussed, as it is fairly small and
often not depicted in the dataset provided for this thesis.

An IVD is conventionally positioned between each vertebral pair (except for C1 and
C2, which lack an IVD between them). The nomenclature for these discs is derived
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2.1. ANATOMY

from the vertebrae they adjoin, such as C2-C3, T9-T10, or T12-L1. In this thesis
vertebrae will be marked with orange (e.g. C2) and IVDs with blue (e.g. C2-C3).

Most vertebrae (C2 to L5) consist of a bony structure which surrounds the spinal
canal. At the anterior there is a larger volume called the vertebral body which has a
roughly cylindrical shape with a flat top and bottom (see Figure 2.2b). Connected to
the vertebral body at either side is a bony ring-like structure surrounding the spinal
canal (see Figure 2.2d). Connected to it posteriorely and transversely are various bony
protrusions such as the spinous process and transverse process. In this thesis vertebra
will be used interchangeably with vertebral body, because the dataset used in this
thesis only has a segmentation for vertebral bodies (Figure 2.2a). For a comparison
between a segmentation for only a vertebral body and the full vertebra see Figure 2.2.

(a) (b) (c) (d)

Figure 2.2.: Comparison Between Segmentations of Full Vertebra and Verte-
bral Body Only. The left two images (a) and (b) show segmentations
for only the vertebral body (our dataset, further described in Section 4).
The right two images (c) and (d) show a segmentation for the full vertebra
as well as IVDs (from the SpineSegmentationChallenge dataset [17, 18]).

There are seven cervical vertebrae, denoted as C1 to C7, C1 being the topmost verte-
bra closest to the skull. C1 is called “atlas” and is different from all other vertebrae in
that it does not have a vertebral body. Instead, C2 has a larger vertebral body which
protrudes up toC1, allowingC1 to pivot aroundC2, C1 therefore being named “axis”.

The thoracic vertebrae, denoted as T1 to T12 are the next twelve vertebrae after the
cervical vertebrae. They are characterized by each vertebra being connected to a rib
through the costovertebral joint.

The lumbar vertebrae, denoted as L1 to L4, L5 or L6, are the next four to six vertebrae.
They do not have a rib connection and are the largest vertebrae.

In healthy humans, the number of vertebrae in the upper half of the spine tends to
remain relatively consistent. However, variations are more common in the lumbar re-
gion. Specifically, the lumbar region might not always comprise the standard five verte-
brae. Two conditions representing such variations are sacralization and lumbarization.
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2.2. CONNECTED COMPONENTS ALGORITHM

Sacralization occurs when one lumbar vertebra fuses with the sacrum, resulting in
a total of only four lumbar vertebrae (can be seen in Figure 2.1a). Conversely, lum-
barization arises when one vertebra does not fuse with the sacrum as it typically would,
leading to an extra lumbar vertebra, designated as L6, and thus a total of six lumbar
vertebrae (can be seen in Figure 2.1c). Sacralization and lumbarization are observed
in approximately 4.8% and 4.7% of the population, respectively (see Section 6.4 for
further discussion about these). The remaining 90.5% contain five lumbar vertebrae,
with few exceptions.

2.2. Connected Components Algorithm

The connected components algorithm is a fundamental method utilized in image pro-
cessing and computer vision for object segmentation. It delineates and labels continu-
ous regions of an image where the pixel values meet a specified criterion, ensuring every
distinct object receives a unique identifier. For our study, the algorithm is indispensable
for segmenting various anatomical structures, namely the IVDs and vertebrae, from the
3D medical images. Crucially, the algorithm operates within a 26-neighborhood in 3D,
ensuring comprehensive connectivity analysis.

It works by iterating over every voxel in the image, every time a voxel with non-
zero value is found, a flood fill algorithm is run for that voxel, which finds any 26-
neighborhood adjacent voxels sharing the same value recursively. All those values are
marked with the same label and are not considered for further flood fill calls. Then the
algorithm continues this for all following voxels, the algorithm is defined in Algorithm 0.
For further details we refer to Zhao et al. [19].

2.3. Evaluation Metrics

Evaluating and training machine learning models, particularly in the realm of image
processing, necessitates the use of various metrics and loss functions. These quantita-
tive measures allow for the assessment of model performance and direct optimization
during training. This section provides an overview of several pivotal metrics and losses
used in classification and segmentation tasks. Specifically, Section 2.3.1 delves into
accuracy and subset accuracy, Section 2.3.2 explains Dice loss and the Dice similarity
coefficient (DSC), and finally, Section 2.3.3 covers the intersection over union (IoU)
metric. These three metrics were used in order to evaluate the models presented here.
Cross entropy loss was also rarely used in order to train some machine learning mod-
els, however, not enough warranting an explanation in this thesis, therefore we refer to
Goodfellow et al. [20].
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2.3. EVALUATION METRICS

Algorithm 1 3D Connected Components

1: procedure ConnectedComponents3D(volume)
2: label← 0
3: labels← initialize 3D array of 0’s with size of volume
4: for x← 1 to width(volume) do
5: for y ← 1 to height(volume) do
6: for z ← 1 to depth(volume) do
7: if volume[x][y][z] ̸= 0 and labels[x][y][z] = 0 then
8: label← label + 1
9: FloodFill(volume, labels, x, y, z, label)
10: end if
11: end for
12: end for
13: end for
14: return labels
15: end procedure
16: procedure FloodFill(volume, labels, x, y, z, label)
17: if x, y, z is out of bounds or volume[x][y][z] = 0 or labels[x][y][z] ̸= 0 then
18: return
19: end if
20: labels[x][y][z]← label
21: for each (dx, dy, dz) ∈ {−1, 0, 1}3 do
22: FloodFill(volume, labels, x+ dx, y + dy, z + dz, label)
23: end for
24: end procedure

2.3.1. Accuracy and Subset Accuracy

Accuracy is one of the primary metrics used to evaluate the performance of classification
models. Specifically, in a classification context, accuracy represents the proportion of
instances that are classified correctly.

For N instances:

Acc =
Number of correctly classified instances

N
(2.1)

In tasks where an instance can belong to multiple classes (multi-label classification), a
stricter metric often used is the subset accuracy or exact match accuracy. This metric
requires that for an instance to be considered correctly classified, every individual class
must be predicted correctly. Any misclassification in the classes for an instance results
in the instance being considered incorrect. Formally, for N instances:
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2.3. EVALUATION METRICS

Subset accuracy =
Number of instances with all labels correctly classified

N
(2.2)

Subset accuracy is a strict metric, making it especially challenging to maximize in tasks
with a large number of classes or in applications where each instance can belong to
multiple classes.

However, while accuracy and subset accuracy provide intuitive measures of overall
performance, they may not capture the model’s performance nuances, especially in
imbalanced datasets. Therefore, they’re often used alongside other metrics to get a
comprehensive understanding of a model’s performance.

2.3.2. Dice Similarity Coefficient (DSC) and Dice Loss

The Dice coefficient, also known as the Sørensen–Dice index, or F1 score, is a statistic
used to gauge the similarity between two sets [21, 22]. It is commonly used in the field
of medical imaging to measure the similarity between the predicted segmentation and
the ground truth. For two sets A and B, the Dice coefficient is given by:

D(A,B) =
2|A ∩B|
|A|+ |B|

(2.3)

Where |A ∩ B| is the cardinality of the intersection of sets A and B, and |A| and |B|
are the cardinalities of sets A and B, respectively.

Binary Dice Loss

In the context of image segmentation, let’s consider the predicted segmentation as set
P and the ground truth as set G. Each set contains pixels that are either part of the
object of interest (value 1) or the background (value 0). The Dice coefficient can then
be reformulated in terms of these binary pixel values:

D(P,G) =
2
∑N

i PiGi∑N
i Pi +

∑N
i Gi

(2.4)

Where N is the total number of pixels, and Pi and Gi are the pixel values at location
i for the predicted and ground truth images, respectively.

To use the Dice coefficient as a loss function for training a neural network, the Dice
Loss is defined as:

20



2.3. EVALUATION METRICS

LDice = 1−D(P,G) (2.5)

A smaller Dice Loss indicates a better overlap between the predicted segmentation and
the ground truth. Thus, during training, the aim is to minimize this loss value to
improve the model’s segmentation performance.

Multiclass Dice Loss

For binary segmentation tasks, the Dice coefficient measures the overlap between the
predicted segmentation and the ground truth for a single class. However, in multiclass
segmentation tasks, where an image may contain multiple regions of interest, the Dice
coefficient needs to be computed for each class separately.

Given C classes in an image, for each class c, the Dice coefficient is:

Dc(P,G) =
2
∑N

i Pi,cGi,c∑N
i Pi,c +

∑N
i Gi,c

(2.6)

Where Pi,c and Gi,c are the pixel values at location i for the predicted and ground truth
images, respectively, for class c. N is the total number of pixels.

The average Dice coefficient across all classes can be taken as:

Davg(P,G) =
1

C

C∑
c=1

Dc(P,G) (2.7)

To utilize the Dice coefficient as a loss function for multiclass segmentation in neural
networks, the Multiclass Dice Loss is:

LDice, multiclass = 1−Davg(P,G) (2.8)

Similar to the binary case, the goal during training is to minimize this multiclass Dice
Loss to achieve a segmentation result that overlaps well with the multiclass ground
truth across all classes.
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2.3.3. Intersection over Union (IoU) and Jaccard Loss

intersection over union (IoU), also known as the Jaccard index [23], is a widely-used
metric to evaluate the overlap between two regions. In the context of image segmen-
tation, it quantifies the overlap between the predicted segmentation and the ground
truth.

Given two sets A and B, the IoU is defined as:

IoU(A,B) =
|A ∩B|
|A ∪B|

(2.9)

In binary image segmentation, where each pixel in the predicted segmentation P and
ground truth G is either part of the object (1) or the background (0), the IoU can be
expressed in terms of pixel counts:

IoU(P,G) =

∑N
i Pi ·Gi∑N

i max(Pi, Gi)
(2.10)

For multiclass segmentation with C classes, the IoU can be computed for each class c
independently:

IoUc(P,G) =

∑N
i Pi,c ·Gi,c∑N

i max(Pi,c, Gi,c)
(2.11)

An average IoU across all classes measures overall segmentation accuracy:

IoUavg(P,G) =
1

C

C∑
c=1

IoUc(P,G) (2.12)

Higher IoU values indicate better overlap between the predicted segmentation and the
ground truth, with a maximum value of 1 indicating perfect overlap.

Finally, the Jaccard loss, also known as IoU loss is defined as follows:

JaccardLoss(P,G) = 1− IoUavg(P,G) (2.13)
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2.4. Neural Network Architectures

This section introduces neural networks in Section 2.4.1, which serve as the founda-
tional models for this thesis. CNNs, introduced in Section 2.4.2, are the underlying
neural network structure of the U-Net, which was the best performing architecture in
this thesis. U-Nets are introduced in Section 2.4.4. GNNs, central to an alternative
approach for this thesis, is introduced in Section 2.4.3.

2.4.1. Basics of Neural Networks

Neural networks (NN) are computational models, developed to mimic the structure
and function of the human brain, and are designed to discern patterns and derive
predictions from input data. Their strength lies in their ability to model intricate, non-
linear relationships in data, which has placed them at the forefront of machine learning
and artificial intelligence research. In the following the basics of neural networks are
explained, for further details we refer to Goodfellow et al. [20]. This network is also
referred as a multilayer perceptron (MLP), which we use as a classifier for anatomical
labeling in Section 5.4.2.

Mathematically, an NN can be described as a composition of functions. Given an input
vector x, the network computes an output y via the relationship

y = fL(. . . f2(f1(x;W1);W2) . . .);WL) (2.14)

where L is the number of layers in the network, and Wi represents the weights of the
ith layer.

Constituent Elements of a Fully Connected Neural Network:

• Neurons (Nodes): Each neuron in a layer computes a weighted sum of its
inputs and applies an activation function. Formally, given inputs x and weights
w, the output o of a neuron is o = σ(w ·x+ b), where σ is the activation function
and b is a bias term.

• Layers: A fully connected neural network is organized into layers: an input layer,
several hidden layers, and an output layer. Every neuron in one layer connects
to every neuron in the subsequent layer.

• Activation Function: Functions like the sigmoid, tanh, or rectified linear unit
(ReLU) introduce non-linearities into the network, empowering it to capture in-
tricate relationships.

Training Process:

Neural networks learn by adjusting their weights based on data. The typical learning
cycle involves:
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1. Forward propagation of input to produce an output.
2. Calculation of the differentiable loss, a measure of error between predicted and

actual outputs, often using metrics like mean square error (MSE).
3. Backward propagation using optimization techniques such as gradient descent to

adjust the weights in a direction that minimizes the loss.
4. Iterative optimization until a satisfactory performance level is achieved.

These basic building blocks form the basis for the following sections as well.

2.4.2. Convolutional Neural Networks (CNN)

CNNs are a specialized category of neural networks tailored primarily for image data.
Unlike fully connected neural networks where every neuron is connected to every other
neuron in the adjacent layers, CNNs exploit spatial hierarchies in the data, allowing
them to automatically and adaptively learn spatial features. In the following we intro-
duce the essentials of CNNs, for a more detailed look the book Deep Learning [20] is
recommended.

Mathematically, a CNN is composed of a series of layers that transform an input (like
an image) into an output through a differentiable function. The core difference lies in
the utilization of convolution operations instead of standard matrix multiplications in
at least one of its layers.

Constituent Elements of a CNN:

• Convolutional layer: The primary operation of this layer involves sliding a
filter or kernel over the input data (such as an image) to produce a feature map
or activation map. This operation captures local patterns.

• Pooling (subsampling) layer: A downsampling operation that reduces the
spatial size, thereby reducing computation and helping to make feature represen-
tations more robust.

• Fully connected layer: Similar to those in standard neural networks, these
layers perform classification based on the features extracted by the preceding
convolutional and pooling layers.

Training and Application:

Like other neural networks, CNNs learn by adjusting their parameters to minimize the
error between the predicted and actual outputs. The main distinction in their training
arises from backpropagation through the convolutional layers.

While fully connected networks can struggle with high-dimensional data like images due
to the sheer number of parameters, CNNs are designed to mitigate this. By exploiting
spatial hierarchies and sharing parameters across space, they require fewer parameters,
making them more efficient for image data. This architecture has been pivotal in tasks
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like image and video recognition, semantic image segmentation, and even non-visual
tasks like natural language processing.

In summary, while both fully connected networks and CNNs have their distinct strengths,
the latter’s ability to handle high-dimensional data efficiently and its proficiency in
extracting spatial features make it an indispensable tool in computer vision and be-
yond. In this thesis CNNs will be used throughout for segmentation (Section 5.2.2,
Section 5.2.3, Section 5.4.4) and for encoding of features (Section 5.4.3).

2.4.3. Graph Neural Networks (GNN)

Graph neural networks (GNN) represent a confluence of graph theory and deep learn-
ing, offering an innovative lens through which to understand and process data inherent
in graphs. In domains where data is naturally structured in a graph, such as molecules
in chemistry or vertebrae in a spine, GNNs have shown exceptional performance due
to their ability to capture the intricate relationships within the data. Here a brief
introduction is presented for GNNs, for an in-depth look we recommend Graph Neural
Networks: Foundations, Frontiers, and Applications [24].

A graph in this context is composed of nodes and edges, with nodes representing entities
and edges the relationships or interactions between them. In the realm of GNNs,
nodes are not just abstract points but are endowed with features that carry complex
information, and edges often encapsulate the dynamics of the inter-node relationships.

At the heart of GNNs lies the concept of message passing or information aggregation,
where nodes update their states by gathering and synthesizing information from their
immediate neighborhood. This is often expressed through:

h(k)
v = UPDATE

(
h(k−1)
v ,AGGREGATE

(
{h(k−1)

u : u ∈ N (v)}
))

, (2.15)

where h
(k)
v represents the hidden state of node v at iteration k, N (v) is the neighboring

nodes of v, and the functions UPDATE and AGGREGATE are optimized through the
training process.

Graph convolutional networks, a variant of GNNs, have been particularly successful,
leveraging a convolutional approach to update node states—a technique that captures
both local structure and global graph properties.

In the specialized field of medical imaging, and more precisely in spine segmentation,
GNNs demonstrate a significant advantage. The human spine is a complex anatomical
structure consisting of vertebrae and intervertebral discs, which are naturally connected
in a sequential manner. This adjacency lends itself well to a graph-based representation,
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where each vertebra and disc can be a node within a graph, and the edges represent
the physical connections and relative positioning between them.

Spine Graph: S = (Vspine, Espine) (2.16)

where Vspine corresponds to the vertebrae and intervertebral discs, and Espine to the
connections between them.

By employing GNNs, one can leverage the inherent graph structure of the spine for
segmentation tasks. Nodes in the graph can effectively learn and represent the complex
features of the spine’s anatomy, such as the shape and size of vertebrae, the position
of the discs, and their relationships. GNNs are particularly adept at capturing the
dependencies and spatial context between different parts of the spine, which is crucial
for accurate segmentation.

Furthermore, the ability of GNNs to integrate local node features with global struc-
tural information allows them to generalize well across different patients and imaging
modalities. This makes GNNs an exceptionally suitable choice for spine segmentation
tasks in clinical applications, where precision and adaptability to varied anatomical
presentations are of utmost importance.

In conclusion, the utilization of GNNs in spine segmentation underscores the potential
of graph-based deep learning models to revolutionize the analysis of complex biological
structures. Their ability to capture the nuanced patterns of anatomical connectivity
positions them as a cutting-edge tool in medical image analysis, promising advance-
ments in diagnostic precision and patient care.

2.4.4. U-Net Architectures

Introduced by Ronneberger et al. in 2015 [25], the U-Net architecture stands as a
pivotal model in biomedical image segmentation. This architecture, notable for its U-
shaped structure, combines a contracting path to capture contextual information and
a symmetric expanding path for precise localization of features, essential in tasks like
medical image analysis.

At its core, the U-Net architecture integrates the conventional approach of a convo-
lutional neural network in its contracting path, consisting of repeated application of
convolutions, each followed by a ReLU activation and a max pooling for downsam-
pling. The innovation, however, lies in its expansive path where up-sampling of the
feature map occurs, reintroducing the dimensions of the original input image. This
path crucially includes skip connections from the contracting path, reintroducing high-
resolution features to enable detailed localization.
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Beyond its initial form, U-Net has seen various adaptations and enhancements. The
extension to 3D U-Net by Cicek et al. [26] allows the architecture to handle volumetric
data, essential for modalities like MRI and CT scans in medical imaging. Further
adaptations include the integration of residual connections, seen in the Residual U-
Net, which facilitates training deeper networks by mitigating the vanishing gradient
problem, a common challenge in deep learning models.

The flexibility of U-Net extends to its combination with other advanced neural network
architectures. An example is its integration with Mixed Vision Transformers, as cited
in [27], showcasing the architecture’s versatility and capacity for continual evolution to
meet diverse and challenging segmentation tasks.

U-Net’s ongoing development and adaptation highlight not just its robustness and
effectiveness but also its enduring position as a foundational model in the realm of image
segmentation. In this thesis U-Nets are used throughout for segmentation (Section 5.2,
Section 5.4.4).
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3. Related Work

Existing work regarding vertebra and IVD identification can be grouped into multi-
ple categories: localization, segmentation as well as anatomical labeling. Localization
refers to the process of finding the position of each vertebra or IVD, which is most com-
monly the centroid. Segmentation involves classifying each pixel or voxel of the image
as background, vertebra or IVD. Anatomical instance labeling assigns each object it’s
anatomically accurate label such as C2 or T11-12. Our work would be categorized
in the latter category, however the methods presented there build upon the previous
sections. In the following sections related work will be discussed based on these cate-
gories.

3.1. Vertebra and Intervertebral Disc Localization

During localization the goal is to find the position of the relevant objects. This generally
means finding a 2D or 3D coordinate representing the centroid of either the vertebrae
or the IVDs, respectively. Many approaches have been tried, such as heatmap-based
[28, 29], coordinate-based and graph-based methods.

Zhigang et al. [30] localize vertebra by a three-step process. At first, the best slice
is found where the most vertebrae are visible, then a fourth-degree polynomial is fit
through the vertebra centers and finally, the edges of the vertebrae are found using a
canny edge detector.

Glocker et al. [29] propose a two-stage method using regression forests and hidden
Markov models. the regression forests create a probability map, and the hidden Markov
models are used in order to fine-tune the centroids. Using this approach they achieve
an identification rate of 81%.

Wang et al. [31] propose a four step vertebra localization and identification mod-
ule achieving an 97.4% identification rate. For vertebra center localization they use
a U-Net, followed by spine rectification, which maps all centroids on a single axis.
Then the activation functions for each separate vertebra are combined, and finally an
anatomically constrained optimization module finds a possible matching.

In our work localization is implied by the segmentation step in the pipeline, taking
the average coordinate of the voxels for each separated instance. However, many of
these approaches also label the corresponding centroid with it’s anatomical label. This
means that, the labels could be assigned to the instances returned in our pipeline,
replacing step 3.
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3.2. Spine Segmentation

The task of segmentation involves classifying each pixel or voxel of the original image
into some classes. Specifically in this case, we define two classes of interest, vertebra
and intervertebral disc (IVD)s. Segmentation of vertebra and IVDs can be divided into
two categories, traditional, deep learning-based and atlas-based [32, 33, 34] approaches.

Atlas-based methods use an atlas - a reference segmentation representing a general
spine as well as possible - in order to create a new segmentation by overlaying the atlas
on the target. However, simply overlaying one on top of each other is rarely if ever
good enough, therefore other approaches are used in order to deform the atlas. In [32]
the spinal canal is used to find the IVDs by the intensity profile of the IVDs (an IVD is
significantly dimmer in a CT-scan than the vertebrae). In [33] a probabilistic atlas of
50 2D segmentations of the midsagittal-slice are used in order to achieve better results.

Recently, approaches based on deep learning have become popular. This often involves
using a well-tested segmentation network such as U-Net [25] or DeepLabV3 [35], and
then classifying the segmented parts further. The approach by Streckenbach et al. [14],
which uses the exact same dataset as in this thesis, uses a patch-based 3D U-Net [26]
in order to segment the entire spine in multiple passes. Most state-of-the art papers in
the following two sections are using one of these segmentation networks as their basis.

In conclusion, with the vast amount of available methods it can be claimed that basic
two-class segmentation works very well and does not pose many challenges anymore.
In Section 6.2 the approach by Streckenbach et al. [14] will be compared with our
approach, as it uses the same dataset.

3.3. Anatomical Spinal Instance Labeling

During anatomical instance identification the target is to create segmentation such
that each separate vertebra and IVD has its own anatomically correct label. The
distinction in comparison to instance segmentation is valuable, as there the target
is to only separate the various objects, whereas here the target is to assign the true
anatomical labels. In the following a few state-of-the-art spine segmentation approaches
are elaborated.

Pang et al. [17] use the segmentation network DeepLabV3+ [35] in order to create
an encoding for a GNN. Using multiple graph convolutions they are able to create
a prediction for each voxel in the image for each class. For this they use a dataset
of 215 MRI scans of the lumbar region. They focus on good performance, and in
order to reduce the size of the models they apply a two stage segmentation. The first
stage produces a down-sampled segmentation for each sample in 3D. Then a 2D slice-
wise network uses the down-sampled segmentation together with the initial image to
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produce a full-scale segmentation. A 3D network for direct full-scale segmentation is not
feasible, or at least considerably more expensive performance-wise. They achieve a DSC
of 89.22% on the vertebra fromT12 to S1. It is of note, however, that their dataset does
not include any cases where sacralization or lumbarization appears. Furthermore, each
of their samples contains the sacrum S1, we argue that the GNN in their approach can
learn to simply count up from the sacrum in each test case. The problem where neither
the topmost (C2) or bottommost (S1) vertebra appears in the image is considerably
more difficult.

Lessman et al. [36] propose an iterative network, which segments the currently visible
vertebra in a 3D slding window using a U-Net [25]. This sliding window is moved to the
next vertebra, once the current one is completely found. It keeps an instance memory
of each vertebra, which forces the network to predict the next vertebra. In order to
predict the anatomical label they extend the compression path of the U-Net and reduce
it further into a single value between 1 to 24 as a regression task. They argue using a
regression results in the network being penalized more the more its prediction deviates
from the actual value. Once each vertebra has its preliminary label, they create a final
prediction, which is global prediction of the maximum likelihood, such that it makes
anatomical sense.

Payer et al. [37] propose a three-step approach for segmentation of each vertebra in the
VerSe19 [7, 38, 39] CT-dataset. The three-step approach encompasses (1) localization
of the spine, (2) a heatmap-based approach for the localization of each vertebra and (3)
segmentation of vertebrae. Localization of the spine is necessary because the VerSe19
dataset includes large portions of data where non-spine body parts are depicted, such as
the legs or head. For the localization of the spine they use a U-Net to perform a heatmap
regression in order to predict the center coordinate. For the vertebra localization they
use their own SpatialConfiguration-Net [40] to predict each center for each vertebra
using heatmap regression. For segmentation they use a U-Net which separates a single
vertebra from the background as a binary segmentation task. The input is a cropped
region around the vertebra, which is concatenated with a Gaussian heatmap, produced
by the previous step. This is done for each vertebra, and then remerged into the final
image. This approach won the Large Scale Vertebrae Segmentation Challenge 20191.

In conclusion, the approach by Payer et al. [37] is likely the most similar to our
approach. Our approach lacks the spine localization step, and instead of the heatmap-
based labeling, we use a multiclass segmentation for labeling. The dataset is likely
more difficult than ours, as it contains more pathologies and often has rather small
field of view (FOV). However, the dataset is much smaller and is CT-based, which
makes a direct comparison difficult, as CT-datasets usually do not segment IVDs. In
terms of datasets, the approach by Pang et al. [17] is more similar, they also have MRI
data and a constant FOV of around 10 visible vertebra. However, their FOV is always
at the same lumbar position, with S1 visible in all 215 samples. Furthermore, they
do not have a single case of lumbarization or sacralization, which makes labeling much

1https://verse2019.grand-challenge.org/
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easier. Therefore, our methods are somewhat similar to existing solutions, but due to
a unique dataset a direct one-on-one comparison is difficult. Despite this, in Table 6.2
our results will be compared with these methods.
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4. Data

In collaboration with the University Medicine Rostock, the primary dataset utilized
for this study comprised 10,833 MRI scans of the complete spine. This dataset was
assembled explicitly for research endeavors by the German National Cohort1, ensuring
a representative sample of the German population. However, a slight skew is evident
toward the elderly demographic, with the mean age of the sample being 52.25 years.
In contrast, the average age in Germany between the years 2012-2015 — the period
during which these scans were captured — stood at 44.25 years [41]. For further details
about the dataset see [14].

Figure 4.1.: MRI and Ground Truth. An example midsagittal MRI slice, it’s corre-
sponding manually annotated ground truth, and the ground truth rendered
in 3D.

Within the 10,833 scans, a subset of 330 scans possesses manually segmented 3D voxel
data for the IVDs and spinal canal. Additionally, 162 of these scans showcase seg-
mented 3D voxel data specific to the vertebral body. This segmentation process was

1https://nako.de/
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undertaken by a team of medical Ph.D. students affiliated with the University Medicine
Rostock. Figure 4.1 presents the middle sagittal slice from a patient’s scan, illustrating
an example MRI with the masks for the vertebral body and IVDs, as well as a 3D ren-
dering of the annotated data. In our dataset only vertebral bodies were annotated, in
other datasets it is common to annotate the entire vertebra (see Section 2.1 for the dis-
tinction). This causes some differences in our dataset in comparison to other datasets,
most notably C1 is not annotated as it does not have a vertebral body. Therefore
when counting vertebra we do not include C1.

The dataset under consideration is exclusively comprised of T2 sagittal scans. T2 MRI
scans are distinct in their capability to differentiate between tissues based on their
transverse relaxation time, while T1 scans delineate tissues based on their longitudinal
relaxation time. This difference in relaxation times facilitates unique contrasts in
the resulting images, making T2 scans especially advantageous for visualizing certain
anatomical details.

In terms of dimensions, the images in the dataset approximate to a size of 20× 400×
1000, with a slice thicknesses of 3.3mm× 0.8mm× 0.8mm across the sagittal, coronal,
and traversal axes, respectively. In contrast, CT scans typically measure 512× 512×
400− 1000. It’s noteworthy that one of the axes in CT scans usually greatly varies in
scale compared to MRI scans, which hinders the direct comparability between CT and
MR data. Furthermore, CT scans work in a fundamentally different way, such that
bones are much more visible than soft tissue.

Both the manually truthed as well as the full dataset were split into train and validation
sets. The manually truthed set of 162 patients was split into 132/30 train and validation
split. The 30 patients in the validation set have been specifically selected, because these
patients each were segmented by 3-4 medical specialists, raising the confidence of the
segmentation. The entire dataset of 10,833 was also split into train, validation and test.
For validation 5% were randomly sampled from the entire dataset, and for the test-set
the same 30 from the truthed set were used, resulting in a split of 10261/542/30.

Statistics of Sacralization and Lumbarization in the Dataset

Sacralization and lumbarization are anatomical variations that occur in the lumbosacral
region of the human spine. Sacralization refers to the condition where the fifth lumbar
vertebra L5 fuses with the first sacral segment S1, essentially becoming part of the
sacrum. On the other hand, lumbarization is when the first sacral segment S1 fails
to fuse with the rest of the sacrum and functions as an additional, or sixth, lumbar
vertebra L6.

In our dataset, we observed these variations in a significant number of patients. Using
the methods presented in this thesis, the entire dataset was automatically evaluated.
Lumbarization was present in 710 out of 10833 patients, representing approximately
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Figure 4.2.: Difficult Data. Multiple examples of erroneous or difficult data

6.6% of the total population studied. This means that these individuals had an addi-
tional lumbar vertebra due to the non-fusion of S1. Sacralization, on the other hand,
was less common, observed in 393 out of 10833 patients, or about 3.6% of the popula-
tion. These individuals lacked a fifth lumbar vertebra due to its fusion with S1. These
results are further discussed and compared with medical studies in Section 6.4.

In literature, when it is unclear whether the last vertebra is sacralized or lumbarized,
the term lumbosacral transitional vertebra (LSTV) is commonly used [42, 43]. This
term encompasses both sacralization and lumbarization, acknowledging the variability
in this region of the spine.

35





5. Vertebra Segmentation and
Labeling Pipeline

Segmentation and labeling of the vertebrae are critical steps in the processing of spinal
medical images. The primary goal of these steps is to accurately identify and label each
vertebra in the spine, facilitating subsequent analyses such as structural assessment,
pathological diagnosis, and surgical planning. Achieving precise segmentation and
labeling is essential for ensuring the accuracy of any derived metrics or insights.

The intricacies of spine segmentation and labeling arise from a myriad of challenges,
such as:

• Small FOV MRI scans: Due to the time-intensity, the majority of MRI scans
are only done for a small part of the spine. Seeing only a small part of the spine,
makes labeling considerably more difficult, because approaches which could count
down from C2 or up from S1 do not work.

• Similarity between adjacent vertebrae: Adjacent vertebrae often exhibit
strong morphological similarities, making it difficult to distinguish between them.
This similarity can lead to overlapping segmentations, where one vertebra is
misclassified as its neighbor.

• Variation between patients: The same vertebra can present significant vari-
ations across different individuals. Factors such as age, genetics, height, and
previous medical conditions can influence the shape, size, and orientation of the
vertebrae, introducing challenges in creating a generalized labeling algorithm.

• 3-dimensional data: Spinal medical images are inherently 3-dimensional, cap-
turing the intricate structure of the spine in depth. This 3D nature demands
algorithms that can handle volumetric data and take into account spatial rela-
tionships in three axes.

In the following sections, we will address these challenges, presenting robust solutions
tailored for the unique characteristics of spinal images. In Section 5.1 an overview of
the pipeline will be presented, including the three-step approach of the pipeline. In
Sections 5.2, 5.3 and 5.4 the three pipeline steps will be introduced. Each step presents
a task to be solved, each section details multiple approaches to solve that specific task.
The combination of methods of steps 1 to 3 yielding the best results is using (1) slice-
wise segmentation (Section 5.2.2), splitting along IVDs (Section 5.3.2), and multiclass
segmentation (Section 5.4.4). The results of this combination are further elaborated in
Section 6.1.
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Section 5.2 Section 5.3 Section 5.4

Figure 5.1.: Proposed Three-step Anatomical Labeling Pipeline. Initially, 162
samples annotated by experts are utilized to train a preliminary segmenta-
tion model. This model is then employed to segment an extensive dataset
of 10,833 MRI scans. The segmented data is separated into vertebrae and
IVDs, leveraging the fact that all instances can be inferred in a complete
MRI scan by assuming the topmost vertebra is C2. By cropping images
from the large dataset, a substantial training set is generated. This set is
used to train an anatomical labeling segmentation model specifically for
small FOV MRI images.
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5.1. Overview of Methodology

The following methodology has been developed with the aim of accurately segmenting
and labeling MR volume data, particularly focused on the segmentation of vertebrae
and intervertebral discs (IVDs). The methodology for achieving the proposed goal of
MR volume segmentation with correct labels involves three main steps:

1. Segmentation of vertebrae and IVDs: The first step aims to segment the
vertebrae and the IVDs without considering their quantity or specific visibility.

2. Instance separation: This step involves creating an anatomically sorted list of
instances (vertebrae or IVDs), where each instance represents a distinct set of
voxels.

3. Anatomical labeling: The final step assigns a unique label to each instance
from the previous step’s list. Since the list is anatomically sorted, labeling a
single instance allows for the inference of all other instances by ‘counting down’
or ‘counting up’.

Creating a segmentation and instance separation is essential, because this allows pro-
cessing and usage of the entire dataset of 10,833 patients for either further training
of a better model or other approaches, such as statistics-based ones. Without these
steps, the only dataset available would be the 162 patients with manually created seg-
mentations. When segmenting the full image where all vertebra are visible, it is easy
to “count-down” in order to determine the label for each instance. In Figure 5.1 the
entire pipeline is shown, including the training process for both segmentation models.

The major difficulty of the entire pipeline lies in the labeling of small field of view
(FOV) MR images, especially ones where neither the topmost (C2) or the bottommost
(S1) vertebra is visible. In such a case the model cannot easily infer the class for the
other instances, because then there is no easy anchor, such as C2 or S1, which are
visually distinct from the other vertebrae.

Alternatively, a direct multiclass segmentation is possible, but has considerably worse
results. Here, two possibilities arise: either training on the smaller dataset of 162 or
using the full dataset of 10,833 with the automatically created ground truth data.

5.2. Step 1: Segmentation of Vertebrae and

Intervertebral Discs

In this step the MR images are taken as input. A segmentation mask is created as the
output for three classes: background, vertebrae and IVDs, with the same shape as the
input image.

Only segmenting two classes, vertebra and IVDs, has the following advantages:
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DISCS

• This avoids the challenge of “similarity between adjacent vertebrae” and instead
uses it as an advantage. Segmenting any vertebra as a single class is considerably
easier and achieves good results even with a smaller dataset.

• The manually annotated ground truth data contain only these labels, this means
it is not necessary to further modify or annotate the dataset.

The following two approaches were considered for this task: slice-wise segmentation in
Section 5.2.2 and volume segmentation in Section 5.2.3. The one with the better results
was the former: slice-wise segmentation. Because both approaches share the same
necessary preprocessing and post-processing, these steps are elaborated in Section 5.2.1
and Section 5.2.4 respectively.

5.2.1. Preprocessing

To employ the segmentation network, a preprocessing step was undertaken. It’s note-
worthy that both slice-based segmentation and volume-based segmentation, outlined
in Section 5.2.2 and Section 5.2.3 respectively, necessitated the same preprocessing
measures.

Initially, each patient’s image underwent a basic normalization where its minimum
pixel value was mapped to 0 and the maximum to 1. Furthermore, in the ground-truth
normalization process, every vertebra voxel, including S1, was designated an integer
value of 1, while each IVD voxel was assigned a value of 2. Patients with only IVD
segmentations were ignored. In future work, a method could be considered which uses
the IVD segmentations to train only the segmentation part of the networks.

Subsequently, to achieve a consistent dimension of 18 × 320 × 896 across all images,
cropping or padding was performed. This size was selected to guarantee no exclusion
of segmented spine portions in any ground truth (GT) data samples. For spines ex-
ceeding these dimensions, symmetric cropping was applied, while those falling short
were symmetrically padded with 0.

Given that only 132 patients were part of the training dataset for this procedure,
data augmentations were implemented to introduce more diversity during training.
The augmentations were applied with certain probability p, sampled uniformly from
the given ranges. These augmentations included geometric transformations such as
rotations (p = 0.5) within θ ∈ [−20◦, 20◦], translations (p = 0.5) of up to 10% in
any direction, scaling (p = 0.5) between 80% and 120% and horizontal flipping (p =
0.5). Furthermore, photometric augmentations, which change the pixel intensities,
were applied: gaussian noise (p = 0.25) with µ = 0, σ2 = 0.01, gaussian blur (p = 0.25)
with σ ∈ [0.1, 2.0] and kernel size k = (3, 3), contrast and brightness (p = 0.25) with
intensity ∈ [0.9, 1.1].

In conclusion, normalization was applied during all subsequent steps which use the
MRI scans as inputs, whereas the augmentations were only applied during training.
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5.2.2. Slice-based Segmentation

Our model employs a slice-wise approach for image segmentation. The process com-
mences with preprocessing, as detailed in Section 5.2.1. Following segmentation, all
slices are assembled to yield the complete 3D segmentation. A subsequent post-
processing step, elaborated in Section 5.2.4, rectifies segmentation errors.

We adopt a sagittal slice-by-slice segmentation due to the prohibitive size of the entire
MRI scan for most 3D models. An alternative method of whole volume segmentation
is discussed in Section 5.2.3. To enhance the model and accommodate implementation
specifics, each slice is concatenated with its two adjacent slices as channels, resulting
in an input shape of 3 × 320 × 896. Any missing slices are padded with the middle
slice.

We evaluated numerous segmentation architectures: U-Net [25], FPN [44], MA-Net
[45], DeepLabV3/DeepLabV3+ [46], Linknet [47], and PAN [48]. U-Net is further
elaborated in Section 2.4.4, while the other architectures are detailed in their respective
papers. 56 encoders were assessed in various combinations with these segmentation
architectures.

The model was trained on a set of 132 patients, each annotated by an expert and
comprising 18 sagittal slices. It was evaluated on a validation set of 30 patients. For
training, we evaluated Jaccard loss, Dice loss, and cross-entropy loss, with Jaccard
loss yielding the best results for slice-wise segmentation. These losses are described in
detail in Section 2.3. We used the Adam optimizer [49] with a learning rate of 0.001.
Training lasted between 5 to 30 epochs, employing an early stopping strategy if the
validation DSC did not improve over 5 epochs. Each epoch evaluated each patient
and each slice, resulting in a total of 132 · 18 = 2376 samples per epoch. Training was
conducted on a NVIDIA RTX 3090 GPU and took between 20 minutes to 2 hours per
model.

The most effective model for this segmentation task was a U-Net [25] with a ResNet152
[25] as the encoder. Further results are shown in Section 6.2, and a complete list of all
experiments can be found in Appendix A.

5.2.3. Volume-based Segmentation

As an alternative to the slice-wise approach detailed in Section 5.2.2. Unlike slice-
based segmentation, where each 2D slice is processed independently, volume-based
segmentation handles the entire 3D image volume at once. This method allows for the
exploitation of 3D spatial context, which is particularly beneficial for understanding
complex anatomical structures not available during slice-wise segmentation.

In volume-based segmentation, the entire 3D volume is input directly into the model.
This requires a more complex network architecture capable of processing 3D data. For
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this task, we employed a 3D U-Net [50, 26], an extension of the U-Net architecture
that operates on volumetric data.

Training a model on 3D volumes requires a significant amount of memory and computa-
tional power. We utilized a NVIDIA RTX 3090 GPU to manage this task. The model
was trained using the dataset comprising full 3D scans from the same 132 patients
mentioned in Section 4.

The loss functions used for training were similar to those in slice-based segmentation,
including Dice loss, Jaccard loss and cross-entropy loss. The Adam optimizer [49] was
used, with a learning rate of 0.001.

Volume-based segmentation offers several advantages over the slice-based approach.
Most notably, it provides a more holistic understanding of the 3D structures within
the image. This is particularly beneficial for complex and interconnected anatomical
regions where 2D slices might not reveal the full context of the structures involved.

Additionally, this approach can help in identifying and understanding anatomical vari-
ations and pathologies that are only apparent when observing the full volume. For
instance, abnormalities in the shape or connectivity of bones that might be missed in
2D slices can be more easily detected in the 3D volume.

Despite its advantages, volume-based segmentation has some limitations. The primary
challenge is the high demand for computational resources and memory, which makes
it difficult to deploy on standard clinical systems. Furthermore, the large size of 3D
volumes can lead to longer processing times, impacting the workflow in time-sensitive
clinical environments.

Volume-based segmentation presents a powerful alternative to slice-based segmenta-
tion, especially for complex anatomical analyses. Although it requires more computa-
tional resources, its ability to leverage the 3D context of medical images makes it an
invaluable tool in the field of medical image analysis. However, in our case it did not
deliver better results than slice-wise segmentation due to the limitations in model size
when having to train on the entire volume. The comparison between both models can
be seen in Table 6.3.

5.2.4. Post-processing

The segmentation is not perfect and especially “blobs” which are disconnected from
the main spine cause issues in the later stages for labeling. Three examples can be seen
in Figure 5.2, not filtering those would lead to issues in the subsequent pipeline steps,
because there it is assumed that all segmented parts belong to the spine.

Two post processing steps are performed in order to improve the performance of the
next steps:
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• Deletion of entirely disconnected blobs: this ensures that only a single
contiguous object (the spine) is returned after this step. In order to achieve this,
each non-zero voxel is temporarily labeled as 1, background voxels remain as 0.
Then the connected components algorithm is used, which has been introduced
in Section 2.2, to find each connected component. Now that IVDs are labeled
as 1, the spine will be found as a single connected component. The connected
component with the largest volume is kept, all others are discarded. Finally, the
previous labels are returned to the positions of the largest connected component.

• Heuristic deletion of small class-wise disconnected blobs: this ensures
that a small number of incorrectly classified voxels do not count as an entire
vertebra or IVD. Again, connected components is used in order to find all objects,
however, this time the labels are kept as is. All connected components below a
volume of 50 voxels are removed (set as background). In our train dataset of
132 patients we have found that even the smallest IVDs contained at least 131
voxels (C2-C3). However even this seems to be an outlier, as the second smallest
C2-C3 IVD contained 249 voxels, and on average C2-C3 contained 586 voxels.
Therefore 50 voxels seems to be safe number without risk of removing relevant
instances.

The two post-processing steps are applied sequentially. The first step removes cases
such as Figure 5.2a and Figure 5.2c, whereas the second step removes cases such as
Figure 5.2b.

(a) A disconnected “blob”
below S1

(b) A few incorrectly classi-
fied IVD voxels

(c) Due to one slice having
worse quality, some ver-
tebrae are incomplete

Figure 5.2.: Segmentation Errors. Three examples where post-processing is neces-
sary in order to achieve a correct labeling.
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5.3. Step 2: Instance Separation

In the context of our research, after obtaining the segmented 3D medical images, a
crucial subsequent step is to differentiate and isolate each distinct anatomical structure
within these segmentations.

Splitting the segmentation into separate instances has several advantages:

• Using this instance separation, it is possible to segment and split the entire large
dataset of over 10000 patients, allowing for further processing.

• This allows for many other approaches to be viable in the next step, as only a
single label needs to be predicted for each instance.

• Because the manually truthed dataset does not differentiate which vertebra is
visible, using the instance separation allows training of a multiclass segmentation
models on the small manually annotated dataset.

This section elaborates two techniques employed for this purpose: the connected com-
ponents algorithm in Section 5.3.1 and splitting vertebrae using IVDs in Section 5.3.2.
The latter was the one used in the final pipeline. However, the latter also uses the
connected components for some parts, therefore they share similarities.

5.3.1. Via Connected Components

As previously detailed in Section 2.2, the connected components algorithm is a foun-
dational method in image processing and computer vision. It identifies and labels
contiguous regions within an image based on specific pixel value criteria. For our task,
this algorithm plays an integral role in separating individual IVD and vertebrae within
the segmented images, with its operations conducted within a 26-neighborhood in 3D
to ensure comprehensive connectivity analysis.

1. Using segmentations: The algorithm makes use of the segmentations obtained
from the previous task. In the segmentation mask for vertebrae and IVDs, each
distinct structure in the segmented image is recognized based on its spatial con-
nectivity in the 3D volume using the connected components algorithm.

2. Sorting: Post-segmentation, the centroids of all 3D structures are computed.
Utilizing these centroids, the segmented structures, encompassing both discs and
vertebrae, are systematically sorted. This sorting is purely based on the transver-
sal coordinate of the centroid (top-down axis).

3. Labeling: Upon sorting of the distinct structures, each vertebra is labeled with
an odd number starting at the top with 1, ensuring that every vertebra receives
a unique, odd identifier. Conversely, each IVD is labeled with an even number,
starting with 2, to distinguish them from the vertebrae. The distinction be-
tween vertebra and IVD can be made because of the segmentation, as it already
distinguishes between these two classes.
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The primary merit of the connected components algorithm is its unambiguousness and
operational efficiency. It offers an uncomplicated methodology to segment adjoining
structures devoid of intricate computations. In the context of our study, it proves
invaluable, especially for differentiating closely located vertebrae.

However, it’s imperative to note certain susceptibilities of the algorithm. Particu-
larly, in the 26-neighborhood in 3D, there’s a risk of erroneous segmentation when
two vertebrae are in close proximity or touch each other. Such instances can lead
to both vertebrae being recognized as a singular connected component, complicating
subsequent analyses, examples for such cases can be seen in Figure 5.3. Failure in
separation results in failure of separation of all subsequent vertebrae.

Conclusively, the connected components algorithm, coupled with centroid-based sort-
ing, offers a technique for anatomical spinal structure separation and organization
within our research framework. However, it is prone to errors where vertebrae are
close to each other, producing incorrect results.

(a) Two vertebrae share
many voxels

(b) Two vertebrae share one
or two voxels

(c) The IVD was only par-
tially segmented, result-
ing in the vertebrae being
connected

Figure 5.3.: Separation Errors. Three examples where vertebrae have common vox-
els, causing a naive connected components approach to fail to separate
these vertebra

5.3.2. Split Along Intervertebral Discs

Addressing the challenges posed by vertebrae situated in close proximity to one an-
other is crucial for accurate segmentation. The connected components algorithm, while
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(a) Connected components fails to separate
T1 from T2

(b) Connected components fails to separate
T11 from T12

Figure 5.4.: Instance Separation Method Comparison. Two examples where the
connected components approach (Section 5.3.1) fails to separate two adja-
cent vertebra, but split along IVDs (Section 5.3.2) succeeds.

effective, can occasionally falter when vertebrae are too close. A promising solution to
this issue is segmenting by splitting along the IVDs. This method not only harnesses
the natural anatomical boundary that IVDs provide between vertebrae but also offers
a potential remedy to the close proximity problem.

The algorithm consists of three steps:

1. Segmentation of IVDs using connected components: The initial step iso-
lates each IVD using the connected components algorithm. This segmentation
ensures that each IVD is distinctly treated in subsequent processes.

2. Principal component analysis (PCA) on IVD coordinates: Once each
IVD is segmented, PCA is executed on its voxel coordinates. This analysis yields
a plane that accurately represents the IVD’s orientation and shape within the
3D space.

3. Splitting vertebrae using the IVD plane: With the plane obtained from
PCA for every IVD, the segmentation of vertebrae is methodically executed.
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Starting with a label of 1 for every vertebra voxel, the algorithm iterates over
each IVD from top to bottom. For every voxel of the vertebra positioned below
an IVD’s plane, its label receives an increment of 2. This technique ensures each
vertebra acquires a unique label, successfully segmenting them along the IVDs
planes.

The split along intervertebral discs strategy presents numerous advantages:

• Natural boundary utilization: This method often yields anatomically precise seg-
mentations by capitalizing on IVDs as inherent boundaries.

• Mitigating close proximity challenges : In contrast to the connected components
method, where two neighboring vertebrae might be inaccurately segmented as a
single entity, this technique effectively addresses such issues due to its reliance
on the planes of IVDs.

Two examples where this approach addresses the shortcomings of the connected com-
ponents approach can be seen in Figure 5.3. Nevertheless, potential challenges merit
consideration. The efficacy of this approach is contingent upon the precise segmenta-
tion of IVDs. Misoriented or inaccurate IVD segmentation can lead to the derivation of
incorrect planes from PCA, culminating in less than optimal vertebrae segmentation.

Conclusively, the methodology presented in this section offers a robust alternative for
vertebrae separation, which is not as susceptible to classify adjacent vertebrae as the
same class.

5.4. Step 3: Anatomical Labeling

In this task each voxel is assigned its anatomically correct label, such as C2 or T12.
The instance separation, as described in Section 5.3, is used as input.

This task presents the toughest challenge, therefore many approaches are presented
here. The best performing approach was multiclass slice-wise segmentation shown in
Section 5.4.4.

The many approaches can be grouped into two groups: image-based and statistics-
based approaches. The image-based approaches use the underlying MRI image to-
gether with the segmentation as created in step 1 to label the image. Statistics-based
approaches use some extracted information about the vertebrae and IVDs, such as
volume, direction, or height, in order to label the image.

The two image-based approaches include multiclass slice-wise segmentation (Section 5.4.4)
and local encoder with GNN classifier (Section 5.4.3). The two statistics-based ap-
proaches include a direction-based classification (Section 5.4.1) and classification with
classical machine learning (Section 5.4.2).
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5.4.1. Directional Vector Matching

This section describes a statistical approach using the direction of the spine to figure
out which vertebrae and IVDs are currently visible. For this the huge dataset is used to
create statistics about the direction of the spine, the currently to-be analyzed spine is
then compared at each possible location with the available directions. The best match
is where the directions deviate the least, this is then the prediction.

Determining the Direction of the Spine

In this approach a direction for each vertebra and disc is necessary, multiple ways of
creating the direction have been considered. Two methods are presented here, Method
(2) was used in the final version and produced the best results. (1) using PCA to
find the principal components of the discs and (2) using the difference between object
centroids as the direction vector.

• In (1), the assumption is made that the IVDs are considerably more flat in one
direction. Applying PCA to the coordinates of the IVD, yields three principal
component vectors. With the first assumption, the first two vectors will be along
the axes with the most variance, i.e. where the disc is the widest. Because the
third principal component vector is also orthogonal to the first two vectors, it can
only point “up” or “down” along the thinnest part of the disc. Then normaliza-
tion is applied and ensured that each vector points in the same “up” direction,
roughly towards C2. The direction vectors for the vertebrae are calculated as
the average of the two adjacent IVD direction vectors.

This method works well, however it has two problems. Firstly, it is susceptible to
outliers. A couple voxels in the wrong position can greatly change the first two
principal component vectors. Secondly, when creating the directions this way, the
normals do not point in the direction of the spine, especially the IVDs between
C2 and C6. The issue with this, is that it becomes considerably more difficult
to differentiate between the directions between the upper spine and middle spine,
as in this approach these essentially point to the same direction.

• In (2), the centroid of each distinct object is computed by taking the average
of all voxels constituting that object. To ascertain the orientation of the spine
at a particular object’s location, be it a vertebra or disc, we derive a vector by
subtracting the centroids of its immediate neighbors. This vector, which points
from the lower object to the upper one, is subsequently normalized and adopted
as the spine’s direction at the midpoint.

Nevertheless, certain objects, notably C2 and S1, lack either an upper or lower
adjacent counterpart. To circumvent this issue, two hypothetical points are in-
troduced to augment the spinal curvature on both extremities. The generation
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of these points entails devising three predictive functions, each tasked with fore-
casting the subsequent X, Y , and Z coordinates, respectively. These functions
are based on a quadratic form given by f(x) = ax2 + b. The functions are tai-
lored to fit the n closest data points to the target point under prediction. Given
an assumption of roughly equidistant neighboring points, these data points are
associated with the x-coordinates {0, 1, 2, 3, ...}. The predicted coordinate for
the target point is then acquired by evaluating the function at x = −1, and this
process is replicated for all three coordinates of the point under prediction. In
our case n = 4 was used, i.e. the four uppermost objects as well as the four
lowermost objects were used in order to predict an additional coordinate. With
these additional points the algorithm can be used as described above.

Using the separated objects as described in Section 5.3 a derived dataset of directions
is created using method (2) for each vertebra and IVD direction for each spine of the
10,833 patients. The dataset D can be formally defined as follows: D ∈ R10833×49×3.
For each entry Di ∈ D, it represents a list of 49 vectors: Di = {v⃗i,1, v⃗i,2, ..., v⃗i,49}.

Finding the Best Matching Directions in the Dataset

Using the direction dataset as described in the previous section, this approach labels an
unknown new small FOV MRI image in the following way: firstly, the first two pipeline
steps are performed in order to obtain separate segmented and sorted instances for
each vertebra and IVD. As the MRI image is partially visible, not all instances are
available, necessitating an additional labeling step. In this case only a single label
for the topmost instance is produced, all other labels are inferred by counting down
from the inferred label. The labels C2, C2-C3, ..., S1 are mapped to the numbers
1 through 49. Therefore the problem can be defined as a function which maps a list
of directions for each vertebra and IVD of the current candidate to the label of the
topmost structure:

f(d⃗1, d⃗2, ..., d⃗n)→ {1, 2, ..., 50− n} (5.1)

Where n ∈ {1, 2, ..., 49} is the number of found instances by the instance separation
method and di ∈ R3 is the direction of the i-th instance. It is of note that the output
space decreases when more directions are provided, as the lower instances need to have
a valid label which these can be assigned to. For example, for n = 49, i.e. the entire
spine is visible, only a single output value is possible: 1, which maps to C2.

For distance calculation, we use the Euclidean distance between two vectors a⃗ and b⃗,
given by ∥a⃗ − b⃗∥2. To calculate the distance between two lists of vectors of the same

length m, A = {a⃗1, a⃗2, ..., a⃗m} and B = {⃗b1, b⃗2, ..., b⃗m}, we sum the distances between

the corresponding vectors:
∑m

j=1 ∥a⃗j − b⃗j∥2. For each dataset entry Di and for every
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possible starting position p, we compare the list L with a sublist of Di of length n.
The sublist for entry Di and position p is defined as {v⃗i,p, v⃗i,p+1, ..., v⃗i,p+n−1}.

The function f(d⃗1, d⃗2, ..., d⃗n) identifies the index of the dataset entry and the starting
position where the distance between L and the sublist is minimized. Formally:

f(d⃗1, d⃗2, ..., d⃗n) = argmin
i,p

n∑
j=1

∥d⃗j − v⃗i,p+j−1∥2

Subject to the conditions:
1 ≤ i ≤ 10000

1 ≤ p ≤ 50− n

These conditions ensure the sublist starting at p and containing n vectors remains
within the bounds of Di.

Using this function f a prediction can be created for a small FOV MRI image.

5.4.2. Conventional Machine Learning Classification

In the task of classifying each separated anatomical structure, the challenge intensifies
when not all objects are visible in the acquired imaging. Given the variability and
possible occlusions within the medical images, adopting machine learning strategies
that can make informed predictions even with missing data is pivotal. Conventional
machine learning algorithms, with their ability to operate on hand-crafted features,
often fit well in such scenarios.

Additional Statistics about each Vertebra and IVD

Before employing any classification strategy, it’s essential to understand the inherent
characteristics of the structures to be classified. By examining each separated vertebra
and IVD, various statistics can be calculated to serve as features for the subsequent
classification tasks. The metrics considered include:

• Height: The vertical dimension of the structure, as measured in the axis of the
spine.

• Width: The horizontal dimension, orthogonal to the height, at the widest posi-
tion.

• Volume: The number of voxels occupied by the object as returned by the seg-
mentation.

• Direction: The orientation of the vertebra or IVD as a 3D vector, which can be
particularly informative given the anatomy’s natural curvature and alignment.

These statistics are created for each separated instance of vertebra and IVD for the
large dataset of 10,833 patients.
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Applying the methods

Once the features are extracted, the classification task primarily focuses on predicting
the topmost vertebra present in the image. The subsequent vertebrae can be inferred
based on the prediction of the topmost vertebra. With the curated features serving as
inputs, two prominent machine learning algorithms are employed: random forest [51]
and XGBoost [52].

• Random forest: This ensemble learning method constructs multiple decision
trees during training and outputs the mode of the classes (classification) of the
individual trees for prediction. It’s particularly adept at handling large datasets
with higher dimensionality, making it well-suited for this task.

• XGBoost: Standing for eXtreme Gradient Boosting, XGBoost operates by
building an ensemble of prediction models, typically decision trees. It’s known
for its efficiency and capability to tackle unbalanced datasets. In the context of
vertebrae classification, XGBoost can leverage its gradient boosting mechanism
to iteratively refine its predictions, based on the features of the vertebrae and
IVDs.

• Multilayer perceptron (MLP): An MLP is a class of feedforward artificial
neural network that consists of at least three layers of nodes: an input layer,
at least one hidden layer, and an output layer. Except for the input nodes,
each node is a neuron that uses a nonlinear activation function. MLPs utilize a
supervised learning technique called backpropagation for training the network.
See Section 2.4.1 for a more in-depth explanation.

All three algorithms undergo training using the statistics dataset of 10,833 as created
in the previous Section 5.4.2, with train and validation split as described in Section 4.
The algorithms were trained on three different context lengths: 5, 10 and 15 visible
vertebrae. These result in 10, 20 and 30 visible objects. In total there are 49 possible
objects. During training for each patient a random continuous subset of size 10, 20 or 30
is sampled from the statistics dataset. Both random forest and XGBoost are trained
with nestimators = 1000 as regression tasks. I.e. both methods predict only a single
value: the label of the topmost vertebra or IVD. The lower instances are inferred using
the topmost one. This approach, however, lacks the ability to differentiate between
lumbarization and sacralization, where the order of the vertebrae changes. In future
work multivariate random forest and XGBoost should be evaluated.

In this work, we do also use a multilayer perceptron in a classification task, where
not only the topmost vertebra is predicted, but also every single instance visible in
the image. This is achieved by predicting 49 values, the probability for each instance
C2,C2-C3, ...,S1 being visible in the current slice. The MLP is trained with four hid-
den layers with (128, 256, 512, 1024) neurons, respectively. ReLU is used as activation
function with cross entropy loss. The results of these can be seen in Section 6.1.
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Figure 5.5.: GNN Approach. Overview of the local encoding with graph neural net-
works approach. The MRI is segmented and the vertebrae are separated
using the methods proposed in step 1 and 2, then a 3D patch of shape
18 × 128 × 128 is extracted around each vertebra. The number of verte-
brae may vary in the input, depending on the FOV size. The 3D patches
are used as input for an encoder (e.g. ResNet), the output of which is an
encoding vector v⃗ ∈ R128 representing that vertebra and its neighborhood.
Each vector v⃗ is used as the features of a GNN node. Adjacent GNN nodes
are connected if they represent adjacent vertebrae. Three graph convolu-
tions are performed, resulting in vectors R256, R512 and R1, respectively.
The final output is a single number, representing a regression task, where
each node predicts the index of that vertebra as a number between 1 and
26. Finally, the actual prediction is the anatomically possible prediction
which has the least mean square error (MSE) when compare to the outputs
of the GNN.

5.4.3. Local Encoding with Graph Neural Networks

Classical machine learning techniques, while effective, operate on handcrafted features
that often require meticulous preprocessing and engineering. In contrast, deep learn-
ing architectures like GNNs enable an end-to-end learning mechanism that inherently
understands structural relationships in the data. In the context of vertebrae and IVD
classification, leveraging such relationships becomes especially pivotal. The proposed
approach integrates local encoding with GNNs to achieve this goal.

The initial step involves encoding the anatomical structures present in the input image.
The neighborhood for each segmented structure (e.g., a vertebra or an IVD) is passed
through a ResNet-based encoder. This encoder transforms the spatial information from
the 3D imaging data (of dimension 18×128×128) into a high-dimensional feature vector
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v ∈ R128. As illustrated in Figure 5.5, this encoding process happens locally for each
structure, ensuring that unique and specific features are captured for each.

Once the local encoding vectors are obtained, they are treated as nodes in a graph.
These nodes are interconnected, signifying the spatial relationships between the anatom-
ical structures. GNNs are particularly adept at managing such relational data. They
have been described in Section 2.4.3.

The core operation involves graph convolutions. In this architecture, three graph con-
volution operations refine and update the feature vectors. This iterative process ensures
that each node’s representation (i.e., each vertebra or IVD) is influenced by its neigh-
boring nodes, effectively capturing the spatial relationships and dependencies among
them.

5.4.4. Multiclass Segmentation

In this section, we detail a methodology for anatomically labeling each vertebra and
IVD using a segmentation model, building upon the approach in Section 5.2.2. The
adaptation to a multiclass setting introduced the need for a significant increase in train-
ing data due to the introduction of additional classes. The foundational model remains
unchanged from the one shown in Section 5.2, but with an expansion of classes from
3 to 50. Class 0 is retained for background representation. The subsequent 49 classes
are designated for vertebrae and IVDs, sequenced in alternating order starting with
{1 := C2, 2 := C2-C3, ..., 47 := L6, 48 := L6-S1, 49 := S1}. Given the phenomena of
sacralization and lumbarization, as explained in Section 2.1, a majority of spines are
observed to lack L6 and L5-L6, with a smaller subset also missing L5 and L4-L5.
This absence in some lumbar region images complicates the NN’s learning process re-
garding sequential class progression. Nevertheless, the consistent classification of S1
as class 49 offers advantages that compensate for the aforementioned challenges.

Considering the model’s complexity and the augmented class count, relying solely on
the GT training data, as characterized in Section 4, proved inadequate. The model’s
learning proficiency was compromised in the absence of supplementary data, necessi-
tating additional measures. To address this, the complete dataset of 10,833 was used
to train and evaluate this model.

Post-processing

The output of this model is not used directly as the final output, instead it is treated
as a probability map and is further post-processed, to obtain a final anatomically pos-
sible label assignment (see columns “Output” and “Post-processed” in Figure 5.6).
This is done by performing step 1 and 2 first, thereby obtaining the separated in-
stances from the given small FOV MRI image. With this knowledge, all possible
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instance label assignments with the same length are created as the number of sep-
arated instances. For example, if there are five instances, the first being a ver-
tebra, then (C2,C2-C3,C3,C3-C4,C4) is a possible label assignment, and so is
(C3,C3-C4,C4,C4-C5,C5), and so on. Care has to be taken for the special case of
S1, as it can appear after L4, L5 or L6, therefore a few more possible label assign-
ments arise for labels in the lumbar region. For example, in the case of 5 instances
both (L3,L3-L4,L4,L4-L5,L5) and (L3,L3-L4,L4,L4-S1,S1) are possible label
assignments. In Figure 5.6 three examples can be seen for multiclass segmentation

For each possible label assignment, an error is calculated, representing how far off the
label assignment is from the multiclass segmentation output. The label assignment
with the lowest error is then used as final label assignment. In the following we will
detail how this label assignment is calculated. Due to the numerical nature and the
sorting of the labels, adjacent labels are only separated by a value of one, therefore in
the following instead of the readable labels, their numerical equivalents will be used,
e.g.: instead of (L3,L3-L4,L4,L4-L5,L5), (3, 4, 5, 6, 7) is used.

The error for a single instance label is calculated as follows:

Errorinstance(a, L) =

∑||L||
i=0 (a− Li)

2

||L||
(5.2)

Where a ∈ {1, 2, ..., 49} is the assigned label for the current instance. L ∈ {0, 1, 2, ..., 49}m
is a list of all voxel labels as numeric values for the current instance, which have been
segmented by the multiclass segmentation. L is calculated by iterating over each voxel
in the instance, as separated by the algorithm in step 2, and for each voxel retrieving
the segmented label.

Thus, for a given label assignment A ∈ {1, 2, ..., 49}n, with n ∈ {1, 2, ..., 49} and the
constraints above, an error for an entire label assignment can be computed:

Errortotal(A,L) =
||A||∑
i=0

Errorinstance(Ai,Li) (5.3)

With L ∈ {0, 1, 2, ..., 49}m×n being a list of voxel lists, where each list in L is a list like
L above.

Then Errortotal is computed for all label assignments, and the one with the lowest
error is picked. Finally, the output of the multiclass segmentation can at this point
be discarded, as only the best label assignment matters. For each separated instance,
the corresponding label is assigned to each voxel belonging to that separated instance.
This is then the final output of this method.
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(a) V=5

(b) V=10

(c) V=15

Figure 5.6.: Multiclass Segmentation Output. The midsagittal slice of three dif-
ferent FOV sizes. The column MRI shows in the cropped input image.
Output shows the direct output of the multiclass segmentation model.
Post-processed shows the output of the optimal label assignment, merged
with the IVD segmentation (described in Section 5.4.4), GT shows the
ground-truth.

55





6. Results

In this section we show various experiments done in order to evaluate our work. Sec-
tion 6.1 shows the main contribution of the thesis: anatomical labeling of small field of
view MRI images. This encompasses the entire pipeline: (1) segmentation of vertebrae
and IVDs, (2) instance separation and (3) anatomical labeling. Due to the amount of
possible combinations of approaches for the entire pipeline, not every combination is
shown there. Instead, for step (1) and (2) the best methods are taken, and only step
(3) is exchanged (where applicable). In order to find the best methods for step (1), in
Section 6.2 a comparison between the two segmentation approaches, slice-wise and vol-
ume segmentation, is made. Analogously, for step (2), in Section 6.3 the results of the
two algorithms for separating instances using connected components and by splitting
along the IVDs is presented. Finally, in Section 6.4 the statistics about lumbarization
and sacralization, which have been found using the anatomical labeling pipeline, are
shown.

6.1. Anatomical Labeling Pipeline Results

This section presents the results of the anatomical labeling pipeline for small field of
view (FOV) MRI images, as detailed in this thesis. The effectiveness of the pipeline on
small FOV MRI images is evaluated by focusing on three FOV sizes, expressed as the
number of visible vertebrae: V = 5, V = 10, and V = 15. This implies that either 5,
10, or 15 out of a possible 24-26 vertebrae are visible in the given MRI scan. These sizes
correspond approximately to 20%, 40%, and 60% of the spine, respectively. However,
due to the variation in vertebra sizes, this may vary (see Figure 5.6 for examples of
each size).

6.1.1. Experiment Setup

To obtain consistent FOVs, the ground truth is used to determine the range of the
image to be used. For a given MR image and corresponding ground truth, n = 26− V
small FOV subset images are sampled.

For each of these subset images, the same width and depth are maintained, but a differ-
ent height is used. This means that for the sample with index i ∈ {1, 2, ..., n}, all values
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6.1. ANATOMICAL LABELING PIPELINE RESULTS

∈ {2i− 1, 2i, ..., 2i+ 2V − 3} that are in the original ground truth must also be in the
subset ground truth. For example, with an FOV size of V = 3 and subset sample index
i = 2, all ground truth values between 3 and 7, both inclusive, must also be in the subset
ground truth sample, which corresponds to the labels {C3,C3-C4,C4,C4-C5,C5}.

Finally, the minimal height for the subset is used such that the above condition holds.
It is of note that due to the variance in the sizes of the vertebra this height varies
greatly depending on where in the spine it was sampled. For example, for V = 5,
subset images in the lumbar region might have a height of ≈ 260 voxels, whereas in
the cervical region it might be ≈ 120 voxels.

6.1.2. Anatomical Labeling Method Comparison

In this section the subset accuracy metric (Section 2.3.1) is used, which refers to an
accuracy where every single class prediction was correct. I.e. subset accuracy is 0%,
unless the accuracy per class is 100% for a given sample. For the case of spine anatom-
ical labeling it means, that each instance (a vertebra or IVD) was assigned the correct
label. The label of an instance is determined by sampling the voxels from the ground
truth in the prediction, if the majority of sampled voxels are of the same label, then
that is the label for that instance.

Figure 6.1.: An Example Considered Incorrect Without Discarding Incom-
plete Vertebra or IVDs. The column MRI shows the cropped input
image. Output shows the direct output of the multiclass segmentation
model. Post-processed shows the output of the optimal label assignment,
merged with the IVD segmentation (described in Section 5.4.4), GT shows
the ground-truth. The image labeled Incorrect shows the voxels which are
correct in green, and which are incorrect in red, and background in black.
(GT is compared with Post-processed). Segmentation shows the output of
the segmentation as created in Section 5.2. Notice the red voxels at the
top of the Incorrect column, a single barely visible IVD was misclassified,
resulting in a subset accuracy of 0 and the Incorrect label for this sample.

58



6.1. ANATOMICAL LABELING PIPELINE RESULTS

In many cases vertebrae or IVDs close to the edge of the image are barely visible,
and therefore are segmented or labeled incorrectly. This is especially difficult when
evaluating subset accuracy, which requires every single vertebra and IVD instance to
be labeled correctly (further described in Section 2.3.1). As in that case, a segmentation
such as Figure 6.1 is considered entirely incorrect. In order to avoid this, 15 voxels at
the top and bottom in the transversal (top-down) axis are disregarded when assessing
subset accuracy (roughly half of a vertebra).

Section Methods
Subset Accuracy for FOV

@ V=5 @ V=10 @ V=15
5.4.1 Direction-based 66.5% 71.3% 75.9%
5.4.2 Random Forest Regression 77.3% 81.4% 88.3%
5.4.2 XGBoost Regression 79.5% 87.1% 94.4%
5.4.2 MLP Classification 83.9% 85.8% 93.6%
5.4.3 Encoder+GNN 11.8% 4.1% 6.4%
5.4.4 Multiclass Segmentation 85.5% 92.6% 94.4%

5.4.4 T132 Multiclass Segmentation† 80.0% 81.6% 92.9%

Table 6.1.: Subset Accuracy for Anatomical Labeling Pipeline. Anatomical
labeling evaluation for the entire pipeline on the validation set (542 patients)
based on the methods proposed in step 3 Section 5.4. As the pipeline
consists of three steps, only step 3 (anatomical labeling) is changed in this
table, for step 1 (Section 5.2: segmentation of vertebrae and IVDs) and
step 2 (Section 5.3: instance separation) the best methods are used with
the corresponding step 3 method. The results for the best methods for
step 1 and 2 are shown in Section 6.2 and Section 6.3, respectively. The
row marked with † is ablation study, showcasing the performance loss of
not using the pipeline. T132 means that a model was only trained on the
smaller dataset of 132 MRI scans, showcasing what a lack of anatomical
labeling pipeline for additional data creation entails.

In Table 6.1 a comparison is made between the various methods introduced in Sec-
tion 5.4 using subset accuracy. Multiclass segmentation (Section 5.4.4) was the best
performing method for all three FOV sizes V ∈ {5, 10, 15}, with a subset accuracy of
85.5%, 92.6% and 94.4%, respectively. The multiclass segmentation is closely followed
by the traditional machine learning approaches (Section 5.4.2) based on a regression
task about classifying statistics created from the instances, the best approach of these
being XGBoost. The Encoder+GNN approach performed quite poorly, the reason
likely being that the neighborhood context size for each vertebra is too small to obtain
enough information about the location of the vertebra.

The multiclass segmentation model is further analyzed in Figure 6.2, including a per
vertebra and IVD accuracy for four different FOV sizes. Furthermore, in Table 6.2
the multiclass segmentation model is compared with a few state of the art approaches.
Most of them are difficult to compare, however there is one which has a very similar
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MRI dataset, by Chang et al. [53], it has relatively consistent FOV of V ∈ {5, 6, 7, 8},
and also only uses vertebral bodies instead of full vertebrae as segmentation target.

Method Dataset FOV Accuracy DSC

Lessman et al. [36]
15 CTs
35 low-dose chest CTs

V ≈ 18
V ≈ 12

100%
95.7%

0.958
0.921

Payer et al. [37] VerSe19: 374 CTs V ∈ {5, 6, ..., 26} 95.0% 0.904

VerteFormer [54]
VerSe19: 374 CTs
VerSe20: 300 CTs

V ∈ {5, 6, ..., 26}
V ∈ {5, 6, ..., 26}

-
-

0.865
0.869

Spine-transformers [55] VerSe19: 374 CTs V ∈ {5, 6, ..., 26} 96.7% 0.901
SpineParseNet [17] 215 lumbar MRIs V ≈ 8 - 0.875± 0.038
Spine-GAN [56] 253 lumbar MRIs V ≈ 8 - 0.870± 0.010
Chang et al. [53] 292 T10 to S1 MRIs V ∈ {6, 7, 8, 9} 89.3%± 5.2 0.871± 0.041

Ours 10,833 complete MRIs

V = 5
V = 8
V = 10
V = 15

85.5%
90.9%
92.6%
94.4%

0.799
0.839
0.847
0.875

Table 6.2.: Approximate Comparison of State-of-the-Art Segmentation Mod-
els for MRI and CT Images. This comparison spans various datasets
and FOV sizes. The FOVs are estimated based on the datasets, while the
accuracy and Dice similarity coefficient (DSC) values are sourced from the
respective papers. The term ’accuracy’ is often used interchangeably with
’identification rate’, which denotes the accuracy for each individual verte-
bra. There are considerably more CT-based methods, likely due to the
availability of complete spinal datasets for CT. Three MRI approaches are
also listed. Among these, the dataset by Chang et al. [53] is likely the
most similar, since they use vertebral bodies instead of the full vertebra for
segmentation, and contain several different FOV ranges.

6.2. Step 1: Segmentation Method Comparison

In this section, we compare the results from the segmentation step to identify the
optimal method for the rest of the pipeline. We consider two methods: slice-wise
segmentation (Section 5.2.2) and volume-based segmentation (Section 5.2.3). Both
methods employ similar architectures, such as U-Net, in either the 2D variant [25] or
3D variant [26]. The models are trained on a dataset manually annotated by expert
radiologists, comprising 132 MRI scans for training. After training, each model is used
to segment the 30 MRI validation scans. The annotation is then used to compute
scores for DSC and IoU.

Table 6.3 presents the condensed results for both methods. The DSC and IoU scores
(defined in Section 2.3.2 and Section 2.3.3, respectively) are shown for each experiment.
These metrics quantify the accuracy of the segmentation, with 1.0 indicating perfect
segmentation and 0.0 indicating no correct segmentation.
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(a) FOV V = 20 (≈ 80% of spine) (b) FOV V = 15 (≈ 60% of spine)

(c) FOV V = 10 (≈ 40% of spine) (d) FOV V = 5 (≈ 20% of spine)

Figure 6.2.: Multiclass Segmentation Accuracy per Vertebra and IVD for
Various FOVs. The multiclass segmentation method (Section 5.4.4) was
evaluated for four different field of view (FOV) sizes V ∈ {5, 10, 15, 20}
for each vertebra and IVD. The FOV size refers how many vertebrae are
visible in the scan used as input for the multiclass segmentation. In all
four FOVs the labeling accuracy for L6 and L6-S1 was poor: between 12%
and 34%. In all FOVs the accuracy for C2 and S1 was good, which can
be explained due to them being of unique shape and lacking a predeces-
sor/successor vertebra. The overall accuracy for the rest of the vertebrae
and IVDs was fairly consistent for V ∈ {10, 15, 20}. However, for V = 5,
two dips can be noted around T8 and L4, which can likely be explained
due to the lack of curvature and other unique identifying characteristics in
that region. Each of these plots was evaluated on roughly 1500 small FOV
MR images sampled from the validation set of 542 patients. For each im-
age, all visible vertebrae and IVDs were recorded, appearing between 150
and 1500 times for each plot, except for L6 and L6-S1, which appeared
between 20 and 40 times per plot. The variance in the occurrence is due
to the four different FOV sizes, and the sampling method being biased
towards representing central vertebrae and IVDs.
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The best architecture was a slice-wise 2D U-Net with a resnet152 encoder and Jac-
card loss, achieving a DSC of 0.919. This surpasses the approach by Streckenbach et
al. [14], which used the same dataset and test-set, allowing for a direct comparison.
The complete table of all 112 slice-wise segmentation experiments can be found in
Appendix A.

In conclusion, unless specified otherwise, this slice-wise U-Net with a resnet152 encoder
model is used as the main segmentation model.

Section / Author Architecture Encoder Loss DSC IoU

5.2.2 U-Net [25] resnet152 [57] JaccardLoss 0.919 0.852
5.2.2 DiceLoss 0.915 0.844
5.2.2 CrossEntropyLoss 0.902 0.822
5.2.2 mit b5 [27] 0.905 0.829
5.2.2 resnet34 [57] 0.917 0.848
5.2.2 timm-regnetx 160 [58] 0.917 0.848
5.2.2 FPN [44] 0.909 0.834
5.2.2 DeepLabV3Plus [46] 0.912 0.839
5.2.2 Linknet [47] 0.918 0.849
5.2.2 PAN [48] 0.910 0.836
5.2.3 3D U-Net [50] CNN 0.910 0.835
5.2.3 3D U-Net [50] CNN DiceLoss 0.905 0.829
Streckenbach
et al. [14]

(Patch) 3D U-Net [26] CNN
CrossEntropyLoss
with FocalLoss

0.907 -

Table 6.3.: Step 1: Segmentation Results Comparison. The topmost row shows
the best method, the following entries show an ablation study: cells left
blank are the same as in the topmost row. The complete results can be
found in Appendix A. The last row shows an approach by Streckenbach et
al. [14] for the same dataset and ground truth as used in this thesis. They
used a 3D patch-based approach for segmentation.

.

6.3. Step 2: Instance Separation Method

Comparison

This section compares the two methods for instance separation, namely connected
components and split along IVDs, as presented in Section 5.3. These methods are used
to separate vertebrae and IVDs in the segmentation to obtain a top-down sorted list
of instances. This is crucial for creating a ground truth for the large dataset of 10,833
MRI scans, improving the post-processing of the multiclass segmentation approach,
and generating necessary statistics for the conventional machine learning models.

Evaluating these methods in isolation is challenging due to the absence of ground truth
data for separated instances and the fact that both methods work 100% correctly on the
test set upon manual inspection. Furthermore, a similar approach as before with the
split of FOV sizes of V = 5, V = 10 or V = 15 vertebrae, does not provide additional
information. The instance separation methods do not depend on additional context,
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such as the multiclass segmentation does. The only prerequisite is that there are at
least four centroids in the current segmentation for the split along IVDs approach, as
otherwise the next centroids can not be inferred.

In order to decide which of these methods performs better, a heuristic is used to gauge
the performance of these methods: the entire dataset of 10,833 is segmented with the
best segmentation model as created in step 1, then both methods are used on each
segmented scan to separate the vertebrae and IVDs, and finally, invalid separations are
counted.

For the purpose of this heuristic evaluation method, a separation is considered invalid
if any of the following conditions is true:

• The uppermost instance is not C2
• The lowermost instance is not S1
• The number of vertebrae is not 23, 24 or 25
• The number of discs is not 22, 23 or 24
• The number of vertebrae + discs is not 45, 47 or 49

Section Method Valid Invalid
Invalid (without
segmentation errors)

5.3.1 Connected components 9865 (91.1%) 968 (8.9%) 940 (8.7%)
5.3.2 Split along IVDs 10750 (99.2%) 83 (0.8%) 55 (0.5%)

Table 6.4.: Step 2: Instance Separation Heuristic Evaluation Comparison.
The results of step 2 in the pipeline, based on the segmentation of the
previous step. A validity metric is used, as there is no ground truth data
in order to evaluate the methods directly. Validity specifies whether the
resulting spine is possible from an anatomical perspective, if not, it is very
likely an incorrect output of that method.

In this thesis, all invalid segmentations are reviewed by the authors to eliminate major
segmentation errors or significant mistakes in the MRI scans. The primary objective is
to evaluate step 2 in isolation. The results of this evaluation are presented in Table 6.4.

The approach split along IVDs, yields significantly fewer invalid instance separations
(55) compared to the connected components approach (940). Upon manual inspection,
28 scans were identified as completely erroneous. These errors were either due to poor
data quality (refer to Figure 4.2 in Section 4) or incorrect segmentation output.

In conclusion, the split along IVDs approach will be used by default in the anatomical
labeling pipeline, unless specified otherwise. The heuristic was primarily used to justify
the selection of this method.
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6.4. Sacralization and Lumbarization

This section presents our findings on the occurrence of lumbarization and sacralization,
compared with existing literature. Our analysis, based on a sample size of 10,833
individuals, shows occurrences of 6.6% (710 cases) for lumbarization and 3.6% (393
cases) for sacralization. These results are placed within the context of various other
studies, as summarized in Table 6.5, demonstrating a higher incidence of lumbarization
in our study compared to others.

It’s important to acknowledge that our study has limitations. The segmentation and
classification of lumbarization and sacralization were automated, lacking the manual,
expert evaluation typically associated with more traditional studies. Consequently, this
may affect the precision of identifying anatomical variants compared to assessments
done by medical experts. However, despite this limitation, our large-scale dataset pro-
vides a valuable contribution to the understanding of these spinal anomalies. Our
findings highlight the variability of spinal anatomy in a broader population, offering a
significant dataset for future automated diagnostic methods and aiding in the develop-
ment of more nuanced algorithms capable of handling anatomical variations in clinical
settings.

Study Sample size Lumbarization Sacralization

Price et al. [59] 268 4.1% (11) -
Luboga et al. [60] 591 3.4% (20) -
Doo et al. [61] 1340 3.2% (43) 5.1% (68)
Nakajima et al. [62] 226 6.2% (14) 2.7% (6)
Farshad-Amacker et al. [63] 770 4.8% (37) 4.4% (34)
Hahn et al. [64] 200 4.5% (9) 7.5% (15)
Peh et al. [65] 129 7.0% (9) 6.2% (8)
Hughes et al. [43] 500 9.2% (46) 4.2% (21)
Total 4024 / 3165 4.7% (189) 4.8% (152)

Ours 10833 6.6% (710) 3.6% (393)

Table 6.5.: Occurrence of Lumbarization and Sacralization in Literature in
Comparison to our Results. The split of the sample size in the “Total”
row denotes the totals for lumbarization and sacralization, which accounts
for the lack of information in some studies about sacralization.
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7. Discussion

In this section, we set the work presented in this thesis within the broader context of
current research (Section 7.1) and explore avenues for future work (Section 7.2).

7.1. Situating the Anatomical Labeling Pipeline

within the Medical Imaging Field

The novel three-step approach introduced in this thesis for segmentation in small field
of view (FOV) magnetic resonance imaging (MRI) scans fills a previously unfilled niche.
There have been several good approaches for anatomical labeling CT in arbitrary FOV
sizes [37, 55, 66, 54], however for MRIs there is little in that regard. Chang et al. [53]
do have some variation in the FOV size and location, but the data is only lumbar,
making the uses of such a model fairly limited. Being able to use our anatomical
labeling model for any kind of spinal MRI greatly helps its usefulness and applicability.
However, the dataset is still the closest to ours, due it being MRI, having small FOV
and using vertebral body segmentation, making a comparison feasible, although not
entirely accurate. For a fairer comparison, in Table 6.2 FOV size of V = 8 was used in
the pipeline, resulting in a subset accuracy of 90.9% and a DSC of 0.839. In comparison
Chang et al. have noted a slightly lower accuracy of 89.3% and a slightly higher DSC
of 0.871. All in all, these results are comparable, meaning that the anatomical labeling
pipeline has similar results to some of the state-of-the-art methods for anatomical
labeling, in addition to being more general, as our approach has to be able to label any
part of the spine.

The methods selected for each step: slice-wise segmentation for step 1, instance separa-
tion utilizing intervertebral disc (IVD) for step 2, and slice-wise multiclass segmentation
for step 3, were shown to be particularly effective. This efficacy is notable especially in
cases of small FOV segmentations, where approximately five vertebrae are visible, and
neither the S1 nor the C2 vertebrae can be identified. This focus on small FOV seg-
mentations sets our work apart from many existing studies, which often rely on datasets
where these vertebrae are visible, thus simplifying the task of anatomical labeling [17,
56].

Another significant contribution of this thesis is the insights gained on sacralization and
lumbarization, derived from one of the largest datasets of its kind: out of the 10,833
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patients, 710 (6.6%) were categorized as lumbarization and 393 (3.6%) were categorized
as sacralization. These conditions, which involve variations in the number of lumbar
vertebrae, present notable challenges in both clinical diagnosis and medical imaging.
Our extensive dataset enabled a detailed examination of these variations, offering a
rare opportunity to observe and analyze these anomalies in greater depth. Although,
a key limitation is that this categorization was achieved automatically, without expert
supervision, which might affect the accuracy of these categorizations.

However, it is important to acknowledge the limitations of this study. We have only
used a single dataset, which is very large, but it only contains T2 MRI scans. The seg-
mentation models could struggle with T1 MRI scans without further training. Another
limitation is that the best method for instance separation in step 2, split by IVD, relies
on vertebral bodies as segmentations. For a dataset such as is used by Pang et al. [17]
a different instance separation algorithm would have to be developed. Furthermore,
currently split by IVD fails for segmentations with less than four centroids, even though
the actual multiclass segmentation might even have a chance of labeling these points.

7.2. Future Work

Looking ahead, there are many exciting directions for further research. In the following
some of them are listed.

1. Experimentation with alternative datasets, especially those differing significantly
in size, quality, or anatomical coverage, could provide deeper insights into the
generalizability and adaptability of the proposed methods. Applying the devel-
oped techniques to CT datasets presents another valuable research path. In CT
datasets, IVDs would play a much smaller role, due to CTs scans not captur-
ing soft-tissues well. CT scans further provide a challenge in that they are more
cuboid in shape, for example, a typical CT scan is of size 512×512×600, whereas
an MRI is usually around 20× 400× 1000. The major difference is in the sagit-
tal axis, where CTs are roughly 25 times larger, making the image considerably
more time-intensive to compute. Another significant difference in the datasets
would be more prevalent pathologies, as CT scans are potentially dangerous to
humans due to radiation, they are only done when there are already problems.
For example, the VerSe19 [7, 38, 39] CT-dataset includes many pathologies.

2. The MRI dataset used in this thesis could be augmented and balanced further, in
order to improve generalization of the segmentation models. The augmentations,
especially ones which crop the input MR image, could help with the issue where
vertebrae near the edges of image are not segmented correctly, necessitating an
evaluation adjustment for subset accuracy such as shown in Section 6.1.2. Fur-
thermore, the anatomical labeling currently performs very badly for detecting
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lumbarization (the presence of L6 and L6-S1) in small FOV MRI scans. Creat-
ing a more balanced dataset, such that lumbarization and sacralization appear
more commonly could improve the performance for this task. However, some
radiologists claim that the only reliable way to detect LSTVs is by counting from
the top [61], which might make this task difficult.

3. Extending the methods developed in this thesis, especially instance separation in
Section 5.3, for the full vertebra is necessary in order to be able to evaluate the
methods on other datasets. Currently, a plane is used to separate two adjacent
vertebral bodies, using this approach for the full vertebra would cause problems,
due to the plane incorrectly splitting the back portion of the vertebra. The full
vertebra includes the parts surrounding the spinal canal, whereas the vertebral
body only includes the voluminous part in front of the vertebra. For a compari-
son between a segmentation for a full vertebra and only the vertebral body, see
Figure 2.2 in Section 2.1.

4. An improved end-to-end anatomical labeling method could be developed to stream-
line the process and potentially improve performance. For example, a fully neural
approach to label everything would likely generalize better and have better per-
formance than some of the algorithms developed in this thesis.

5. The developed methods could be integrated into disease prediction models to pro-
vide more comprehensive and accurate predictions. Most MRI scans are small
FOV scans performed for localized detection of pathologies. The proposed meth-
ods in this thesis accurately segment and label small FOV scans, creating a strong
foundation for further models.

6. The performance of the developed methods could be compared to human perfor-
mance to provide a benchmark and identify areas for improvement. Once models
such as the one proposed in this thesis reach similar or even better performance
than expert radiologists do, they could be used to segment and label MR images
without much supervision.

7. Statistical analyses based on annotated images could be conducted to gain deeper
insights into the data and the performance of the methods. Due to the large size
of the dataset, many insights such as average vertebra width, height, volume, and
orientation could be extrapolated. Using the age metadata, certain statistics on
how vertebrae or IVDs change during one’s life could be calculated, for example,
what the average IVD height is as compared to the patient’s age.

8. The methods could be applied to other MRIs beyond spines to test their versa-
tility and adaptability. Some of the approaches, such as the instance separation
in Section 5.3, are very specific to the task of spine anatomical labeling, but oth-
ers could also work for other body parts, such as the multiclass segmentation in
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Section 5.4.4.

9. Exploring refinements in the algorithm to enhance its accuracy and efficiency,
or adapting the methodology to incorporate recent advances in machine learning
and hardware improvements, could further improve outcomes and broaden the
range of practical applications. For example, in the future, volume segmentation,
as shown in Section 5.2.3, will likely perform better than slice-wise segmentation.
There are many features in the sagittal dimension, such as ribs being connected
to the thoracic vertebrae, which can help models label vertebrae correctly.

In conclusion, the methods developed in this thesis have shown promising results in
the segmentation and labeling of spinal structures in MRI scans. However, there are
several avenues for future research and improvement. These include experimenting
with alternative datasets, further augmenting and balancing the MRI dataset used,
extending the methods for full vertebra segmentation, and developing an improved
end-to-end method. Additionally, applying these methods to other MRI scans beyond
spines could test their versatility and adaptability. Statistical analyses based on anno-
tated images could provide deeper insights into the data and the performance of the
methods. Lastly, comparing the performance of these methods to human performance
could provide a benchmark and identify areas for improvement. These advancements
could potentially lead to more comprehensive and accurate disease prediction models,
and streamline the process of MRI analysis.
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8. Conclusion

This thesis has presented a robust and efficient three-step segmentation pipeline that
competes with the best methods currently available for the segmentation of small field
of view (FOV) magnetic resonance (MR) images. The pipeline’s performance was
evaluated using small FOV MRI scans, with the number of tested field of view sizes
being V ∈ {5, 10, 15}. The subset accuracy achieved was 85.5%, 92.6%, and 94.4%
respectively, demonstrating the pipeline’s effectiveness and adaptability to different
imaging conditions.

In addition to the development of the segmentation pipeline, this thesis also conducted
an extensive study on lumbarization and sacralization using a large dataset. The
segmentation pipeline was instrumental in facilitating this study. Out of the 10833
spines analyzed, lumbarization was observed in 710 (6.6%) cases, and sacralization
in 393 (3.6%) cases. These findings, while slightly deviating from several previously
analyzed studies, provide valuable insights into the prevalence of these conditions and
underscore the importance of accurate segmentation in facilitating such analyses.

The source code developed for this thesis has been made publicly available under an
open-source license on GitHub1. This not only ensures transparency and reproducibil-
ity of the results presented in this thesis but also provides a valuable resource for the
scientific community. Researchers and developers can use, modify, and build upon this
code for their own studies, potentially leading to further advancements in the field of
small FOV MRI anatomical labeling.

In conclusion, this thesis has made significant contributions to the field of small FOV
MRI image segmentation and anatomical labeling, both through the development of a
state-of-the-art segmentation pipeline and through the insights gained from the lum-
barization and sacralization study. The open-source availability of the code further
enhances the impact of this work, paving the way for future research and development
in this area.

1https://github.com/LiquidFun/Spine
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A. Appendix Complete Step 1
Results

Section Architecture Encoder Loss DSC IoU

5.2.2 Unet [25] efficientnet-b0 [67] DiceLoss 0.909 0.834
5.2.2 Unet [25] efficientnet-b1 [67] DiceLoss 0.904 0.826
5.2.2 Unet [25] efficientnet-b2 [67] DiceLoss 0.900 0.819
5.2.2 Unet [25] efficientnet-b3 [67] DiceLoss 0.909 0.834
5.2.2 Unet [25] efficientnet-b4 [67] DiceLoss 0.917 0.848
5.2.2 Unet [25] efficientnet-b5 [67] DiceLoss 0.910 0.837
5.2.2 Unet [25] mit b0 [27] DiceLoss 0.902 0.822
5.2.2 Unet [25] mit b1 [27] DiceLoss 0.896 0.813
5.2.2 Unet [25] mit b2 [27] DiceLoss 0.904 0.825
5.2.2 Unet [25] mit b3 [27] DiceLoss 0.886 0.797
5.2.2 Unet [25] mit b4 [27] DiceLoss 0.903 0.825
5.2.2 Unet [25] mit b5 [27] DiceLoss 0.904 0.825
5.2.2 Unet [25] mit b5 [27] CrossEntropyLoss 0.902 0.823
5.2.2 Unet [25] mit b5 [27] JaccardLoss 0.905 0.829
5.2.2 Unet [25] mobileone s0 [68] DiceLoss 0.898 0.817
5.2.2 Unet [25] mobileone s1 [68] DiceLoss 0.901 0.821
5.2.2 Unet [25] mobileone s2 [68] DiceLoss 0.899 0.818
5.2.2 Unet [25] mobileone s3 [68] DiceLoss 0.903 0.824
5.2.2 Unet [25] resnet18 [57] DiceLoss 0.911 0.837
5.2.2 Unet [25] resnet34 [57] DiceLoss 0.917 0.848
5.2.2 Unet [25] resnet34 [57] CrossEntropyLoss 0.913 0.841
5.2.2 Unet [25] resnet34 [57] JaccardLoss 0.917 0.848
5.2.2 Unet [25] resnet50 [57] DiceLoss 0.911 0.838
5.2.2 Unet [25] resnet101 [57] DiceLoss 0.910 0.836
5.2.2 Unet [25] resnet152 [57] DiceLoss 0.915 0.844
5.2.2 Unet [25] resnet152 [57] CrossEntropyLoss 0.902 0.822
5.2.2 Unet [25] resnet152 [57] JaccardLoss 0.919⋆ 0.852⋆

5.2.2 Unet [25] resnext50 32x4d [69] DiceLoss 0.904 0.827
5.2.2 Unet [25] resnext101 32x8d [69] DiceLoss 0.897 0.814
5.2.2 Unet [25] timm-efficientnet-b0 [67] DiceLoss 0.907 0.832
5.2.2 Unet [25] timm-efficientnet-b1 [67] DiceLoss 0.914 0.842
5.2.2 Unet [25] timm-efficientnet-b2 [67] DiceLoss 0.912 0.840
5.2.2 Unet [25] timm-efficientnet-b3 [67] DiceLoss 0.913 0.842
5.2.2 Unet [25] timm-efficientnet-b4 [67] DiceLoss 0.911 0.837
5.2.2 Unet [25] timm-gernet l [70] DiceLoss 0.897 0.815
5.2.2 Unet [25] timm-gernet s [70] DiceLoss 0.909 0.834
5.2.2 Unet [25] timm-regnetx 002 [58] DiceLoss 0.907 0.831
5.2.2 Unet [25] timm-regnetx 004 [58] DiceLoss 0.901 0.822
5.2.2 Unet [25] timm-regnetx 006 [58] DiceLoss 0.904 0.826
5.2.2 Unet [25] timm-regnetx 008 [58] DiceLoss 0.906 0.829
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5.2.2 Unet [25] timm-regnetx 016 [58] DiceLoss 0.897 0.815
5.2.2 Unet [25] timm-regnetx 032 [58] DiceLoss 0.908 0.833
5.2.2 Unet [25] timm-regnetx 040 [58] DiceLoss 0.902 0.823
5.2.2 Unet [25] timm-regnetx 064 [58] DiceLoss 0.900 0.820
5.2.2 Unet [25] timm-regnetx 080 [58] DiceLoss 0.906 0.829
5.2.2 Unet [25] timm-regnetx 120 [58] DiceLoss 0.901 0.821
5.2.2 Unet [25] timm-regnetx 160 [58] DiceLoss 0.908 0.832
5.2.2 Unet [25] timm-regnetx 160 [58] CrossEntropyLoss 0.899 0.818
5.2.2 Unet [25] timm-regnetx 160 [58] JaccardLoss 0.917 0.848
5.2.2 Unet [25] timm-res2net50 14w 8s [71] DiceLoss 0.910 0.837
5.2.2 Unet [25] timm-res2net50 26w 4s [71] DiceLoss 0.908 0.832
5.2.2 Unet [25] timm-res2net50 26w 6s [71] DiceLoss 0.899 0.818
5.2.2 Unet [25] timm-res2net50 26w 8s [71] DiceLoss 0.893 0.807
5.2.2 Unet [25] timm-res2net50 48w 2s [71] DiceLoss 0.906 0.829
5.2.2 Unet [25] timm-res2net101 26w 4s [71] DiceLoss 0.906 0.829
5.2.2 Unet [25] timm-res2next50 DiceLoss 0.880 0.787
5.2.2 Unet [25] vgg11 [72] DiceLoss 0.915 0.845
5.2.2 Unet [25] vgg11 bn [72] DiceLoss 0.907 0.831
5.2.2 Unet [25] vgg13 [72] DiceLoss 0.902 0.823
5.2.2 Unet [25] vgg13 bn [72] DiceLoss 0.907 0.832
5.2.2 Unet [25] vgg16 [72] DiceLoss 0.912 0.840
5.2.2 Unet [25] vgg16 bn [72] DiceLoss 0.914 0.842
5.2.2 Unet [25] vgg19 [72] DiceLoss 0.916 0.846
5.2.2 Unet [25] vgg19 bn [72] DiceLoss 0.915 0.844
5.2.2 FPN [44] mit b5 [27] JaccardLoss 0.905 0.828
5.2.2 FPN [44] mit b5 [27] CrossEntropyLoss 0.895 0.810
5.2.2 FPN [44] mit b5 [27] DiceLoss 0.906 0.829
5.2.2 FPN [44] resnet34 [57] CrossEntropyLoss 0.905 0.826
5.2.2 FPN [44] resnet34 [57] DiceLoss 0.901 0.820
5.2.2 FPN [44] resnet34 [57] JaccardLoss 0.889 0.801
5.2.2 FPN [44] resnet152 [57] CrossEntropyLoss 0.886 0.796
5.2.2 FPN [44] resnet152 [57] JaccardLoss 0.909 0.834
5.2.2 FPN [44] resnet152 [57] DiceLoss 0.904 0.825
5.2.2 FPN [44] timm-regnetx 160 [58] CrossEntropyLoss 0.890 0.804
5.2.2 FPN [44] timm-regnetx 160 [58] JaccardLoss 0.906 0.829
5.2.2 FPN [44] timm-regnetx 160 [58] DiceLoss 0.906 0.830
5.2.2 MAnet [45] mit b5 [27] CrossEntropyLoss 0.895 0.811
5.2.2 MAnet [45] mit b5 [27] JaccardLoss 0.905 0.828
5.2.2 MAnet [45] mit b5 [27] DiceLoss 0.897 0.815
5.2.2 MAnet [45] resnet34 [57] CrossEntropyLoss 0.909 0.833
5.2.2 MAnet [45] resnet34 [57] JaccardLoss 0.897 0.814
5.2.2 MAnet [45] resnet34 [57] DiceLoss 0.918 0.849
5.2.2 DeepLabV3Plus [46] resnet34 [57] CrossEntropyLoss 0.904 0.825
5.2.2 DeepLabV3Plus [46] resnet34 [57] JaccardLoss 0.909 0.833
5.2.2 DeepLabV3Plus [46] resnet34 [57] DiceLoss 0.907 0.830
5.2.2 DeepLabV3Plus [46] resnet152 [57] CrossEntropyLoss 0.894 0.810
5.2.2 DeepLabV3Plus [46] resnet152 [57] JaccardLoss 0.912 0.839
5.2.2 DeepLabV3Plus [46] resnet152 [57] DiceLoss 0.909 0.834
5.2.2 DeepLabV3Plus [46] timm-regnetx 160 [58] CrossEntropyLoss 0.894 0.810
5.2.2 DeepLabV3Plus [46] timm-regnetx 160 [58] JaccardLoss 0.910 0.836
5.2.2 DeepLabV3Plus [46] timm-regnetx 160 [58] DiceLoss 0.911 0.837
5.2.2 Linknet [47] resnet34 [57] CrossEntropyLoss 0.901 0.820
5.2.2 Linknet [47] resnet34 [57] JaccardLoss 0.902 0.821
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5.2.2 Linknet [47] resnet34 [57] DiceLoss 0.909 0.834
5.2.2 Linknet [47] resnet152 [57] CrossEntropyLoss 0.904 0.826
5.2.2 Linknet [47] resnet152 [57] JaccardLoss 0.918 0.849
5.2.2 Linknet [47] resnet152 [57] DiceLoss 0.906 0.829
5.2.2 Linknet [47] timm-regnetx 160 [58] CrossEntropyLoss 0.902 0.823
5.2.2 Linknet [47] timm-regnetx 160 [58] JaccardLoss 0.918 0.849
5.2.2 Linknet [47] timm-regnetx 160 [58] DiceLoss 0.914 0.842
5.2.2 PAN [48] resnet34 [57] CrossEntropyLoss 0.896 0.811
5.2.2 PAN [48] resnet34 [57] DiceLoss 0.907 0.830
5.2.2 PAN [48] resnet34 [57] JaccardLoss 0.899 0.817
5.2.2 PAN [48] resnet152 [57] CrossEntropyLoss 0.897 0.815
5.2.2 PAN [48] resnet152 [57] JaccardLoss 0.910 0.836
5.2.2 PAN [48] resnet152 [57] DiceLoss 0.907 0.832
5.2.2 PAN [48] timm-regnetx 160 [58] CrossEntropyLoss 0.890 0.804
5.2.2 PAN [48] timm-regnetx 160 [58] JaccardLoss 0.901 0.821
5.2.2 PAN [48] timm-regnetx 160 [58] DiceLoss 0.903 0.825
5.2.2 DeepLabV3 [46] resnet34 [57] CrossEntropyLoss 0.875 0.778
5.2.2 DeepLabV3 [46] resnet34 [57] JaccardLoss 0.893 0.808
5.2.2 DeepLabV3 [46] resnet34 [57] DiceLoss 0.886 0.796

Table A.1.: The complete list of experiments for step 1. ⋆ shows the best overall re-
sult: Unet with resnet152 and JaccardLoss, achieving a DSC of 0.919. The
architectures were used as implemented by Segmentation Models Pytorch
[73]. An entire grid search was not feasible over all implemented archi-
tecture (n=9), encoder (n=549) and loss (n=8) combinations, therefore at
first all encoders were tried with Unet and Dice loss. Then various other
architectures were tried with a select few encoders which performed best.
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